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Abstract

In this thesis an optimization model has been developed to calculate the equilibrium geometry

of alluvial gravel-bed rivers for a given set of independent variables. The independent variables

are the discharges, both the magnitude and duration which are represented by a flow-duration

curve; the mean annual load, both volume and grain size distribution, which is imposed on to

the channel reach from upstream; and the geotechnical properties of the bank sediment.

The unknown dependent or decision variables to be solved for include the channel width, depth,

bank angle, roughness, and grain size distribution of the bed surface. The dependent variables

adjust subject to the constraints of discharge, bedload, bank stability, and valley slope, to

determine a channel geometry which is optimal as defined by a maximization of , which is the

coefficient of sediment transport efficiency.

The work in this thesis is an extension of earlier models that have predicted the geometry of

sand and gravel rivers with reasonable success, however the degree of scatter associated with

these models limited their application to quantitative engineering applications. The advances in

this thesis over the earlier optimization models are the inclusion of the bank stability analyses,

modelling using the full flow-duration data, and calculating the grain size distribution of the

bed-surface. The formulation presented in this thesis is specific to gravel-bed rivers, however it

can be reformulated for sand-bed rivers.
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Only limited verification of the model has been attempted at this stage by testing the theory on

published field data, and through comparisons with previously obtained qualitative relations.

Good agreement between the modelled and observed channel geometries was obtained for

channels with weakly developed bank vegetation using a simplified version of the optimization

model. The effect of the bank vegetation on the channel width was shown to agree closely with

empirical regime analyses.

The potential uses of the optimization model are to interpret observed river adjustments, to

predict future channel changes in disturbed catchments, and to gain further understanding and

insight into the behaviour of alluvial rivers.

Recommendations are made for future verification of the model.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Rivers represent an integral component of our civilization and economy. Civilization has

historically been concentrated along riparian zones and floodplains due to the availability of

fresh water and food resources, the presence of level arable land, and because rivers act as

transportation corridors for travel or trade, and as receiving waters for domestic and industrial

waste.

In a classic paper, Mackin (1948) emphasised that the river is part of drainage system and that

it cannot be understood apart from that system. That is changes which are observed in a river

channel can only be understood if they are interpreted within the framework of larger basin-

scale processes. Subsequent work such as Chorley and Kennedy (1971) and Schumm (1977)

have reemphasised the system approach to fluvial and other geomorphic systems.

The idealised fluvial system as presented in Schumm (1977) is shown in Fig 1.1. This simple

model subdivides the fluvial system into 3 zones. Zone 1 is the production or sediment source

area where the flows are generated, and the sediment is derived primarily from hillslope

processes. Zone 2 is the transfer area where the principal activity is the passage of the flows

and the transport of sediment produced in Zone 1. Zone 3 is the deposition zone where
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sediment is deposited on an alluvial fan, alluvial plain, delta, or in deeper waters. The work in

this thesis will deal primarily with channel processes in Zone 2.

Recent increases in population and industrialization have resulted in increased development

along rivers and throughout the river basin. Water is controlled and regulated to serve a wide

variety of purposes including hydroelectric power generation, irrigation, flood control and

stormwater engineering, pollution control, navigation improvement, municipal and industrial

water supply, recreation, fish and wildlife, and the conservation of soil and water on watershed

lands (Linsley et a?., 1992, p. 1-2). These activities can directly impact the river channels, or

may alter the basin hydrology and sediment yield.

The work in his thesis will be restricted to single-thread, alluvial gravel-bed rivers. Alluvial

rivers are defined as those with bed and banks composed of sediment which is similar to the

sediment that is transported by the river. Gravel-bed rivers are by definition rivers with alluvial

sediment in the bed of the channel that has a mean diameter greater than 2 mm. Typically most

gravel-bed rivers have a coarse surface layer (which is usually termed the “armour” or

“pavement”) in which the sediment is much coarser than the subsurface material. Rivers that are

bedrock controlled, or those that have incised into older sedimentary sequences will not be

considered herein. The analysis in this thesis applies to alluvial rivers with mobile beds, that is

those rivers which actively transport bed-material sediment, and have the capacity to modilj

their channel dimensions.

It is an underlying assumption of equilibrium channel analysis that alluvial rivers develop a

mean hydraulic geometry in response to the water discharge, sediment load, and sediment.

properties that are determined by the geology and hydrologic regime of the upstream areas.

Blench (1969, p. 1) refers to the “basic principle of self-adjustment” and states that:

2



The fundamental fact of river science, pure and applied, is that (alluvial) channels

tend to adjust themselves to average breadths, depths and slopes and meander

sizes that depend on (i) the sequence of water discharges imposed on them, (ii)

the sequence of sediment discharges acquired by them from the catchment

erosion, erosion of their own boundaries, or other sources and (iii) the liability of

their cohesive banks to erosion or deposition.

The term equilibrium is generally synonymous with the expression “in regime” which is widely

used in engineering circles (Blench, 1957).

Changes in the imposed discharges and sediment load result in adjustments in the river channels

and the development of a new hydraulic geometry. The channel adjustments may result in

changes that are determined to be undesirable for economic, environmental, or aesthetic

reasons and include bank erosion and loss of riparian habitat and land adjacent to the river,

degradation of the channel bed which can undermine bridge foundations and other hydraulic

structures, aggradation of the channel bed which can reduce the channel capacity and result in

an increased frequency of over-bank flooding, and changes in the physical nature of the channel

that may impact the aquatic habitat.

The basic goal of this thesis is to develop a mathematical model that can be used to calculate

the equilibrium hydraulic geometry of alluvial rivers with gravel beds. The potential uses of

such a model are to interpret observed river adjustments, to predict future channel changes in

disturbed catchments, and to gain further understanding and insight into the behaviour of this

class of rivers.
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1.2 EXAMPLES OF ACTIVITIES THAT IMPACT RIVERS

In this section a selection of land-use activities and their possible impacts on rivers channels will

be discussed. The discussion in this section is necessarily general, and is intended to introduce

some of the more common effects of selected basin development activities.

1.2.1 Dams and Reservoirs

The construction of dams and reservoirs can have large effects on the downstream channel

geometry as a result of changes to the characteristics of the discharge and sediment load. These

structures typically regulate the runoff such that the peak flows are reduced, and the flows are

more uniform. Furthermore they also act as sediment traps which capture a large proportion, if

not all of the sediment yielded from upstream of the dam.

The effect of the reduction in peak flows is to reduce the sediment transporting capacity of the

channel downstream, particularly in gravel-bed rivers where a threshold discharge may have to

be exceeded before bedload transport commences. Directly downstream of the dam

degradation often results because the sediment supply is reduced close to zero, and the river

has excess sediment transporting capacity despite the reduction in peak flows. The degradation

zone can migrate downstream a considerable distance (Raynov et at., 1986). Bed degradation is

particularly common with sand-bed rivers. For gravel-bed rivers the degradation is often

reduced considerably by the development of an immobile armour layer.

In other cases aggradation can develop downstream where tributaries deposit sediment into the

main channel that no longer has the capacity to transport the sediment. Dams and reservoirs can

also result in changes in the channel width. Wolman and Williams (1984) found that the effect

of dams on channel width was highly variable from no change, to a 50% reduction, to a 100%

increase in channel width.
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Dams and reservoirs may not affect the total volume of water that is discharged to the

downstream channel, only the timing. This is particularly the case for dams constructed

primarily for power generation or flood control. However when a dam is used for water supply

or irrigation, or there is diversion into or out of the basin, the volume of water, as well as the

timing may be affected.

1.2.2 Urbanization and Agricultural Development

Urbanization can severely alter the runoff response of the affected area of the catchment.

Impervious surfaces such as roof tops and paved areas reduce infiltration, and runoff is

concentrated and more efficiently routed along gutters and storm water drains. As a result the

storm hydrograph characteristically becomes “flashier”, that is the peak flows are much greater

and occur sooner than before urbanization. The low flows are also usually reduced so that

previously permanent streams may become ephemeral.

The effect of urbanization on the sediment yield is less clear. Sediment yield may increase

during the construction phase, but may ultimately be reduced below natural levels once

development is complete (Wolman, 1967). The bank vegetation may also be disturbed during

development.

The most characteristic impact to channel morphology following urbanization is an increase in

the capacity of the channels as they erode to accommodate the increased peak flow (Hammer,

1972; Park, 1977). Urbanization typically affects the lower-order channels which are often not

fully alluvial.

The conversion of forest to agricultural land may result in increased peak flows and a decrease

in the hydrologic response time of the affected area. Although the changes to the runoff

response are usually less pronounced than those due to urbanization when compared on a unit

area basis, the development of agricultural land typically covers much larger areas than urban
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areas. Agricultural development may affect a significant proportion of the total catchment and

can therefore have a significant effect on the basin hydrology.

The effects of the conversion from forest to agricultural land on catchment hydrology is long-

term and when completed the alluvial rivers can be expected to develop a hydraulic geometry

that tends to equilibrium with the modified catchment hydrology.

1.2.3 Logging

Certain logging practices, especially clear-cut logging and road construction can significantly

influence the watershed runoff and sediment yield characteristics.

Hydrologic changes which may accompany logging are an increase in total runoff and peak

flows. A loss of forest cover can reduce interception and evapotranspiration losses. Compacted

areas such as roads and yarding areas can reduce infiltration and increase overland flow.

Furthermore roads can intercept subsurface flow and route it more rapidly along drains.

Sediment yield may increase following logging and road construction. The increase in the

suspended sediment yield due to surface erosion as a result of soil disturbance during logging

and burning activities is well documented (Beschta, 1978). The yield of coarse sediment may

also increase due to accelerated mass-wasting processes on logged bill slopes, and due to

failures of road and landing fills, especially in steep mountainous areas.

Removal of stream-side vegetation or disturbance of the stream banks can affect the bank

stability and result in channel instability. The bank erosion which accompanies the channel

destabilization can increase the supply of sediment to the channel fl.irther downstream.

The effect of forestry activities on runoff and sediment yield is dependent upon the size of the

basin. In medium to large watersheds timber harvesting may be carried out on a “sustainable”
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basis over an 80 to 100 year rotation. Under these conditions only 1% or so of the catchment

area may be affected during any given year, and the net effect on the catchment hydrology may

be slight. However for small catchments or individual sub-catchments within the watershed, in

any given year logging may affect a significant proportion of the total area, which may have a

profound effect on runoff and sediment yield. At the small catchment or sub-catchment scale

logging may be viewed as an episodic disturbance with a period of between 20 to 100 years

depending upon regeneration rates.

1.2.4 Other Activities

Other land-use activities that may affect the river channel stability include river training,

dredging and mining. Also natural processes such as wild fire and climate change can have a

large impact on the channel geometry. The effect of climate change over shorter periods of time

are usually minor when compared to the short-term adjustments caused by human activities,

however they may become more pronounced in the future as a result of global warming.

1.3 APPROACHES TO THE PROBLEM

There are several approaches to the problem of interpreting and predicting channel adjustments

due to man-induced or natural causes.

1.3.1 Case Studies

This approach is based upon monitoring and recording observed channel adjustments in order

to gain a greater insight into river behaviour. The insight gained from such studies can then be

used to assess the future response of the particular river under study, or can be applied to other

rivers which possess similar characteristics.

Methods for monitoring river changes include calibrated river sections that are resurveyed

periodically over time, or remote sensing data such as sequential air photographs. Another

approach is to compare data from a modified catchment with data recorded from nearby
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control catchments with similar physical characteristics. Longer term adjustments can be

studied from sedimentological or stratigraphic evidence, which may include

dendrochronological or radiometric dating (Womack and Schumm, 1977).

1.3.2 Qualitative Relations

Qualitative proportionalities have been developed by river engineers and fluvial

geomorphologists to predict the response of alluvial channels. The best known examples are

from Lane (1955a) and Schumm (1969).

Lane (195 5a) suggested that the following relation is useflul when analysing changes in stream

morphology:

GbDcxQdS (1.1)

where Gb is the bed material load, D is the sediment grain diameter, Qd is a characteristic (le.

dominant) discharge, and S is the channel slope. For example (1.1) indicates that following an

increase in Gb, the river will tend to restore equilibrium by increasing S for given values of D

and Qd.

Schumm (1969) developed this approach fhrther and proposed the following proportionalities:

wY2
s Qd (1.2)

W2S
(1.3)

where W = the channel width, Y = the mean channel depth, = sinuosity, and 2= the meander

wavelength.
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Relations (1.1) to (1.3) are statements of indefinite proportions and therefore do not give any

quantitative information. These relations do however indicate general trends of river

adjustments.

1.3.3 Empirical Regime Equations

Empirical regime equations have been developed from the measurement and observation of

irrigation canals and natural rivers. Much of the early development of these equations was

based on observations of irrigation canals in India and Pakistan. Kennedy (1895) and Lindley

(1919) published the earliest works, however it was Lacey who in 1929 developed a set of

three equations for calculating the velocity, depth and slope that could be used for canal design.

This set of equations was modified in particular by Blench (1957) to yield three practical design

equations used to calculate the width, depth and slope of a regime canal.

This empirical approach was later extended to natural alluvial rivers by workers such as

Leopold and Maddock (1953), Blench (1957), Nixon (1959), Kellerhals (1967), Bray (1982b),

and Hey and Thorne (1986).

The equations for width and depth are often expressed in the form:

WcsQd (1.4)

Qb (1.5)

For both canal and river-based equations the value of the exponent a ranges between 0.45 -

0.55 and takes a typical value of 0.5, and the exponent b ranges between 0.33 - 0.41. More

sophisticated regime equations may include sediment size and load in the regime equations. The

equations of Hey and Thorne (1986) will be reviewed here as they were reportedly derived
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from data from gravel-bed rivers with mobile beds and are therefore most similar in character to

the rivers that are modelled in this thesis. The Hey and Thorne study is the first to explicitly

include the effect of sediment load on the regime geometry.

1.3.3.1 Width

The general equation from Hey and Thorne (1986) for channel width is:

W=3.67Q45 (1.6)

where W is in metres, and Qbf = the bankfI.ill discharge in m3/s which is assumed to represent

the dominant channel-forming discharge. The coefficient of determination for Eqn (1.6) is,

r2=0.7884. Hey and Thorne determined that the channel width was independent of sediment

size and load. Bray (1982b) has found that width varied slightly with grain diameter of the bed

sediment.

Hey and Thorne determined that the channel width was strongly influenced by the type and

density of the bank vegetation, and that Eqn (1.6) could be improved by discriminating the data

on the basis of bank vegetation type. The rivers were subdivided into four bank vegetation

categories vegetation type I (grassy banks) to vegetation type IV (>50% tree/shrub cover). The

effect of the increased density of trees and shrubs is to decrease the channel width.

The revised equation for channel width from Hey and Thorne (1986) is:

(1.7)

where ct ranged from 2.34 for vegetation type IV, to 4.33 for vegetation type I. For Eqn (1.7)

r2=O.9577 which represents a significant increase over Eqn (1.6). The bank vegetation is
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interpreted as affecting the bank strength and thus its ability to withstand higher shear stresses

exerted by the flowing water. This effect will be examined in Chapter 6.

1.3.3.2 Depth

The simple hydraulic geometry relation gives:

Y=0.33Q35 (1.8)

The value ofr2= 0.8045.

The coefficient of determination is increased tor2=0.8712 with the inclusion of bed material

grain size:

Y= 0.22 Qb37 D’ (1.9)

where D50 = the median bed grain diameter in metres. The mean depth was not significantly

affected by bank vegetation or sediment load.

1.3.3.3 Slope

The channel slope equation determined by the Hey and Thorne study is:

S = 0.087Q3D00°9D G’° (1.10)

where D84 is the grain diameter of the bed sediment for which 84% of the total sediment is finer

than. For Equation (1.10)r20.6285 which indicates considerable unexplained variance. In

addition the exponent of 0.10 for Gb suggests that S is quite insensitive to the sediment load.

However it has been demonstrated in Chang (1980) and Millar (1991) that S is strongly

influenced by the sediment load.
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While the exponents for the width and depth regime equations are similar for canal and river

derived data, for the slope equations the exponents differ greatly. Lacey (1929) and Blench

(1957) determined that:

(1.11)

while from analyses of natural rivers (Hey and Thorne, 1986) found that:

SciQ°43 (1.12)

Kellerhals (1967) found that the value of the exponent is equal to -0.4, and Bray (1982b) found

that it was equal to -0.33. The exponent in Eqn (1.12) is very close to that obtained by the

USBR (-0.46) from their stable channel analysis (Lane, 1955b). Leopold and Wolman (1957)

found that the function which separates meandering from braided rivers has essentially the same

exponent (-0.44). Therefore the value of this exponent of around -0.44 appears to be a very

significant one for natural rivers.

It is suggested here that the discrepancy between Eqns (1.11) and (1.12) is that for canals the

value of S is largely imposed, while alluvial channels can adjust their value of S. Irrigation

canals are generally straight and their planform shape is usually affected more by economics and

the location of property boundaries and engineering structures, than as a consequence of any

process of self-adjustment. Natural rivers however can adjust their value of S, principally

through adjustments of sinuosity, such that an equilibrium is established.

The regime equations such as those presented in this section have been of considerable aid in

the design of canals or river training activities. However their usefulness for predicting the

adjustments to altered hydrologic regime or sediment supply is limited. For example Eqns (1.7)
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and (1.8) suggest that the values of W and 7 are independent of Gb. Yet Eqn (1.3) from

Schumm (1969) indicates that an increase in Gb results in wider and shallower channels.

Furthermore the regime equations indicate that only W is affected by the bank stability.

However from a consideration of continuity, a wide channel with easily erodible banks must be

somewhat shallower than a narrow channel with resistant banks for the same value of Qbf

1.3.4 Analytical Models

Analytic models are rational, process-based models which solve the governing equations that

describe various channel processes such as flow resistance, continuity, momentum, sediment

transport and bank stability. These models can be broadly subdivided into static or dynamic

models (Hey, 1982).

1.3.4.1 Static Models

Static models attempt to model the steady-state, equilibrium hydraulic geometry. The transient

period of adjustment is not considered. A solution is obtained by solving the governing

equations for the prescribed values of the independent variables such as Qbf and Gb.

The simplest static model is the threshold channel model developed by the United States

Bureau of Reclamation (USBR) which is presented in Lane (1955b). This model combines

equations for flow resistance, continuity, the threshold of sediment motion and bank stability to

derive solutions for channels where the sediment is at the threshold of movement at every point

across the channel perimeter. However an explicit solution is only possible for the narrowest

Type B channel, the wider Type A channel requires an additional relation in the form of an

empirical regime equation for the channel width. Mobile-bed models require a sediment

transport relation in place of the threshold condition.
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Generally fluvial systems are recognised as being indeterminate (Hey, 1978; 1988) in that there

are more unknown variables than there are equations available for solution. The one and only

exception is the Type B solution for the USBR threshold channel model discussed above.

There are a number of other approaches that can be used to obtain solutions for these

indeterminate systems of equations. Parker (1978) has obtained solutions by using a result

obtained from a theoretical analysis whereby the dimensionless shear stress at the center of the

channel can only be 20% above critical value for stable, non-eroding banks to develop. Parker’s

results apply only to gently curved channels with banks composed of loose, unconsolidated

gravel sediment, and cannot be generalised to all gravel rivers.

An additional approach is the formulation of the problem as an optimization model. The

governing equations, or constraints, are solved together with an additional condition that some

characteristic of the channel is optimised. Examples are Chang (1980) who contends that the

total streampower is minimized, and White et a!. (1982) who state that the channel adjusts such

that the sediment transport capacity is a maximum.

1.3.4.2 Dynamic Models

Dynamic models are used in an attempt to simulate the channel changes with time. The basic

governing equations available for solution are momentum, continuity, sediment mass balance

which includes a sediment discharge relation, and a bed elevation equation. Models have been

formulated for steady-uniform, and unsteady-non-uniform flow, and using kinematic wave

approximations, and full dynamic-wave formulations. The best known model of this type is

HEC-6 (HEC, 1974; Thomas and Prasuhn, 1977). The HEC-6 model has undergone several

revisions and later versions include provisions for bed armouring.

The governing equations are formulated as partial differential equations which are solved

numerically by either finite-difference or finite-element schemes. The initial geometric and
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hydraulic characteristics of the channel must be specified. Sediment routing is calculated on a

size fraction basis to simulate bed coarsening and bed elevation changes.

Models such as HEC-6 are one-dimensional and are principally used to calculate bed and water

surface elevation changes. The numerical models have been applied with reasonable success to

predicting channel degradation following dam construction (eg Thomas and Prasuhn, 1977).

However models such as HEC-6 do not consider width or planform changes which is a severe

limitation for predicting channel adjustments.

One of the first dynamic models to consider width adjustments is that of Chang (1982). The

model is called FLUVIAL-14 and it can be termed a dynamic optimization model. It is similar

in form to the basic HEC-6 model, except that width changes are calculated for each time step

using the minimum stream power concept. The width changes at each cross-section are such

that the stream power is minimised for the total reach length. A principal assumption of this

approach is that during the transient channel adjustments the channel is in a state of dynamic

equilibrium.

Osman and Thorne (1988) and Thorne and Osman (1988) develop a bank stability analysis for

cohesive bank sediment that could be incorporated into existing 1-D dynamic models. Their

bank stability analysis considers fluvial erosion and mass failure of cohesive channel banks. The

rate of bank erosion and bed aggradation or degradation is calculated for each time step. Mass

failure of the bank occurs when the bank exceeds a critical height following bed degradation or

over steepening of the banks. The eroded bank material is included in the sediment mass

balance.

Further discussion of the various analytical modeling approaches is deferred to Chapter 7 where

comparisons with the optimization model developed in this thesis will be undertaken.
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1.4 THESIS OUTLINE

In this thesis a static analytical model will be developed based upon an optimization

formulation. This work was commenced in Millar (1991) and is an extension of the models

developed by Chang (1980) and White el al. (1982). The formulation in this thesis will be

developed specifically for gravel-bed rivers, however the same concepts also apply to sand-bed

rivers.

This thesis can be subdivided into two sections Part A and Part B. Part A covers Chapters 2-5

and deals with the theoretical development of the model, and formulation of the objective

function and the constraints. Part B includes Chapters 6-8 and covers the computational

scheme and the data analysis, together with the final conclusions and recommendations. The

content of each chapter is outlined below.

In Chapter 2 the optimization approach to modeling the hydraulic geometry of alluvial rivers is

discussed. Concepts of equilibrium and time scales are presented. The objective function is

formulated, and the independent and dependent variables are defined.

The development of the discharge constraint is presented in Chapter 3. The discharge constraint

includes two components, flow resistance and continuity. The flow resistance relation is

developed for gravel-bed rivers. The complete discharge record is utiised and is input into the

model as a series of quasi-steady flows obtained from the flow-duration curve.

In Chapter 4 the bedload constraint is developed. This constraint requires estimation of the

mean bed shear stress to calculate the sediment transport. Empirical relations to estimate the

mean bed and bank shear stress values are presented. The Parker (1990) surface-based bedload

transport relation is modified for inputs from the flow duration curve.
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The bank stability constraint is formulated in Chapter 5 for both cohesive and noncohesive bank

sediment.

Chapter 6 covers the major computer analysis in the thesis. A simplified optimization model

that uses only the bank-full discharge as input is used to investigate the influence of the bank

stability on the geometry of channels with both noncohesive and cohesive bank sediment. The

work relating to the noncohesive bank sediments has been published in Millar and Quick

(1993a, b).

In Chapter 7 the full model formulation is presented in which the sediment transporting capacity

of the channel is calculated using the full range of flows. The model also calculates the grain

size distribution of the bed surface. The effect of sediment load on the channel geometry is

examined. Potential applications of the model are reviewed, and the optimization model is

compared with other numerical approaches.

In Chapter 8 the final conclusions and recommendations are presented including limitations of

this model, and proposals for future study.
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Figure 1.1. Idealised fluvial system (after Schumm, 1977).
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CHAPTER 2

QUALITATIVE MODEL FORMULATION

2.1 INTRODUCTION

In this chapter the principal framework of the model will be discussed and the optimization model

will be formulated in a qualitative manner. The modeling will treat the river channel as a system

that tends to adjust to an equilibrium hydraulic geometry. The fluvial and alluvial channel system

will be defined, and the condition for equilibrium discussed. The objective function for the

optimization model will be developed.

2.2 TEMPORAL AND SPATIAL SCALES

It is necessary when discussing equilibrium in geomorphic systems to define the temporal and

spatial scales over which the equilibrium can be considered to operate.

2.2.1 Temporal Scales

Cyclic or geologic time (Schumm and Lichty, 1965; Schumm 1977) refers to very long time

spans. Over this time scale fundamental changes occur within the river basin, the topography is

reduced by erosion, valley slopes are built up, sea levels and climatic conditions can change very

dramatically. Graded time (Schumm and Lichty, 1965; Schumm 1977) represents much shorter

time intervals. Over a graded time span the topography, valley slopes, sea level, and other

fundamental landforms are relatively constant.

The actual time ranges of geologic and graded time scales are not absolute, but depend on the

rates of change of the controlling variables such as climate and topography. However in general
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geologic time might be thought to have a time span in the order of 1,000,000 years, and graded

time up to 1,000 years.

Another time scale is referred to as engineering time, which is the typical life of an engineering

structure and is generally considered to be about 100 - 200 years or less (Hickin, 1983; Newson,

1986). Usually engineering time is a subset of graded time. Throughout this thesis, unless

otherwise stated, engineering time scales will be assumed.

2.2.2 Spatial Scales

The geometry of a river varies along its length. Typically in the downstream direction the

discharge increases, the sediment tends to become finer through selective transport and/or

abrasion processes, and the bank sediment and vegetation may change. The term representative

channel reach will now be introduced (Fig 2.1). The representative channel reach is defined

herein as the section of channel length L, along which the discharge, sediment load and calibre,

and the bank material properties can be considered constant. This in turn implies that the mean

channel geometry will also be constant over this reach.

The length of this representative channel reach in absolute terms depends upon the rate of

downstream change of the channel properties mentioned in the previous paragraph. A gravel-bed

river in a mountainous area may experience a rapid downstream increase in discharge, and rapid

downstream decrease in the sediment size. In this case the length of the representative channel

reach would be relative short, and may be of the order of ten times the channel width. At the

other extreme, a large lowlands river, such as the Mississippi River along the mid to lower

reaches, may experience relatively constant values of discharge, and sediment load and calibre for

extended distances. In the case the representative channel reach may extend for distances possibly

up to 500 times the channel width.

20



2.3 DEFINITION OF EQUILIBRIUM

A channel is defined herein as being in equilibrium when the following conditions are satisfied:

1. The mean hydraulic geometry of the representative channel reach remains unchanged over

an appropriate time scale for which a steady-state equilibrium can be assumed.

2. There is no net erosion or deposition along the reach.

3. Any perturbations from the equilibrium geometry will be offset and the equilibrium

geometry restored.

Note that this definition applies to the reach-averaged and not to the local values of the hydraulic

geometry. The term steady-state refers to a time-invariant equilibrium. The absolute time period

over which this approximation is valid will depend upon the system being studied. It is valid

where there are no significant or systematic changes in the mean annual characteristics of the

discharge and sediment load, or in the competence of the bank sediment. In general the steady-

state approximation may apply over engineering time scales up to 100 years or so.

Sediment transport across the representative channel reach can be represented by the sediment

continuity equation for a specified time interval:

I--O=ES (2.1)

where I = input of sediment into the upstream end of the channel; 0 = the output of sediment

from the downstream end of the channel; and I4S = the change in the volume of sediment which is

in storage along the reach (Fig 2.1). The value of iS’ can be positive or negative which represents

net deposition or net erosion along the channel reach. At equilibrium 0=1 and ES = 0.
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The definition of equilibrium presented above is consistent with the so called regime theory

favoured by engineers that was developed from the observation of stable, non-silting canals

constructed in India and Pakistan. A canal was said to be “in regime” Wit was able to contain the

flows and transport the sediment load without appreciable deposition or scour. This concept can

be traced back to Lindley in 1919 (See Blench, 1957, p. 20).

The concept of regime was extended to natural rivers. Blench (1957, p. 3) defined the expression

“in regime” as meaning that the average values of the quantities which define regime (namely the

width, depth, and slope of the river) do not show a definite trend over some time interval, and

suggested that this may apply over a period of 20 to 40 years.

2.4 OPTIMAL HYDRAULIC GEOMETRY

An alluvial channel is a relatively complex system with perhaps up to seven degrees of freedom

(Hey, 1978). The system is indeterminate in that there are more unknown primary dependent

variables or degrees of freedom than there are equations for solution. Even for a simplified

channel geometry with only 3 degrees of freedom: width, depth, and slope, the solution remains

indeterminate as there are only two relations, flow resistance-continuity, and sediment transport,

available for solution.

The presence of an optimal geometry in fluvial hydraulics was first demonstrated by Gilbert in

1914. In flume experiments under conditions of fixed discharge rate and channel slope, it was

demonstrated that by varying the width of the flume an optimal value exists where the sediment

transporting capacity of the flume was a maximum.

The mechanisms responsible for the optimum in Gilbert’s experiments can readily be explained.

For narrow flume widths much of the shear force is acting on the side walls, and this, together

with the narrow bed widths over which sediment transport can occur, results in a low total

transport rate. Conversely for the large flume widths the depth of flow and the bed shear stress

22



both become small, and hence the total sediment transport rate also becomes small. Between

these two extremes lies an optimum where the sediment transport rate is maximized.

Gilbert’s experimental result can be duplicated numerically. An example of a solution curve is

shown schematically in Fig 2.2(a). The channel slope and discharge is constant at each point on

the solution curve. The numerical procedures for calculating these solution curves will be

developed in Chapters 6 and 7, or refer to White et al. (1982).

In Fig 2.2(b) a solution curve is shown where the channel slope is a variable, and the discharge

and sediment transporting capacity are now fixed. In this case the optimum is the point where the

slope is a minimum. This example is considered to be analogous to most natural alluvial rivers

over engineering time scales. The discharge and sediment load are imposed, and the width depth

and slope of the channel are dependent variables that develop in response to these imposed

values. This is discussed in Section 2.5.

The experimental results of Gilbert (1914) together with the numerical analyses discussed above

combine to lend significant support for the actual existence of an optimum in the fluvial system.

The fundamental assumption employed in the optimization model is that a natural river channel

will tend to adjust to this optimum. and that this optimum corresponds to the equilibrium

hydraulic geometry.

The preceding assumption is referred to in physical sciences as a “variational principle”. The idea

behind a variational principle is that a physical system will select the most “economical” path or

mode that requires the least “expenditure” (Konopinski, 1969; p. 169). A branch of mathematics

called calculus of variations has been developed to solve variational problems.

In many problems the existence of maxima or minima can be difficult to prove theoretically, and

most scientists who employ variational principles rely on their intuition in the initial formulation
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(Kyrala, 1967; P. 119). The properties that the solutions must possess (when their existence has

been assumed), can be easier to investigate, both theoretically and experimentally, than the

functional relation that describes the system. By employing a variational principle the complexity

of the problem can be reduced, and it provides a point from which to commence an investigation

into the behaviour of a complex system.

2.5 OPTIMIZATION MODEL

Optimization models have been developed previously by Chang (1980), Yang et a!. (1981), and

White eta!. (1982) among others to predict the geometry, or aspects of the geometry, of alluvial

channels. When formulating these models it was recognised by the authors that the fluvial system

is indeterminate and that an additional relation is required to close the problem and to obtain a

solution.

An additional relation is often proposed as an “extremal hypothesis” whereby a selected channel

parameter is either maximized or minimized. The term extremal hypothesis is synonymous with

variational principle. The principal extremal hypotheses which have appeared in the hydraulics

literature are presented below. Only the original or significant publications are given.

1. The Maximum Sediment Transport Capacity (MTC) hypothesis (Griffith, 1927; Singh,

1962; White et al., 1982.) states that for a given discharge Q, and slope S, the channel

width adjusts to maximize the sediment transport rate.

2. The Minimization Hypotheses which include: (i) the Minimum Stream Power (MSP)

hypothesis (Chang, 1980) whereby the total stream power, yQS is minimized; (ii) the

Minimum Energy Dissipation Rate (MEDR) hypothesis (Yang and Song., 1979) which

states that the rate of energy dissipation, yQS + y Q S (expressed here per unit channel

length) is minimized; and (iii) the Minimum Unit Stream Power (MUSP) hypothesis (Yang,

1976) which states that the stream power per unit weight ofwater, US, is minimized.
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In the foregoing y and y are the unit weights of water and sediment, Q is the volumetric

sediment transport rate, and U is the mean velocity.

MEDR is the most general of the three minimization hypotheses. MSP is equivalent to MEDR if

Q << Q, which is generally the case for natural rivers, especially gravel rivers. MIJSP is a special

case ofMEDR under a condition of constant channel width.

3. The Maximum Friction Factor (MFF) hypothesis (Davies and Sutherland, 1983)

states that a channel will adjust to maximize the friction factorf

It is recognised that general equivalence exists between the hypotheses, particularly in the case of

natural channels where Q and Q are imposed, and the width, depth, and slope are free to adjust

(White et al., 1982; Davies and Sutherland, 1983). In some instances certain extremal hypotheses

may not apply. The best example is MSP in the case of imposed Q and S such as in a laboratory

study where equilibrium is attained primarily through width adjustment. Under these constraints

the total stream power is fixed and therefore cannot be minimized, and hence MSP cannot apply.

The extremal hypotheses have been used quite successfully to predict the geometry of alluvial

channels (Chang 1980; Yang et a!., 1981; White et al., 1982), meanders (Yang 1971), bedforms

(Davies, 1980), and velocity profiles (Song and Yang, 1979). However the use of extremal

hypotheses remains controversial, some suggest that an additional physically based relation such

as bank stability should be used (comments following Bettess and White, 1987; Hey, 1988), or

that the apparent progress in fiuvial hydraulics through the use of extremal hypotheses is an

illusion (Griffiths, 1984). In Davies’ opinion (Davies, 1987) the empirical success of extremal

hypotheses is “deeply significant” and may indicate the possibility of fundamental understanding

of river behaviour. But until the reasons for the success of extremal hypotheses are known this

approach to fiuvial hydraulics will remain unattractive. There have been attempts in the
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references cited above to explain the extremal hypotheses from physical reasoning, but these

attempts have been unconvincing for one reason or another.

The optimization model to be developed in this thesis will now be formulated in a qualitative

manner. It differs from the earlier models of Chang (1980), Yang et a!. (1981), and White et aL

(1982) as the model includes constraints for the bank stability, and calculates the bedload

capacity of the rivers using the fhll range of flows and not simply a single representative or

dominant discharge. The objective function developed in Section 2.5.3 is equivalent to an

“extremal hypothesis”.

2.5.1 Independent Variables

The independent variables represent the known, external controlling variables which are inputs to

the system. The variables which are considered independent with respect to the channel reach

under consideration and include the physiographic, geologic and hydrologic properties of the

catchment. These are the geology, relief; climate, runoff vegetation, and the volume and calibre

of the sediment yield.

Additional independent variables are related to the channel boundary, namely the bank

vegetation, and bank sediment parameters such as cohesion and friction angle. The valley slope is

also considered to be independent over graded or engineering time scales. Although the valley

slope can be considered to be a dependent variable over geologic time scales, any significant

change in the valley slope requires the removal or deposition of large volumes of alluvium which

can only occur over long periods of time.

The channel will be modelled using the steady-state, mean values of the sediment yield and flow

duration data, as well as the mean bank stability parameters for the representative channel reach.
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2.5.2 Dependent Variables

The dependent variables (which are referred to as decision variables in optimization terminology)

are the unknown channel geometry variables: width, depth, slope, bank angle, roughness,

velocity, sinuosity, meander and pool-riffle wavelength, meander radius of curvature, and

bedforms. In this thesis only a simplified channel geometry will be assumed. Secondary currents

and the planform variables will not be considered explicitly, however a comparison of the channel

and valley slopes gives a measure of the channel sinuosity and therefore some limited information

on the planform geometry.

Since the valley slope is assumed to remain constant over engineering time scales, any changes in

the channel slope are limited to changes in the sinuosity of the channel. Through adjustments of

its sinuosity, a channel can change its slope much more readily as only relatively small volumes of

sediment need to be eroded or deposited along the meander bends. This is in contrast to the large

volumes that need to be moved in order to change its slope through aggradation or degradation.

2.5.3 Objective Function

In the following section the objective fhnction will be developed. Kirkby (1977) states that in a

complex system the criterion of maximum efficiency normally applies only to a single process,

that is the limiting process. Therefore the objective flinction formulation should reflect this

limiting process. The principal processes operating in river channels is the passage of the flows

and the transport of sediment. The most efficient cross-section for passage of the flows is a semi

circle where the hydraulic radius is a minimum. For a rectangular section the most efficient cross

section is that with a form ratio (W/ Y) of 2. However Gilbert (1914) found experimentally that

the optimum form ratio for transporting sediment ranged from 2 to 20. Natural channels rarely

have form ratios less than 7 or 8, and typically much greater. Furthermore analytical approaches

such as White et aL (1982) have been quite successful at predicting the channel width and depth

by assuming a maximum sediment transport condition. This evidence supports the view ofKirkby
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(1977) that it is the transport of sediment, rather than the accommodation of the flows, that is the

limiting process in alluvial channels.

The concept of sediment transport efficiency will be developed from the arguments of Bagnold

(1956, 1966) who described fluid flow in a river channel as a sediment transporting machine.

From the principles of energy conservation, and analogies to mechanical systems Bagnold defined

a sediment transport efficiency e:

e
= sediment transport work rate (2 2)

available power

The power available for transporting the sediment can be developed from Fig 2.3. Consider two

reservoirs A and B separated by a vertical distance AZ. In the upper reservoir A is a volume of

water and sediment, V,., and V, respectively. The total potential energy E, expended in moving

the water and sediment from A to B is the sum of the potential energy expended by the water E,

and the sediment E5:

(2.3)

E=yVAZ+y5VAZ (2.4)

where y and y = the unit weights for water and sediment. For uniform flow along a channel of

length L, the kinetic energy of the fluid and sediment is constant. The power available is

equivalent to the potential energy dissipated over duration Twhich is the travel time from A to B.

The power available per unit channel length is given by:

yVAZ y3VAZ
available

power= TL + TL
(2.5)
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which for steady flow conditions can be written as:

available power =yQS+yQS (2.6)

where Q and Q = the respective volumetric transport rates for the water and sediment.

Bagnold (1966) defined the sediment transport work rate as equal to the transport rate by

immersed weight multiplied by a factor K:

sediment transport work rate = K(r
— r) Q (2.7)

The factor K is necessary as the applied stress on the sediment is not in the same direction as the

velocity of the transported sediment. For bedload K = dynamic friction coefficient, for suspended

load K = ratio of the fall velocity to the mean sediment velocity.

Therefore substituting Equations (2.6) and (2.7) into (2.2):

K(y —r)Q
e= (2.8)

yQS+yQS

For natural rivers, particularly for gravel rivers Q<<Q, therefore Equation (2.8) can be simplified

to:

K(r8—y)Q
e=

7QS
(2.9)

In alluvial rivers the numerical value of e is typically very small as most of the energy in a river is

expended overcoming the frictional resistance to the flow.
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It will now be shown that the maximization of e is equivalent to the principal extremal hypotheses

described in the previous section. The denominator of Eqn (2.8) is the energy dissipation rate of

Yang et a!. (1981) per unit channel length, Similarly the simplified denominator in Eqn (2.9) is

the total stream power (Chang, 1980). For systems where Q is independent, maximization of e

implies minimising the energy dissipation rate and total stream power, and is therefore equivalent

to the MEDR and MSP hypotheses. Furthermore where both Q and Q are independent, the

maximization of e implies a minimization of S.

For a laboratory study where Q and S are imposed, and the channel width is free to adjust, a

maximization of e implies a maximum value of which is the MTC hypothesis. Therefore the

various extremal hypotheses are consistent with a maximization of e.

The MFF hypotheses will not be considered further here, however Davies and Sutherland (1983)

have shown that under conditions of independent Q and Q the MFF hypothesis agrees in general

with the MEDR, MSP, and MTC hypotheses.

For simplicity Equation (2.9) will be reduced to:

Gb
71=pQS

(2.10)

where Gb = the dry sediment transport rate in mass units, and p = the density of water which is

also in mass units. The values ofK and (y
-

‘y) I y are generally constant for a given sediment. For

bedload sediment K tan 30° = 0.58, and (y
-

y) I y 1.65. The product of K times (y
-

y) / y is

approximately equal to one, and therefore i is an index of the system efficiency which is not only

proportional to e, but for bedload sediment is similar in numerical value.
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The value of is always much less than one for rivers. Eqn (2.10) will be modified in Chapter 7

to apply to variable flows.

2.5.4 Constraints

The various constraints on the solution will now be discussed qualitatively. The mathematical

formulation specifically pertaining to gravel-bed rivers will be presented in Chapters 3 to 5. The

constraints in the optimization formulation are discharge, bedload, bank stability, and the valley

slope.

The discharge constraint represents the flows that are available to form the channel and transport

the sediment. Included in the discharge constraint is the flow resistance. The roughness of the

channel determines the velocity and depth of flow which has implications for sediment transport

and bank stability.

The bedload constraint represents the imposed bedload that must be transported by the flows. It

is assumed that the channel geometry develops in part as a response to the imposed bedload. All

sediment less than 2 mm in diameter is excluded from the analysis as the finer sediment is thought

to travel essentially is suspension, and therefore does not directly influence the channel-forming

processes. For true equilibrium all grainsizes must be transported through the representative

reach at just the rate that they are supplied.

Stable channel banks are an additional requirement for an equilibrium channel. This constraint has

not been addressed in previous optimization formulations (Chang 1980, Yang et a!. 1981, and

White et a!. 1982). The bank stability constraint will be formulated for noncohesive and cohesive

channels.
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The valley slope constrains the optimal solution as the channel must develop a slope which is less

than or equal to the valley slope. The maximum channel slope occurs when a straight channel

develops along the valley axis.

2.6 SUMMARY

The alluvial channel has been described as an indeterminate system. Experimental results and

numerical investigations indicate that an optimal hydraulic geometry can be observed in fluvial

systems. It is assumed that a natural river will tend to adjust to this optimal geometry. This

assumption forms the basis for the optimization model. The equilibrium hydraulic geometry is

considered to correspond to a solution where the discharge, sediment transport and bank stability

constraints have been satisfied, subject to the condition of maximum sediment transport

efficiency.

The solution obtained by the modeling represents the steady-state equilibrium geometry. The

transient stages of adjustment will not be considered directly in this thesis. The discussion of the

processes whereby a natural channel achieves the optimum configuration will be left until Chapter

7.
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Change in Storage = i.iS

Figure 2.1. Definition sketch for a representative channel length which is the length of

channel along which the mean channel geometry is approximately constant.
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Figure 2.2. A schematic representation of the optimal geometry in fluvial systems
obtained from numerical analysis. (a) Constant discharge and slope (eg Gilbert, 1914). (b)
Constant discharge and sediment load.
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Figure 2.3. Definition sketch for development of the coefficient of sediment transport
efficiency
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CHAPTER 3

DISCHARGE CONSTRAINT

3.1 INTRODUCTION

The discharge is a constraint on the channel system as it represents virtually the total energy

input. The channel development and sediment transport must be accomplished with the

available flows. In this thesis the discharge constraint will refer to the condition that the channel

must have a discharge capacity equal to an imposed or trial value of the bankftill discharge, Qbf.

In this chapter the flow resistance forms a large part of the discussion. Flow resistance

equations will be developed for gravel-bed rivers. The morphological and hydraulic significance

of the bankfull discharge and overbank flows will be addressed.

Flow resistance is closely related to shear stress which is dealt with in Chapter 4. Some cross

referencing between Chapters 3 and 4 is necessary to avoid repetition.

3.2 FLOW RESISTANCE

The following discussion will be limited to fully rough flow in channels with hydrodynamically

rough boundaries, where the mass sediment transport rate is very small in comparison to the

mass discharge rate of water. It is generally assumed that flow in open channels obeys the

Prandtl - von Karman logarithmic velocity distribution. Flow resistance is often expressed by

any of the following equivalent equations:

u (R
= 6.25+5.75 Iog(,7-J (3.1)

i.1* “S
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1 (12.2Rh
y=2.O3logJç

k, J (3.2a)

/ f

(12.2R 1)
f=2.O3lo

k
hJJ (3.2b)

S

where U = mean velocity; U = (g Rh S)O.5 which is known as the mean shear velocity;! = the

Darcy-Weisbach friction factor; Rh = the hydraulic radius; S = the energy slope which is equal

to the longitudinal channel slope under uniform flow conditions; g = gravitational acceleration;

and k3 = the roughness height which is the equivalent sand roughness.

Equation (3.1) was developed for open channel flow by Keulegan (1938) from the work of

Nikuradse (1933) on flow resistance in closed conduits. Equation (3.2) is commonly known as

the Colebrook - White flow resistance equation. The Colebrook - White form as presented in

Eqn (3.2b) will be used in this thesis.

The constant 2.03 in Equation (3.2a, b) is related to von Karman’s constant, and the coefficient

value 12.2 has been obtained experimentally. The roughness height k3 was originally defined by

Nikuradse (1933) and Keulegan (1938) as the diameter ofuniform sand grains glued to the pipe

or channel perimeter. Keulegan (1938) found that Equation (3.1) fitted the experimental data of

Bazin (1865), and that k5 was approximately equal to the mean grain diameter of the sediments

that had been used to line the experimental trapezoidal flume.

Natural gravel rivers are typically characterised by a coarse, graded, bed surface or armour

layer. Logically one would assume that ic, would take a value close to the mean grain diameter

of the bed surface. However several investigators have concluded that D50 or even a coarser
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characteristic grain diameter underestimated the value of k3. The following relation for k3 has

been proposed:

k3=CD (3.3)

where C is a constant corresponding to D. The values of C, were obtained by fitting

experimental or flume data to Equations (3.1) or (3.2). There is a wide range of values for C

from Ic = 1.25 1)35, (Ackers and White, 1973) to k3 = 3.5 D9, (Chariton et a!., 1978; Bray,

1979, 1982a). Other examples from both field and flume studies are = 2 D90 (Kamphuis,

1974), k = 6.8 D50 (Bray, 1979, 1982a), and k3 = 3.5 (Hey, 1979; Bray, 1982). The value

of/c3 is composed of the grain, form, and planform roughness which are discussed below.

Fig (3.1) shows the friction factorf from the field data of Chariton et al. (1978), Bray (1979),

Andrews (1984), and Hey and Thorne (1986) plotted against relative roughness, Rh ID50. The

mean depth Y is generally published and used rather than Rh, however for these natural

channels with width/depth ratios generally greater that 10, this introduces little error. The

points represent the values at the bankfill discharge with the exception of Bray (1979) who

gives the 2-year flood which generally corresponds to near bankfiill conditions.

The optimum value of C50 was obtained by minimizing the sum of the squares of the errors

between the observed and calculated values off The calculated value off were obtained from

Eqn (3.2b) the value of k given by Eqn (3.3).

D50 was selected as the characteristic grain size because it is most consistent with the original

definition of k3 by Keulegan (1938). For the data analysed, the values of C,0 ranged between

0.40 and 56, and the optimum value was determined to be C,o = 5.8. This compares reasonably

with the value of C,o = 6.8 obtained by Bray (1979, 1982a).
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Eqn 3.2 with the optimum value of k3 = 5.8 C50 is shown in Fig 3.1. Note the large degree of

“random” scatter about this best-fit equation. This was also reported in the other investigations

mentioned previously. It will now be shown that this scatter should be interpreted as a

systematic displacement off above a limiting value which is due to the grain roughness. The

additional roughness is interpreted as the effect of bedforms, bars, other macro roughness

elements, and planform irregularities along the channel.

3.2.1 Subdivision off into Grain and Form Components

One of the principal contributions of Einstein (1950) and Einstein and Barbarossa (1952) to

mobile-bed fluvial hydraulics was the assumption that the total channel shear can be expressed

as a sum of the grain and form components:

(3.4)

where r is the shear force per unit perimeter area, or mean channel shear stress, that the flow

exerts on the channel boundary, the value r’ is the component of the total shear stress due to

the grain roughness, while “is the component of the total shear stress due to bedforms and

other channel irregularities.

By definition the value of r is related tof by:

r=pU2 (3.5a)

where p is the density of the fluid. Equations analogous to Eqn (3.5a) can be defined for r’

and r”:

r’=_pU2 (3.5b)
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rM=I_pU2 (3.5c)

wheref’ is the friction factor due to the grains, and!” is the friction factor due to the bedforms

and other irregularities.

Therefore with Eqn (3.5 a-c), Eqn (3.4) can be rewritten:

LpU2=LpU2+L_pU2 (3.6)

Equation (3.6) simplifies to:

(3,7)

The friction factorf can therefore be subdivided linearly into grain and form components in a

manner analogous to subdivision of z

The shear stress r is subdivided into the grain and form components here by a subdivision of the

friction factor. Einstein (1950) and Einstein and Barbarossa (1952) somewhat arbitrarily

assumed that the energy slope S is constant and subdivide Rh into the grain and form

components, while Meyer-Peter and Muller (1948) assumed a constant value of Rh and

subdivided S. The subdivision off as in Eqn (3.7) yields values for r’ and r” which are

equivalent to the subdivision of 5, but differ from the approach of Einstein (1950) and Einstein

and Barbarossa (1952).

It is proposed that the grain roughness height, ks’, is approximately equal to D50. This is

consistent with the original definition of k3 by Nikuradse (1933) and Keulegan (1938) who
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developed their equations using data collected from straight pipes and channels with no surface

irregularities other than uniform surface roughness.

For the field data presented in Figure 3.1, the values of the ratio k I D50 (which is equal to C50)

ranged from 0.4 to 56. If the premise that k8’ = 13 is correct, then the minimum theoretical

value of the ratio k3 I D50 is 1.0, which corresponds to the case where the total channel

roughness is due to the grain component only. Of the 176 rivers analysed herein, only 4 had

values of k3 / D50 less than 0.98. This provides good support for the assumption that k3’ = Tho.

Others have suggested larger values for ks’. Einstein and Barbarossa (1952) used k5’ =

Parker and Peterson (1980) used k3’ = 2D90, and Prestegaard (1983) used k3’ = D84 (these 3

studies are discussed below in Section 3.2.2). If any of these values were correct, then the

minimum observed values of k3 / D50 would be much greater than 1. For example if Parker and

Petersons’ value for k3’ were correct, then the minimum observed value of k / D50 would be

expected to be around 6 (as the ratio D90 /D50 is typically about 3).

The friction factor due to the grain component in natural gravel channels should therefore be

given by:

( (12.2Rh”Y2
f’=2.03lo

D
(3.8)

50

Eqn (3.8) is plotted in Fig 3.1 and it is evident that, with the exception of very few points, this

equation forms a tight lower bound to the observed values. Therefore the scatter in Fig 3.1 is

not random about a mean value, but is more correctly interpreted as a displacement of the data

points above the limiting grain roughness due to the presence of bars, bedforms, and other

channel irregularities. The displacement of the data points above Eqn (3.8) in Fig 3.1 is equal to
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3.2.2 Estimation off” for Gravel-Bed Rivers

The division of the flow resistance into grain and bedform components has been widely used in

studies of sand-bed hydraulics where bedforms are well developed (Einstein and Barbarossa,

1952; Shen, 1962; Engulund, 1966, 1967; Vanoni and Hwang, 1967; Alam and Kennedy,

1969). However relatively little work has been undertaken on the contribution of bedform

resistance in gravel-bed rivers. Three methods for estimating the value off” will now be

reviewed, those of Einstein and Barbarossa (1952), Parker and Peterson (1980), and

Prestegaard (1983).

3.2.2.1 Einstein and Barbarossa (1952)

Einstein (1950) and Einstein and Barbarossa (1952) argued that the bedform roughness must be

expected to be a function of the mobility of the bed sediment:

(3.9)

where Uk” = the form component of the mean shear velocity which equals.Jr “/ p, and ‘PD3S

the intensity of the grain shear which is defined as:

= pg(s—1)D35
(3.10)

where s is the specific gravity of the sediment.

The dimensionless parameter ‘1’ forms the basis for the Einstein bedload equation (Einstein,

1950). In this thesis the dimensionless grain shear stress based upon the median pavement grain

diameter, is the preferred index of bed sediment mobility:
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5O = pg(s-1)D50
(3.11)

Unpublished data supplied to the author by R.D. Hey and C.R. Thorne on the sediment size

distribution of the bed surface of several gravel-bed rivers in the UK indicates that D30 = 1.25

D35 is a reasonable approximation. Therefore the relation between ‘P’D35 and t*D,o can be

approximated by:

‘P
(3.12)

The form resistance coefficient of Einstein and Barbarossa (1952), U/ Us”, is related tof” by

the following relation:

=9 (3.13)

The relation of Einstein and Barbarossa (1952) for the form roughness can therefore be

expressed by the following equation which is equivalent to Equation (3.9):

(3.14)

The values off” from the field data in Fig 3.1 are plotted together with Eqn (3.14) against

tD in Fig 3.2. As Eqn (3.14) was derived by Einstein and Barbarossa (1952) from a limited

amount of data from sand-bed rivers, the poor agreement with the data from the gravel-bed

rivers is not surprising. However despite the wide scatter there appears to be a fhnctional

relation betweenf” and t*D,O of the type proposed by Einstein and Barbarossa.

Assuming a wide channel approximation the value t*D,o can be expressed as (see Eqn (4.15)):
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From Eqn (3.15) it is evident that the relation (3.14) has the potential for spurious correlation

as the form roughness, f “, appears on both sides of the equation. In Fig 3.3(a) & (b) the data

are subdivided such thatf” is plotted againstf’ / (f’ + f”), and against the total dimensionless

shear stress t*DJQ. It is evident that any functional relation such as Eqn (3.14) is due to the

relationship between f” and f’ / (f’ + f”), as the relationship twf” and r*D$O appears

totally random. Furthermore the variation inf’ is small compared tof”, thereforef’ / (f’ +f”)

can be approximated by a / (a +f”) , where a is a constant. When the flinctionf” = a I (a +f”)

is plotted in Fig 3.3a with a = 0.043, which is the mean value off’ from the data set, this

function describes very accurately the variation betweenf” andf’ / (f’ +f”), and therefore it

must be concluded that Eqn (3.14), and therefore the bar resistance curve of Einstein and

Barbarossa (1952), is largely a function of spurious correlation, and therefore does not give any

meaningful estimates of the form or bar roughness.

3.2.2.2 Parker and Peterson (1980)

Parker and Peterson (1980) performed an analysis similar to Einstein and Barbarossa (1952)

except that for the division of r into grain and form components they used the method of

Meyer-Peter and Muller (1948) whereby S is subdivided, rather than Rh. The flow resistance

due to the grain component was calculated using an equation equivalent to Eqn (3.8) except

k’=2 D90 was assumed, and the Chezy coefficient, C, rather thanf was used as a measure of

the channel roughness. The equation developed by Parker and Peterson for the grain

component of the Chezy roughness coefficient, Ci’, is:
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(3.16)

where Y = the channel depth. The notation of the original equation as it appeared in Parker and

Peterson (1980) has been changed to make it consistent with this thesis.

An empirical bar resistance curve relation derived by Parker and Peterson relates C’ to

The Parker and Peterson bar resistance is analogous to Eqn (3.14), and therefore is as much a

result of spurious correlation as the Einstein and Barbarossa (1952) relation. The Parker and

Peterson relation therefore gives no meaningfhl estimate of the bar resistance.

In addition Parker and Peterson (1980) conclude that for high discharges close to bankfull the

contribution of bar and pool-riffle sequences to the total roughness becomes negligible.

However from Fig 3.1 it is evident that f”is for many channels not insignificant at higher

discharges, but is often much greater thanf’. This is discussed fhrther in Section 3.2.3.

3.2.2.3 Prestegaard (1983)

Prestegaard (1983) subdivided v into grain and form components by subdividing S similar to

Meyer-Peter and Muller (1948). To estimate the grain component of the channel roughness, the

grain roughness height, k5’, was assumed equal to D84 on the basis that the larger grains

contributed more to the channel roughness than the smaller grains. The grain slope, S’, was

calculated using the following equation:

u2 ( (12.2Y*’Y2

D84 JJ (3.17)

Prestegaard originally expressed Eqn (3.17) in the Keulegan form (Eqn 3.1), however for

consistency it has been changed here to the Colebrook-White form (Eqn 3.2).
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The values ofS” were obtained by subtracting the values of S’ estimated from Eqn (3.16) from

the observed S. Prestegaard found that the bar roughness accounted for about 60% of the total

roughness at Qbf in the rivers studied.

The bar roughness was shown to be independent of grainsize. A reasonable correlation was

demonstrated between 5” and the dimensionless bar magnitude, which is the ratio of the bar

amplitude divided by the spacing of the bars, however no predictive equation was developed.

The approach adopted by Prestegaard whereby the bar roughness, whether expressed as 5” or

f “, is related to channel morphological features (apart from grainsize), represents a promising

method for estimating the bar roughness. However additional field-based research is required to

develop predictive equations.

3.2.3 Variation of f” with Discharge

The channel roughness whether expressed as Manning’s n orf is known to vary with discharge

in most rivers. For channels where bank vegetation is not a significant contributor to flow

resistance, the friction factor generally decreases with increasing discharge up to bankfull

(Kellerhals et aL, 1972; Parker and Peterson, 1980). The effect of overbank flow on the flow

resistance will be addressed in the following section.

The variation of f’ and f” for four rivers are shown in Fig 3 .4(a)-(d). The value off was

observed, f’ was calculated from Equation (3.8), and f” =f - f’. The curve indicating the

calculated value off was determined with Eqn (3 .2b) using the value of k that gives the best

agreement between the observed and calculated variation offwith discharge. This is discussed

below. The data for the Meduxnekeag, Northwest Miramichi, and Big Presque Isle Rivers from

New Brunswick are given in Phinney (1975), and the values for the Oldman River from Alberta
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are given in Kellerhals et a!. (1972, Reach 90). The data for the Oldman River were also used

by Parker and Peterson (1980) for their analysis.

Two features are obvious from Fig 3.4 for all 4 rivers. Firstly the value of f’ decreases only

slightly with increasing discharge. This decrease is expected as the relative roughness Rh / ]35

increases with increasing Q. A much greater decrease f” with increasing Q is evident, and

this has a large influence on the totalf This reduction inf” is consistent with the interpretation

by Kellerhals et a!. (1972) and Parker and Peterson (1980) that at low discharges the bars and

pool-riffle sequences in gravel rivers contributed greatly to the channel roughness, however for

higher Q values these features become “drowned out” and contribute less to the total

resistance.

Parker and Peterson (1980) went even fi.irther and concluded that the effect of the bars on

channel resistance at the higher flows when the bed becomes mobile are negligible, and the

form resistance approaches zero. This appears to occur for the Northwest Mirarnichi River (Fig

3.4(b)) for values of in excess of about 400 m3/sec. However Dr. Dale Bray (Personal

Communication, 1994) has indicated that the Northwest Miramichi River is not highly mobile at

this location even for high discharges.

The data from the Meduxnekeag, Big Presque Isle, and Oldman Rivers (Fig 3.4(a), (c), (d))

indicate that for higher flows the value of f” approaches a constant, non-zero value. For the

Big Presque Isle River the value off” is approximately equal to!’ at high discharges. For the

Meduxnekeag and Oldman Rivers the value off” at high Q values is less than f’, but

nonetheless makes a significant contribution to the totaif As mentioned previously, the data in

Fig 3.1 indicate that for many riversf” is greater thanf’ even at the bankfbll stage.

The Oldman River data were used by Parker and Peterson (1980) to verilS’ their hypothesis that

f” approaches zero at higher Q, and yet as is indicated in Fig 3.4(d) this is not so. The reason
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for this discrepancy is that the relation of Kamphuis (1974) where k3’ = 2 D90 was used by

Parker and Peterson, rather than k3’ = D50 used herein. It must be concluded that the

Kamphuis relation includes roughness elements in addition to grain roughness.

The total channel friction is given by Eqn (3 .2b). For modeling purposes, or for computing

synthetic stage-discharge curves it is important to know how the values of k andf vary with

discharge. Eqn (3.2b) is plotted as the calculated f curve, together with the values of f’
calculated from Eqn (3.8), and the observed variation off with Q for four rivers in Fig 3.4(a)-

(d). In each example a value of k was selected to give the best agreement between the

observed and calculated values offwith emphasis on the higher discharge values because most

channel adjustments occur at high discharges.

The data from the Big Presque Isle river (Fig 3.4c) indicate that a constant value of k3 = 0.28 m

produces a good estimate of the observed variation off The data from the Meduxnekeag and

Oldman rivers (Fig 3 .4a, d) indicate that at high values of discharge a good agreement between

the observed and calculated values off can be realised with a constant value of k. However

data from the Northwest Miramichi River (Fig 3.4(b)) indicate that the value of k is highly

variable with discharge. Table 3.1 contains the values of D50 from each of the four rivers

together with the adopted value ofk8.

For modeling purposes it is most important to accurately estimate the values off at high

discharges where most of the bedload transport and bank erosion, and therefore channel

adjustments, occur. Three out of the four rivers shown here display stage-discharge relations

which indicate relatively constant values of k3 for high discharges. Therefore for modeling

purposes it will be assumed that a river has a single value of k3 which remains constant for all

discharges and throughout any channel adjustments including changes in the value ofD50. In

Section 3.4 the total roughness height will be divided into bed and bank components, and

values of the separate components will be held constant. It is acknowledged that this is a
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limitation of the modeling procedure, however this can only be resolved through further

research into the sources of the form or bar channel roughness, and how this might be related

to the channel geometry.

Table 3.1. Values ofD50 from Phinney (1975) and Kellerhals et a!. (1972) together with the
adopted value ofk for the Northwest Miramichi, Meduxnekeag, Big Presque Isle, and Oldman
Rivers.

River D50 k3 k /D50
(m) (m)

Muduxnekeag 0.091 0.20 2.20
Northwest Miramichi 0.08 1 0.10 1.23
Big Presque Isle 0.064 0.28 4.38
Oldman 0.040 0.20 5.00

3.3 BANKFULL DISCHARGE AND OVERDANK FLOW

The morphological significance of the bankfbll discharge and the implications of overbank flow

will be discussed in this section. The bankfitll discharge at a river cross section is defined as the

flow that just fills the channel to the tops of the banks. A thorough review of the definitions of

bankfull discharge is given by Williams (1978). The floodplain is assumed to be the level of the

active floodplain which has developed from recent channel activity. In some instances the valley

flat may be equivalent to the active flood plain. A definition sketch of the channel and

floodplain is shown in Fig 3.5. The definition of Wolman (1955) will be used and this is the

stage where the width to flow depth ratio (W / Y) is a minimum. In the simple case of a

prismatic channel as is illustrated in Fig 3.5, the bankfhll discharge occurs when the flow

reaches the height of the active floodplain (Y 11).

The dimensionless floodplain depth of flow 3, is given by 13 = (Y -II) / H where Y is the total

depth of flow, and H is the vertical height of the main channel banks, and the depth of flow on

the floodplain is equal to Y- H. At the bankfhll stage f3 = 0, and for discharges in excess of Qbf

13>0.
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For values of the discharge up to the bankfhll discharge Qbp Rh and the mean boundary shear

stress t both increase with increasing Q. At Qbf the mean bank and bed shear stresses are

greater than for any lower Q values. This is important from bank stability considerations

because if the sediment which forms the channel banks is not being eroded at Qbf it will be

stable at all lower discharges.

A more complex case exits for flows in excess of Qbf The flow is spread over a wide area and

there are complex interactions between the overbank flow on the floodplain, and the channel

flow. This floodplain-channel interaction was first demonstrated experimentally by Sellin (1964;

although see Cruff (1965) for earlier unpublished reports) who identified vortices with vertical

axes at the interface between the channel and floodplain flows. These vortices result in

momentum exchange between the relatively fast channel flow, and the slower floodplain flow

and produce additional flow resistance effects.

The simplest case for analysis is the channel with an infinitely wide floodplain. The excess flow

above bankfi.ill will be spread across an infinitely wide area, and therefore the flow depth on the

floodplain is essentially zero, while the depth within the channel does not increase beyond the

bankfull depth. For discharges in excess of the Qbp value of f3 remains equal to zero, and the

floodplain-channel interaction can be assumed to be negligible. The bank and bed shear stresses

which developed at Qbf therefore represent maximum values which are not exceeded at higher

discharges. A channel which has stable banks at Qbf will be stable at all other discharges, and

the sediment transport rate also reaches the maximum value at

For channels with floodplains of finite width, when Q exceeds values of f3 > 0 can develop.

Under this condition complex three dimensional flow patterns can develop due to interactions

between the floodplain and main channel flow. These complex flow patterns have been the

focus of a considerable research effort. Several investigators have demonstrated the influence of
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the floodplain flow on the main channel hydraulics by constructing physical models, measuring

the hydraulic parameters of the main channel with floodplain flow, and then isolating the

floodplain from the main channel by smooth impervious barriers such as glass sheets. An

example is shown in Fig 3.6 from Sellin (1964). The isovels for the channel with floodplain

flow indicate the mean velocity and discharge within the main channel are reduced very

significantly when compared to the same channel with the flood plain isolated from the main

channel. From his experiments Sellin (1964) determined that the velocity and discharge in the

main channel are reduced by approximately 30 %.

It can be observed from the velocity gradients in Fig 3.6 that the bed and bank shear stresses

are also reduced significantly due to the floodplain-channel interaction. Barishnikov (1967)

performed experiments similar to those of Sellin (1964) to determine the effect of the

floodplain-channel interaction on the bedload transport capacity of the channel and determined

that the bedload capacity of the main channel could be reduced by 75 - 80 % due to overbank

flow interactions. Similarly Meyers and Elsawy (1975) investigated the effect of the floodplain-

channel interaction on the boundary shear stress and found that the mean and maximum values

of the bed and bank shear stresses could be reduced by 20 - 30% of the bankfiill values for

small positive values of3.

In general, it has been determined that the effects of the floodplain-channel interaction are

greatest when the difference between the flow velocities on the floodplain and channel is

greatest. The interaction effects increase with increasing floodplain roughness (Barishnikov,

1967; Knight and Hamed, 1984), for larger ratios of floodplain width to channel width (Knight

and Demetriou, 1983; Holden and James, 1989), and for small non-zero values of (3 (Knight

and Demitriou, 1983). Several investigators have determined that the floodplain-channel

interaction effects on the main channel flow become negligible for values of (3 greater than

about 0.3 - 0.5 (Posey, 1967; Meyers and Elsawy, 1975; Bhowmik and Demisse, 1982; Pasche

and Rouve, 1985).
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In conclusion it is evident that for values of 13 between 0 and about 0.5, the bed and bank shear

stresses within the main channel are in general somewhat less than the values at Qbp and that a

channel which is stable at the banlcfull stage will remain stable for larger discharges.

Furthermore the sediment transporting capacity for discharges above bankfl.ill may be no

greater, or even less than at Qbf This conclusion does not necessarily apply to very large flood

events where 13 is greater than about 0.5 and the floodplain-channel interactions become

negligible.

In the present model formulation the infinite floodplain model will be assumed where (3 remains

equal to zero for discharges equal to and exceeding Qbf The values of the bed and bank shear

stresses will be assumed to be equal to the bankfull values for discharges in excess of bankfiill.

The stability of the channel will be assessed at Qbp and if the channel banks are stable at Qbf

they will be assumed to be stable with respect to fluvial erosion of the bank sediment for all

other discharges. Furthermore the value of the bed shear stress calculated at Qbf will be used to

model the sediment transporting capacity of the channel for flows which exceed Qbf

3.3.1 Recurrence Interval of Bankfull Flow

Several investigators in the past have concluded that Qbf corresponds to a characteristic return

period. Wolman and Leopold (1957) and Leopold et al. (1964) that an average recurrence

interval of 1.5 years based on the annual maximum series is a good estimate of Qbf Similarly

Dury (1973) suggests a value of 1.58 years. Nixon (1959) based his analysis on the partial

duration series and found a mean recurrence interval of about 0.5 years. According to

Henderson (1966, p. 465) the result of Wolman and Leopold (1957) is equivalent to a

recurrence interval of 0.9 years based on the partial duration series.

Williams (1978) completed an analysis of 36 stations to compute the return period of Qbf for

the active floodplain and found a mean recurrence interval of 0.9 and 1.5 years based upon the
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partial duration and annual maximum series, respectively. A plot of the frequency distribution

for the analysis ofWilliams (1978) is shown in Fig 3.7. Disregard the valley flat curve as Qbfhas

been defined herein as the height of the active floodplain. While the mean recurrence values in

Fig 3.7 agree closely with the 1.5 year average of Wolman and Leopold (1957) and Leopold et

aL (1964), there is a wide spread of values between 1.01 to 32 years based on the annual

maximum series (0.25 to 32 years for the partial duration series), and the standard error

associated with this mean value is 0.277 log units. Williams (1978) concluded that because of

the wide range in recurrence intervals an average recurrence interval has little meaning and is a

poor estimate of Qbf

The suggestion of a characteristic recurrence interval has resulted in the widespread assumption

that Qbf is a primary feature of the watershed, and can be treated as an independent variable

whereby the value of Qbf is imposed on the channel. This has been a prime assumption in

several analytical studies of river channel development (Parker, 1978; Chang, 1979, 1980;

White et a!., 1982; Millar and Quick, 1 993b) and empirical regime studies of rivers (Charlton et

a!., 1978; Andrews, 1984; and Hey and Thorne, 1986). However if one agrees with the

conclusion of Williams (1978) that there is in fact no characteristic recurrence interval for

the assumption of Qbf as an independent variable becomes somewhat tenuous. Furthermore the

actual value of Qbf is defined by the width, depth, slope, and roughness of the channel, all of

which are dependent variables. The optimisation model will be used in Chapter 7 to show that

the value of Qbf can be viewed as a dependent variable.

3.4 SUBDiVISION OFfINTO BED AND BANK COMPONENTS

The preceding discussion requires the assumption that the values off for the bed and bank

sections of the channel are equal. Alternatively the wide channel approximation may be

assumed whereby the channel roughness is equal to the bed roughness only, and the

contribution of the bank sections to! is negligible. The distribution of the shear force (per unit
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channel length) which is defined as the product of shear stress and wetted perimeter can be

divided into bed and bank components:

bed.d bnk’3ank
(3.18)

where P is the wetted perimeter, and the subscripts bed and bank indicate the bed and bank

components of the total (Fig 3.5b). Eqn (3.18) forms the basis for the empirical method

developed by Knight (1981) and Knight eta!. (1984) for calculating the mean values of the bed

and bank shear stresses, and is used in Chapters 4 and 5 to calculate the bedload transport

capacity and to assess the bank stability.

By using Eqn (3.5) to express t in terms ofJ dividing throughout by P and cancelling like

terms, Eqn (3.18) can be expressed in terms off

P P
ff bedf bank

J jbed ibank

wherefbed is the total bed friction factor, and fbaflk is the total bank friction factor.

For the wide channels typical of natural rivers bed P, and bank <<F, therefore from Eqn

(3.19) it is seen that f is approximately equal to fbed In many engineering studies the wide

channel approximation can be used, and it can therefore be assumed that the contribution of the

bank roughness to the total channel roughness can be ignored. However in the modeling work

to be undertaken in Chapters 5 and 6 the sediment transporting capacities and bank stability of

narrow channels will also be assessed, and the effect of the bank roughness on the total must be

considered.
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The values Offbed a.ndfbank can be calculated with Eqn (3 .2b) using the respective values of ksbed

and ksbaflk together with the appropriate values for Rh. It is an important assumption that the

bed and bank friction factors only influence a portion of the total cross-sectional area, and in

order to calculate fbed and fbank with Eqn. (3.2b), the bed and bank components of the total

hydraulic radius, Rhbd and Rhbk, must be determined. The side-wall correction procedure for

flume studies developed by Johnson (1942) and Vanom and Brooks (1952; as reported in

Vanoni, 1975, p.l52l5z1) will be used to calculate the bed and bank components of Rh. The

principal assumption in this method is that the cross-sectional area, A, can be divided into bed

and bank components:

A=Ad+A (3.20)

where Abed = the area of the total cross-section that is affected by the bed roughness, and A bank

= the area of the total cross-section that is affected by the bank roughness. There is assumed to

be no interaction between the adjacent bed and bank areas, and therefore these areas must be

divided by a line of zero shear. Additional assumptions are that the mean velocity and energy

gradient are the same for each of the subsections.

The subdivision of the cross-section is shown in Fig 3.8. The boundaries of the bed and bank

sections must be lines which pass through the junction of the bank and bed and are orthogonal

to the isovels, an idea that is attributed to Leighly (1932). Rather than lines of zero shear, the

orthogonals are more correctly viewed as lines of zero net momentum flux. Assuming zero

shear along the orthogonals, the only force that is resisting the stream-wise gravitational force

of each section is the shear force per unit length of channel acting along the respective channel

perimeter, hence:

bank’ank =yAbS (3.21)

55



which can be rewritten:

bank rbank

— P —

. a
bank 7’

Eqn (3.22a) can also be expressed in terms of the corresponding bed values:

1? =-=- (3.22b)Jibed
‘b.d 7’ S

In natural channels the presence of secondary currents complicates the isovel distribution.

Furthermore in order to locate the lines of zero shear that divide the bed and bank sections of

the cross-section, the isovel contours must be known. However an alternate approach for

estimating Rhbed and Rhbank is suggested by Eqns (3 .22a, b). In Chapter 4 empirical relations

developed by Flintham and Carling (1988) are used to calculate ;ed and Tbank in order to

calculate the bedload transport rates and to assess the stability of the banks. Therefore, the

values ofRhbed and Rhbk can be calculated using Eqns (3.22a, b) with the values of rbCd and

rbank being obtained from Eqns (4.8) and (4.9).

For known values of bed’ bank’ ksbd and ksbk, the values of ‘1bed and ank can be calculated

with Eqns (4.8) and (4.9), and RhbCd and Rhbank from Eqn (3.22a, b). Once these values are

known fbed and fbank can then be calculated from the following equations which are

modifications ofEqn (3.2b):

/ f

fb = 2.O3 lo
k

bank

J (3.23a)
Sb I

/ f

(12.2RJi ‘I

fb L2.03 lo
k

bedjJ (3.23b)
abed
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and the total! then calculated from Eqn (3.19).

3.5 DISCHARGE CONSTRAINT

The discharge constraint is defined here as the requirement for a channel to have a discharge

capacity at bankfull equal to an imposed or trial value of Qbf The discharge constraint is used

to determine the size of the main channel.

The discharge constraint is formulated through the definition of volumetric flow rate as follows:

UA=Qbf (3.24)

where U is the mean velocity, and A is the total cross sectional area, with both corresponding

to the value at the bankfull discharge. The value of U is calculated using the Darcy-Weisbach

equation:

I8gRS
U=1j (3.25)

where the friction factor! is given by:

(3.19)

and the bank and bed components offgiven by:

( (12.2 Rh
-2

fb =2.O3 lo
k

bflkJJ
(3.23a)
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( (12.2 Rh
‘

fbed = 2.03 lo
k

bed

JJ (3.23b)
Sbed

It will be assumed that the values of ksbaflk and ksbCd are independent variables whose values are

known and remain constant during stage changes and channel adjustment. This is known to be

untrue, however the current knowledge of channel roughness adjustment is insufficient to

account for changes in ksbaflk and ksl,ed

The values OfRhbk and Rhbed are determined from Eqns (3 .22a) and (3 .22b) respectively:

A

__

41c . a
bank (L

Rh ==-- (3.22b)
bed

‘3bed )‘S

with the values of Thed and rbank being given by Eqns (4.8) and (4.9) respectively.

The complete range of flows will be used in Chapter 5 to model the sediment transporting

capacity. The flow-duration curve will be used as input, and the discharge constraint modified

to calculate the Tbed and rbank values for each flow.

3.6 SUMMARY

The discharge constraint has been developed in this chapter. This constraint is composed of

two components: flow resistance and the flow rate for uniform flow in a prismatic channel.

Flow resistance is expressed by the logarithmic Colebrook-White equation. The total friction

factor is subdivided into grain and form roughness. The friction factor due to the grain

roughnessf’, is calculated from the Colebrook-White equation with the roughness height equal

to the median bed grain size, D50 (for wide channels). No relationship describing the form
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roughnessf” has been determined. For many gravel rivers the value off” is significant, and

may be greater than f’, even at high in-bank flows. It is demonstrated that the bar resistance

curve of Einstein and Barbarossa (1952) is largely a result of spurious correlation and therefore

does not return meaningful values off”.

The wide channel approximation is valid for most engineering purposes, however the modeling

to be undertaken in this thesis requires that the friction factor be calculated for narrow

channels. In order to calculate the total friction factor the channel cross-section is subdivided

into bed and bank sections as suggested by Einstein (1942) and Johnson (1942) with the aid of

the empirical boundary shear relations of Flintham and Carling (1988). Roughness values are

assigned to the bed and bank portions of the channel, and the friction factor of each section is

obtained by using the bed and bank values of the hydraulic radius.

It is suggested herein that the bankfull discharge Qbf might be more correctly viewed as a

dependent variable, rather than as an independent variable as is commonly assumed. The

optimisation model will be used to test this idea in Chapter 7.
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Figure 3.5. Definition sketch of prismatic channel. (a) Composite channel including
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Figure 3.6. Experimental velocity contours (from Sellin, 1964). The upper figure
indicates the velocity contours with overbank flow, and the lower with the floodplain
isolated from the main channel.
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RECURRENCE INTERVAL. IN YEARS (PARTIAL DURATION SERIES)

Figure 3.7. Recurrence interval for Qbf (from Williams, 1978). In this thesis the active
floodplain values are of principal concern. The active floodplain data was collected from
36 rivers, and the valley flat data from 26 rivers.

RECURRENCE INTERVAL. IN YEARS (ANNUAL MAXIMUM SERIES)
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Figure 3.8. Subdivision of cross-section into bed and bank sections. These subareas
correspond to the areas of flow that are affected by the bed and bank roughness.
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CHAPTER 4

BEDLOAD CONSTRAINT

4.1 INTRODUCTION

The bedload constraint is a key component of the model and ensures that the amount of

sediment that is imposed on the channel can be transported without appreciable net deposition

or scour. In Chapter 2 it was argued that the transport of sediment is the limiting channel

forming process. Since the model is being formulated for gravel-bed rivers it will be assumed

that it is only the transport of coarse gravel bedload sediment that is the limiting process; the

finer sand and silt fractions are assumed to move through the system essentially in suspension.

This chapter addresses two principal topics, the boundary shear stress distribution and the

bedload transport algorithm.

4.2 BOUNDARY SHEAR STRESS DISTRIBUTION

The boundary shear stress will be used to calculate the bedload sediment transport rates, and to

assess the stability of the channel banks. Under conditions of uniform, steady flow the mean

boundary shear stress z, can be represented by

r=rRhs=pU2 (4.1)

Eqn (4.1) can also be expressed in terms of grain and form components as in Chapter 3.
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The boundary shear stress is not uniformly distributed across the wetted perimeter, and the local

value of the boundary shear stress on the bed and banks can vary significantly from

Several mechanisms are responsible for the non-uniform boundary shear stress distribution and

include the lateral transfer of longitudinal momentum, secondary currents, and the non-uniform

distribution of roughness elements across the channel perimeter. The influence of these

mechanisms and the various approaches to evaluating the boundary shear stress distribution will

be discussed below.

4.2.1. Cross-Channel Momentum Transfer

All shear flows are characterised by a net transfer of momentum from regions of high

momentum to regions of low momentum. In rectangular channels momentum is transferred

towards the bed and laterally from the center of the channel towards the banks (Cruff 1965). In

2-D flow the transfer of momentum is towards the bed only. By analogy with the Prandtl theory,

the lateral transfer of momentum is viewed as a diffusion process whereby the rate of lateral

momentum transfer is proportional to the cross-channel velocity gradient (Lundgren and

Jonsson, 1964). The velocity which result purely from momentum diffusion in turbulent flows

are indicated schematically in Fig 4.1(a).

Superimposed upon the diffusion of momentum is the advective transport of momentum by

secondary currents. Einstein and Li (1958) proved theoretically that secondary currents are

present even in straight channels. These secondary currents are sometimes referred to as ‘weak’

secondary currents as opposed the “strong” secondary currents that are produced as a result of

channel curvature. The strong secondary currents can be neglected in straight channels. The

effect of the weak secondary currents on the velocity distribution are indicated in Fig 4. lb. Note

the depression of the maximum velocity contour below the free surface.
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4.2.2 Analytical Solutions

Solutions for the distribution of the boundary shear which neglect the influence of secondary

currents have been determined for simple cases. Leighly (1932) assumed that the orthogonals to

the isovels represent lines of zero shear, and if the isovels are known, the boundary shear stress

can be calculated by:

rdP=yS (4.2)

where Tdp, dA and dP are respectively the local boundary shear stress, the area, and the

perimeter bound by two orthogonals (Fig 4.2a).

The area method of Leighly (1932) is of limited practical use as the velocity distribution must be

known in order to locate the orthogonals from which dA and dP, and hence dz can be

determined.

In a summary of the work of the USBR, Lane (1955b) gives the results of some analytical and

numerical studies to determine the values for the maximum bed and bank shear stresses for

rectangular and selected trapezoidal channels. The solutions were obtained by assuming a

power, rather than logarithmic, velocity distribution along lines normal to the boundary. The

results are shown in Fig 4.3. For wide trapezoidal channels which are typical of natural rivers,

the values of the maximum bed and bank shear stresses suggested for design purposes are yYS

and 0.76 yYS respectively.

Lundgren and Jonsson (1964) used Keulegan’s (1938) assumption that the velocity distribution

is logarithmic along lines normal to the boundary. They developed the modified area method

which computes the value of ip bound by two normals to the boundary (Fig 4.2b). Since the

normals to the boundary do not represent lines of zero shear, the shear stress along these
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normals must be considered. This shear stress is equivalent to the lateral diflhsion of momentum

across the normals.

The modified area method of Lundgren and Jonsson (1964) can be expressed:

dA
TdP_Y’p_P6t (4.3)

where TdP, dA and dP are bound by the normals to the boundary, and e is the coefficient of

lateral momentum transfer, and ôu / ãz is the local cross-channel velocity gradient.

Lundgren and Jonsson (1964) showed that for practical purposes the value of Tdp from

Equation (4.3) agrees well with the method of Leighly (1932). The drawbacks of this approach

are that secondary currents are neglected, and that it is applicable only to channels with

gradually curving profiles. This method cannot be used for rectangular or trapezoidal cross

sections.

4.2.3 Experimental Methods

Given the complexities of the effects of secondary currents and the non-uniform distribution of

roughness elements across the channel boundary, several investigators have approached the

problem of estimating the mean or maximum bed and bank shear stresses by formulating

empirical relations based on experimental data.

In a number of investigations velocity distribution or Preston tube measurements in rectangular

and trapezoidal flumes have been used to determine the distribution of the boundary shear

stresses (Cruff 1965; Rajaratnam and Muralidham, 1969; Kartha and Leutheusser, 1970; Gosh

and Roy, 1970, 1972; Knight and Macdonald, 1979a, b; Knight, 1981; Knight et al., 1984;

Flintham and Carling, 1988). The empirical approach developed by Knight (1981) and Knight et
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aL (1984), with the subsequent modifications by Flintham and Caning (1988) will be used in

this thesis to determine the values of the mean bed and bank shear stresses, Tbed and ;ank This

method is based upon the distribution of the total shear force SFotai into bed and bank

components:

= SFd + SF,ank (4.4)

which is equal to:

P=Tbed+TbF (4.5)

where P is the total wetted perimeter, and the subscripts bed and bank indicate the bed and bank

components. The channel is defined in Fig 3.5.

The proportion of the shear force acting on the banks SFbaflk is given by:

— bank
AL bank

Velocity profile and Preston tube data collected from rectangular flumes were used by Knight

(1981) and Knight et a!. (1984) to develop an empirical relation for SFbaflk. This relation was

initially developed by Knight (1981) for smooth channels using his own data, and the published

data from Cruff (1965), Gosh and Roy (1970), and Meyers (1978). The general form of the

relation was verified in Knight et a!. (1984), and the values of the coefficients refined with

additional experimental data collected by the authors, together with data from Noutsopoulos

and Hadjipanos (1982) and Kartha and Leutheusser (1970).
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Knights empirical relation for SFbaflk was expressed as a fl.inction of the aspect or form ratio W

/ Y. This relation was modified by Flintham and Caning (1988) who reduced the scatter by

correlating the ratio of the bed to bank perimeter lengths bed / ‘bank’ rather than the aspect

ratio W/ Y. Flintham and Caning included their own data from a trapezoidal channel, together

with the results of Gosh and Roy (1970) to develop the following equation for SFba, presented

here in a power form, which is a modification of the empirical equation of Knight (1981) and

Knight etaL (1984):

(1d
= 1.766 e

+ 1.5 (4.7)
ban/c

The values of ;ed and tbaflk can be estimated from the following equations which are algebraic

manipulations of Equations (4.5) and (4.6):

____

I(w+p )sin8l
bank_SF

yJ’S banlc[ 4)7

=(i-si)[2 +0.5] (4.9)

where 9is the bank angle as indicated in Fig 3.5.

The value of SFbank is obtained from Equation (4.7). Equations (4.8) to (4.9) are plotted against

the ratio W / Y in Fig 4.4. A comparison with Fig 4.3 shows that the results are reasonably

consistent with the results ofLane (1955b).

4.2.3.1 Non uniform bed and bank roughness

The effect on the shear stress distribution of the non-uniform distribution of roughness elements

across the channel has long been recognised. Einstein (1942, 1950) allows for the influence of
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bank resistance on the bed shear stress when calculating the sediment transport rates. Following

from Einstein’s work, Johnson (1942) developed a side wall correction procedure to be applied

to laboratory studies of bedload transport which were being undertaken in narrow glass (or

other material) walled flumes. Knight (1981) analysed SFbaflk for channels with different bed and

bank roughness values and developed an empirical correction relation for different bed and bank

roughness. This correction relation is a function of the ratio of the bed to bank roughness

heights, ksbed / ksbank Flintham and Carling (1988) performed additional experiments with

differential bed and bank roughness and developed the following equation which is a

modification ofEqn (4.7):

(P
i bed

JFbJ I i’ D
“1bank

The coefficient C is a function of the ratio of the roughness of the bed to the banks, k8
bed /ksbank•

For / ksbk = 1 the value of C = 1.5 and Equation (4.10) is equivalent to (4.7). Equation

(4.10) was constrained to pass through the SFbank = 1.0 for “bed’ bank = 0.

An additional relation was developed by Flintham and Carling (1988) for the parameter C from

experimental values of ksbed / ksbank between 1 and 91.1. This function was forced to pass

through the point C = 1.5 for the value of the ratio / ksbank = 1:

(
C=1.5kdJ (4.11)

The influence of the ratio k / k on the mean bed and bank shear stress values is indicatedSbed Sbank

in Fig 4.5. As ksbed / ksbank increases, a greater proportion of the total shear force is carried by

the bed and the value of ed increases, together with a concomitant decrease in the value of r
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bankS The value of rbank is more sensitive to the ratio ksbed/ ksbk than Tbed., especially for large

values of WI I’.

4.2.4 Grain and Bar Shear

Einstein (1950) and Einstein and Barbarossa (1952) proposed that the total shear could be

divided into grain and bar (form) components:

(3.4)

where, as in Chapter 3, the superscripts’ and” refer to the grain and bar or form components

respectively.

Eqn (4.5) can therefore be rewritten in terms of the grain and form components:

= (ned + Tbed) ‘,ed +(r + (4.12)

For a wide channel approximation bed F, and ‘3bank <<F, and Equation (4.12) can be

simplified to:

V = + Vbed (4.13)

Einstein (1950) has argued that only r ‘bed contributes to the bedload transport. By definition

(see Chapter 3):

V’=pU2 (3.5b)

Now:
8gRS 8r

U2= = (414)
f f

Combining Equations (3.5b) and (4.14) yields:
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(4.15)
f

wheref is the total friction factor, and!’ is the grain friction factor given by Eqn (3.8).

The value of r’ is plotted against r using the published field data of Chariton et a!. (1978), Bray

(1979), Andrews (1984), and Hey and Thorne (1986) in Fig 4.6. The same data are used in Figs

3.1 and 3.2.

Fig 4.6 indicates that the value of r’ is bounded by z, and the scatter below the upper bound

indicates that for most channels the value of ‘is significantly less than zThe exception is a few

channels where r’ appears to exceed r which it cannot by definition. This anomaly is attributed

to measurement errors as in practice it may be difficult to assign truly representative values of

D50, Rh etc to a river reach.

For these data the mean value of the ratio t ‘i r is 0.49, and the minimum value is 0.11. This

indicates that for some channels as little as 11% of the total bed shear stress is available for

bedload transport even at or near Qbank. This contradicts Parker and Peterson (1980) who

conclude that for high in-bank flows, the total boundary shear stress is available for bedload

transport. This result indicates that large variations in the calculated bedload transport rates can

result if Tbed rather than r bed is used.

Despite this result, the Parker (1990) surface-based bedload transport relation, which uses ia

to calculate the bedload transport rates and not r ‘bed., will be used in a modified form in

Chapter 7 of this thesis to calculate the sediment transporting capacity of the modelled river

channels. In order to reformulate the Parker (1990) relation on the basis of r ‘bed, considerable

effort is required.
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4.3 MODELLING SEDIMENT TRANSPORTING CAPACiTY AT BANKFULL

Optimization procedures such as Chang (1980), White et a!. (1982), and Millar and Quick

(1993b) have modelled the sediment transporting capacity of the channel as the transport rate

corresponding to the dominant or bankfull discharge. Similarly Hey and Thorne (1986) included

the bankfI.ill sediment transport rate as an independent variable in their regression analysis. This

has been justified as most of the transport, particularly for gravel-bed rivers, typically occurs at

or near bankfull. However it will be argued that the duration of the transporting flows must be

also considered, and that the sediment transporting capacity should be defined by the total

bedload which can be transported over a significant duration T (eg. 1 year), and not by a single

transporting rate.

Consider two channels which have identical values for both and the sediment transport

capacity at bankfull Gbf Furthermore assume that these channels are only just above the critical

threshold for bedload transport at so that essentially no bedload transport occurs for

discharges less than Qbf Andrews (1984) determined from 24 gravel-bed rivers in Colorado that

duration for which the Qbfwas equalled or exceeded ranged between 0.12% and 6%. Therefore

the total bedload transported over duration T by two channels with identical Qbf and Gbf values

could differ by a factor of 50 due to the differences in the duration of Qbfexceedence.

It must be concluded that while Qbf is morphologically significant and that the stability of the

channel banks should be assessed at this value, it is not sufficient to model the sediment

transport capacity of the channel at the single value of Qbp but rather the flow durations must

also be considered. The complete flow-duration data will be used as input to the model. These

data are a representation of the complete range of flows over a period of record. For

computational purposes the flow-duration curve will be discretized into m segments (Fig 4.7) of

quasi-steady, uniform flow. The valuep1 is the probability of flow Q1, where:
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p1=1.O (4.16)

4.3.1 Generalized Equations for Mean Bed and Bank Shear Stresses

The following equations are necessary to calculate the value of Tbedj which is in turn required to

calculate the bedload transport rate for each flow Q,. The equations used in the discharge

constraint (see Sect 3.6) are modified to calculate the flow geometry and the mean bed shear

stress values which correspond to each flow Q.

The continuity requirement for uniform flow is given by:

UA1=Q1 (4.17)

where U1 is the mean velocity, and A1 is the cross sectional area for flow Q•. The value of U1 is

calculated using the Darcy-Weisbach equation:

I8gR. S

f.
(4.18)

which is a modification ofEqn (3.25). The values ofRh, andf now take different values for each

value of Q,.

The value off is given by:

f (4.19)

Note that the value of Pbed is constant for all flows. The bank and bed components off given

by:
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( (12.2R
fb. =2.03 lo

hbJJ
(4.20a)

Sçj.J )

(122 R
= [2.03 lo

k

hbed1 ITbed I

The values of and Rhbed. are determined from Eqns (4.21a) and (4.21b) respectively:

Abed
— 1bedj

(4.21 a)Rhbed.
= —

V S

_____

— Tbank.
(4.2 ib)Rhb,?,(.

=
—

y S

The values of1•bed• and Tbankj are given by:

Tbank
=SF

ygS banki[ 4y j (4.22)

JEwTbed.
=(1—sF ,. +0.5 (4.23)

yYS bank,
bed

The value of SFbaflkj for each flow Q, is given by:

‘ied

y1.4o26

S],
I\C]Lk.

+ (4.24)

where the value C is given by Eqn (4.11).
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4.4 BED SURFACE

Gravel-bed rivers typically develop a layer on the bed surface that is significantly coarser than

the underlying material. This layer is one grain thick and is often termed the pavement or

armour layer (Kellerhals and Bray, 1971; Parker et aL 1982), and the underlying finer sediment

is called the subsurface, subarmour, or subpavement material. In this thesis the term armour will

generally be used to describe the surface layer, and subarmour to represent the subsurface

material.

The armour layer plays an integral role in the channel dynamics of gravel-bed rivers. The coarse

grains which comprise the armour produce the grain roughness of the channel bed and therefore

contribute to the flow resistance. Furthermore the armour layer shields the finer subarmour

sediment from the flow which has a strong influence on the transport of bedload sediment.

Milhous and Klingeman (1973) conclude that the armour layer is the single most important

factor in limiting the availability of sediment and controlling the relationship between streamfiow

and bedload discharge.

The grain size distribution of the armour layer can be most simply represented by a single

characteristic grain size such as the median grain diameter D50, or the geometric mean grain

diameter D, together with a measure of the grain size dispersion about the mean or median

value such as the standard deviation based on the sedimentological phi scale a, or geometric

standard deviation a.

The degree of armour development will be defined by the following relation:

D
(4.25)

50
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Where d50 is the median grain diameter of the subarmour sediment. The value of 350 has been

observed to range from 1 with no armour development, to greater than 6 which indicates a large

degree of bed coarsening. The typical value of 3o for natural rivers is about 2.5 (Parker et aL,

1982).

The adjustment of the armour layer to changes in the flow regime or sediment supply has been

observed both experimentally and from field observations. For instance Kellerhals (1967)

demonstrated the coarsening of the armour layer under steady flow conditions when the supply

of bedload sediment was cut off This coarsening of the armour is commonly observed

downstream of a dam which has cut off the supply of sediment to a channel. Dietrich et a!.

(1989), Lisle and Madej (1989), and Kuhnle (1989) have shown that channels with high bedload

transport rates tend to have values of Sso which approach 1. Dietrich et a!. also noted that the

effect of reducing the sediment feed to a channel was for the channel to increase 6. It is

therefore evident that both D50 and Dsg, as well as o or 0g’ must be considered to be

dependent variables. The values ofD50 and Dsg can take minimum values ofd50 or d, when no

surface coarsening is developed, and theoretical maximum values ofd1, which is the maximum

subarmour grain diameter. This can be stated formally as:

d50 D50 d100 (4.26)

dsg Dsg d1 (4.27)

Eqns. (4.26) and (4.27) are termed the armour grain size constraints. In reality the upper bound

to D50 and D is probably closer to d90 rather than d100, as sufficient sediment of this grain

diameter must be present in the subarmour in order to form an armour layer.

In the proposed formulation D50 and D are treated as dependent variables which can adjust

within the bounds given in Eqns. (4.26) and (4.27). The values of o and og will also be treated
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as dependent variables. The grain size distribution of the subarmour sediment will be assumed to

be equivalent to the long-term grain size distribution of transported bedload sediment (Parker et

a!. 1982). The values ofd50, d, d100, as well as other subarmour grain sizes are a result of the

catchment geology and sediment sorting and abrasion which occurs upstream, and therefore

these values are imposed on the channel reach, and are therefore considered to be independent

variables.

To account for the effect of the armour layer in the model the surface-based bedload relation of

Parker (1990) will be used. In this bedload relation Parker explicitly accounts for the influence

of the armour layer on the bedload transport rate. The armour layer grain size, which will be

represented by D50, is permitted to adjust together with the b’ ban1, S, 8, and other

dependent variables until an optimum solution is attained. The Parker surface-based bedload

transport relation is presented in a Section 4.5.

4.4.1 Influence of the Armour Layer

The simplest sediment transport model which accounts for the influence of the armour employs

the concept of an armour threshold. At discharges (or shear stresses) below the threshold, the

armour layer is essentially immobile, and the bedload transport rate is close to zero. Any

material which is transported above the immobile armour layer is considered as suspended or

sandy throughput load which is considered to be more a function of upstream supply, rather

than the local channel hydraulics. Only the load which is considered to result from an exchange

between the bed and the flow will be considered in this paper. For many gravel-bed rivers this

applies to sediment coarser than about 2 to 5 mm (Parker, 1990).

For flows exceeding the threshold, the armour becomes mobile, exposing the finer subarmour to

the flow, and sediment transport rates increase dramatically as shown in Fig 4.8(a). The data

from Fig 4.8(a) was collected from Oak Creek, Oregon, USA by Milhous (1972). The critical

discharge is approximately 1 m3/sec which for Oak Creek corresponds to a value of that
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is approximately equal to 0.03. Note that a threshold is evident only in Fig 4.8(a) which is

plotted with a linear Y- axis. When the same data are plotted in Fig 4.8(b) with a logarithmic Y

axis no threshold is evident.

Two models of armour behaviour at discharges above critical are recognised. The conventional

model assumes that when the discharge is significantly greater than the critical value the armour

breaks down and the subarmour sediment is fuily exposed to the flow. As the discharge wanes

on the falling limb of the flood hydrograph the armour layer reforms as the coarser particles

become increasingly immobile, while the more mobile fine sediment are winnowed out from the

surface layer.

A more recent model has been developed by Gary Parker and others which contends that the

armour layer is a mobile bed phenomenon which is persistent even at relatively high discharges

(Parker et a!., 1982b; Parker and Klingeman, 1982). In flume studies an equilibrium armour

layer was seen to develop which regulated the supply of fine material and resulted in the equal

mobility of all size fractions (Parker et a!., 1 982a, b). There is also field evidence that the

armour layer is persistent in natural channels even during high discharges. For example Milhous

(1972) found little variation in the composition of the armour layer following several storm

events where the bed became mobile, which suggests that the armour layer had remained intact

during these events. Andrews and Erman (1986) found that the armour layer of Sagehen Creek

in California persisted during an extreme snowmelt event with a peak discharge which exceeded

the bankfull discharge by 230%.

The model of Parker for the mobilisation of the armour layer will be assumed in this thesis. The

armour layer is regarded as a fundamental feature of the channel geometry which remains

relatively constant once equilibrium has been achieved.
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4.5 PARKER SURFACE-BASED BEDLOAD TRANSPORT RELATION

The Parker (1990) surface-based bedload transport relation was selected to model the sediment

transporting capacity of the channel as it is the first relation to explicitly account for the

influence of the armour layer on the bedload transport. An additional feature is that the relation

can be inverted and used to calculate the grain size distribution of the armour layer which must

develop in order to render all size fractions of an imposed bedload sediment “equally mobile”.

In this section an outline of the development of the Parker relation will be given. The surface

based relation is the result of a series of papers authored by Gary Parker and others which dealt

with the development of the armour layer in gravel-bed rivers and related bedload transport

issues (Parker et a!., 1982a, b; Parker and Klingeman, 1982; Andrews and Erman, 1986;

Andrews and Parker, 1987). The key concept in these papers is the “equal mobility” hypothesis.

The sediment that is transported as bedload in gravel-bed rivers is typically well graded. Under

the low rates of bedload transport typical of natural gravel-bed rivers the coarse surficial armour

layer develops as a result of the difference in inherent mobility of the fine and coarse sediment.

Any channel in which equilibrium has developed in such a way that there is no net deposition or

scour, and hence must have developed a bedload transport capacity which is equal to the rate at

which the bedload sediment is supplied to the channel. This applies to the total load, and also to

each size fraction. Therefore the coarsest 10% of the bedload sediment must be transported

through the equilibrium channel reach at exactly the same rate as the finest 10% of the sediment

over a significant duration which is generally taken to be one year.

The following analysis applies only to gravel bedload sediment. The sand fractions finer than 2

mm in diameter are considered to be transported as suspended or throughput load and the rates

of transport are governed more by supply from upstream, rather than local channel hydraulics

(Parker, 1990).
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Now a prime assumption in the Parker model is that the rate of transport of each size fraction is

regulated by the volume fraction of the surface layer that it occupies. The higher inherent

mobility of the fine sediment can be countered by reducing the volume fraction of the surface

layer which it occupies. Conversely the coarse size fractions become over represented in the

surface layer to counter their inherent lower mobility. The net result is that a grain size

distribution develops that, in an equilibrium channel, renders all size fractions equally mobile.

For low bed shear stress values this results in an armour layer that is significantly coarser than

the subarmour or bedload sediment grain size distribution. The theory predicts that the armour

layer disappears under conditions of high bedload transport rates which is in general agreement

with the experimental and field evidence of Dietrich et a!. (1989), Lisle and Madej (1989), and

Kuhnle (1989).

The mathematical formulation of the Parker (1990) relation is presented below. The armour and

subarmour grain size distributions are subdivided into n intervals, and a representative grain size

is assigned to each interval. The proportions of the total by volume which fall within each

interval is denoted byf for the subarmour mixture, and 1, for the armour layer.

The basic parameter of the relation is W which is the dimensionless transport rate per unit bed

width of size fraction normalized per unit volumetric armour layer content

(s—1)gq
= 1.5 (4.28)

‘ (i) ‘

The value is the volumetric bedload transport rate per unit channel width of size fraction D.

The total volumetric bedload transport rate per unit bed width, qb, is given by:
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b (4.29)

In order to understand the Parker relation, consider initially a channel composed of uniform

sediment of diameter D; for which the value W’ is given by:

= 0.00218G[ (4.30)

where t is the dimensionless bed shear stress obtained by dividing the dimensionless (Shields)

bed shear stress by a reference dimensionless bed shear stress
rD

which corresponds to a small,

but non-zero transport rate:

vbd/[Pg(s—1)D]
(4.31)

The function G [c1J is shown in Fig 4.9 and is approximated mathematically by the following

system of equations:

r 0.853Y5
54741— ) c1>1.59

G[c1]
=

exp[14.2(c1_ 1) — 9.28(— 1)2] 1 1.59 (4.32)

cF’42

I-

Equations (4.30) to (4.32) will now be generalised to apply to a bed comprised of graded

sediment. A key assumption is that the mobility of the armour layer is determined by the

mobility of the geometric mean grain diameter D. The function G is calculated as a function of

D. Further modifications are necessary to account for the hiding effects in a graded armour
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layer, and the relation is generalised to a bed of arbitrary composition by an order-one straining

function. The value of W is given by:

= 0.00218G[cI0g0(o) c] (4.33)

where the function G is unchanged from (4.32), 1 is calculated from Eqn (4.31) with D

Dsg divided by a dimensionless reference shear stress = 0.0386. The functiong0(4) is a

reduced hiding function, and a is a straining function. These two modifying functions will be

discussed below.

The reduced hiding function accounts for the hiding of smaller grains and the over exposure of

larger grains relative to Dsg. The function 4. is a modification ofEqn. (4.25) and is defined as:

D.
Sf =_—‘ (4.34)

The value ofDsg is given by:

Dsg = expi1. lnDjJ (4.35)

The function g0(4) was developed from Oak Creek data and was assumed to have the value

g0(1)1:

go(S.) = (4.36)

For grains smaller than Dsg the value ofg0(4) is less than one and the effective shear stress

acting on the grain D. is reduced. The converse is true for grains larger than Dsg.
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The order-one straining function a was introduced based upon an analysis of Oak Creek data

to account for the grain size distribution of the armour layer sediment. From a numerical

analysis using Oak Creek data the function awas found to vary from an asymptotic value close

to 1 for low values ofc113g0 (and low values ofg) for which a coarse, well sorted equilibrium

surface prevails, to 0.453 at high values of where a finer and more poorly sorted surface

layer is predicted. From this result it was postulated that a generalised straining function co

might be a function of and some measure of the armour grain size dispersion. The measure

of the grain size dispersion utilised is

(4.37)

In the case of uniform sediment = 0, and co should equal 1. For Oak Creek co = Co0. The

simplest hypothesis assumes a linear variation in co which is consistent with uniform sediment

and Oak Creek:

(4.38)

where is the value of o obtained numerically from the Oak Creek data Fig 4.10.

4.5.1 Calculation of Armour Grainsize Distribution

The usual application of the Parker surface-based relation is to input the values ofD3g, D1, arid

and then together with TbedtO calculate the bedload transport rate per unit channel bed width

which is denoted g, when expressed in dry mass units, and qb in volumetric units. However if

Dsg and o, together with the values of are unknown initially, it will be necessary to calculate

the value of these variables for imposed values of Gb. It is important to note here that while the

total load Gb is an imposed value, the transport rates gb and q, are in effect dependent variables
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as their values will be different for different channel geometries. By definition gb = Gb / Pbed, and

since the value of Pbed is considered in this thesis to be a dependent variable, the value of gb is

also a dependent variable. Furthermore changes in the channel geometry will also affect the

values of md which in turn will affect the values ofgb and qb.

By equating Eqns (4.28) and (4.33) and rearranging the following relation for is obtained:

(s—i) gqb
1,. =

15 (4.39)
0.00218 G[sgo g0(s1)a] (Tb, I p)

The fraction volume content of the transported bedload sediment in the jth range is denoted

which is defined as:

qb•
(4.40)

Combining Eqns (4.40) and (4.39) and rearranging yields:

F
—

_____________

(s—1)gq
441

— G[sgo go(s1)] 0.00218(rb / p)’5

Since q andf are known for an imposed Gb and a known value ofPbed, the values ofF; and the

composition of the equilibrium armour layer can be calculated for a value of r,ed from Eqn

(4.41).

However the optimization model to be developed in Chapter 7 evaluates a range of trial channel

geometries for which the value of q, is not known in advance. The calculation of an equilibrium

armour layer for this more general case will now be considered.
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For a specific discharge the second term in Eqn (4.41) is constant, although the value of qb may

not be known initially. Eqn (4.41) can therefore be simplified to:

(4.42)
G[CI)so g0(31)a]

Now by definition the following must hold:

F;.=L0 (4.43)

Therefore Eqn (4.42) can be presented as an equality by normalising over the summation of all

fj/G[(I)sgo g0(o) a)]
(4.44)

fj/G[sgo g0(o) wJ

Eqn (4.44) permits the calculation of the values of F. without knowing the value of q,,

beforehand.

Since the values ofF, and therefore D and are unknown initially, an iterative procedure is

required in order to solve Eqns (4.31), (4.36), (4.37), (4.38), and (4.44) in order to determine

the composition of the equilibrium armour layer, as well as q,. This will be discussed in Section

7.2.5.

By inspection between Eqns (4.44) and (4.41) it is evident that the value ofq is given by:
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O.00218(r ip)15
qb = (4.45)

(s—i) gfj/G[go g0(o,) a]

4.5.2 Modification of the Parker Surface-Based Relation for Natural Rivers with

Variable Discharge

The discussion and theory presented in this section is an extension of the work by Parker

(1990).

The “equal mobility” hypothesis was derived originally from flume experiments which were

performed using single, steady discharges (Parker et a!., 1982b). In its original form it implies

that equal mobility occurs for all discharges above the critical for armour mobility, and therefore

assumes that the grain size distribution of the transported bedload is equal to the subarmour for

all flows in excess of critical. This is known to be incorrect as is indicated by data from Oak

Creek (Milhous, 1972) which is shown in Fig 4.11. Note that below the critical Q of about 1

m3/sec the value of d50 is approximately 2 mm and represents sandy throughput load moving

above an immobile armour. For flows in excess of 1 m3/s the value of d50 increases with

increasing Q.

In its original form the equal mobility hypothesis supposes that d50 of the transported load

would be a constant for discharges in excess of the critical, and for Oak Creek this constant

value would be equal to 20 mm. As Fig 4.11 shows this is clearly incorrect. This was

acknowledged by Parker et aL (1982a) who state that equal mobility is at best a crude, but

useful, first-order approximation.

However this hypothesis can be correctly applied to natural channels with varying discharge by

recognising that for a channel in equilibrium, the constraint of equal mobility must be fulfilled

over a significant duration. Parker (1990) acknowledges that the size distribution of the annual
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yield of gravel is similar to the subarmour. Similarly Church et al. (1991), although referring to

fine sediment, state that “equal mobility is at best a statistical phenomenon which holds over a

(significant duration)”.

The experiments of Parker et a!. (1982b) and others have demonstrated that the development of

an equilibrium armour layer even under controlled conditions requires many hours. The flows in

many natural rivers, in particular ‘flashy’ gravel-bed rivers, are probably too variable for an

armour layer to develop an equilibrium state with a single discharge. However over a significant

duration, which is usually at least one complete water year, a channel which is in equilibrium

must have transported the bedload imposed on it without appreciable net deposition or scour,

and therefore must have transported all size fractions at just the rate at which they were supplied

to the channel. That is all sediment sizes are rendered equally mobile. Therefore the armour

layer which develops in an equilibrium channel represents the grain size distribution necessary to

develop equal mobility for the complete range of flows experienced by the channel over a

significant duration. However any single discharge is likely to be in disequilibrium with the

armour because the sediment size distribution of the sediment being transported by a given flow

at any given time is probably different than the subarmour.

For each value Q, a value of 1•bed• is calculated from the equations presented in Section 4.3.2,

from which can be determined. The value is the volumetric sediment transport rate per

unit channel width for flow Q,. Eqns (4.28) and (4.33) must be modified as follows:

(s—1)gq,.
= (4.46)

‘ (r,/p) ‘

J =O.OO218G[cF0g0(81)a] (4.47)
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where qb13 is the unit volumetric bedload transport rate for size fractionj for flow Q,, and the

values Vbedj, Io1, and Co., and G are not constant, but now vary with Q.

By equating Eqns (4.46) and (4.47) and rearranging the following relation for qb11 is obtained:

O.00218F.
qb

= (s—l)gp’5
G[3goj g0(s) a]i, (4.48)

By definition:

= Pi (4.49)

where p is the probability of Q,.

Therefore from Eqn (4.48) and (4.49):

O.00218F.

(s— 1)g p15
1v1 G[goj g0(s) a] z, (4.50)

Rearranging (4.50) together with (4.40) gives the following relationship for 13 which is

analogous to (4.41):

F
— fJ (s—1)gp5q

(451)

— p1G[0. g(o) ,] 0.002 18

Since the second term of Eqn (4.51) is constant (although the value is not necessarily known in

advance), with Eqn (4.43) the following equation analogous to (4.44) is obtained:
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f/P G[sgoj g0(o) c]r.

F. = ‘‘ (4.52)

G[so. g0(o) w}r

By inspection Eqns (4.51) and (4.52), it is evident that the total volumetric unit bedload

transport rate per unit bed width q, is given by:

0.00218
qb = n m

(4.53)

(s- 1)g p’5 G[sgo. g0(o) €]

If the SI system of units is used, qb will have units ofm2/sec.

4.6 TOTAL BEDLOAD CONSTRAINT

The total bedload constraint for the channel subject to the complete range of flows defined in

the flow duration curve (Fig 4.7) is represented by:

(4.54)

where g,, is the total bedload transport rate per unit channel width in mass units, and Gb is an

independent variable and represents the total load imposed onto the channel from upstream. The

value ofgb is given by:

g=Ispq (4.55)

where r is a constant which is related to the time base of Gb. The value of qb in the total

bedload constraint is calculated using Eqn (4.53). The units ofg and Gb must reflect the load

imposed over a significant duration. For instance under steady flow conditions such as in a

laboratory experiment Gb can have units kg / s as the rate is constant and will be the same for all

time scales. In natural rivers with highly variable and seasonal flows the logical time base would
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be one water year, and therefore Gb would have units of kg / y. In general the modeling to be

undertaken in Chapter 7 will assume a time base or significant duration equal to 1 year.

Therefore, the value Gb represents the mean annual bedload supplied to the channel, and F takes

a value equal to 365.25 24 3600 which is the number of seconds in one year.

4.7 SUMMARY

The bedload constraint has been developed and consists of two components: boundary shear

stress and sediment transport. In this thesis, the mean bed and bank shear stress (bank shear

stress is necessary to assess the stability of the banks, see Chapter 5) are estimated using the

empirical relations of Flintham and Caning (1988). These formulae were derived from

experimental data in straight rectangular and trapezoidal flumes, and they permit the estimation

of the mean values of rb€d and bank for trapezoidal channels with different bed and bank

roughness. Flintham and Carling caution that these results may not be confidently applied

directly to large scale natural channels or for bank angles less than 45°. This warning is

acknowledged, however in the absence of anything better, the relations of Flintham and Caning

will be assumed to be valid for large natural channels with low angle banks.

The effects on the shear stress distribution of weak, straight-channel secondary currents are

implicitly accounted for in the empirical shear stress relations. The strong secondary currents

which are associated with curved channels are not accounted for in this thesis. The secondary

currents are considered to exert only a second-order influence on the channel geometry and will

result principally in variations of the local geometry from the reach-averaged values. There is

some support for this assumption in the regime equations ofHey and Thorne who found that the

channel width at pool and riffles sequences varied by less than 5% from the reach-averaged

value.

The Parker (1990) surface-based bedload transport relation will be used in this thesis to model

the sediment transporting capacity of the channel in Chapter 7. This bedload transport relation
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was selected because it explicitly accounts for the influence of the armour layer on the sediment

transport, and the relation can be inverted to calculate the equilibrium armour layer grain size

distribution that is required to transport an imposed bedload for given flow conditions. This

allows the grain size distribution of the armour layer, together with the value of D50 to be

treated as dependent variables in the optimization model. Therefore 135 can adjust together with

W, Y, and S to define an optimum channel geometry.

The bedload transporting capacity of the modelled channel is calculated using the complete

range of flows represented by the flow-duration curve, rather than at a single discharge such as

Qbf The concept of “equal mobility” is restated whereby the armour layer adjusts such that all

size fractions are equally mobile over a given duration such as one year. The Parker (1990)

relation is modified to apply to the full range of flows.
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Figure 4.1. Simplified velocity distribution in a straight open channel. (a) Momentum diffusion
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Figure 4.2. Area methods. (a) Normals to isovels (Leighly, 1932). (b) Normals to bed
(Lundgren and Jonsson, 1964).
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Figure 4.4. Boundary shear stress variation from Eqns (4.8) and (4.9) for variable bank angle
6 and uniform boundary roughness in a straight trapezoidal channel. (a) Non-dimensional bed
shear stress = Vbed / yJ’S. (b) Non-dimensional bank shear stress = Tbank / rYS.
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Figure 4.7. Discretized Flow-Duration Curve. The probability of exceedence refers to a
specified time base and period of record. The value Q is the characteristic discharge value
assigned to the interval, and Pi is the probability of a discharge being within a particular
interval.
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CHAPTER 5

BANK STABILITY CONSTRAINT

5.1 INTRODUCTION

In this chapter the bank stability constraints which apply to gravel-bed rivers will be developed.

It is an obvious requirement that a stable channel must have stable banks. The bank stability

constraint will be formulated for both cohesive and noncohesive bank sediments.

There are two fundamental processes of bank erosion which must be considered: mass failure

and the fiuvial erosion of discrete grains or aggregates (Wolman, 1959; Thorne, 1982;

Gressinger, 1982).

5.2 COHESIVE BANK SEDIMENT

Cohesive channel banks are those composed of clay, silt and fine sand and have typically

resulted from over-bank deposition of fine sediment from suspension. Cohesive sediments

contain significant amounts of clay minerals which strongly influence the physical properties of

the soil. According to Raudkivi (1990, p. 300) when the clay content of a soil is 10% or

greater, the physical properties of the soil are dominated by the clay fraction.

5.2.1 Mass Failure

Mass failure of a river bank occurs when the driving force FD, which is due to the weight of

the failed soil mass w; exceeds the resisting force FR, which is a result of the cohesion c and

internal friction angle çS of the soil acting along the failure surface. The unit shear strength of a

soil is usually given by the Mohr-Coulomb failure criterion:
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SR=c+NRtanØ (5.1)

where SR is the shearing resistance for a unit area of soil, and is the normal upward force

acting on the base of the soil unit.

Potential failure will occur along the surface where the factor of safety, F,, which is defined by

the ratio FR /FD, is a minimum. Failure will occur when F, is less than one. The critical height

of a bank corresponds to F, = 1, and can be expressed by the following equation from

Terzaghi and Peck (1948):

Hmt=N (5.2)

where y is the bulk unit weight of the soil and includes the weight of the pore fluid, and N is

the stability factor. Note that N as presented in Terzaghi and Peck (1948) and in Eqn (5.2) is

the inverse of Taylor’s (1948) stability number. The value of N, is a fi.mction of and the

bank angle 6.

The simplest model of slope failure is the Culmann analysis (Taylor, 1948; Spangler and

Handy, 1982) which assumes that the failure surface is planar and passes through the toe of the

bank (Fig 5.1). This method yields the following analytical solution for N:

4 sinO cosçS
N

= 1—cos(6—.)
(5.3)

The slope of the failed surface, a, is obtained by differentiation:

6+ç
a=

2
(5.4)

(See Fig 5.1).
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Application of the Culmann solution is limited. It can only be applied with reasonable

confidence to completely drained slopes close to vertical. For lower angle slopes the failure

surfaces are strongly curved and the Culmann analysis under predicts N5, and therefore

This will be demonstrated subsequently.

No simple analytical solution exists for non-planar failure surfaces. The friction circle method

(Taylor 1948), or the various methods of slices (Fellenius, 1936; Bishop, 1955; Morgenstern

and Price, 1965; Spencer, 1967) all require trial failure surfaces to be assessed. The friction

circle method has in general been superseded by the method of slices and is seldom used today.

For the method of slices the soil mass above each trial failure surface is divided into a number

of vertical slices of convenient width (Fig 5.2(a)), and the driving and resisting forces are

resolved for each soil slice (Fig 5.2(b)). The factor of safety is established for that particular

surface by summation of the forces acting on all of the slices. A number of trial failure surfaces

are examined until the surface with the lowest value of F5 is determined. If the value ofF3 is

less than 1 the slope will fail.

The two most commonly used methods of slices are the ordinary or Swedish method

(Fellenius, 1936) and the Bishop simplified method (Bishop, 1955). For these and other

methods of slices, the number of unknowns exceeds the number of equations available for

solution and therefore some simplifying assumptions are necessary. In the ordinary method of

slices the vertical shearing forces between the slices are neglected, and the resultant force on a

slice is assumed to act parallel to the base of the slice. This can lead to an under estimation of

the factor of safety by as much as 60% (see Nash, 1987). In Bishop’s approach the vertical

shearing forces between adjacent slices are considered in the analysis and are assumed to be

equal and opposite. A key feature of the Bishop simplified method is an increase in the normal

force at the base of each slice which tends to compensate for the side forces on the slices.
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The solution for the factor of safety using the ordinary method of slices and assuming a

circular failure surface in terms of effective stresses is given by:

FR (c’l+(wcosa—crl)tanç5’)

SF wsina

where o- is the mean pore pressure for the slice, and 1 is the basal length of each slice. The soil

strength parameters c’ and çS’ are given in terms of the effective stresses. The solution for the

Bishop simplified method is more complex and requires an iterative solution for F3.

The ordinary and Bishop methods can also be applied to non-circular failure surfaces. Further

discussion of slope stability methods can be found in soil mechanics texts such as Chowdhury

(1978), Spangler and Handy (1982), or in a review by Nash (1987).

The various methods of slices, as well as other more recent limit analysis methods which

require numerical techniques such as finite element analysis for solution (eg. Chen 1975; Chen

and Lui, 1990), can be used to construct stability curves which show the variation ofN5 with &

Examples of stability curves are shown in Fig 5.3(a). Those solutions indicated by the solid

lines were derived from the graphs and tabulated data published in Taylor (1948, p.457) which

were obtained using the friction circle method. The dashed lines are values of N from the

Culmann solution, Eqn (5.3). For slopes close to vertical the Culmann solution agrees quite

closely with the results of the friction circle method, however the two solutions diverge for

lower values of 6

The friction circle method agrees closely with results obtained from the ordinary method of

slices for simple failure geometries with homogeneous soils and no seepage (Taylor, 1948).

However the friction circle method cannot be applied readily to more complex geometries,

heterogeneous soils, or where seepage is significant, and therefore the method is not widely
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used today. However the stability curves developed by Taylor (1948) can be applied to some

special cases and these will be discussed in a following section.

With the stability curves the value of can be calculated for any value of 9 and particular

soil values y c’ and ‘. Alternatively stability curves of versus 9 can be constructed for

known values of y,, and c’ as in Fig 5.3(b).

To develop stability curves for an applied river bank analysis, field investigations are necessary

to determine the bank stratigraphy, the properties of the bank sediments, and the likely shape

of the failure surface. Also other variables such as the presence of surface tension cracks and

the influence of bank vegetation on the stability of the bank can be considered. Groundwater

monitoring might be necessary to determine the effect of pore pressures and seepage forces.

Construction of the stability curves may require considerable effort, however once available the

curves can be approximated by empirical equations or piece-wise linearized segments, and then

this information can be accessed quickly by the optimization model. This is necessary as the

optimization model must assess the stability of hundreds or thousands of H-9 combinations

before arriving at the optimum solution.

5.2.1.1 Bank Stability and Submergence

The effect of submergence and emergence of the channel banks due to flow variability plays a

key role in the stability of the channel banks. Bank submergence results in increased soil weight

due to saturation, and a decrease in the friction resistance due to increased pore water

pressures. These two effects may combine to reduce the stability of the banks. This decrease in

bank stability may however be countered by increased hydrostatic loading along the bank

surface.

Three limiting cases will now be considered that can be analysed using the stability curves

developed by Taylor (1948). These cases are shown in Fig 5.4 and will be used to demonstrate
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the effect of submergence, saturation, and emergence on the stability of a river bank. The

values of c’ and ‘ to be used in the following discussion are assumed to equal the developed

values, that is the factor of safety applied to the values c’ and qS’ equals 1, and the values c’ and

are assumed to be known exactly.

Case I corresponds to a condition of zero or low flow in the channel, together with drained

banks. The value of N3 can be determined directly from the stability curves for a particular

value of 0, and Hcrjt calculated for the known values of y and c’.

Case II corresponds to that of a fhlly submerged bank. The soil mass is fully saturated and is

being supported by buoyancy forces about its perimeter as indicated in Fig 5.3. For this case

when the soil is fully saturated, and there is no seepage, the buoyancy forces are hydrostatic.

The value ofN3 can be determined directly from the stability curves, and then calculated

using the buoyant unit weight, Yb’ which is equal to saturated Yt minus y.

Case III corresponds to a condition following complete and instantaneous drawdown of the

flow in the channel. In this case the soil in the bank remains saturated, the pore pressures

unchanged from the fully submerged case. However the hydrostatic forces which were

previously acting to stabilise the bank are now absent. Taylor (1948) determined that the value

ofN for case III could be approximated by modifying the value of ‘to account for the pore

pressures acting along the failure surface which reduce the frictional resistance. It was

determined by Taylor (1948, p. 467) that the modified friction angle 9S,,, can be approximated

by:

(5.6)

Where y1 is the saturated value. This relation, which applies only to complete and instantaneous

drawdown, has been confirmed by Morgenstern (1963) who developed stability curves for
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complete and partial instantaneous drawdown using the Bishop simplified method of slices. For

Case III the value of N., is determined from the stability curve corresponding to qSm, and

calculated using y1.

The values ofN., and 11cr11 will now be determined using reasonable soil values to demonstrate

the relative stability of the three cases. A value of q’ = 25° together with the drained Yt = 20.80

kN/m3, saturated y = 22.76 kNIm3,and Yb = 12.95 kN/m3 for 0= 700. From Eqn (5.6) these

values give a value of Øm = 14.2°. The values for ]V are read from the stability curve from

Taylor (1948) in Fig 5.3a. The results are presented below in Table 5.1.

Table 5.1. Parameters for 3 cases of bank stability.

Parameters Case I Case II Case III

Yr OT Yb (kN/m3) 20.80 12.95 22.76

qY (°) 25.0 25.0 14.2

c’ (kN/m2) 10.0 10.0 10.0

M, 9.8 9.8 7.2

(m) 4.71 7.56 3.16

The values of in Table 5.1 indicate the role of submergence and emergence on the stability

of the channel banks. Note from Case II that the effect of increasing the flow depth is to

stabilise the channel banks and increase Therefore the limiting condition for bank stability

must be satisfied at low or zero flows. Cases I and ifi defined upper and lower limits for the

bank stability. The critical period for bank stability is during flow recession. Case I corresponds

to a river with very slow runoff response and/or very permeable bank sediment. As the flow

recedes the banks must be dewatering so that the bank above the water surface in the channel

is fhlly drained, and the bank below the water surface fi.illy saturated. This continues until zero
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flow condition and the banks are totally drained (Case I). The other limiting condition

corresponds to a river with flashy runoff and/or highly impermeable channel banks. The flow

recedes at a rate at which no dewatering of the bank sediment occurs and the banks remain

fl.illy saturated at the zero flow condition (Case III). The stability of natural rivers would lie

between the two limiting cases (I and III).

5.2.1 2 Bank Height Constraint

The bank height constraint requires that the bank height H, be less than or equal to the critical

bank height

HH (5.7)

where H is equal to the bankfull flow depth 1’, the value for is calculated by Eqn (5.2) with

N obtained from the stability curve. The value of should be evaluated for both Case I and

Case III conditions. Examples of stability curves derived from field studies can be found in

March et a!. (1993) and are shown in Fig 6.9. The stability curves and analysis of March et a!.

are discussed in Section 6.4.5.

5.2.2 Fluvial Erosion

Fluvial erosion is the process whereby individual grains or aggregates on the surface of the

bank are removed and entrained by the flow. The driving force is the shearing action of the

fluid on the bank sediment. The mechanics of fluvial erosion of cohesive sediment remain

poorly understood despite considerable research. Reviews of the research conducted on the

erodibility of cohesive sediment are found in ASCE (1967), Graf (1971), Gressinger (1982),

and Raudkivi (1990). The resultant interparticle force for cohesive sediment is the net result of

several forces of attraction and repulsion. These forces result from very complex electro

chemical processes which include the clay mineralogy and content, and the temperature and

chemistry of the pore and eroding fluids (Arulanandan et a!., 1980; Gressinger, 1982;
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Raudkivi, 1990). Unlike noncohesive sediment, the weight component of the cohesive grains is

quite insignificant when compared to the electro-chemical forces. The electro-chemical forces

may be orders of magnitude larger than the weight forces of the individual grains (Raudkivi,

1990, P. 310).

Numerous experiments to determine the erodibiity of cohesive sediment have been performed

using a variety of techniques such as straight and circular flumes, rotating cylinders, submerged

jets, impellers, and even portable flumes that can be used to test undisturbed soil in situ.

Attempts to quantify the fluvial erosion of cohesive sediment often use the concept of critical

shear stress, critical velocity, or critical stream power which must be exceeded before erosion

commences.

Attempts have been made to use the results from these erosion studies to develop correlations

between the erodibility of the cohesive sediment and other primary physical properties of the

soil which are more readily obtained. These physical properties include clay content, clay

chemistry such as the Ca/Na ratio and pH, grainsize, vane shear strength, plasticity index,

organic matter content, as well as the temperature and chemistry of the eroding fluid. In

general this approach has not been overly successful and has not yielded results which could be

readily used for predictive purposes. However the approach of Arulanandan et al. (1980) has

produced charts which relate soil erodibility to the electrical conductivity and the magnitude of

the dielectric dispersion of the soil, properties which reflect the type and amount of clay. It

addition it was shown that the chemistry of the eroding fluid, expressed as the sodium

adsorption ratio, also significantly influences the soil erodibility. According to Arulanandan et

al. (1980), while this study “did not yield a quantitative method to predict critical shear stress”,

the charts “should give a reasonable estimate of r for a natural undisturbed soil”. Note

that the same soil can have different values of r for different eroding fluids, and therefore the

value of corresponds to a particular soil-water system.
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The critical shear stress concept will be adopted in this thesis. The critical shear stress of a

particular soil ;,,, can be evaluated directly using one of the erosion devices mentioned

previously, preferably on undisturbed in situ samples, or it can be estimated indirectly by

methods such as Arulanandan eta!. (1980).

5.2.2.1 Bank Shear Constraint

The bank shear constraint requires that the bank shear stress be less than the critical value

required for fiuvial erosion of the bank sediment:

;aflk (5.8)

where the quantity Vbank is calculated from Eqn (4.8). This constraint assumes that the gravity

component of the eroded grains or aggregates is negligible compared to the cohesive forces,

and therefore the value of z,rjt is independent of 6 and can be considered to be an independent

property of the soil-water system.

The assumption that a soil water system has a single definable value of belies the

complexity of the erosion process. For example freeze-thaw action, ice wedging, and

desiccation and tension cracks can all result in aggregates of cohesive soil which may have a

significant gravity component and a much lower value of r than a smooth homogeneous soil

mass. Nonetheless for modeling expedience it will be assumed that a soil-water system can be

characterised by a single value of z which is treated as an independent variable.

5.3 NONCOHESIVE BANK SEDIMENT

As with cohesive sediments both mass failure and fiuvial erosion will be considered for

noncohesive sediment.
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5.3.1 Mass Failure

For a bank composed of noncohesive sediment the resisting force that balances the driving

force is due only to the friction term in Eqn (5.1). It is an elementary exercise to show that the

factor of safety for an infinite, drained slope of noncohesive sediment is given by:

F = tanq5
(5.9)

tan8

from which the limiting stability occurs when the bank angle 8 is equal to the angle of internal

friction . Therefore for a bank to be stable the following constraint must be satisfied:

8qS (5.10)

If 8 exceeds 0, bank failure will result.

When a bank is fully submerged as in Case II from the previous section, the stability is

unchanged from the fully drained case as the buoyancy forces reduce the driving force and the

resisting force by the same amount. For a condition of rapid drawdown seepage forces can

develop which reduces the stability of a noncohesive bank. Since only frictional resisting forces

are involved, the decrease in bank stability due to seepage forces can be simulated numerically

by modifying (ie. reducing) the value of ç. For the case where seepage is parallel to the slope,

the modified value is Om is given by: (eg. see Spangler and Handy, 1982; p. 492):

tan0m=tan0 (5.11)
‘Ft

In this case the value of is analogous that obtained by Taylor (1948) for cohesive sediment

(Eqn 5.6).
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However in many banks composed of noncohesive sediment, particularly those formed of

coarse gravel, significant seepage forces will not develop due to their high permeability. The

river with noncohesive banks will tend to behave as in Case I for cohesive banks, and Eqn

(5 10) is sufficient to assess the bank stability with respect to mass failure.

5.3.2 Fluvial Erosion

In flowing water the fluid forces exerted on the grains as well as the down slope gravity

component of the grains must be resisted by the frictional forces for a grain to remain stable.

The well-known bank stability analysis described below was originally developed by the United

States Bureau of Reclamation (USBR) to determine the stability of noncohesive bank

sediment. Its development is summarised in Lane (1955b) and it is presented in the following

simplified form from Chow (1959, p.171) and Henderson (1966, p.419) for the limiting bank

stability:

Tbaflkc
=

—

2 6
(5.12)

Tbedc J sin2Ø

where rbaflkc is the critical shear stress for a grain located on a sloping bank, and Vbed is the

critical shear stress for the same grain located on the sub-horizontal channel bed.

The original equation can be rewritten in a dimensionless form as follows:

Vbank I S1fl6

( _in 2 (5.13)
r\s sin

where s is the specific gravity of the sediment, D5Obaflk is the median bank grain diameter which

is assumed to be representative of the bank sediment, bed is the critical dimensionless

(Shields) shear stress for a grain equivalent to D
50bank

on the channel bed.
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Unlike the mobile bed sediment, the gravel comprising the channel banks may be consolidated,

cemented by fine silt and clay, and stabilised by roots which have penetrated the gravel banks.

Eqn (5.13) was developed for unconsolidated noncohesive sediment and must be modified to

account for the properties of the bank sediment.

USBR data (in Lane, 1955b) indicate that qS for coarse gravel approaches a maximum of

approximately 400. However consolidation and imbrication of the bank sediments, together

with the effect of cohesive silt and clay cementing the grains and other stabilising influences

can increase the in situ friction angle above 0. Therefore çS in Eqn (5.13) can be replaced by the

in situ friction angle, Ø, which can be allowed to take a maximum value up to 900.

The value of t*bedc must also be adjusted because the critical shear stress for the stabilised

bank material would be higher. Henderson (1966, p. 414) has shown from the work of White

(1940) that the dimensionless shear stress is related to 0:

r=ktan (5.14)

where k is an empirical constant. The value of k will be determined from field data in Chapter

6.

To include the influence of bank vegetation, consolidation, and cementation of the bank

sediments, 0 is replaced with Substituting Eqn (5.14) into (5.13), and using , the

resulting constraint for noncohesive banks is:

bank ktanqS1ll— Sifl 6
(5.15)

sin
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Note that Eqn (5.15) is presented as an inequality constraint with the mean bank shear stress r

bank’ rather than ;ank in the numerator on the left hand side. The value 6,, can take a maximum

value up to but not including 900, as tan 90° is infinity.

By analogy Eqn (5.10) should be written in terms of the in situ angle of repose:

(5.16)

Eqn (5.15) automatically satisfies Eqn (5.16) for all values of çb< 90° because the square-root

term becomes undefined for values of 9>. Eqn (5.15) therefore simultaneously constrains

the bank stability with respect to both mass failure and fluvial erosion, unlike the noncohesive

banks where two separate constraints are required.

The influence of the bank stability on the channel geometry will be demonstrated in Chapter 6.

5.4 SUMMARY

The bank stability constraints were developed for both cohesive and noncohesive bank

sediment. For both sediment types there are two mechanisms of bank erosion that must be

considered, namely mass failure and fluvial erosion of individual particles.

For cohesive sediment the stability of the bank with respect to mass failure can be assessed

using slope stability techniques. To incorporate the slope stability data into the optimization

model stability curves are constructed. These curves can be accessed rapidly by the

optimization model. The banks are most susceptible to failure at low or zero flows when the

hydrostatic supporting force from the flow is absent. Two limiting cases are recognised, fully

drained, and fully saturated bank conditions. For bank stability the cohesive bank sediment

must also be stable with respect to fluvial erosion. The concept of critical shear stress for

cohesive sediment is used. The bank shear constraint requires that the value of Tbank be less
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than or equal to the critical shear stress for the bank sediment. The value ;ank represents the

mean bank shear stress. In practice it is the maximum bank shear stress that would likely occur

near the toe of the bank, rather than ank that would determine the bank stability with respect

to fluvial erosion. Nonetheless ;ank will be used.

To assess the bank stability of noncohesive bank sediment the USBR bank stability presented

by Lane (1955b) will be used in a modified form. The original equation is modified to reflect

the increase in the stability of the bank sediment due to packing, consolidation, imbrication,

cementing by fines, and binding by root masses. This increase in stability is reflected in the in

situ friction angle
,

that can take a value up to 900. The stability of noncohesive bank

sediment with respect to both mass failure and fluvial erosion is assessed by the single USBR

relation except in the case of large seepage forces following rapid drawdown. The influence of

large seepage pressures in noncohesive sediment will not be considered as the high hydraulic

conductivity of these sediments, particularly for coarse gravel sediment, would facilitate rapid

draining of the bank.

Gravel-bed rivers commonly have channel banks that are composite in nature and typically

have a lower noncohesive unit which is overlain by an upper cohesive unit. In the case of

composite banks it must be determined which of the layers is controlling the bank stability.

Often the lower noncohesive unit is eroded by fiuvial activity, and the overlying cohesive layer

then undergoes mass failure as it becomes undermined (Thorne, 1982). In this example it

appears that the stability of lower noncohesive unit determines the stability of the bank.

The influence of bank stability on the channel geometry will be examined in Chapter 6.
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Figure 5.1. Bank stability analysis for planar failure surface.
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(a)

(b)

Figure 5.2. Bank stability analysis for the method of slices. (a) Definition sketch. (b) Forces

resolved on a single slice. The lateral forces not indicated.
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Case I

Pore Water Pressures

Hydrostatic

Pressures

Figure 5.4. Three special cases for bank stability analysis. (a) Case I: Drained banks. (b) Case
II: Fully submerged and saturated. (c) Case ifi: Instantaneous and complete drawdown, bank
fi.illy saturated. The hydrostatic and pore water pressures are indicated.

Case II

A

Case III
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CHAPTER 6

EFFECT OF BANK STABILITY

ON CHANNEL GEOMETRY

6.1 INTRODUCTION

In Chapter 6 simplified versions of the optimization model will be presented whereby the

sediment transporting capacity of the channel will be calculated at the bankfhll discharge only,

and rather than the modified Parker (1990) relation developed in Chapter 4, a simple bedload

transport relation will be used. This simplified model is inadequate to assess the response of a

natural channel to variations in the discharge or sediment supply, but is sufficient to investigate

the influence of the bank stability on the channel geometry, and to introduce the optimization

methodology to be fully developed in Chapter 7.

6.2 BANKFULL : fiXED-CIIANNEL-SLOPE OPTIMIZATION MODEL

In the bankfiill model the natural variation in the flows is reduced to a single dominant or

channel-forming discharge which is assumed to be equal to the bankfull discharge, Qbf The

sediment transporting capacity of the channel is indexed by the sediment transport rate

corresponding to the bankfull discharge, Gbf This simplification has been used by Chang
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(1980), White et a!. (1982), Millar (1991), and Millar and Quick (1993 a, b) in their

optimization analyses of gravel rivers, and Hey and Thorne (1986) in their empirical regime

analysis. The limitations of this approach with respect to calculating the sediment transporting

capacity of the channel were discussed in Chapter 4. The bankfiull model is however adequate

to investigate the effect of the bank stability on the channel geometry.

The banlcfull model will be developed for both noncohesive and cohesive channel banks. In the

first version a further simplification will be made in that the channel slope S will be treated as an

independent variable. This is done to assess the effect of the bank stability on the values of W

and Y without the interference of varying channel slope. In Section 6.5 the model will be

generalised to include variable S.

The bankfull:fixed-channel-slope model is analogous to an experimental setup where the slope

is fixed, and the channel width, depth, and sediment transport rate adjust to the imposed

discharge (eg Wolman and Brush, 1961). The model is formulated below.

6.2.1. Independent Variables

The variables that are assumed to be independent with known values are Qb S, d50,D50, k3bj,

the bank stability variables which are D5Oba and ç for noncohesive banks, and c’, ‘, y,

and for cohesive banks, and the following which are generally constant: g, p, s, v

(kinematic viscosity), and y Since the value of S is specified, the value of Gb.,- is not required in

this formulation.
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6.2.2. Dependent Variables

The primary dependent variables to solve for are Pbed, Pbank, and 6 From these primary

variables the secondary dependent variables such as j U Rh, W, Y, gb, and others can be

determined.

6.2.3. Objective function

The objective function in this formulation is given by:

maxf(,1,6)=77 (6.la)

where:

(61b)
pQbfS

As the values of p, Qb, and S are prescribed, maximization of i is equivalent to the

maximization of the product Pbed times gb. The value ofgb will be calculated using the Einstein-

Brown sediment transport relation as presented in Vanoni (1975, p. 170). This relation requires

only the value ofd50 to calculate gb:

* 12.15 exp(_0.391 / <0.093
gb (6.2a)

L4o r 0.093
50 50

where gb*= dimensionless bedload transport rate per unit width given by:
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* gb
gb=

1 ps,.J(s—1)gd50

The dimensionless bed shear stress for the median bedload-grain diameter is given by:

*
— Tbed

62‘Cd
r(sl)d

C

The value of ‘Cbed is calculated from Eqn (4.9).

The parameter F1 is related to the fall velocity of the sediment d,0 and is given by:

12 36v2 I 36v2

1j3gd503(s—1) 1Jgd503(s—1)
(6.2d)

where v = kinematic viscosity of water. For gravel-sized sediment, F1 is approximately equal to

0.82.

6.2.4 Constraints

The only two constraints that are required in this formulation for uniform flow in a prismatic

channel are continuity and bank stability. As the value of S is prescribed the bedload constraint

is not required.
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6.2.4.1 Continuity

The continuity constraint determines the dimensions of a channel which can just convey the

imposed Qbf

The continuity constraint for uniform floe in a prismatic channel is defined as:

UA=Qbf (3.24)

where U is the mean velocity, and A is the cross-sectional area of the flow. The value of U is

obtained from the Darcy-Weisbach equation:

I8gRS
U=f (3.25)

The value of the friction factorfis calculated using Eqn (3.19).

6.2.4.2 Bank Stability Constraint

The single bank stability constraint for noncohesive bank sediment is given by:

Tbank I SiflO

r(s—l)D501,ktanq1_Sfl2 (5.15)
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where the value of Thank is given by Eqn (4.8). The value of the constant k is to be evaluated

from field data in Section 6.3.1.

For cohesive bank sediments the bank stability constraints consists of the bank-height and the

bank-shear components:

HHmt (5.7)

Tbank r, (5.8)

Both constraints must be satisfied for cohesive banks to be stable.

6.2.5. Optimization Scheme: Fixed-Channel-Slope

The optimization flowchart is shown in Fig 6.1 and the source code for the computer program

is given in Appendix A. The program is a step-wise iterative procedure that varies only one

dependent variable at each stage. The program is initialised by selecting trial values of the three

primary dependent variables, Pbed, Pbank, 0. The continuity constraint is satisfied by varying the

value OfPbank for trial values OfPbed and When the continuity constraint has been satisfied for

Qbj the dimensions of the trial channel have been established.

The bank stability is then assessed. The maximum value of 6 for which the banks are stable,

6,,, is determined. Other values of 0 less than 0,,, may also satisf’ the bank stability
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constraint, however these lower values do not represent the optimum bank angle. Fig 6.2

shows the typical variation of Tj and r,ank for a range of values 6 for which the continuity

constraint has been satisfied. Note that the value of rd decreases monotonically with

decreasing 6 Therefore while values of 6 less than 9,, may satisfy the bank stability constraint,

these values are associated with lower values of r, and is therefore the channel is less efficient

with respect to transporting sediment than a channel with a bank angle equal to O,,,. The final

optimal solution must have a value of 8 that corresponds to a value of O,,,. Trial values of 8

are assessed until 6m is determined. For each trial value of 6, a new value ofPbank must also

be determined which satisfies the continuity constraint.

Once the value of 8,,, has been determined, the sediment transport efficiency i is assessed. The

variation of i over a range Of Pled values for a prescribed value of S is shown in Fig 6.3. Each

point on the solution curves in Fig 6.3 satisfies the continuity and bank stability constraints. The

value of i is reduced to zero either when Pbed equals zero, or when Pbed is very large and Y

becomes very small, and the value of r,,ed, and hence gb, both approach zero. The optimal value

of i is located between these two extremes, and is found by varying Pbed.

The bisectrix method was found to be the most suitable for satisfying the constraints and

locating the optimum. This method requires that the initial upper and lower bounds of the

search be initially specified for the variable in question. The midpoint between these two

bounds is evaluated and, depending upon the outcome, becomes the upper or lower bound for

the next stage of the search, thus reducing the search area by half For example to satisfy the
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continuity constraint upper and lower values of Pbank are established which are sure to contain

the final value of Pbank. The midpoint between these two values is evaluated. If the calculated

discharge capacity of the channel at the midpoint is greater than Qj the midpoint Pbank value is

too large, and this value then becomes the upper bound for the next stage. Conversely if the

discharge capacity is less than Qb1 the midpoint value of Pbank then becomes the lower bound

for the next stage. Convergence is obtained when the calculated discharge capacity falls within

a selected tolerance of Qb1 say ± 0.1%.

A similar procedure is used to evaluate the optimal value ofPbed. The first derivative dr7 / dPbed

is evaluated numerically by cental differencing at the midpoint between the upper and lower

bounds to Pbed. For values of di7 / dPd> 0 the midpoint becomes the lower bound, and for

values ofdi7 / dPd <0 the midpoint becomes the upper bound for the next stage. Convergence

is attained when the separation between the upper and lower bounds of the search is reduced

below a preset limit, say 0.01 m.

The bisectrix method was found to be the most robust technique for obtaining convergence,

although it is computationally intensive. Other convergence schemes such as the Newton

Rapson method were generally more computationally efficient, however they were prone to

instability and occasionally caused the program to crash by returning negative values for the

dependent variables.

This iterative search scheme assumes that the functions are well behaved with no local optima.
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This is a necessary requirement for this type of iterative search procedure, as well as other

nonlinear optimization techniques such as the reduced gradient method, which can get caught

up in local optima. At a local optimum all of the convergence criteria can be satisfied and yet it

not possible to determine whether a local or global optimum has been found. Different optimal

solutions can be obtained from different starting points for the search procedure. The variation

of the value of the objective function i with Pbed for the fixed slope bankfull model is shown in

Fig 6.3. The objective function is smooth with only a single global optimum. Evidence of local

optimum has not been observed in any of the modelling undertaken.

In addition to , the variation of 6 with Pbed is also shown in Fig 6.3. The values of 6 are small

for low values OfPbed because the high shear stresses acting on the banks. As Pbed increases, the

value of Tbank decreases and banks with higher values of 6 are stable. In the example used in Fig

6.3 the value q = 400 was used. As Pbed becomes very wide the value of 6 approaches .

The optimization model will now be tested using observed gravel river data from channels with

noncohesive and cohesive bank sediment.

6.3 NONCOHESWE BANK SEDIMENT

The analysis to be presented in this section is similar to that described in detail in Millar and

Quick (1 993b), however there are significant differences which result in differences between the

numerical values obtained herein, and those from Millar and Quick. The general conclusions are

however unchanged.
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The model will be tested on the published gravel river data collected by Andrews (1984) and

Hey and Thorne (1986). The published data will be used as input to the model, and the output

geometry will be compared to the observed geometry. The relevant data and modeffing results

are tabulated in Appendix D.

These rivers are described as stable single-thread channels with mobile beds that actively

transport sediment at higher stages. The banks are either comprised of noncohesive gravel

similar to the material being transported, or have composite banks with a lower noncohesive

unit, overlain by a cohesive silty unit. For the composite banks it will be assumed in this analysis

that the stability of the banks is determined by the lower noncohesive unit. The banks are

characterised in terms of their vegetation density. Andrews (1983) subdivided his data set into

those channels with thin and thick vegetation. Similarly, Hey and Thorne (1986) subdivided

their data into four bank Vegetation Types ranging from Vegetation Type I, grass with no trees

or bushes, to Vegetation Type IV, with> 50% trees and bushes.

The empirical regime analyses of Andrews (1984) and Hey and Thome (1986) determined that

the effect of the bank vegetation was to increase the stability of the channel banks which

resulted in narrower channels for the same value of Qbf In the first stage of the present analysis

only the channels which have low densities of bank vegetation will be assessed. It will be

assumed that the bank stability of these channels is determined by the bank sediment properties

alone, and is unaffected by the bank vegetation. This preliminary analysis will permit the
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estimation of the bank stability parameters. In subsequent analyses (Section 6.3.2 and 6.3.3) the

channels with higher densities of bank vegetation will be examined and the effects of increased

bank stability on the channel geometry due to the bank vegetation will be demonstrated.

The values of several key parameters were not explicitly given in the data sets. The value ofd50

was not given by Hey and Thorne, and as an approximation D50 I 3 will be used. This

approximation will affect the absolute value of g calculated for the channel, but will not

influence the location of the optimum significantly.

Neither Andrews nor Hey and Thorne specified the values of D50k. In this analysis the value

OfD5Oba, will be assumed to equal D50, the median grain diameter of the armour layer sediment.

Banks composed of sediment similar in size to the transported bedload sediment would be

expected to have a value of D5Oba,,k similar to d50, the median bedload or subarmour grain

diameter. However previous work (Millar, 1991; Millar and Quick, 1993b) has shown that very

poor results were obtained using D5ob = d50, and much better results were obtained using

D5Qba = D50. This is consistent with the development of a coarse static armour layer on the

channel banks as the finer sediment is preferentially removed during bank erosion.

Alternatively, the banks may be stabiised through the accumulation of coarse gravel at the toe

of the bank.

The assumption ofD5o0,g = d50 will be shown to be valid in Section 6.3.1.
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The relative roughness values of the bed and banks are not known. Therefore since the bed and

banks are composed of similar sized gravel, the values of ksd and ks,flk will be assumed to be

the same, and both equal to the value of k which was calculated from the observed channel

geometry by inverting Eqn (3.2).

6.3.1 Low Density Bank Vegetation

The channels which will be analysed in this section are the channels described as having thin

bank vegetation from Andrews (1984), and the Vegetation Type I from Hey and Thorne

(1986). There are a total of 27 channels.

The bank stability constraint, Eqn (5.15) contains two stability parameters: k which is related to

the critical dimensionless shear stress V*be4 by Eqn (5.14), and the insitu friction angle of the

bank sediment . A value of çS, = 400 will be used as input which assumes that the banks are

comprised of loose, noncohesive gravel. A wide range of values for VCbe are cited in the

literature, with most faffing between 0.03 (Neil, 1968) and 0.06 (Egiazaroff 1965). For a value

of ç = 400 this translates into a range of values for k between 0.036 and 0.072. The value of k

within this range that gives the best agreement between the observed and modelled channel

widths for the 27 channels will be determined, and then assumed to be a constant for all

channels.

The model was run for a range of values of k to determine the best fit between the observed

and modelled channel widths. The optimum value was determined to be k = 0.048 which is
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equivalent to a value of Vbe4 = 0.04, for the value Ø = 400.

The value of k obtained in the preceding analysis supports the assumption that D5Oba D50,

rather than D5obQ,,k d50. Typically in gravel-bed rivers the value of 1),o of the armour layer is

approximately three times d50 from the subarmour sediment. If the assumption that Dsob d50

is valid, then the value of k required to force an agreement between Wobs and would be

approximately three times as large than the value that is obtained when using D,0= D50. This

value of k would correspond to a value of equal to about 0.12, which is well outside the

range of values usually reported in the literature.

Comparisons between the modelled and observed channel widths and mean depths are shown in

Fig 6.4(a, b). The agreement is good, the mean value of W0b I Wmod is 1.00 together with a

coefficient of variation of 28.4%, and the mean value of Y0b/ Ymod is 1.05, and the coefficient

of variation is equal to 14.5%.

6.3.2 Effect of bank vegetation

The model was run with = 40° for the remaining 58 channels; those described as having

thick bank vegetation by Andrews, and the Vegetation Type II - IV channels from Hey and

Thorne. Reach 9074800 from Andrews’ data set was excluded from the analysis because a

stable channel width could not be obtained with çz5 = 40°.

The results including the channels with the low density of bank vegetation are shown
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graphically in Fig 6.5(a, b). Considerable scatter is evident away from the line of perfect

agreement. Note the strong asymmetry in the scatter. The modelled channels are consistently

wider and shallower than the observed channels. The tendency for the modelled channels to be

wider and shallower than the observed channels increases with the density of the bank

vegetation. The channels with thin bank vegetation and those classified as Vegetation Type I

are scattered symmetrically about the line of perfect agreement as they were forced to do by the

selection of the value for k in the previous section. The channels classified as having thick bank

vegetation, and the Vegetation Type IV channels tend to lie furthest from the line of perfect

agreement.

The values of the ratios W0b/ Wmod and Yobs / Ymod for each Vegetation Type are summarised

in Table 6.1. Despite the wide scatter within each group it is evident that these two ratios show

a systematic variation with the density of the bank vegetation with W0b/ W,,10d decreasing, and

Y0b3/ Ymod increasing with increasing bank vegetation density.

Table 6.1. Ratios between the observed and modelled values of W and Y for fixed-slope
optimization model with q = 400.

Vegetation W,b / W I Y / Y, , No. of
Type Mm Mean Max Mm Mean Max Rivers

I 0.64 0.97 1.77 0.70 1.05 1.29 13
II 0.48 0.83 1.34 0.83 1.13 1.50 16
III 0.28 0.72 1.16 0.90 1.28 2.05 13
IV 0.25 0.59 1.00 0.98 1.48 2.16 20

Thin 0.74 1.03 1.44 0.74 0.99 1.16 14
Thick 0.17 0.58 0.82 1.11 1.31 1.44 9
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The results obtained from the optimization modelling will now be compared to the those results

obtained by Andrews (1984) and Hey and Thorne (1986) using empirical regime analyses.

These researchers used regression analyses to derive empirical regime equations for the

hydraulic geometry. Separate equations were obtained for each bank vegetation density. The

width equations were of the form:

W=aQb/ (6.3)

where Qbf is the bankfull discharge in Hey and Thorne, and is the dimensionless bankfull

discharge in Andrews. The exponent b shows little variation and typically takes a value of

approximately 0.5. The coefficient a was found to vary with the density of the bank vegetation

becoming smaller as the bank vegetation density increased.

The ratios formed by dividing the coefficient a from each of the regime equations, by the

coefficient a from the equation which represents the channels with the lowest density of bank

vegetation is equal to W0b3 / Wunveg. where the subscript unveg refers to the unvegetated channel

width. The ratio W0b / Wunveg is an index of the influence of the bank vegetation on the channel

width. For example the value of a for the Vegetation Type I channels of Hey and Thorne is

4.33, and the value of a for the heavily vegetated Type IV channels is 2.34. Therefore the

Vegetation Type IV channels are on average 2.34 / 4.33 = 0.54 times as wide as the weakly

vegetated Type I channels.
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The ratio W0b / Wunveg is directly analogous to the preceding ratio W0b3 / Wmod where Wmod is

the calculated width assuming qS = 400. The values of W0b / Wunveg for the Andrews’ data set

and the Hey and Thorne data set are summarised in Table 6.2 together with the values for W0b

I Wmoj obtained from the modelling in this thesis with = 40°. Clearly there is reasonably good

agreement between the results of the optimization modelling with = 40°, and the empirical

regime analyses of Andrews and Hey and Thorne.

Table 6.2. Summary of ratios of observed channel width divided by the unvegetated channel
width. These ratios are an index of the effect of bank vegetation on the channel width. The
values from Thorne et a!. (1988) were calculated using their four regression equations and an
assumed value of Wmod equal to 25m. See text for discussion.

Vegetation W0b/ Wmod W0b/ Wunveg Wob / Wunveg Wobs / Wmod
Type This Thesis Andrews (1984) Hey and Thorne Thome et a!.

(1986) (1988)
I 0.97 - 1.00 1.45
II 0.83 - 0.77 1.20
III 0.72 - 0.63 0.96
IV 0.59 - 0.54 0.84

Thin 1.03 1.00 - -

Thick 0.58 0.79 - -

Also in Table 6.2 are results from Thorne et a!. (1988) who tested the optimization model of

Chang (1980) on the data set of Hey and Thorne (1986). The essential difference between the

optimization model developed by Chang, and the fixed-slope model from this chapter, is that

Chang assumes a constant value for the bank angle Ofor a given channel, and does not consider

bank stability.

142



A direct comparison between the results obtained from Chang’s optimization model and the

results obtained in this thesis is not possible as the values of Wmod were not given by Thorne et

al. However an indirect comparison is possible. To account for the influence of the bank

vegetation Thorne ci al. developed four regression equations, one corresponding to each

Vegetation Type. This allowed Wmod obtained from Chang’s model to be corrected for the

influence of the bank vegetation. Although the values of Wmo€i from Chang’s model are not

known, the four regression equations can be used to back calculate a value of Wmod for each

Vegetation Type for a selected value of W0b3. The values of W0b / Wmod for a selected value of

Wmod = 25 m are listed in Table 6.2.

The results from the Thorne et al. analysis using Chang’s optimization model are significantly

different from the results of Hey and Thorne and in this thesis. This demonstrates that the

inclusion of the bank stability constraint makes a very significant improvement in the

performance of the optimization model.

6.3.3 Influence of ç6 on Channel Geometry

The preceding section indicates that the bank vegetation has a large influence on the bank

stability, which in turn has a correspondingly large influence on the channel geometry. The

effect of the bank vegetation on the value of will now be examined.

One of the effects of the bank vegetation is to stabiise the bank sediment by binding of the

grains by the root masses. A simple method of accounting for this effect is by modifying the
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value of which would take larger values for channels more strongly affected by the bank

vegetation. This approach ignores the cohesive effects that would be introduced by the root

masses, and is simply a device to account for the influence of the roots that can be incorporated

into the noncohesive bank-stability constraint (Eqn 5.15).

To demonstrate this effect the optimization model was programmed to run for a series of trial

values of ç& for each of the channels from Andrews (1984) and Hey and Thorne (1986) until

the value of Wmod was equal to W0b within a tolerance of ±1%. For example, Reach 13 from

Hey and Thome has a value of Wobs = 18.4 m; when the optimization model was run with q5 =

400 a value of Wmod = 74.4 m was obtained, which is over four times the observed value. After

successive trials it was determined that a value of = 73.10 forced an agreement between

Wmod and Wobs.

The values of Ø obtained from this analysis depend on the value ofD50 assumed. Because

the bank stability constraint (Eqn 5.15) is a function of two parameters, qS,. and D50 (the

values of k, s, and yare assumed constant), the value of can only be determined if D5obO is

known, or in this case is assumed to equal D50. Using different values ofD50 will result in

different estimates of Ø,.

The maximum value of çS., obtained was 90.0°. From the bank stability constraint, Eqn. (5.15)

the value of tan 90° is equal to infinity. However rounding-off errors in the computer program
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result in a large real value being returned for tan 900.

The values of ç5, obtained from the analysis are summarised in Table 6.3. Despite the large

scatter within each vegetation grouping there is an observed increase in the mean values of q5

with increasing bank vegetation density. This supports the general approach of accounting for

the effect of the bank vegetation by adjusting .

The optimization model was rerun for all of the channels using the mean values of g from

Table 6.3 for each vegetation subdivision. The results are shown in Fig 6.6(a, b). There is a

reduction in the scatter when compared to the results shown in Fig 6.5(a, b) for = 40°. Using

the mean values of for each Vegetation Type, for the complete set of channels the ratio W0b

/ Wmod has a mean value of 1.00 and a coefficient of variation of 28.4%, and Yobs / Ymod has a

mean value of 1.05 and a coefficient of variation of 14.5%.

Table 6.3. Summary of çt values obtained analytically for the data sets of Andrews (1984) and
Hey and Thorne (1986).

Vegetation No. of çS values
Type Rivers Mm (°) Mean (°) Max (°

I 13 21.1 42.0 52.8
II 16 31.5 47.0 61.0
III 13 34.2 53.0 72.5
IV 20 39.7 60.1 90.0

Thin 14 30.4 40.2 48.4
Thick 9 45.7 55.7 67.6

The residual scatter in Fig 6.6(a, b) can be attributed to several reasons. These include:
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1. The bank vegetation categories are subjective, and a continuous gradation of the vegetation

density exists within and between the vegetation types, and therefore a corresponding gradation

in q5,. would be expected.

2. The effect of the bank vegetation is not simply a function of the vegetation density, but is

undoubtably dependent upon vegetation type, age, and rooting depth, as well as the thickness

of the overlying cohesive unit.

3. Imbrication, packing, and cementing of the gravel by fine sediment is independent of the

Vegetation Type.

4. The assumption that D5Obaflk = D50 is an additional source of uncertainty.

6.4 COHESIVE BANK SEDIMENT

The model will now be formulated for cohesive bank sediments and tested on hypothetical and

real river data. The only change from the formulation for cohesive sediments is the bank

stability constraint.

As was discussed in Section 5.2 the bank stability constraint for cohesive sediment is composed

of two individual constraints, namely the bank-height and the bank-shear constraints which

correspond to the erosion mechanisms of mass failure and fluvial erosion respectively.
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6.4.1 Bank Stability Routine

The bank stability routine satisfies the bank-height and bank-shear constraints consecutively.

First the bank-height constraint is satisfied. The values ofH and Hrrt are initially assessed for 8

= 900. For 6= 90°, and for subsequent values of 8, the stability number N3, is obtained from

stability curves such as those in Fig 5.3(a), and the value of Hcr,t is calculated from Eqn (5.2).

The value H is by definition equal to the flow depth Y which is obtained by satisfying the

continuity constraint for Qbf If the value ofH Hcrjt then the bank-height constraint is satisfied,

and the routine then moves on to the bank-shear constraint. If the bank-height constraint is not

satisfied, the value of 8 is reduced until H = Hcrjt which gives the maximum bank angle 8 for

which the bank-height constraint is just satisfied. For values of 9 < 8,,, the bank-height

constraint is satisfied, but the channel will be less efficient with respect to transporting sediment

as was discussed in Section 6.2.5.

Unlike the noncohesive case, the stability of cohesive banks with respect to fluvial entrainment

does not necessarily increase with a reduction of 8. Fig 6.2 shows the typical variation of Tbank

with 8 where continuity has been satisfied. As the value of 8 is reduced from the maximum

value, Tbank increases to a maximum, and then decreases for low values of 9. Therefore except

for small values of 8, a reduction in 8 is accompanied by an increase in Tb07, and a reduction in

the stability of cohesive banks with respect to fluvial erosion. The bank stability routine

assesses the bank-shear constraint for the value which satisfies the bank-height constraint,

and if Tb0J r then the bank-stability constraint has been satisfied. If rit for 8,,,, the

value of 8 is reduced until Thank = T. In practice it has been found that if the bank-
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shear constraint is not satisfied for then the value of 8 which satisfies the constraint is

about 200 or less.

The full data requirements for model testing were not available, however the model will be

tested on the published data from Chariton et a!. (1978) which lists many of the required input

values.

6.4.2 Data From Chariton et aL (1978)

Fourteen rivers from the Chariton et a!. (1978) data set which were described as having banks

composed of fine sediment will be used. The rivers, together with the hydraulic geometry and

other relevant information are listed in Appendix E. The value of d50 for the subarmour

sediment which is used to calculate gb was not given in the data set, and as with the

noncohesive channels in Section 6.3, the value d50 = D50 / 3 will be used as an approximation.

The value of ksbed was set equal to k5 calculated from the observed channel geometry. Unlike

gravel-bed rivers with noncohesive gravel banks, those with cohesive banks may have

significantly different values of and ksbank.The value of is unknown, so a value equal

to 0.1 m was assumed for all channels. This assumption will not significantly affect the result as

the total channel roughness is determined largely by ksbed•

The value of the unconfined compressive strength q was given for each channel. This value is

an average of several samples from each river. The friction angle for the bank sediment was not
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given and a value g’ = 25° is assumed for all channels which is a reasonable value for the

moderately plastic silty soils described by Chariton et a!. (1978). With the values of qu and 0’,

the value of c’ can be estimated from the following equation (eg. Spangler and Handy, 1982):

c’=-tan(45__J (6.4)

The values for the bulk unit soil weight were not given. A value of 7d 20.0 kNIm3 will be

assumed for all channels for drained bank conditions, and rt 22.5 kN/m3 for saturated bank

conditions. For the saturated bank conditions the value of ‘ will be modified by Eqn (5.6) to

reflect the reduction in bank strength. This gives a modified value of the bank friction angle

=(22.5-9.8)122.5 *250= 14.1°.

The value ofN will be calculated from the stability curves in Fig 5.3(a). These stability curves

were approximated by piece-wise linearized segments over the range 0’ 6 90°. Although

these curves were developed for homogeneous, drained soils which are unlikely to exist in

actual field situations, these curves will be used here for illustrative purposes. More realistic

stability curves can be developed following field investigations. The stability curve for ‘ = 15°

will be used for modelling the saturated conditions as it is sufficiently close to 14.10.

The values for r were not given by Chariton et aL (1978), and it is not possible to directly

estimate the values for z. However in a manner similar to the estimation technique for for
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the noncohesive channels in Section 6.3.3, the optimization model can be used to indirectly

estimate values for

Because the value of Trif is not known, initially the model will be run with a very large value for

Tcrjt (crit = 1000 N/rn2) to ensure that the bank-shear constraint is not influencing the solution

and the bank-height constraint alone is analysed. From this analysis the channels that are

potentially bank-height constrained can be determined. For the remaining bank-shear

constrained channels the values of rrjt can be estimated by forcing an agreement between Wmod

and W0b5 as was done for Ø in Section 6.3.3 for the channels with noncohesive banks.

The values obtained from the model assuming rrgt = 1000 N/rn2 are presented in Table 6.4 and

Fig 6.7(a, b). The model was run for both drained and saturated bank conditions. From the

values of H / Hcrjt it is evident that channels 5, 7, 10, 12, and 13 (and 8 for saturated bank

conditions) are constrained by the bank height. The remaining channels are bank-height

degenerate. (The term degenerate is used in optimization to denote constraints that are not

actively constraining the solution.) The bank-shear constraint is degenerate for all of the 14

channels due to the large imposed value of Thrit. The bank-height constrained channels will now

be considered. Note that different solutions are obtained for the drained and saturated bank

conditions. The saturated banks are inherently less stable than the drained banks due to the

increased unit weight of the soil, and the increased pore pressures. This effect is well known

and is discussed in Section 5.2.1.1. The second feature evident from this analysis is that the

bank-height constrained channels tend to be the larger channels with values of Qbf greater than
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about 65 m3/s. This is to be expected as the smaller or lower discharge channels will develop

values ofH that are lower than Hcrjt.

The remaining channels which are bank-height degenerate have the same optimal solution for

drained and saturated bank conditions. It is assumed that the value of Tcrjg is unaffected by bank

saturation. For these channels the modelled values are all narrower and deeper than their

observed counterparts. This suggests that the values of Thank from the modelled channels are

greater than can be sustained by the observed channel. By reducing the value of rrgt, and

therefore reducing the resistance of the banks to withstand applied shear, a wider and shallower

channel will result. In this way the modelled channels can be brought into agreement with the

observed geometries, and estimates of zrjt obtained.

Also note that channels 5, 7, 8, and 12, which appear to be bank-height constrained when the

value r = 1000 N/rn2 is used, are also much narrower and deeper than their observed

counterparts. For smaller values of z,rit, these channels will become bank-shear constrained and

the value of Wmod can be brought into agreement with W0b. Therefore only channels 10 and 13

are probably truly bank-height constrained as the values of W0b and Tobs lie within the range

defined by the limiting cases of fully saturated and fully drained bank conditions.

The value of TCrIt was varied until Wmod = W0 within a tolerance of ±1% for all channels with

the exception of numbers 10 and 13. These estimated values of are also shown in Table 6.4.

The values range between 7.0 - 50.0 N/rn2,with a mean value of 20.1 N/rn2.
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6.4.3 Effect of Bank Vegetation.

Chariton et a!. (1978) have categorised the rivers in their data set on the basis of bank

vegetation into channels with grassed (G) or treed (T) banks. The values of TCrjt obtained from

the previous analysis show a strong influence by the bank vegetation. The mean value of Thrit for

the channels described as having grassed bank vegetation is 10.4 N/rn2, and 29.8 N/rn2 for the

treed banks.

The values of Tcrjt are plotted in Fig 6.8 and this indicates a strong division between the two

Vegetation Types. With the exception of one treed channel all of the treed channels plot above

20 N/rn2, and all of the grassed channels below 14 N/rn2. This result suggests that the effect of

the bank vegetation is to increase the value of Thrit either by binding the sediment by the root

masses, or conversely by affording protection of the bank and effectively reducing the value of

Thank acting on the bank sediment. Furthermore the bank vegetation may bind the bank sediment

as to increase the stability of the banks with respect to mass failure. In this way the roots act as

internal reinforcement, and have the effect of increasing the effective values of c’ and qS’ above

the values obtained from the analysis of small samples of the bank material.

Clearly there is a need for additional field work to identify the role of vegetation in stabiising

the cohesive banks, a conclusion which also applies to noncohesive banks.

6.4.4 Discussion of March etaL (1993)

A recent paper published by March et a!. (1993) dealing with bank stability will now be
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discussed as it highlights several important aspects of the above analysis. In this study stability

curves analogous to Fig 5.3(b) were constructed for the Long Creek drainage basin in northern

Mississippi using averaged values of c, Yt, and qS which were measured during previous field

surveys (Thorne er a!., 1981). Stability curves were developed for drained bank conditions

using the measured averaged values of c, , and and for “worst case” soil conditions which

reflects saturated bank conditions. For values of 9 greater than 600 the Osman - Thorne slab

failure analysis (Osman and Thorne, 1988; Thorne and Osman, 1988) was used to determine

the stability curves that correspond to F = 1.0, from which Hcrjt can then be determined for any

value of The Osman - Thorne slab failure analysis is similar to the Culmann analysis

presented in Fig 5.1 and Eqns (5.3) and (5.4), but is modified to include the effect of tension

cracks. For values of 0 less than 60° the stability curves were developed using the Bishop

(1955) simplified method of slices. The stability curves from March et a!. (1993) are

reproduced in Fig 6.9.

With the exception of one data point, the points all plot below the “worst case” stability curve

which represents saturated bank conditions at failure and corresponds to the CASE Ill example

in Chapter 5 (Fig 5.4). Three of the points lie on, or very close to the saturated curve. This

distribution of the observed H - 9 combinations is consistent with the bank-height constraint,

Eqn (5.7), in that the bank heights must be less than or equal to the critical bank height.

However note that 13 out of the 16 data points which plot in the stable field actually failed

during the previous winter period. Since these channels are all stable with respect to the “worst
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case” saturated bank conditions, this may at first seem puzzling. However the bank-shear

constraint has not been directly addressed in the March et a!. study. A bank can only be

considered to be stable when it satisfies both the bank-height and the bank-shear constraints.

The role of the bank-shear constraint will now be addressed and it will be shown that this can

explain the failure of the supposedly stable banks given in March et a!.

The two erosion mechanisms, mass failure and fluvial erosion, do not operate independently.

The interrelation of the two mechanisms is illustrated in Figs 6. 10(a-d). These photographs are

of the banks of a small creek flowing across a beach at low tide. The bank material is well

sorted fine to medium sand which is normally non-cohesive, but has developed apparent

cohesion due to the moisture content and surface tension phenomena.

Fig 6.10(a) was taken at an upstream location where the vertical, stable channel bank is

approximately 480 mm high. The flow at this location was not actively undercutting the bank,

ie. Tbank There was no evidence of mass instability of the bank even when an additional

loading of 75 kg (the author’s body weight) was applied, and therefore H < Both bank

stability constraints are satisfied.

Figs 6. 10(b-d) are a sequence of photographs that were taken at a site approximately 20 metres

downstream from the location in Fig 6.10(a). This downstream location was experiencing rapid

lateral channel shifting, and the bank is unstable. The time between each photograph is of the

order of 10 seconds. At this location the channel bank is approximately 100 mm high, much less
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than at the stable upstream location.

In Fig 6.10(b) the shallow, supercritical flow is beginning to undercut the vertical bank. In Fig

6.10(c) the bank has been destabilised by undercutting and mass failure results. In Fig 6.10(d)

the failed block has been washed away and a new cycle of undercutting is about to commence.

If a bank stability analysis was conducted on the bank geometry in Fig 6.10(d), which may be

preserved at low flows, the bank-height constraint would appear satisfied as the bank is much

lower than the stable, vertical bank upstream. However the bank at this location is clearly

unstable as the bank-shear constraint is not satisfied, that is Zbank > z, and bank is being

undercut which leads to eventual mass failure. Therefore the primary erosion mechanism is in

fact fluvial erosion of sediment from the toe of the bank, and the observed mass failure is only a

secondary effect.

March er a!. do not explicitly recognise the requirement of the bank-shear constraint, although

they do state that the observed H - 8 combination may have been different at the time of failure

and that channel migration may have over steepened the banks until failure occurred.

Alternatively bed scouring may have increased H until Hcrit was exceeded.

In conclusion it has been demonstrated that a bank composed of cohesive sediment can only be

considered to be stable when both the bank-height and bank-shear constraints are satisfied.
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6.5 BANKFULL MODEL: VARIABLE-CHANNEL-SLOPE

The model will now be modified to allow for variable channel slope. In this formulation the

channel slope S will be treated as a dependent variable. The sediment discharge capacity of the

channel at the bankfull discharge Gbf will be used as an independent variable. The continuity and

bank stability constraints remain unchanged from the previous formulation in Section 6.2.

There is an additional requirement for a bedload constraint:

ed b = Gbf (6.5)

where gb is calculated from the Eqn (6.2), and the value of Gbf is prescribed as an independent

variable.

The objective function is modified to:

maxf(Jd,],O,S)=1l (6.6a)

where:

Gb
(6.6b)

PQbf

since Gb1 p, and Qbf are all prescribed in this formulation, the maximization of i is equivalent to
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a minimization of S.

The flowchart for the modified optimization model is shown in Fig 6.11, and the source code

for the computer program in Appendix B. The only difference between Fig 6.11 and the

flowchart for the previous formulation in Fig 6.1 is addition of the bedload constraint which

must be satisfied before assessing the objective function. The bedload constraint is satisfied by

varying S for trial values OfPbed.

An example of the variation of i with Pbed is shown Fig 6.12. Each point on the solution curves

in Fig 6.12 satisfies the continuity, bank stability, and bedload constraints. As with the fixed

slope model the objective function curve is smooth with only a single global optimum. Also

shown in Fig 6.12 is the variation of 5, which indicates the optimal solution corresponds to a

minimum slope condition.

6.5.1 Noncohesive Bank Sediment

The variable slope optimization model will now be run using the data from Andrews (1984) and

Hey and Thorne (1986). The value of Gbf was calculated from the observed geometry using

Eqns (6.2) and (6.5). All other input values and assumptions are unchanged from Section 6.2.

The program was run for all the data for Ø = 400 to determine the effect of the bank vegetation

on the channel geometry, including the variation of S. As in Section 6.3.2 modelled values

obtained assuming çS = 40° are assumed to represent the unvegetated channel dimension. The

results are summarised in Table 6.5.
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The results summarised in Table 6.5 indicate that as the density of the bank vegetation increases

the observed channels become progressively narrower, deeper, and less steep. The observed

and modelled channels summarised in Table 6.5 have the same sediment transporting capacities,

therefore if more resistant banks permit narrower and deeper channels to be stable, the bedload

constraint is satisfied by reducing the channel slope.

Table 6.5. Ratios between the observed and modelled values of W, Y, and S for variable slope
model with çb 400.

Vegetation W0b5I Wmod Y0b5I Ymoci Sobs / Sm€jj
Type Mm Mean Max Mm Mean Max Mm Mean Max

I 0.59 0.98 1.84 0.64 1.05 1.43 0.84 0.99 1.26
II 0.43 0.80 1.35 0.81 1.19 1.71 0.81 0.93 1.08
III 0.23 0.70 1.17 0.88 1.39 2.61 0.66 0.90 1.03
IV 0.20 0.55 0.97 1.01 1.67 2.60 0.68 0.85 0.96

Thin 0.70 1.03 1.51 0.75 1.00 1.24 0.88 0.98 1.10
Thick 0.16 0.54 0.78 1.16 1.37 1.59 0.86 0.95 1.38

This effect of the bank stability will now be demonstrated using Reach 13 from Hey and

Thorne. The optimization model was run for Reach 13 using the values of ç& = 40° and c =

73.1°, the latter value was found in Section 6.3.3 to force an agreement between the modelled

and observed channel widths. The output together with the observed channel dimensions are

shown in Table 6.6. Note the large influence that exerts on the channel geometry, including

the channel slope.

The results of this analysis indicate that W is most sensitive to variations in the bank stability,
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followed by Y, with S the least sensitive. For the combined Vegetation Type IV and thick

vegetation channels the channel widths, depths and slopes are in the order of 0.5, 1.6, and 0.9

times their respective unvegetated channel dimension.

Table 6.6. Effect of SL on Reach 13 from Hey and Thorne (1986). The effect of increasing the
value of is for the channel to become narrower, deeper, and less steep.

Channel Surface Width Mean Depth Channel Slope
(m) (m)

Observed 18.4 1.14 0.0133
Modelled qS=40° 91.2 0.44 0.0183

Modelledq5,=73.l° 18.4 1.18 0.0133

By forcing an agreement between Wmôd and W0b, the values of Ymoci and Vobs must also show

close agreement as once Wmod is fixed, the value of Ym,ci is constrained by continuity. Similarly

the value of S,,, is determined largely by the bedload constraint, when the channel width is

forced to agree with the observed value the modelled channel slope must also show close

agreement with the observed value. In other words when one of the values of any of the

dependent variables is fixed, there is only one combination of the remaining dependent variables

that can satisfy the constraints and fulfil the objective function.

Recall from Section 6.3.3 that when the value ç5,. = 40° was used to model reach 13 with the

fixed-slope-model, the computed surface width was equal to 73.5 m, in contrast to 90.0 m with

the variable-slope-model. The larger value of Wm obtained with the variable-slope-model is
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due to the increase in the channel slope to S = 0,0183 from S = 0.0133 in order to satisf’j the

bedload constraint. This illustrates the interrelationship between the dependent variables, and

that the adjustment of one variable such as W, cannot be viewed in isolation from the

adjustments of the other dependent variables.

6.5.2. Cohesive Bank Sediment

The model was run using hypothetical data; firstly Qbf was varied, and the value of Gbf held

constant; then the value of Qbf was held constant and Gbf varied. For both analyses the

following values for the independent variables were used: D50 = 0.075 m, d50 = 0.025 m, ksbed =

0,1 m, ksb nk
= 0.1 m, c’ = 10 kN/m3, = 20 kNIm3, ç’ = 25°, and rjt = 25 N/rn2. When Qbf

was varied the value Gbf = 5 kg/s was held constant, and when Gbf was varied the value Qbf =

100 rn3/s was held constant. The results are presented in Figs 6.13 and 6.14. The key result

from this analysis is the change in the active bank stability constraint.

For small values of Qbf approximately less than 100 m3/s the optimum geometry is bank-shear

constrained and bank-height degenerate, and those in excess of 250 rn3/s or so the channel

becomes bank-height constrained and bank-shear degenerate (Fig 6.13(c)). Between about 100

to 250 m3/s the channel is actively constrained by both the bank-shear and the bank-height

constraints.

When Qbf was held constant and Gbf varied, a similar result was obtained whereby the channels

with values of Gbf less than about 3.0 kg/s are bank-height constrained and bank-shear
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degenerate, while those in excess of 5.0 kg/s are bank-shear constrained and bank-height

degenerate (Fig 6.14(c)). Within the range between 3.0 to 5.0 kg/s the modelled channels both

bank-height and bank-shear constrained.

To explain this change in the active constraint, first consider the case where Qbf is held constant

so the results do not become confused by the different channel sizes which are associated with

different Qbf values. For low values of Gbf the values of S, ; and Thank are at their minimum, and

Y is a maximum (Fig 6.14). The channels corresponding to the low values of Gbf are bank-

height constrained due to the relatively large values of Y, and the small values of Thank.

As the slope increases with increasing Gbf, the channels become shallower due to the increase

in both the mean velocity, U and W. The depth decreases at a slower rate than the value of S

increases, and therefore the values of r and Thank both increase with increasing Gbf This

continues until the value of Thank becomes equal to Tcrjt, at which point the channels become

bank-shear constrained. The value of S continues to increase more quickly than the depth

decreases, and therefore the channel remains bank-shear constrained.

When Qbf is varied and Gbf is held constant, the values of S decrease with increasing Qbf (Fig

6.13 (c)), which is a feature of natural rivers that is well known from field observations. For

small values of Qbf the channels are bank-shear constrained due to the combination of the high T

and Thank values that are associated with steep channel slopes, in addition to the small values of

H which are well below Hcr:t.
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As Qbf is increased the value of Y increases and S decreases, however the values of v and rnk

remain initially constant because the channel is bank-shear constrained. Eventually the value of

Y (and by definition H as H = Y for Qbf) increases to the point where the channel becomes bank-

height constrained. For increasing Qbf beyond this point, Y tends to increase at a lower rate than

the decrease in S and therefore the shear stress values decrease, and this ensures that the

channel remains bank-height constrained.

The variation of 6 has not been considered up to this point. In Fig 6.13 the value of Y is equal

to 2.95 m at Qbf= 100 m3/s. At this point H Hrit. Yet for larger Qbf, the values of Y increase

and approaches 12.7 m for Qbf 2,500 m3/s where H is still equal to Hcrjt. This is possible due

to the change in 8 and the influence that this has on the value of Hcrjt. At Qbf = 100 m3/s the

value of 6 = 90° and Hcrjt = 2.95 m. For Qbf = 2,500 m3/s the value of 6 has decreased to 44°,

and has increased to 12.7 m. The influence of 9on the value ofHcrit is evident from Fig 5.3

and Eqn (5.2).

The general conclusion from the modelling in this section is that channels with large values of S

tend to be bank-shear constrained. The large S may be associated with large sediment loads, or

small values of Qbf, or a combination of both. Bank-height constrained channels tend to be

associated with low S values.

163



6.6 SUMMARY

Bank stability has been shown to exert a strong control on the optimal geometry of alluvial

gravel-bed rivers. The bank stability constraint was formulated for noncohesive channel banks

and the theory tested on the published data of Andrews (1984) and Hey and Thome (1986).

The results indicate that the bank stability procedure significantly improves the model

performance. The results are in good agreement with the results that Andrews and Hey and

Thorne obtained from empirical regime analyses. The influence of the bank vegetation appears

to stabilise the bank sediment, allowing the banks to withstand higher shear stresses. In

vegetated channels this results in channels that are narrower, deeper and less steep than their

unvegetated counterparts. The change in W is the largest, followed by Y, and the smallest is in

S.

It was proposed that the effect of bank vegetation on channels with noncohesive banks can be

represented by , which was found to increase consistently with the bank vegetation density.

Model formulations were also developed for channels with cohesive banks. The model was

tested on data from Charlton et al. (1978). From this analysis it was shown that channels can be

either bank-shear or bank-height constrained. The values of TCr,t was shown to be higher in

channels with treed banks, than for there grassed counterparts.

Modelling results using hypothetical data indicate that bank-shear constrained channels are

associated with large values of S which can result from large imposed sediment loads, and/or
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small values of Qbf Conversely bank-height constrained channels tend to be associated with

lower values of S which can result from large values of Qbf, low sediment loads, or a

combination of both.

In general only one bank stability constraint is active in channels with cohesive banks, and

recognition of this is essential when assessing channel stability.
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Figure 6.1. Flow chart for the bankfull:fixed-slope optimization model.
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Figure 6.4. Comparison of Modelled and observed values of W and Y for rivers with
noncohesive banks and low densities of bank vegetation. The data points denoted “thin” are
from Andrews (1984), and those denoted “Type r’ are from Hey and Thorne (1986). The
modelled values were calculated using the bankfull: fixed-slope optimization model.
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Figure 6.10 (a) and (b). Photographs of stream bank erosion from a small creek flowing across
a beach at low tide. The lens cap in the photographs is for scale and is approximately 45 mm in
diameter. See text for discussion.
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Figure 6.10 (c) and (d). Photographs of stream bank erosion from a small creek flowing across
a beach at low tide. The lens cap in the photographs is for scale and is approximately 45 mm in
diameter. See text for discussion.
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Figure 6.11. Flow chart for the banlcfull: variable-slope optimization model.
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CHAPTER 7

FULL MODEL FORMULATION

7.1 INTRODUCTION

In this chapter the final formulation of the optimization model is presented. The equilibrium

geometry is modelled using the full range of flows, and not just the bankfull discharge.

Furthermore the composition of the bed surface is permitted to adjust by using the modified

Parker (1990) surface-based bedload transport relation.

7.2 MODEL FORMULATION

The full model formulation is similar to the bankfull:variable-slope model presented in Chapter

6 except that the sediment transporting capacity of the channel will be estimated using the

Parker (1990) surface-based bedload transport relation, rather than the Einstein-Brown

relation. The Parker surface-based relation was modified in Chapter 4 to apply to a natural

channel with variable flows. This relation can be inverted to calculate the composition of the

bed surface, or armour layer. The mathematical formulation of the full model is presented

below.
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7.2.1 Independent Variables

In this analysis the independent variables whose values are presumed to be known are the fill

range of flows and their durations (which can be represented by a flow-duration curve), the

grain size mixture of the imposed bedload sediment, Gb, kjb& ksbk, the bank stability variables

D5Obank, $, for noncohesive banks, and c 6’, Yt, and for cohesive banks, and the constants

g, p, s, v, y

The flow-duration curve and the grain size distribution are subdivided into a finite number of

intervals which are assigned representative values. The flow-duration curve is divided into m

intervals and the grain size distribution curve into n intervals (See Figs. 7.1 and 7.2). Because

both the flow-duration curves and the sediment size distributions are typically approximately

log-normal (Shaw, 1988 p. 276; Parker, 1990) the representative value for each interval is

given by the geometric mean:

Qj=JQ,1.Q (7.1)

D1=JD’.D (7.2)

where Q’ and D are the geometric mean values of intervals i and j respectively, and the

superscripts 1 and u indicate respectively the lower and upper bounds of the interval. The values

of i and j range from 1 to m and 1 to n respectively. For each interval the proportion of the

total is determined. For the flow-duration curve the proportion of the total flows which fall

within a specified discharge interval is denoted by i. Similarly for the grain size distribution

182



curve, the proportion of the sediment by volume, or the fraction content within a specified grain

size interval is denoted F. Summations of i and F over all i andj respectively are both equal

to 1.0.

The imposed bedload, Gb, represents the total mass of sediment in excess of 2 mm in diameter,

which is supplied to the channel reach over some significant duration. In this chapter the

significant duration is assumed to be one year, and therefore the Gb represents the mean annual

bedload supply. The units of Gb will be kg/y, and the conversion factor, T will have a value

equal to 365.25 * 24 * 3600 = 31.56 X 106 s/y (see Section 4.6).

Typically the value of the bankfull discharge Qbf is considered to be an independent variable.

This was questioned in Chapter 3 where it was suggested that Qbf may be considered a

dependent variable. This will be investigated in Section 7.6.

7.2.2 Dependent Variables

The primary dependent variables which are to be solved are Pbed, Pbank, O S, and the grain size

distribution of the bed surface which will be represented by D50. Other secondary dependent

variables which include Rh, (J W, and Y are readily obtained once the primary dependent

variables have been determined.
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7.2.3 Objective Function

The objective function in the full-model formulation is give by:

maxf(Jd,Pb,6,S,DSO) = (7.3a)

where the coefficient of efficiency i is given by:

Gb Gb
77= m = — (7.3b)

Tpp,S ‘°

where the mean annual flow rate with units of m3/s. The total stream power which is

represented by pQS for steady, uniform flow is modified in the denominator of Eqn (7.3b) for

the full range of flows as given by the flow-duration curve (Fig 7.1). The total stream power

expended over one year per unit channel length is given by I’ p S.

Since the values of Gb and are imposed, a maximization of i is equal to a minimization of S.

7.2.4 Constraints

The constraints for the full model formulation are given below.

7.2.4.1 Continuity

The continuity constraint is unchanged from previous formulations and requires that the

discharge capacity of the channel is equal to the value of the bankfull discharge, Qbf:
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UA=Qbf (3.24)

where A is the channel cross-sectional area at bankflill, and U is the mean channel velocity at

bankfull which is given by:

(3.35)

the value offis given by Eqn (3.19).

7.2.4.2 Bedload

The bedload constraint requires that the bedload transporting capacity of the channel be equal

to the imposed sediment load Gb:

Fg=G (4.54)

where:

g=rspq (4.55)

where qb is given by Eqn (4.53). The value qb is the average volumetric bedload transport rate

per metre channel width, and has units of m2/s. The units of Gb and gb are kg/y and kg/y/m,

respectively.

The bedload constraint implicitly contains the “equal mobility constraint” which requires that all

grain sizes be transported equally over the one year duration (see Chapter 4).
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7.2.4.3 Bank Stability

The bank stability constraint can be formulated for both noncohesive and cohesive banks.

The noncohesive bank stability constraint is given by:

y(s—i)D5kfl1_s: (5.15)

The constant k was evaluated from field data in Chapter 4 as 0.048.

The cohesive bank stability constraint is comprised of two components namely the bank-height

constraint, and the bank shear constraint, which are, respectively:

HH1 (5.7)

rbflk 1crit (5.8)

7.2.5 Optimization Scheme

The optimization flowchart is shown in Figure 7.3 and is unchanged from Fig. 6.11. However

the bedload constraint is substantially more complex than previous formulations and is shown in

Figure 7.4.
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In order to calculate qb the values of the geometric mean grain diameter of the bed surface Dsg

(Eqn 4.35) and the standard deviation on the sedimentological phi scale o (Eqn 4.37) must be

known. However these are dependent variables whose values are not known in advance.

Therefore an iterative scheme is necessary which is initiated with trial values. The values of F

are calculated which satisfy “equal mobility” using Eqn (4.52) from which updated values of

Dsg and o are obtained. This is repeated until convergence is attained on the values ofD and

o. From the values of13. at convergence, the value ofD50 can be readily determined.

7.3 VARIABLE FLOWS

The Parker surface-based bedload transport relation was modified in Chapter 4 to

accommodate the variable flows which are inherent in natural river systems. The armour layer

develops such that “equal mobility” applies to the total load transported over a significant

duration (which will be taken as 1 year) as a result of the total range of flows. The size

distribution of the annual transported sediment load is constrained to be equal to the subarmour

sediment.

To illustrate the process of modelling a range of flows a hypothetical channel with noncohesive

banks will be examined. The flow-duration curve presented in Fig. 7.1 will be used as input.

The mean annual flow, , is equal to 17.5 m3/s. The grain size distribution of the bedload and

subarmour sediment is shown in Fig. 7.2, and both have values ofd50= 0.025 m and o = 0.43.

The value ag is the geometric standard deviation which is given by:
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ir (Dl2
usg=a[logLJj F (7.4)

The values of and ksbk will both be set equal to 0.40 m, D5Oba,, set equal to 0.07 m which

is about the anticipated value ofD50, and ç = 400. The total annual imposed sediment load is

2.5 X 106 kg/year. The value of the bankfiill discharge, Qb., is set equal to 85 m3/s which is

equalled or exceeded 1.7% of the time. This value of Qbf is not arbitrary but it will be shown in

Section 7.6 that it corresponds to an optimum. The flows that exceed Qbf are set equal to Qbf

following the assumption of an infinitely wide flood plain. This assumption is discussed in

Section 3.3.

The optimum values of W, 7, S, and D50 obtained from modelling are 37.6 m, 1.16 m, 0.00426,

and 0.073 m respectively, and the bankfull value of is equal to 0.043. All of these

modelled values are typical for natural gravel rivers with little bank vegetation (eg. see regime

equations and field data from Hey and Thorne, 1986).

The sediment transport rate Gb1’ for each value of Q’ is shown in Fig. 7.5(a). Here the prime (‘)

is used to denote the rate in kg/s, and Gb, without the prime denotes the total transported in one

year, or the rate in kg/year. Note that the maximum value of Gb,’ at bankfiill is only 1.89 kg/s.

In Fig. 7.5(b) the total load transported by each flow interval is shown. The lowest flow interval

(which occurs 75% of the year) transports a negiigible volume of sediment (about 4 kg), while
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the flows that equal or exceed Qbf, transport over 40% of the annual sediment load over 1.7%

of the year, which is equal to about 6 days.

The variation of the median grain diameter of the transported sediment diOload, with discharge is

shown in Fig. 7.6 and illustrates the definition of “equal mobility” as applied herein. The value

of dSOJoad varies with discharge; the lower discharges are associated with values of d5Oload less

than d50, while higher discharges result in values of d5Oload greater than d50. The net result is that

over the entire year the value of dSOIoad for the total annual bedload is equal to d50. Note that

below a discharge of about 35 m3/s the median grain diameter is constant. For these low

discharges the bed surface is essentially immobile (Fig. 7.5(a)), and in most natural rivers any

sediment transport would be restricted to “sandy throughput load”. In Oak Creek the sediment

trapped for discharges less than the threshold value of about 1 m3/s had a mean grain diameter

of about 2 mm (see Fig. 4.12). Once this threshold value was exceeded the value of d5Oload

showed a consistent increase with discharge.

7.4 ADJUSTMENT OF THE BED SURFACE COMPOSITION

In previous model formulations (Chapter 6; Millar and Quick, 1993; Miflar, 1991; as well as

White et a!., 1982; Chang, 1979, 1980) the armour layer grain size distribution as represented

by D0 was considered to be a fixed independent variable. In the full-model formulation the

grain size distribution of the armour layer is able to adjust by using the Parker (1990) surface-

based transport relation. The value ofD50 will therefore now be treated as a dependent variable.
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The degree of armour layer development will be represented by the value of 650 which is the

ratio of the median armour, to the median subarmour grain diameters:

(4.25)

The value of 8, observed in natural gravel rivers ranges from 1.0 with no armour layer

development, to greater than 6. Most rivers have values of 650 around 3 when measured at low

flows. It is assumed in this thesis that the composition of the armour layer which is observed at

low flows is maintained at high discharges (Sect 4.4.1). In addition to D50, a characterisation of

the armour layer should also include a measure of the dispersion of grain sizes about the median

value, however this is of secondary importance and will not be considered herein.

7.4.1 Sso - T*D50 Solution Curves

Parker (1990) has shown that for an imposed bedload grain size distribution a solution curve

can be calculated to predict the variation ofD with q5sgo. In this section 5o - T.D50 solution

curves, which are analogous to Parker’s, will be developed to demonstrate the adjustment of

the armour layer. The 850 - TD50 solution curve for the Oak Creek sediment is shown in Fig.

7.7. For values of less than about 0.03, which is normally considered the “threshold”

value for gravel rivers, a static, immobile armour layer is developed. For values of r’D50 greater

than 0.03 a mobile armour is developed (Parker, 1990). The value of 8o is seen to decrease as

T’D50 increases, and eventually disappears for very large values of V*D50 in excess of 0.3.
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The value of ö observed at Oak Creek is about 2.2 which corresponds to a value of v”D50

equal to about 0.06. The bed surface at Oak Creek, as with any natural river, is subject to a

wide range of shear stresses. Therefore the value r*D50 = 0.06 for Oak Creek can be considered

to be the “dominant” or “channel forming” dimensionless shear stress which is analogous to the

dominant discharge concept. This dominant dimensionless shear stress is likely to correspond to

bankfull, or near bankfhll values as most of the sediment transport occurs at these discharges.

Once a channel has reached equilibrium it is presumed that the composition of the armour layer

does not change appreciably despite the daily and seasonal variation in the flows and shear

stresses.

The grain size distribution curves for the Oak Creek subarmour and armour sediment are

shown in Fig 7.8. These values are from Parker (1990) and exclude the sediment less than 2.0

mm in diameter. The curve for the subarmour sediment has been slightly modified at the upper

end because Parker reports that 0% of the subarmour sediment sampled was in the range 102-

203 mm, whereas 8% of the armour layer falls within this range. The upper end of the

subarmour curve was smoothed to approximate a log-normal distribution with the maximum

grain size equal to 203 mm. This modified curve now has 3% of the subarmour sediment in the

range 102-203 mm.

The composition of the armour layer for an imposed bed shear stress of 45 N/rn2was calculated

using Eqn (4.44). The selected value of the bed shear stress gives a value = 0.06 and

therefore observed and calculated values ofD50 match. The results are plotted along with the

observed grain size distribution in Fig. 7.8 and there is an excellent match. However the Parker
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surface-based bedload relation that is used to calculate the composition of the armour layer was

developed from bedload transport data collected on Oak Creek, and therefore the good match

is not surprising.

As an independent test of the Parker theory the experimental data of Dietrich et aL (1989) will

be used. Dietrich et at. performed three flume experiments to investigate the effect of sediment

supply on the development of the armour layer. They initially started with very high sediment

feed rates which at equilibrium resulted in no armour layer development (8o = 1). The sediment

supply rate was progressively reduced and the bed surface was observed to coarsen to values of

850 = 1.16, and 1.32. The 850 V*D5 solution curve was calculated using the sediment feed

grain size distribution, and is shown together with the three observed armour-layer values in

Fig. 7.9. There is close agreement with the theory for two of the points, however the data point

corresponding to the highest sediment feed rate plots well below the theoretical curve.

The Parker surface-based bedload transport relation was developed over a fairly limited range

of data. In particular the reduced hiding function (Eqn. 4.36) was developed for r’j50 0.05.

At this value the armour layer is only moderately mobile. However for higher sustained shear

stresses where the bed surface is much more mobile and the value of öo approaches 1, it is

unlikely that Eqn (4.36) would still be valid. The results from the analysis of the data from

Dietrich et a!., which is admittedly based only on three data points, suggest that the Parker

theory is applicable only up to moderate values of z*D50, say up to a maximum of 0.07. Beyond

this value the mobility of the bed sediment and the hiding relations appear to be considerably

different from those observed at Oak Creek. Fortunately natural gravel rivers generally have
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bankfull values of T*D50 less than 0.07, with most falling in the 0.03 - 0.06 range where the

Parker theory can be applied.

7.4.2 Effect of Sediment Gradation on

Theoretical ö - r’D50 solution curves were calculated for a range of sediment mixtures from

uniform to poorly sorted which are shown in Fig. 7.10. The sediments all have the same median

grain size (d50 = 25 mm). The geometric standard deviation, 0g, was used as a measure of the

dispersion about d50. The resulting 650 - V*D50 curves are shown in Fig. 7.11. The sediment

gradation is shown to have a large influence on the shape of the curves and the values of 850.

The sediment size parameters from Figs 7.10 and 7.11 are shown in Table 7.1. The value of

D50 is approximately equal to d85 in this example.

Table 7.1. Summary of sediment size parameters from Figs 7.10 and 7.11. The values of Ug

and d90 are from the subarmour sediment, and 850 and D50 are from the computed armour layer.
The value ofD50 is approximately equal to d85.

(Jcg d85 D50
(mm) (mm)

0 25 1 25
0.28 45 1.6 40
0.43 75 3.1 78
0.50 100 4.4 110

7.5 EFFECT OF SEDIMENT LOAD

The effect of increasing sediment load on the channel will be modelled in this section and the

theoretical results compared to experimental and field observations, and qualitative relations

obtained from these observations.
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The effect of a 10-fold increase in the imposed sediment load from 2.5 X 106 to 2.5 X i07

kg/year on the optimal hydraulic geometry for the set of independent variables described in

Section 7.3 is shown in Fig. 7.12(a) and (b). The values of W and S increase in value with

increasing sediment load by 32% and 56% respectively, while the values of 7, and ]3 show a

decrease of 24% and 15%.

These modelled adjustments above are in general agreement with observed adjustments. Recall

the qualitative proportionality of Lane (1955a) which can be rearranged as follows:

QdSG (1.1)

where Qd is the characteristic or dominant discharge which is here assumed to be equal to Qb.,

and D is a characteristic sediment grain diameter, which is presumed here to be D50.

Since the value of Qd is assumed to be constant (cf Section 7.6.1), Formula (1.1) indicates that

an increase in Gb will produce an increase in the value of S, and a decrease in D. The decrease

in the value ofTho with increasing sediment load was discussed in Section 7.4 and is supported

by numerous experiments and field observations (eg Dietrich et at., 1989; Lisle and Madej,

1989; Kuhnle, 1989).

A similar qualitative relation proposed by Schumm (1969):
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W2S
cxG,, (1.3)

where 2= the meander wavelength, and = sinuosity, which is equal to the valley slope divided

by the channel slope, S / S.

Formula (1.3) was derived from field observations, and indicates that an increase in Gb will

result in an increase in W, S, and 2, and a decrease in Y and . By definition an increase in S is

equivalent to a decrease in as the value of S is assumed to remain constant. The adjustment

of 2 is not considered in the optimization modelling.

For an increase in the imposed sediment load the results obtained from the optimization

modelling show good qualitative agreement with the proportionalities developed by Lane

(195 5a) and Schumm (1969). These relations are widely used as guidelines for interpreting and

predicting river adjustments, and the agreement between the modeffing results, and the above

qualitative formulas lend general support to the optimization approach.

7.5.1 Valley Slope Constraint

The adjustments to increasing sediment loading modelled above do not consider the valley

slope constraint which represents a physical bound that defines the maximum channel slope that

can be attained over engineering time scales. The valley slope is considered to have developed

over geologic time, and therefore over engineering time scales can be considered to be an

independent variable.
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The initial hypothetical channel from Section 7.5 with a slope of 0.00426 and a sediment

transporting capacity equal to 2.5 X 106 kg/year, would require a value of 1.57 if it were to

adjust to an imposed load of 2.5 X kg/year which requires an increase in the channel slope

of 57% to 0.00668 (Fig. 7.12(b)). The 62 rivers listed in Hey and Thome (1986) have an

average sinuosity of only 1.34, and therefore the majority of these could not increase their

channel slope by as much as 57%. When the required channel slope exceeds the valley slope,

the valley slope constraint is violated and the solution is not feasible.

The valley slope defines the maximum channel slope that can be attained, and therefore

determines the maximum sediment load which can be accommodated by a river system and still

maintain a stable equilibrium channel. For example if the valley slope for the river system being

modelled in Section 7.5 were 0.0056, then from Fig. 7.12(b) it can be seen that the maximum

imposed load that can be maintained is about 1.0 X i0 kg/year. For a sediment load in excess

of this value the channel cannot develop the required slope and therefore sediment continuity

cannot be maintained. An aggrading, unstable, and possibly braided channel would be expected.

7.6 BANKFULL DISCHARGE AS A DEPENDENT VARIABLE

Up to this point in this thesis, and generally throughout the literature, the value of Qbf is

considered to be an independent variable which is a function of the catchment hydrology. This

was questioned in Section 3.3. The optimization model will now be used to show that there is

an optimum value of Qbf which suggests that, in the case of a river with an active floodplain, the
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bankilill discharge should more correctly be considered a dependent variable. This analysis does

not apply to incised channels.

The equilibrium geometry for the hypothetical channel described in Section 7.3 was calculated

for a range of Qbf values from 55 to 155 m3/s. The equilibrium values of S for the various Qbf

values are shown in Fig 7.13(a). It is evident that an optimal value of Qbf which corresponds to

a minimum value of S (and hence maximum ii), occurs at about Qbf= 85 m3/s.

The reason for the existence of this optimum value of Qbf can be realised from examination of

the transport rates and total annual loads transported over each flow interval. Contrast the

transport rates for values of Qbf equal to 65 and 135 m3/s which are given in Table 7.2. For

flow interval Q which equals 59.8 m3/s the sediment transport rates are 0.84 and 0.26 kg/s for

each channel respectively. Over one year Q transports 540,000 kg or 21.6% of the total for a

value of Qbf = 65 m3/s, while for Qbf = 135 m3/s the total transported over one year by Q4 is

only 170, 000 kg, or 6.8% of the total. The same flow in the smaller channel has a higher rate

of transport because the depth of flow and therefore the value of Thed are greater. For Qbf = 65

m3/s the depth of flow and value of Thed for flow Q are respectively 1.18 m and 46.1 N/rn2,

while for a value of Qbf = 135 m3/s the respective values are 0.85 m and 35.6 N/rn2.

As the value of Qbf increases the sediment transport rate at bankfull also increases. This is a

result of the greater discharge as well as the wider channel bed across which bedload transport

can occur. Compare the bankfl.ill sediment transport rates in both channels. For Qbf = 65 rn3/s

the bankflill transport rate is 1.13 kg/s, while for Qbf 135 m3/s it is 6.26 kg/s. However as Qbf
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increases the duration which the bankflill discharge is equalled or exceeded also decreases.

From Qbf= 65 to 135 m3/s the duration of the bankfull flow decreases from 0.0365 to 0.0041.

Therefore the optimal value of Qbf results from the opposing tendencies of high sediment

transport rates for low flows in the smaller channels, and higher effective discharges and greater

bed widths which combine to produce larger transport rates in the larger channels.

7.6.1 Effect of Sediment Load on Bankfull Discharge

The effect of sediment load on the channel geometry will be used to demonstrate evidence that

Qbf should be considered a dependent variable. It was shown in Fig 7.13(a) that for an imposed

bedload of Gb = 2.5 X 106 kg/year the model returns an optimal value of Qbf = 85 m3/s. The

results for an imposed load of 2.5 X i07 kg/year are shown in Fig. 7.13(b) and indicate an

optimal value of about Qi,= 135 m3/s. Therefore the value of Qbf is seen to adjust together with

the other dependent variables to define an optimal solution.

There is some support for this result. The qualitative formula of Lane (1955a; see above Eqn

(1.1)) indicates that an increase in Gb will cause an increase in Qd (or Qbf) which is in agreement

with the model predictions. Williams (1978) suggests that the recurrence interval (and hence

the magnitude) of the bankfull discharge is possibly affected by the sediment load. It is an

interesting result that requires follow up work to determine its significance.

This result can have considerable influence on the solution. For instance Fig. 7.14 shows the

effect on the channel width of a 10 fold increase in sediment load from Gb = 2.5 X 106 kg/year
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using the independent variables from Section 7.3. The variation in Wassuming a constant value

of Qbf = 85 m3/s, as well as variable Qbf are shown. A much wider channel is predicted

assuming a variable Qbr

It can be seen from Figs 7.13(a) and (b) that the optimum value of S, and hence i, is relatively

insensitive to changes in Qbf For instance it can be seen from Fig. 7.13(a) that a 55% increase

in Qbf from 55 to 85 m3/s produces a decrease in S (or an increase in i) of only 3.4%. A wide

range of values of Qbf are therefore “near optimal”. It would seem reasonable that the “driving

force” for a channel to attain the optimum value of Qbf would be proportional to ÔS / ôQbf.

Since the value of this partial derivative appears to be small, the “driving force” for the channel

to attain the optimum value would be correspondingly small. Therefore while a theoretical

optimal value of Qbf can be determined, in reality there is a wide range of values of Qbf which

come close to satisfying the objective function, and therefore in natural systems it could be

expected that the observed bankfull flows would be randomly scattered over a wide range

about the theoretical optimum.

7.7 APPLICATION OF THE MODEL

The formulation of the model allows it to be applied to any situation where there is alteration in

the volume and size distribution of the imposed sediment load, the volume and timing of the

flows, or the properties of the bank sediment. For example the construction of a dam will affect

the sediment supply and flows. The sediment supply will be reduced dramatically, often

effectively to zero directly downstream from the dam. The area of interest may be some

distance downstream and the reduction of the sediment load from the dam may represent only a

200



fraction of the total transported at this point. The flows are usually affected to a large extent,

typically by truncating the higher flows, and increasing the proportion of low flows. The total

runoff volumes may or may not be affected. The bank stability parameters may not be affected.

Other potential applications relate to land-use changes. For instance removal of forest cover by

logging or for agricultural development may increase the sediment production from the

catchment, and yet may or may not affect the runoff to any great extent. Often the riparian

vegetation is affected by these developments, and as has been demonstrated in Chapter 6, this

can have a profound influence on the bank stability.

Regardless of the type of development or catchment disturbance, the input required for the

model is a flow-duration curve, an estimate of the volume of sediment load and grain size

distribution, and estimates of the bank stability parameters. Hydrologic modelling and sediment

budget studies may be necessary together with field observations to determine the appropriate

values to use as input to the model. These values may be difficult to measure in an intact system

let alone to predict the values for a disturbed catchment. Estimates of the current sediment load

of a stable river system can be obtained using the observed hydraulic geometry, which includes

the grain size distribution of the bed surface, together with the measured or estimated flow

duration curve.

The model can be used to perform sensitivity analyses to determine the effect of a potential

development on the river channel where the post-development inputs cannot be accurately

determined. For instance some studies have indicated that typical logging practises in coastal
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B.C. and the Pacific north-west can result in an 8 to 10 fold increase in the yield of coarse bed-

material sediment as a result of increased mass-wasting processes (eg Madej, 1978). The model

can be calibrated using the observed hydraulic geometry, and then the sensitivity of the channel

to increased sediment load can be determined.

When using this optimization model it must be realised that the optimum value is only a

theoretical value which the river may show a tendency to adjust towards. The optimization

model is only an adjunct to other techniques such as air photo and field monitoring of observed

channel adjustments of the river of interest and nearby channels that may have been subjected

to similar disturbances. Any modelling results must be tempered with sound engineering

judgement, and must recognise the location of geologic controls that may limit the computed

adjustment.

7.8 HOW AND WHY DO ALLUVIAL CHANNELS OPTIMIZE?

Up to this point the issue of how and why do alluvial channels reach the optimal solution has

not been addressed. The value of the modelling approach has relied on its empirical success in

predicting channel geometry. It seems that the general reluctance of the engineering community

to more fully accept this approach to river adjustments is largely due to the “lack of a physical

basis” for this approach.

Yang and Song (1979, 1986) have attempted to explain their minimum energy dissipation rate

and minimum unit stream power hypotheses by arguing from fundamental fluid mechanics

precepts. Yang and Song suggest that many aspects of the behaviour of fluids, and not just
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river channel adjustments, can be explained by their minimum energy dissipation rate

hypothesis. However their explanations have not met with widespread acceptance.

The argument to be presented in this section will attempt to demonstrate that river channels

display the tendency to move towards the optimal configuration as a result of random

perturbations which exist in abundance in natural river systems. It is the asymmetry in river

channel response to the random perturbations (which will be explained below) that drives the

system towards the optimum.

Figure 7.15 shows a single solution curve that satisfies the continuity, bedload, and bank

stability constraints for a particular set of independent variables. The optimal geometry is

located at Point A. Any channels that are located in the area above the solution curve are over

capacity with respect to transporting sediment, and have the capacity to transport sediment in

excess of the imposed load. Similarly channels located in the area below the curve do not have

the capacity to transport the imposed sediment load. The further a point is above or below the

solution curve, the greater the sediment transport capacity of the channel diverges from the

imposed load.

Consider a channel that is initially located at Point B. This channel is narrower and steeper than

the optimum. Ideally this channel could remain indefinitely at Point B in apparent stability as it

satisfies all of the constraints. However in nature there are abundant opportunities for the

channel geometry, at least locally, to be perturbed from B. Consider a local widening which

could result from an event such as tree falling into the river which acts as a locus for deposition,
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from which a gravel bar is developed. This could deflect the current locally against the bank

resulting in local bank erosion and widening of the channel to Point C. The channel is now, at

least locally, over capacity, and will attempt to fulfil its sediment transporting capacity through

bed and bank erosion.

It is a primary assumption throughout this thesis that bed erosion and degradation is negligible

in comparison to bank erosion, and that bank erosion is concentrated along the outer banks of

meanders. When the sediment transporting capacity of the channel becomes greater than is

required to transport the volume of sediment imposed from upstream, net erosion will occur

along the reach as the channel seeks to fulfil its sediment transporting capacity. Since the

erosion is presumed to be concentrated along the outer banks of the meanders, this erosion will

result in further development of the meanders, therefore causing a reduction in the channel

slope. There may also be some limited channel widening. The net result is that the channel

eventually returns to the solution curve at Point D. The result of the initial perturbation is

therefore to drive the channel geometry closer to the optimum.

Perturbations which displace the channel geometry below the solution curve will produce a

local channel geometry that has insufficient capacity to transport all of the imposed sediment

load. The channel will not have the potential to modif,’ the channel boundary through erosion,

and although the channel can modify its dimensions through deposition, it is difficult to

envisage how significant changes would result.
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It is therefore possible that an asymmetry exists whereby perturbations which displace the

channel geometry above the solution curve result in a modification of the channel geometry

which moves it towards the optimum. Perturbations which displace the channel geometry below

the solution curve into the zone of under capacity will be damped out and have lesser effect on

the geometry.

Once the channel reaches the optimum, any changes in the channel width will reduce the

sediment transport capacity and these perturbations will be damped out. Any steepening of the

channel that produces an excess of sediment transporting capacity (such as a meander cut-off)

will result in erosion principally along the outer bends of the meanders, which will result in a

reduction in the channel slope returning the channel to the optimal configuration.

The above explanation of the optimization process is admittedly incomplete. The role of the

secondary currents is not considered. This explanation does indicate however, that the tendency

for alluvial rivers to attain an optimum configuration is not a systematic process, but results

from random heterogeneities in the channel.

7.9 COMPARISON WiTH OTHER NUMERICAL MODELS

The modelling strategy developed in this thesis is fundamentally different from most other

numerical models which have been developed to predict river adjustments. The most widely

used modelling approaches are the dynamic models which were mentioned in Section 1.4.4,2.

and summarised in Hey (1988). The HEC-6 model HEC, 1974; Thomas and Prashun, 1977) is

the most well known. These models assume that the channel width remains constant and
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changes in the bed elevation are determined for each channel interval at each time step.

Changes in the channel slope are assumed to occur as a result of bed aggradation or

degradation. Osman and Thorne (1988) and Thorne and Osman (1988) modified this approach

to include a bank erosion algorithm for cohesive channels. Chang (1982) proposes that cross-

sectional changes, which include a reduction or increase in the channel width, can be

determined for each time step by using the minimum stream power hypothesis. These models

can be run until steady state conditions have been attained.

In contrast the optimization model proposed herein does not consider the transient, dynamic

channel adjustments and gives only the final steady-state channel geometry. Changes in channel

width are modelled, and the slope adjustments over engineering time scales are assumed to

occur due to changes in the channel sinuosity, and not through aggradation or degradation.

The results obtained by the different modelling approaches are illustrated in Fig. 7.16. Any

differences that would arise between the models due to the different flow resistance and

bedload transport equations used in each model are ignored. Two solution curves similar to Fig

7.15 are shown. The two curves in this case can be taken to correspond to two values of

imposed bedload, the upper curve representing the higher value of Gb. Consider a stable

channel located at Point A on the upper curve which is subject to a reduction in sediment load

to the value represented by the lower curve. The optimization model predicts that the new

stable equilibrium geometry will be given by Point B on the lower curve which represents a

reduction in the channel slope and a decrease in the width. There is no indication of the

pathway or the time required for the channel to adjust from Point A to B.

206



A fixed width model such as HEC-6 will return a progressive decrease in the channel slope due

to bed degradation as the sediment transporting capacity of the channel will initially be greater

than the sediment supply following the reduction. Assuming that the degradation is not

terminated by the development of a static armour layer (which is almost certain to occur in a

gravel river), the HEC-6 type models will eventually arrive at a steady state condition close to

Point C on the lower curve. Since the degradation has not involved any changes in channel

width the final channel must be deeper than the original and it is probable that the bank stability

constraint will not be satisfied at steady state. However with the exception of the Osman

Thorne model to be discussed below, these dynamic models do not consider the stability of the

banks.

The Osman-Thorne model recognises that the bank stability and erosion must be addressed. In

their model they calculate the net bank erosion in each time step and add this volume of eroded

bank sediment into the sediment continuity calculation for each time step. The eroded bank

sediment partially fulfils the sediment transporting capacity of the particular channel interval,

and therefore reduces the net bed degradation. The Osman-Thorne model will reach a steady

state solution at some location between Points C and D on the lower curve. The exact location

will depend upon the relative erodibility of the bed and bank sediment, for highly resistant

banks the final solution will be close to Point C (slope adjustment only), and for easily erodible

banks relative to the bed the final solution will be closer to Point D (width adjustment only).
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The numerical model of Chang (1982) uses sediment routing to compute the change in the

cross-sectional area of the channel, AA, which can be positive or negative depending upon

whether the channel is aggrading or degrading. The minimum stream power (Section 2.2.3) is

used to assign i4 to the bed, or the banks, or both. The channel width is first varied until S,

and therefore i.QS is minimized. Once the banks are adjusted, the remaining i4 is applied to the

bed. One feature of the model is that uniform flow is not assumed, and therefore the slope of

the bed and the energy gradient are not necessarily the same. The dynamic optimization model

of Chang predicts that the channel in Fig 7.15 will move along a direct line from Point A to

Point B.

Despite the capacity for width adjustment, the numerical model of Chang does not contain

algorithms for calculating the distribution of the boundary shear stress, or for bank erosion or

deposition. For example the model formulation does not recognise that the rate of bank erosion

is dependent upon bank shear stress and the erodibility of the bank sediment. Furthermore it is

assumed that the channel adjustment is a continuous process of dynamic equilibrium, and that

the channel maintains equilibrium at each time step. However in the static optimization model

proposed in this thesis, while the channel is assumed to ultimately reach an optimum, the

transient adjustments are not presumed to adhere to any principle of equilibrium.

Clearly the models appear to give very different results, particularly the optimization model and

the Osman-Thorne model which both consider the bank stability and therefore one would

assume that they would be in closer agreement than the fixed-width, HEC-6 type models.

Importantly the Osman-Thorne model does not allow for bank deposition and therefore channel
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narrowing in this case is not possible. The optimization model developed in this thesis does not

explicitly include bank deposition in its formulation, however bank deposition is implied when

the value of falls below the critical value for bank stability since the banks of an optimal

channel develop at the limiting stability.

One other important difference between the optimization model and the dynamic models is the

latter’s dependence upon the initial conditions. It is evident from Fig. 7.16 that the final

solution for the dynamic models is dependent upon the initial conditions, different initial

conditions will yield different final solutions. However the optimization model is independent of

the initial conditions. It was argued in Section 7.8 that random perturbations in the course of a

river channel’s adjustment were necessary for it to attain the optimal geometry. These random

events are not accounted for in the dynamic models and are important as they have the effect of

resetting to some degree the initial conditions. While final steady-state solution from the

dynamic optimization model of Chang (1982) is not dependent on the initial conditions, the

path and the time taken during adjustment are.

An interesting possibility would be to include a random component into the non optimization

dynamic models to see if there is a tendency for the channel to adjust to the optimal

configuration.
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7.10 AN EXAMPLE OF RiVER BEI{AVIOIJR WITHIN AN OPTIMIZATION

FRAMEWORK

The optimization framework can be used to interpret the response of an alluvial river following

river training activities. A solution curve calculated using the optimization model is shown

schematically in Fig 7.17. The valley slope constraint is also indicated. The feasible part of the

solution curve, that is the section of the curve that satisfies all of the constraints including the

valley slope constraint, is located below the valley slope constraint where S S.

Assume that the channel is originally at the optimum (Point A). In order to reduce flooding,

improve navigation, and to “stabilise” shifting channels, a meandering reach is commonly

straightened. If the straightened channel is oriented parallel to the valley axis, it will have a

slope equal to S. The channellized reach can be designed such that it possesses approximately

the same sediment and discharge capacity as the natural meandering channel, and also has

stable banks. A straight channel which is oriented parallel to the valley axis and also is designed

so that is satisfies the discharge, bedload, bank stability and valley slope constraints is indicated

at Point B. Note that this represents the narrower of two possible options; a wider channel that

also satisfies all of the constraints is located at Point C.

However, although all of the constraints are satisfied at Points B and C, by straightening the

reach the channel slope is increased, and therefore the channel is no longer at the minimum

slope that corresponds to the optimal geometry. These straightened channelled reaches must

usually be maintained as any slight channel curvature or irregularity is often amplified by the

flow, and this can result in the development of meanders which cause a reduction in the channel
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slope. The tendency of a straightened channellized reach to develop meanders is interpreted as

the channel attempting to reestablish the optimum geometry.

7.11 SUMMARY

The complete model formulation was presented in this chapter. The model was formulated to

use the fill range of flows, which are represented by a flow-duration curve, as inputs to the

model. Furthermore the composition of the bed surface is able to adjust to the optimal

configuration which is based on the maximization of the coefficient of sediment transport

efficiency, i. This represents a significant advance over previous optimization formulations

such as those of Chang (1980), White et al. (1982), and Millar and Quick (1993b).

Rigorous verification of the model was not attempted, however some well known features of

gravel rivers were demonstrated. The effect of sediment load on the equilibrium channel was

shown to agree well with field observation. The model predicts that an increase in the sediment

load will result in the channel becoming wider, shallower, steeper, with a decrease in the value

ofD50 of the bed surface.

The common assumption of the bankfull discharge as a fixed independent variable was

examined. It was demonstrated that there is a value of Qbf for rivers with active floodplains that

corresponds to an optimum. However the value of i is relatively insensitive to different Qbf

values, and it is probable that natural rivers show a range of Qbf values that are scattered

randomly about this optimal value.
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It is argued that natural channels tend towards an optimal geometry as a result of random

perturbations which exist in abundance in natural rivers. These random events are not

considered in the dynamic, numerical models of river channel adjustment. Furthermore the

dynamic models all attribute changes in the channel slope to either aggradation or degradation,

and do not consider changes in the channel sinuosity.
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Figure 7.3. Flow-chart for fhll optimization model formulation.
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Figure 7.7. The calculated 850 - solution curve for Oak Creek, Oregon. Data from
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Figure 7.15. Solution curve used to demonstrate channel optimization. The solution curve is
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Figure 7.16. Solution curves used for a comparison of numerical models. The solution curves
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upper curve corresponding to the higher imposed load. Points A and B are at the optima of
their respective solution curves.
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The initial equilibrium geometry is given by Point A. This solution is opimal. The straightened
channel will be located at Points B or C, both ofwhich are non-optimal.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 SUMMARY

In this thesis an optimization model has been developed to predict the stable, equilibrium

geometry of alluvial gravel-bed rivers for a given set of independent variables. The independent

variables are the discharges, both the magnitude and duration which are represented by a flow-

duration curve; the mean annual bedload, both total mass and size distribution, which is

imposed on to the channel reach from upstream; and the geotechnical properties of the bank

sediment.

The unknown dependent or decision variables to be solved for include the channel width, depth,

bank angle, roughness, and grain size distribution of the bed surface. The dependent variables

adjust subject to the constraints of discharge, bedload and bank stability to determine a channel

geometry which is optimal as defined by , which is the coefficient of sediment transport

efficiency (Eqn 2.2).

The work in this thesis is an extension of work by Chang (1979, 1980) and White et a!. (1982)

whose models have predicted the geometry of sand and gravel rivers with reasonable success,
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however the degree of scatter associated with these models limited their application to

quantitative engineering applications. Others such as Yang (1971, 1976) and Yang et al. (1981)

have proposed similar models which describe various features of alluvial rivers. The advances in

this thesis over the earlier optimization models are presented below:

8.1.1 Inclusion Bank Stability Analysis.

The bank stability analysis was introduced in Millar (1991) for channels with noncohesive bank

sediment that was unaffected by bank vegetation. It has subsequently been extended to include

the influence of bank vegetation and also for channels with cohesive banks.

For noncohesive bank sediment the model (in a simplified form) was tested on the published

data of Andrews (1984) and Hey and Thome (1986). It was shown that the inclusion of the

bank stability procedure significantly improves the model performance. The results of the

influence of the bank vegetation on the channel stability are in good agreement with the results

that Andrews and Hey and Thorne obtained from empirical regime analyses. The influence of

the bank vegetation is to stabilise the bank sediment, allowing the banks to withstand higher

shear stresses. This results in channels that are narrower, deeper, and less steep than their

unvegetated counterparts. The change in W is the largest, followed by Y, and the smallest

change is in S.

The analysis of channels with cohesive banks indicates that channels tend to be either bank

height or bank shear constrained, and less commonly both bank stability constraints are active.

In general steeper channels with high sediment loads and low bankfull discharges tend to be
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bank shear constrained, while conversely channels with flatter gradients, low sediment loads,

and large bankfhll discharges tend to be bank height constrained. The terms “low” and “large”

in the previous sentence are relative, and depend largely on the properties of the bank sediment.

In a typical channel with only one active constraint, the other constraint is degenerate in that is

does not influence the channel geometry. It is therefore necessary to determine which of the

two possible constraints is active in order to assess the stability of the channel. Failure to do so

can lead to an assessment of the channel stability based on the degenerate constraint which will

lead to erroneous results with regard to the stability of the banks.

An analysis of published data from Charlton et al. (1978) for channels with cohesive banks

indicates that the bank vegetation has a strong effect on the value of Tcrir (Fig 6.8). Channels

with treed banks have higher values of rcrit than channels with grassed banks. This results

indicates that the effect of bank vegetation on channels with cohesive banks is similar to the

noncohesive case and that rivers with heavily vegetated banks would be narrower, deeper, and

less steep than their unvegetated counterparts.

These results regarding the bank vegetation have important consequences for stream

management as the removal of the bank vegetation can reduce çS or zrjt and destabilise the

channel. Published observations have shown that streamside logging can result in increased

width and destabilisation of alluvial channels (Roberts and Church, 1986; Hartman and

Scrivener, 1990). The optimization modelling could be used to determine the sensitivity of a

channel to streamside logging.
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8.1.2. Modelling Using The Full Flow-Duration Data

Previous optimization models such as Chang (1979, 1980) and White et aL (1982), as well as

the simplified optimization models presented in Chapter 6 calculated the sediment transporting

capacity of the channel based only on the bankfull rate. It was argued in Chapter 4 that this is

inadequate as flows less than bankfull can transport significant volumes of sediment.

Furthermore not only is the bankfull sediment transport rate important, but the fraction of the

time where Qbf is equalled or exceeded determines the total volume of sediment that is

transported by the channel over one year. The final version of the optimization model presented

in Chapter 7 uses the complete range of flows which are represented by a flow-duration curve.

This curve is discretised and used as input to the model. Over-bank flows are also considered

and as a first approximation an infinitely wide flood plain is assumed. The depth of flow within

the channel, and more importantly, the values of vE,d and Thank reach their maximum value at

Qbj; and are presumed to remain constant at this value for all larger discharges.

8.1.3 Adjustment of the Bed Surface.

The grain size distribution of the bed surface or armour layer, which is represented most simply

by D50, is considered to be a dependent variable. The size distribution of the bed surface and the

bedload transporting capacity of the channel are calculated using the Parker (1990) surface-

based bedload transport relation which is modified in Chapter 4 to apply to variable flows.

In this thesis the concept of “equal mobility” is presumed to apply over some significant

duration which is generally assumed to be one water year. Therefore the “equal mobility”
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concept as applied herein is that the bed surface or armour layer forms so as to render all size

fractions equally mobile over a period of one year. Therefore the grain size distribution of the

mean annual load transported by a channel in equilibrium is exactly the same as the distribution

of the imposed load. It is assumed that the grain size distribution of the mean annual imposed

bedload is identical to the that of the subarmour sediment (Parker, 1990).

The definition of equal mobility developed in this thesis is significantly different from the

original definition by Parker et a!. (1982a) who assumed that equal mobility was achieved for

each flow. This is known to be incorrect from field observations (eg Fig. 4.11), and the original

definition of equal mobility was acknowledged by Parker et a!. as a first-order approximation

only.

8.1.4 Bankfull Discharge as a Dependent Variable

It was shown in Chapter 7 that there is an optimal value of Qbf for a given set of independent

variables. This result indicates that the value of Qbf can be considered a dependent variable,

rather than an imposed value which is commonly presumed.

However the limited modelling undertaken in Chapter 7 indicates that the value of i is

relatively insensitive to Qbf, and from this it would be expected that the observed values from

natural rivers would be randomly scattered across a wide range about the optimal value. This is

an interesting result which deserves fhrther attention to determine its significance.
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8.1.5 Verification of the Optimization Model

Modelling results of Chang (1979, 1980) and White et at. (1982) showed reasonably good

agreement between modelled and observed values of W and 7, although the degree of scatter

was too great for quantitative engineering projects. This scatter has been reduced in Millar

(1991) and Millar and Quick (1993a, b) and in Chapter 6 through the inclusion of the bank

stability constraint. In addition Yang et a!. (1981) have shown that their optimization model

yields the exponents ofwell-known empirical regime equations.

Furthermore good quantitative agreement was obtained between the modelling in Chapter 6

and Millar and Quick (1993a, b) for the effect of bank vegetation on channels with noncohesive

channel banks, when compared to the empirical regime equations of Andrews (1984) and Hey

and Thorne (1986).

In addition general qualitative agreement between the optimization modelling and the formulas

of Lane (1955a) and Schumm (1969) has been demonstrated by Chang (1980), Millar (1991),

and in Chapter 7.

These results represent only partial verification of the optimization theory that has been

presented in this thesis. This theory was advanced beyond that which could be fully verified

within the scope of this thesis. A program for full verification of the optimization model is

outlined in Section 8.2.6.
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8.2 RECOMMENDATIONS FOR FUTURE WORK

The optimization model presented herein is formulated using the most suitable equations that

were available from the literature. Some modifications were made, however no experimental or

field work was carried out during this study to develop new, or improve existing relations.

Several aspects of the optimization model that can benefit from additional research are

presented below.

8.2.1 Channel Form or Bar Roughness

In Section 3.2 it was argued that the grain roughness could be calculated using Eqn (3.8),

however no existing methods were available to calculate the form or bar roughness component.

The similar methods of Einstein and Barbarossa (1952) and Parker and Peterson (1980) were

shown to be a result of spurious correlation and therefore do not yield meaningful estimates of

the form roughness. The approach adopted by Prestegaard (1983) is promising although no

predictive equations have yet been developed.

The nature of the form roughness can be studied using an approach similar to that adopted by

Prestegaard (1983). The total channel roughness,J can be determined from channel surveys at

a location where good quality flow measurements have been obtained, preferably at a

hydrometric station. The grain roughness,f’, can be calculated using Eqn (3.8) and the value of

f”is equal to!
- f’ from Eqn (3.7). Data obtained from detailed geomorphic mapping of the

channel, such as bar amplitude and spacing, vegetation etc, can be then used in an effort to

develop empirical relations forf”.
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8.2.2 Surface-Based Transport Relation Based on t’bd

The Parker (1990) surface-based transport relation uses the total bed shear stress Tbed,, and not

the grain shear stress r ‘L,ed,, to calculate the transport rate. The use of the total bed shear stress

and not the grain component is a result of Parker and Peterson (1980) who concluded that the

form component of roughness and shear stress in gravel rivers is negligible, particularly for high

in-bank flows. This was shown to be incorrect in Section 3.2, and furthermore it was shown in

Section 4.2.4 that as little as 11% of the total shear stress can be assigned to the grain

component (See Fig 4.6).

Because Thed appears in Parker’s dimensionless bedload transport parameter W (Eqn 4.28),

conversion of the transport relation to one based on r is not simply a matter of changing a

coefficient, but rather all of the relations which include the hiding and straining functions need

to be recalculated.

8.2.3 Bank Stability

The results in Chapter 6 indicated that for both noncohesive and cohesive banks the bank

vegetation exerts a strong influence on the bank stability, and hence the channel geometry. The

effect of the bank vegetation on the bank stability is reduced to a single parameter which is ç

for noncohesive bank sediment, or rent for cohesive bank sediment. In both cases the effect of

the bank vegetation was interpreted as an increase in and znjt which resulted from the

binding and reinforcement of the sediment by the root masses. An alternative explanation is the

physical shielding of the bank sediment by the vegetation which reduces the magnitude of

acting on the bank sediment. Field investigation is necessary to determine the actual role of the
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bank vegetation and how it relates to bank stability, and whether the effect is an increase in g

or rrjt, or a decrease in Tbank. Furthermore it is necessary to develop field-based methods for

determining the insitu values of g and rit

8.2.4 Secondary Currents

The “strong” secondary currents that occur as a result of channel curvature have not been

considered in this thesis. The “weak” secondary currents which are present in straight channels

are implicitly accounted for in the empirical boundary shear stress equations of Flintham and

Caning (1988) which were developed from experimental data.

One important effect of secondary currents is the redistribution of the boundary shear stress. In

this thesis the bank and bed shear stresses are assumed to be uniform across their respective

channel perimeters. However redistribution of the shear stress can have a large effect for

example on the sediment transporting capacity of the channel.

Consider a channel that at bankfull has a mean bed shear stress value that is just below the

critical value for bed mobilisation. This channel will, based upon the mean value, transport a

negligible volume of sediment. However if secondary currents redistribute the shear stress such

that one half of the channel bed has a shear stress value about 1.5 times the critical value, and

the other half is only about 0.5 times the critical value, significant sediment transport will occur

across one half of the channel.

238



From the optimization model it is assumed that a reduction in the channel slope implies a

decrease in the sediment transporting capacity of the channel. However this reduction in

channel slope is presumed to be accompanied by increased sinuosity, resulting in stronger

secondary currents which could conceivably increase the sediment transporting capacity of the

channel.

The optimization model calculates the mean value of Vbank, and this value must be less than the

shear stress required for fluvial erosion of the bank sediment in order to satisify the bank-

stability constraint. Locally however, the value of Tbank may exceed the value required for bank

erosion, particularly in areas such as along the outer bank of meanders. Along the convex inner

bank the shear stress is lower and deposition of sediment can occur forming a point bar deposit.

Therefore even though bank erosion and lateral channel migration is occurring, the channel is

still considered to be in equilibrium, and “statistically stable”, if there is no net change in the

mean channel geometry over a representative channel reach.

8.2.5 Formulation for Sand-Bed Rivers

The equations used in this thesis have been selected and developed for application to gravel-bed

rivers, however the model can easily be reformulated for application to sand-bed rivers. For

example the Einstein transport relation could be used in place of the modified Parker (1990)

relation.
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8.2.6 Model Verification

Before the optimization model can be used for quantitative engineering studies to predict the

impact of engineering structures or land-use practices on the channel geometry a fhll program

of model verification needs to be undertaken to determine the reliability in the model.

Initially data should be collected from stable rivers which appear to be in approximate

equilibrium. Existing data sets such as Kellerhals et a!. (1972) were found to lack certain key

data. However these data sets could be updated with some field work to determine the values

of the bank stability parameters, and review of the original records such as flow data, sediment

analyses etc.

The values of the independent variables obtained from field surveys can be input into the model

and a comparison made between the modelled and observed value of the dependent variables.

This should include an analysis of the bankfull discharge to determine if the optimal value of Qbf

found from modelling has any physical significance.

If the model was found to predict the geometry of existing rivers, this would then improve the

confidence of using these models for predicting the response of a river to catchment

disturbance.

Despite the limited quantitative verification that has been done, the model in its present form is

valuable as it gives the user some insight into, and understanding of the nature of river channel
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adjustments which can be used to improve the judgement of a scientist or engineer interested in

the response of alluvial rivers.
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BANKFULL: FIXED SLOPE MODEL

The Bankfhll:Fixed Slope model is the simplest version of the optimization model presented in

this thesis. In this version of the model the channel slope is treated as an independent variable.

The source code for the computer program (fixslope.bas) used in the thesis is presented below.

The programming was encoded and run using Microsoft Quick Basic (Version 3.0 or later).

This program can be used for channels with cohesive or noncohesive bank sediment.

The program is designed to use an input data file named fixslope.dat, and will output the

optimal geometry in a data file named fixslope.out. The data file can contain the data for more

than one channel. The data for each channel must be input as follows:

Qbf S ksbd ksbk d50 D50 D5Obk

for channels with noncohesive banks, and:

Qbf S ksbd ksbk d50 D50

for channels with cohesive banks.

The data relating to each channel must start on a new line. The data values must be separated

by at least one space, although the number of spaces is not important. An example of an input

dat file is presented below:

50 0.003
100 0.003

0.1 0.1 0.025 0.075 0.075 40
0.1 0.1 0.025 0.075 0.05 40
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This file contains the input data for two channels with noncohesive banks. The user is required

to input the bank sediment type (n for noncohesive or c for cohesive) as prompted. The output

data will written to a data file named fixslope.out in the following order:

W H 17* S 0

The output file resulting from the example input file is:

W H * S theta
18.0 1.40 1.21 0.0030 30.0
37.7 1.28 1.17 0.0030 21.7

The Bankfiull:Fixed Slope model was developed principally for illustrative purposes. It can be

used in a field investigation to estimate or ‘calibrate’ the bank stability parameters that may be

difficult to measure. For example with noncohesive bank sediment the value of Ø., may be

difficult to estimate in the field. The measured independent variables can be input into the

model together with trial values of until the modelled width is equal to the observed channel

width. This procedure was used in Chapter 6 to demonstrate the relationship between and

bank vegetation. The value of which gives the best agreement between the modelled and

observed geometry can then be used as input into the fully developed model (Appendix C).

The source code for the Bankfull: Fixed Slope Model is presented below.
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‘BANKFULL:FIXED SLOPE MODEL FOR BOTH COHESIVE AND NONCOHESIVE BANK
‘SEDIMENT. (FIXSLOPE.BAS)

DECLARE SUB stabcurve 0
DECLARE SUB bankstabilitycohesive 0
DECLARE SUB optimum 0
DECLARE SUB bankstabilitynoncohesive 0
DECLARE SUB ebrown 0
DECLARE FUNCTION bankshear! 0
DECLARE FUNCTION bedshear! 0
DECLARE FUNCTION shearforce! 0
DECLARE SUB continuity 0
DECLARE FUNCTION velocity! 0
DECLARE FUNCTION hydrad! 0
DECLARE FUNCTION meandepth! 0
DECLARE FUNCTION area? 0
DECLARE FUNCTION surfwidth! 0
DECLARE FUNCTION depth? 0

I*********************************************************************************

program to calculate curves to demonstrate the optimum
channel geometiy for a given set of independent variables

‘bankfull: fixed slope model for channels with
‘both cohesive and noncohesive bank sediment

‘Global Variables

‘gravity!= gravitational constant gamma? unit weight of water
‘ss! specific gravity of sediment viscosity?=kinematic viscosity of water
‘density!=density of water slope?=channel slope
‘pbed!=bed perimeter pbank?—bank perimeter
‘theta!=bank angle (radians) dd5O?=median armour grain diameter
‘d50!median subarmour grain diameter d5Obank?=median grain diameter of bank sediment
‘discharge!=bankfull discharge ‘gbcalc!=valculated bedload transport rate ‘neta!=coefficient of
efficiency
‘phipnme?=friction angle of bank sediment (radians)
‘phidegrees!=friction angle of bank sediment (degrees)
‘ksbed?=measure of bed roughness ksbank!=measure of bank roughness
‘banktype$=type of bank sediment Wointerger counter
‘gammat!=unit weight of cohesive bank sediment
‘stabnum’=stability number for cohesive sediment
‘cohesion!=soil cohesion taucrit?=critical shear stress

COMMON SHARED gravity?, gamma!, ss?, viscosity?, density!
COMMON SHARED slope!, pbed?, pbank?, theta!, ddSO’, d5Obank?
COMMON SHARED discharge!, gbcalc!, phiprime!
COMMON SHARED d50!, bankcond$, pi?
COMMON SHARED ksbed?, ksbank!, neta!, bankte$, f%
COMMON SHARED ganimat?, stabnum?, cohesion!, taucrit?, phidegrees?

OPEN “fixslope.dat” FOR INPUT AS #1
OPEN “flxslope.out” FOR OUTPUT AS #2
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‘SET VALUES OF INDEPENDENT CONSTANTS
pi! = 3.14159
gravity!= 9.81
gamma! = 9810
viscosity! = .000001
density! = 1000
ss! = 2.65
CLS
PRINT
PRINT
PRINT “BANKFULL:FIXED SLOPE OPTIMIZATION MODEL”
PRINT : INPUT “Hit <ENTER> to Continue “,dummy$

=0

PRINT #2,” W H * S theta”

CLS
10
PRINT
PRINT
PRINT
PRiNT : INPUT “INPUT BANK SEDIMENT TYPE (n/c) “; banktype$

iF banktype$ = “c” OR banktype$ = “C” THEN
banktype$ = “cohesive”

ELSEIF bankte$ = “N” OR banktype$ = “n” THEN
banktype$ = “noncohesive”

ELSE
BEEP

PRINT “Bank Type Unknown”
GOTO 10

END IF
CLS

DO WHILE NOT EOF(1)
PRINT
PRINT

=1% + 1 ‘counter
PRiNT “Channel Number “; f’%
iNPUT #1, discharge!, slope!, ksbed!, ksbank!, d50!, dd5O!
‘Input the independent variables from data file

IF banktype$ “noncohesive” THEN ‘input bank stability parameters
INPUT #1, d50bank!, phidegrees!

ELSE ‘banktype$=”cohesive”
INPUT #1, gamxnat!, phidegrees!, cohesion!, taucrit!

END IF
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phiprime! = phidegrees! * 2 * pi! / 360 ‘convert friction angle from degrees to radians

CALL optimum
‘calculates the optimal geometry

PRINT
PRINT” W H * S theta”
PRINT USiNG “###.# ##.## ##.## #.#### ##.#“; surfwidth!; depth!; meandepth!; slope!; theta! * 360/2 /

pi!

PRINT #2, USING “###.# ##.## ##.## #.#### ##.#“; surfwidth!; depth!; meandepth!; slope!; theta! * 360 / 2
/ pi!

LOOP
‘loops until end of data file

CLOSE #1
CLOSE #2

END

FUNCTION area
‘function to calculate the cross-sectional area

area! = .5 * (pbed! + surfwidth!) * depth!

END FUNCTION

FUNCTION bankshear
‘calculates the bank shear stress

bankshear! = gamma! * depth! * slope! * shearforce! * ((surfwidth! + pbed!) * SIN(theta!) / (4 * depth!))

END FUNCTION

SUB bankstabilitycohesive
‘satisfies bank stability constraint for cohesive banks

heightcond$ = “unknown”
shearcond$ = “unknown”
bankcond$ = “unknown”
thetamax! =90*2 *pi! /360
thetanün! =0

‘initialise search and convergence criteria

‘First test ifvertical bank is stable wrt bank height
theta! = thetamax!
CALL continuity

‘satisfy continuity
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CALL stabcurve
‘catculate stability number

criticalheight! = stabnuml * cohesionl I gaxnmat’
calculate the critical height

stability 1! = depth / criticaiheight!
‘calculates stability criteria wit bank height
‘if stability 1 I <= criticaiheight then bank is stable
‘with respect to bank height

IF stabilityll <= 1.001 THEN
heightcond$ = “stable”

ELSE ‘vertical bank is not stable therefore reduce the bank angle.
‘Determine the maximum bank angle that is just stable.
This is theta max from Chapter 6.

DO UNTIL heightcond$ = ‘just stable”

theta1 = (thetamax? + thetamin’) /2
‘calculate midpoint of range for
‘bisectrix convergence scheme

CALL continuity
‘satisfy continuity constraint

CALL stabcurve
‘calculate stability number

criticaiheight! = stabnum! * cohesion! / gaimnat!
stabilityll = depth / criticaiheight’

‘calculates critical height and stabilty number
‘for the bank height constraint

IF stabilityl! >= 1.001 THEN
heightcond$ = “unstable”
thetamax! theta?

ELSEIF stabilityll <= .999 THEN
heightcond$ = “understable”
thetamin! = theta!

ELSE
heightcond$ = ‘just stable”

‘Bank Height = Critical Height
END IF

IF (thetamax! - thetamin’) / theta! <.001 THEN
heightcond$ = ‘Just stable”
stabilityl! = 1

‘Secondary Convergence Criterion in case of
‘convergence problems due to numerical scheme

END IF

LOOP
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END IF

bank height constraint now satisified
‘now assess the bank shear constraint

thetaniin?=0
thetamax! = theta!

‘thetamax is reset to maximum bankangle which satisfied the
‘bank height constraint above

stability2! = bankshear! / taucrit
satbility criterion for bank shear constraint

IF stability2! < 1.001 THEN
‘bank shear constraint is satisifled
shearcond$ = “stable”
bankcond$ = “stable”

ELSE ‘must reduce theta!

DO UNTIL shearcond$ = “just stable”

theta! = (thetamax! + thetaniin!) /2
‘calculate mid point

IFtheta! < 10*2*3.14159/36OTHEN
‘bank angles less than 10 degrees
‘nominally assumed to be unstable

shearcond$ = “unstable”
bankcond$ = “unstable”
EXIT DO

END IF

CALL continuity
‘satisfy continuity

stability2! = bankshear! / taucrit!
‘calculate stability criterion for bank shear constraint

IF stability2! >= 1.001 THEN
‘bankshear > taucrit

shearcond$ = “unstable”
thetamax! = theta!

ELSEIF stability2! <= .999 THEN
shearcond$ = “understable”
thetamin! theta!

ELSE
shearcond$ = “just stable”
bankcond$ = “stable”
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END IF

IF (thetaxnax! - thetanun!) / theta! <.001 THEN
shearcond$ ‘just stable”
bankcond$ = “stable”
stability2? = 1

END IF

LOOP
END IF

END SUB

SUB bankstabilitynoncohesive
‘calculates theta where banks just stable

bankcond$ = “unknown”
thetamax! = phiprime!
thetamin! =0

‘initialise search bounds and convergence criteria

DO UNTIL bankcond$ = ‘just stable”
theta! (thetaniax! + thetaniin!) / 2

‘determine midpoint of search range

IF theta! <5 * 2 * 3.14159/360 THEN
bankcond$ = “unstable”
EXiT DO

‘if theta is less than 5 degrees the channel is assumed
‘to be unstable

END IF

CALL continuity
‘satisfies continuity constraint

stability! = (bankshear! / (gamma! * (ss! - 1) * d5obank!)) I (.048 * TAN(phiprime!) * (1 - SIN(theta!) A 2 /
SIN(phiprime!) A 2) A .5)

‘calculates stability criterion

IF stability! >= 1.001 THEN
bankcond$ = “unstable”
thetamax! = theta!

ELSEIF stability! <= .999 THEN
bankcond$ = “stable”
thetamin! = theta!

ELSE
bankcond$ = ‘just stable”

‘primaiy convergence criterion
END IF
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IF (thetamax! - thetamin!) I theta! <.001 THEN
bankcond$ = ‘just stable”
stability! = 1

‘secondaiy convergence criterion
END IF

LOOP

END SUB

FUNCTION bedshear
‘calculates the bed shear stress

bedshear! gamma! * depth! * slope! * (1 - shearforcel) * ((surfwidth! / (2 * pbed!) + .5))

END FUNCTION

SUB continuity
‘varies pbank! for trial values of Pbed!, slope!, and theta! to
‘satisfy the contiuity constraint

pbankcond$ = “unknown”
errorcalc! = 1000
minpbank! =0
maxpbank! =20 * discharge! A •35
‘initialise search and convergence criteria

DO UNTIL pbankcond$ = “OK”

pbank! = (minpbank! + maxpbank!) /2
‘calculate midpoint

errorcalcl = (area * velocity / discharge!)
‘calculate the normalised error

IF errorcaic! > 1.001 THEN
pbankcond$ “too large”
maxpbank! = pbank!

ELSEIF errorcalc! <.999 THEN
pbankcond$ = “too small”
minpbank! = pbank!

ELSE
pbankcond$ = “OK”

END IF

IF (maxpbank! - minpbank!) / pbank! <.0001 AND pbankcond$ = “too small” THEN
‘resets maxpbank! if too small
maxpbank! =2 * maxpbank!

END IF
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LOOP

END SUB

FUNCTION depth
‘function to calculate flow depth of a trapezoidal channel

depth! = .5 * SIN(theta?) * pbank!

END FUNCTION

SUB ebrown
‘calculate the sed trans capacity using em-brown formula

dimlessbedshear! = bedshear! / (gamma! * (ss! - 1) * d50!)

IF dinflessbedshear! <=0 THEN
dimlessbedload! =0

ELSEIF dimlessbedshear! <.093 THEN
dimlessbedload! = 2.15 * EXP(-.391 / dimlessbedshear!)

ELSE
dimlessbedload! =40 * dimlessbedshear! “3

END IF

fi! = (2 / 3 + 36 * viscosity? “2/ (gravity! * d50! “3 * (ss? - 1))) “.5 -(36 * viscosity? “2/ (gravity! * d.50? “3
*(ss!_1)))

gbcalc! = pbed! * fi! * ss? * density! * ((ss! - 1) * gravity! * d50! A 3) A 5 * dimlessbedload!

END SUB

FUNCTION hydrad!
‘function to calculate the hydraulic radius

hydrad! = area! / (pbed? + pbank!)

END FUNCTION

FUNCTION meandepth
‘function to calculate the mean depth

meandepth! = area / surfwidth

END FUNCTION

SUB optimum
‘determines the optimal geometzy

optcond$ = “unknown”
‘initialises optimality test condition

270



lowerpbed! =0
upperpbed? = 10 * discharge! “.5

‘set bounds for Pbed based on Regime Eqns
‘typical optimal value of Pbed is 2 to 5 * discharge” .5

minpbed! = lowerpbed!
maxpbed! = upperpbed!
PRINT

DO WHILE optcond$ <> “optimum”

pbed! = (minpbed! + maxpbed!) /2
‘calculate mid point of search range

IF pbed! > .95 * upperpbed! THEN
upperpbed!2*upperpbed!
maxpbed! = upperpbed!
‘reset upper bound of search

END IF

PRINT “Assessing Trial Bed Perimeter “;

PRiNT USiNG “####.##“; pbed’;
PRiNT “ m “;

pbed! = pbed! * .975
‘calculate backwards difference value of Pbed

IF banktype$ = “noncohesive” THEN
CALL bankstabilitynoncohesive

‘solve bank stability constraint for noncohesive banks
ELSE ‘banktype$ = “cohesive”

CALL bankstabilitycohesive
‘solve bank stability constraint for cohesive banks

END IF

IF bankcond$ <> “unstable” THEN
‘test conditions indicate that stable channel geometry
‘has been determined and the bedload constraint
‘has been satisified

CALL ebrown
‘calculate sdiment tarnsporting capacity of the channel

netal! = gbcalc! / (density! * discharge! * slope!)
‘evaluate neta for backward difference point

pbed! pbed! 1.975 * 1.025
‘calculate pbed for forward duff

IF banktype$ = “noncohesive” THEN
CALL bankstabilitynoncohesive

‘solve bank stability constraint for noncohesive banks
ELSE ‘banlctype$ = “cohesive”

CALL bankstabilitycohesive
‘solve bank stability constraint for cohesive banks

END IF

CALL ebrown
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‘calculate sdiment tarnsporting capacity of the channel

neta2! = gbcalcl / (density’ * discharge! * slope!)
‘calculates neta for forward difference value

pbed! =pbed! / 1.025
‘reset pbed to midpoint value

dnetabydpbed! = (neta2! - netal!) I (.05 * pbed!)
‘calculate first derivative by finite difference
‘to assess optimum condition

IF dnetabydpbed? <0 THEN ‘Trial Pbed is too de
maxpbed! = pbed’ ‘Reduce upper bound of Pbed
optcond$ = “too wide”

ELSEIF dnetabydpbed! >0 THEN ‘Trial Pbed is too narrow
minpbed! = pbed! ‘Increase lower bound of Pbed
optcond$ = “too narrow”

ELSE
optcond$ = “optimum” ‘Optimum Achieved

END IF

IF (maxpbed! - minpbed!) I pbed! <.001 THEN optcond$ “optimum”
‘Convergence attained. Second optimality criterion

ELSE ‘trial Pbed too small for stable geometiy: Increase minimum Pbed

pbed! =pbed!/.975
‘reset from backward difference to correct value

minpbed! = pbed!
‘set lower limit at current trial value
‘(as the optimum value must be greater)

optcond$ = “too narrow”

END IF
PRiNT optcond$

LOOP

‘Evaluate geometiy at exact optimal Pbed
‘(not at forward or backward difference value)

IF banktype$ = “noncohesive” THEN
CALL bankstabilitynoncohesive

‘solve bank stability constraint for noncohesive banks
ELSE banktype$ = “cohesive”

CALL bankstabilitycohesive
‘solve bank stability constraint for cohesive banks

END IF

CALL ebrown
‘calculate sdiment tarnsporting capacity of the channel

neta! = (pbed! * gbcalc!) / (density! * discharge! * slope!)
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‘evaluate objective function

END SUB

‘*********************************************************************************

FUNCTION shearforce
‘calculates the proportion of shear force on the banks

shearforce! = 1.766 * (pbed! I pbank! + 1.5) A -1.4026

END FUNCTION

‘*********************************************************************************

SUB stabcurve
‘stability curves are from Figure 5.3

thetadegrees! =theta! /2/3.14159 * 360

IF phidegrees! <20 THEN
‘use phiprime = 15 degree stability curve from Figure 5.3
‘from Taylor (1948)

SELECT CASE thetadegrees!

CASE 48.65 TO 90
stabnum! = -.141 * thetadegrees! + 17.46

CASE 29.36 TO 48.6499
stabnum! = -.533 * thetadegrees! + 36.53

CASE 20.12 TO 29.3599
stabnum! = -3.07 * thetadegrees! + 111

CASE 15.001 TO 20.11999
stabnum! = -189.6 * thetadegrees! + 3844

CASEIS<= 15
stabnum! = 1000000

END SELECT

ELSE

‘use phiprime =25 degrees curve from Figure 5.3
‘After Taylor, (1948)

SELECT CASE thetadegrees!

CASE 58.62 TO 90
stabnum! = -.212 * thetadegreesi + 24.86

CASE 39.11 TO 58.61999
stabnum! = -.8975 * thetadegrees! + 65.04

CASE 25 TO 39. 10999
stabnuml = -6.97 * thetadegrees! + 302.5
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CASE IS <=25
stabnuml = 1000000

END SELECT
END IF

END SUB

‘*********************************************************************************

FUNCTION surfwidth
‘function to calculate the surface width

surfwidth! = pbed! + COS(theta?) * pbank?

END FUNCTION

FUNCTION velocity!
‘calculates the mean velocity
rhbank! = bankshear! I (gamma! * slope!)
rhbed! = bedshear! I (gamma! * slope!)

Thank! = (2.03 * LOG(12.2 * rhbank! I ksbank!) I LOG(10)) A -2
Ibed! = (2.03 * LOG(12.2 * rhbed! / ksbed!) I LOG(10)) A -2

ifactor! = (ibed! * pbed! I (pbed! + pbank!) + Ibank! * pbankl / (pbank! + pbed!)) A

velocity! = (8 * gravity! * hydrad! * slope!) A 5 * ifactor!

END FUNCTION
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APPENDIX B

BANKFULL: VARIABLE SLOPE MODEL

The Bankfull:Variable Slope differs from the Fixed Slope model in that the channel slope is

now treated as a dependent variable.

The source code for the computer program (varslope.bas) used in the thesis is presented below.

The programming was encoded and run using Microsoft Quick Basic (Version 3.0 or later).

This program can be used for channels with cohesive or noncohesive bank sediment.

The program is designed to use an input data file named varslope.dat, and will write the output

to a data file named varslope.out. The data file can contain data for more tahn one channel. The

data for each channel must be input as follows:

Qbf Gbf ksd ksbk d50 D50 D5Obk s

for channels with noncohesive banks, and:

Qbf Gbf ksbd k,bk d50 D50 rt c’ rcrit

for channels with cohesive banks.

The data relating to each channel must start on a new line. The data values must be separated

by at least one space, although the number of spaces is not important. An example of an input

dat file is presented below:

50 5 0.1 0.1 0.025 0.075 0.075 40
100 20 0.1 0.1 0.025 0.075 0.05 40
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This file contains the input data for two channels with noncohesive banks. The user is required

to input the bank sediment type (n for noncohesive or c for cohesive) as prompted. The output

data will written to a data file named varslope.out in the following order:

W H 17* S 6

The output file resulting from the example input file is:

W H * S theta
16.5 1.66 1.39 0.0023 32.0
35.3 1.39 1.26 0.0027 22.2

The Bankfiill:Variable Slope model was developed principally for illustrative purposes. The

source code for the Bankfull:Variable Slope Model is presented below.
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BANKFULL:VAR1ABLE SLOPE MODEL FOR BOTH COHESIVE AND NONCOHESIVE BANK
SEDIMENT
‘(VARSLOPE.BAS)

DECLARE SUB stabcurve 0
DECLARE SUB bankstabilitycohesive 0
DECLARE SUB bedload2 0
DECLARE SUB optimum 0
DECLARE SUB bankstabilitynoncohesive 0
DECLARE SUB bedload 0
DECLARE SUB ebrown 0
DECLARE FUNCTION bankshear! 0
DECLARE FUNCTION bedshear? 0
DECLARE FUNCTION shearforce? 0
DECLARE SUB continuity 0
DECLARE FUNCTION velocity! 0
DECLARE FUNCTION hydrad! 0
DECLARE FUNCTION meandepth! 0
DECLARE FUNCTION area? 0
DECLARE FUNCTION surfwidth! 0
DECLARE FUNCTION depth! ()

program to calculate curves to demonstrate the optimum
channel geometiy for a given set of independent variables

‘bankfull: variable slope model for channels with
‘both cohesive and noncohesive bank sediment

‘Global Variables

‘gravity!= gravitational constant gamma?= unit weight of water
‘ss1= specific gravity of sediment viscosity!=kinematic viscosity of water
‘density!=density of water slope!=channel slope
‘pbedl=bed perimeter pbank!=bank perimeter
‘theta!=bank angle (radians) dd5O!=median armour grain diameter
‘d50!inedian subarinour grain diameter d5Obank!=median grain diameter of bank sediment
‘discharge!=bankfull discharge gbload!=imposed bedload transport rate
‘gbload!=calculated bedload transport rate ‘neta!coefficient of efficiency
‘phiprime!=friction angle of bank sediment (radians)
‘phidegrees!=friction angle of bank sediment (degrees)
‘ksbcd!=measure of bed roughness ksbank!measure of bank roughness
‘banktype$=type of bank sediment Wo=interger counter
‘gammat!=unit weight of cohesive bank sediment
‘stabnuxn!=stability number for cohesive sediment
‘cohesion!=soil cohesion taucrit?=cntical shear stress

COMMON SHARED gravity!, gamma!, ss!, viscosity?, density?
COMMON SHARED slope!, pbed?, pbank!, theta!, dd5O!, d5Obank!
COMMON SHARED discharge!, gbcalc!, gbload!, phiprime?
COMMON SHARED d50!, bankcond$, pi!
COMMON SHARED ksbed!, ksbank!, neta!, slopecond$, banktype$, 1%
COMN’ION SHARED ganimat!, stabnum!, cohesion!, taucrit?, phidegrees!
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OPEN “varslope.dat” FOR iNPUT AS #1
OPEN “varslope.out” FOR OUTPUT AS #2

‘SET VALUES OF INDEPENDENT CONSTANTS
pi! = 3.14159
gravity! = 9.81
gamma! = 9810
viscosity! = .000001
density! = 1000
ss! =2.65
CLS
PRINT
PRINT
PRINT “BANKFULL:VARIABLE SLOPE OPTIMIZATION MODEL”
PRINT : INPUT “Hit <ENTER> to Continue “, dummy$

=0
PRINT #2,” W H * S theta”
CLS
10
PRiNT
PRINT
PRINT
PRINT : INPUT “INPUT BANK SEDIMENT TYPE (a/c) “;banktype$

IF banktype$ = “c” OR banktype$ = “C” THEN
banktype$ = “cohesive”

ELSEIF banktype$ = “N” OR banktype$ = “n” THEN
banktype$ = “noncohesive”

ELSE
BEEP

PRINT “Bank Type Unkno”
GOTO 10

END IF
CLS
DO WHILE NOT EOF(l)

PRINT
PRINT
I% =1% + 1 ‘counter
PRiNT “Channel Number “; We
INPUT #1, discharge!, gbload!, ksbed!, ksbank!, d50!, dd5O!

‘Input the independent variables from data file

IF banktype$ = “noncohesive” THEN ‘input bank stability parameters
INPUT #1, d50bank!, phidegrees!

ELSE ‘banktypeS=”cohesive”
iNPUT #1, ganunat!, phidegrees!, cohesion!, taucrit!

END IF
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phiprimel = phidegrees! * 2 * pit / 360 ‘convert friction angle from degrees to radians

CALL optimum
‘calculates the optimal geometiy

PRiNT
PRINT” W H * S theta”
PRiNT USiNG “##*.# #1.## #.## #.## #.#“; surfwidth!; depth!; meandepth!; slope!; theta! * 360 / 2 /

pi!

PRINT #2, USING “###.# ##.## #.#### ##.#“; surfwidth!; depth!; meandepth!; slope!; theta! * 360 /2
/ pi!

‘prints out the values of the dependent variables

LOOP
‘loops until end of data file

CLOSE #1
CLOSE #2

END

FUNCTION area
‘function to calculate the cross-sectional area

area! = .5 * (pbed! + surfwidth!) * depth!

END FUNCTION

FUNCTION bankshear
‘calculates the bank shear stress

bankshear! = gamma! * depth! * slope! * shear.force! * ((surfwidth! + pbed!) * SIN(theta!) / (4 * depth!))

END FUNCTION

SUB bankstabilitycohesive
‘satisfies bank stability constraint for cohesive banks

heightcond$ = “unknown”
shearcondS = “unknown”
bankcond$ = “unknown”
thetaniax! =90*2*pi!/360
thetamin! =0

‘imtialise search and convergence criteria

‘First test ifvertical bank is stable wrt bank height
theta! = thetamax!
CALL continuity

‘satisfy continuity

CALL stabcurve
‘catculate stability number
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criticalheight! = stabnum? * cohesion! I ganunat!
calculate the critical height

stability!! = depth I criticalheight!
‘calculates stability criteria wrt bank height
‘if stabilityl! <= criticaiheight then bank is stable
‘with respect to bank height

IF stabilityl! < 1.001 THEN
heightcond$ = “stable”

ELSE ‘vertical bank is not stable therefore reduce the bank angle.
‘Determine the maximum bank angle that is just stable.
‘This is theta max from Chapter 6.

DO UNTIL heightcond$ = ‘just stable”

theta! = (thetamax! + thetanun!) /2
‘calculate midpoint of range for
‘bisectrix convergence scheme

CALL continuity
‘satisfy continuity constraint

CALL stabcurve
‘calculate stability number

criticaiheight! = stabnum! * cohesion! / ganunat!
stability 1! = depth / criticaiheight!

‘calculates critical height and stabilty number
Tor the bank height constraint

IF stabilityl! >= 1.001 THEN
heightcond$ = “unstable”
thetamax! =theta!

ELSEIF stabilityl! < .999 THEN
heightcond$ = “understable”
thetamin! = theta!

ELSE
heightcond$ = “just stable”

‘Bank Height = Critical Height
END IF

IF (thetamax! - thetamin!) / theta! <.001 THEN
heightcond$ = “just stable”
stability!! = 1

‘Secondary Convergence Criterion in case of
‘convergence problems due to numerical scheme

END IF

LOOP

END IF
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‘bank height constraint now satisified
‘now assess the bank shear constraint

thetamin! =0
thetaniax! = theta!

‘thetamax is reset to maximum bankangle which satisfied the
‘bank height constraint above

stability2! = bankshear! / taucrit!
‘satbility criterion for bank shear constraint

IF stability2! <1.001 THEN
‘bank shear constraint is satisified
shearcond$ = “stable”
bankcond$ = “stable”

ELSE ‘must reduce theta!

DO UNTIL shearcond$ = “just stable”

theta? = (thetamax! + thetamin!) /2
‘calculate mid point

IFtheta! <10*2*3.14159/360 THEN
‘bank angles less than 10 degrees
‘nominally assumed to be unstable

shearcond$ = “unstable”
bankcond$ = “unstable”
EXIT DO

END IF

CALL continuity
‘satisfy continuity

stability2! = bankshear! / taucrit!
‘calculate stability criterion for bank shear constraint

IF stability2! >= 1.001 THEN
‘bankshear > taucrit

shearcondS = “unstable”
thetamax! =theta!

ELSEIF stability2! <= .999 THEN
shearcond$ = “understable”
thetainin! =theta!

ELSE
shearcond$ = “just stable”
bankcond$ = “stable”

END IF

IF (thetamax! - thetamin!) / theta! <.001 THEN

281



shearcond$ = “just stable”
bankcond$ = “stable”
stability2! = 1

END IF

LOOP
END IF

END SUB

SUB bankstabilitynoncohesive
‘calculates theta where banks just stable

bankcond$ = “unknown”
thetamax! = phiprime’
thetamin! =0

‘initialise search bounds and convergence criteria

DO UNTIL bankcond$ = ‘just stable”
theta! = (thetamax’ ÷ thetamin!) /2

‘determine midpoint of search range

lFtheta! <5 * 2 * 3.14159/360 THEN
bankcond$ = “unstable”
EXIT DO

‘if theta is less than 5 degrees the channel is assumed
‘to be unstable

END IF

CALL continuity
‘satisfies continuity constraint

stability! = (bankshear! / (gamma! * (ss! - 1) * d50bank!)) / (.048 * TAN(phiprime!) * (1 - SIN(theta!) A 2/
S1N(phiprime!) A 2) A .5)

‘calculates stability criterion

IF stability! >= 1.00 1 THEN
bankcond$ = “unstable”
thetamax! =theta!

ELSEIF stability! < .999 THEN
bankcond$ = “stable”
thetamin! = theta!

ELSE
bankcond$ = “just stable”

‘primary convergence criterion
ENDIF

IF (thetamax! - thetainin!) I theta! <.001 THEN
bankcond$ = ‘just stable”
stability! = 1
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‘secondary convergence criterion
END IF

LOOP

END SUB

SUB bedload
‘satisfies the bedload constraint using the Einstein Brown sediment
transport relation

gbcalc!=0
minslope’ =0
maxslope! = .05

‘set bound of slope search

slopecond$ “unknown”
‘initialise slope condition

DO WHILE slopecond$ <> “satisfied”
slope? = (minslope! + maxslope!) I 2

‘calculate mid point of range for bisectrix convergence scheme

IF banktype$ = “noncohesive” THEN
CALL bankstabilitynoncohesive

‘solve bank stability constraint for noncohesive banks
ELSE ‘banktype$ = “cohesive”

CALL bankstabilitycohesive
‘solve bank stability constraint for cohesive banks

END IF

IF bankcond$ <> “unstable” THEN
‘bank stability is satisfied

CALL ebrown
‘calculate sediment transporting capacity of trial channel

IF gbcalc! <.999 * gbload! THEN
‘compares calculated to imposed sediment load

slopecond$ = “too flat”
minslope! = slope!

ELSEIF gbcalc!> 1.001 * gbload? THEN
slopecondS “too steep”
maxslope! = slope!

ELSE
slopecond$ = “satisfied”

‘primary convergence criterion
‘sediment transporting capacity of the channel
‘equals the imposed load bedload constraint satisfied

END IF

IF (maxslope! - minslope!) / slope! <.0001 THEN
IF gbcalc! > .99 * gbload! THEN

slopecondS = “satisfied”
‘secondary convergence criterion
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‘when bounds of slope very small: convergence attained
‘occasionally a problem with convergence due to numerical
‘approximations

ELSE
slopecond$ = “not satisfied”
EXIT DO
‘indicates that trial Pbed value is too narrow

END IF

END IF

ELSE
maxslope! = slope!
‘trial slope too steep: reduce upper bound

slopecond$ = “unstable”
END IF

LOOP

END SUB

SUB bedload2
‘identical to SUB bedload except search range for slope!
‘reduced to save on computations. Optimum slope! for forward
‘difference will be very close to that determined for
backward difference

minslope! = 9 * slope!
maxslope! = 1.1 * slope!

‘set bound of slope search

slopecond$ = “unknown”
‘initialise slope condition

DO WHILE slopecond$ <> “satisfied”
slope! = (minslope! + maxslope!) /2

‘calculate mid point of range for bisectrix convergence scheme

IF banktype$ = “noncohesive” THEN
CALL bankstabilitynoncohesive

‘solve bank stability constraint for noncohesive banks
ELSE banktype$ = “cohesive”

CALL bankstabilitycohesive
‘solve bank stability constraint for cohesive banks

END IF

IF bankcond$ <> “unstable” THEN
‘ifbank stability is satisfied

CALL ebrown
‘calculate sediment transporting capacity of trial channel

IF gbcalc! <.999 * gbload! THEN
‘compares calculated to imposed sediment load

slopecond$ = “too flat”
minslope! = slope!

ELSEIF gbcalc!> 1.001 * gbload! THEN

284



slopecondS = “too steep”
maxslope? = slope!

ELSE
slopecond$ = “satisfied”

‘sediment transporting capacity of the channel
‘equals the imposed load : bedload constraint satisfied

END IF

IF (maxslope! - minslope!) / slope! <.0001 THEN slopecond$ = “satisfied”
‘secondary convergence criterion
‘when bounds of slope veiy small: convergence attained
‘occasionally a problem with convergence due to numerical
‘approximations

ELSE

‘if bank stability constraint not satisfied
maxslope! = slope!

‘trial slope too steep: reduce upper bound
slopecond$ = “unstable”

END IF

LOOP

END SUB

FUNCTION bedshear
‘calculates the bed shear stress

bedshear! = gamma! * depth! * slope! * (1 - shearforce!) * ((surfwidth! / (2 * pbed!) + .5))

END FUNCTION

SUB continuity
‘varies pbank! for trial values of Pbed!, slope!, and theta! to
‘satisfy the contiuity constraint

pbankcond$ = “unknown”
errorcalci = 1000
minpbank! 0
maxpbank! =20 * discharge! “.35
‘initialise search and convergence criteria

DO UNTIL pbankcond$ = “OK”

pbank’ = (minpbank! + maxpbank!) /2
‘calculate midpoint

errorcalc! = (area * velocity / discharge!)
‘calculate the normalised error

IF errorcalc! > 1.001 THEN
pbankcond$ = “too large”
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maxpbank! = pbank!

ELSEIF errorcaic! <.999 THEN
pbankcond$ = “too small”
minpbank! = pbank!

ELSE
pbankcond$ = “OK”

END IF

IF (maxpbankl - minpbank’) / pbank? <.0001 AND pbankcond$ “too small” THEN
‘resets maxpbank’ if too small
maxpbank? =2* maxpbank!

END IF

LOOP

END SUB

FUNCTION depth
‘function to calculate flow depth of a trapezoidal channel

depth! = .5 * STN(theta!) * pbank’

END FUNCTION

SUB ebrown
‘calculate the sed trans capacity using em-brown formula

dimlessbedshear! = bedshear! / (gamma! * (ss! - 1) * d50t)

IF dimlessbedshear! <=0 THEN
dimlessbedload? = 0

ELSEIF dimlessbedshear! <.093 THEN
dimlessbedload! = 2.15 * EXP(-.391 / dimlessbedshear’)

ELSE
dimlessbedload! = 40 * dimlessbedshear! “ 3

END IF

fi! = (2/3 + 36 * viscosity! A 2 / (gravity! * d50’ A 3 * (ss! - 1))) A 5 -(36 * viscosity! A 2 / (gravity! * dSO? A 3
*(ss!_1)))

gbcalc! =pbed! *fl! *! *deusity! *((ssi - 1)*gravity! *d5o! A3)A.5 *dje55dicadf

END SUB

FUNCTION hydrad!
‘function to calculate the hydraulic radius

hydrad! area! / (pbed! + pbank!)

END FUNCTION

FUNCTION meandepth
‘function to calculate the mean depth
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meandepth! = area / surfwidth

END FUNCTION

SUB optimum
‘determines the optimal geometry

optcond$ = “unknown”
‘initialises optimality test condition

lowerpbedl =0
upperpbedl = 10 * discharge? A

‘set bounds for Pbed based on Regime Eqns
‘typical optimal value of Pbed is 2 to 5 * discharge A

minpbed! = lowerpbed?
maxpbed! = upperpbedl

PRINT
PRINT

DO WHILE optcond$ <> “optimum”

pbed? = (minpbedl + niaxpbed!) /2
‘calculate mid point of search range

IFpbed’ > .95 * upperpbed! TI-lEN
upperpbedl =2 * upperpbed?
maxpbed! = upperpbed?
‘reset upper bound if necessary

END IF

PRiNT “Assessing Trial Bed Perimeter “;

PRINT USING “#####“; pbed?;
PRINT “ m
pbed’ =pbed? * .975

‘calculate backwards difference value of Pbed

CALL bedload
‘satisfies continuity, bank stability and bedload
‘constraints for the trail Pbed value

IF slopecond$ = “satisfied” AND bankcond$ <> “unstable” THEN
‘test conditions indicate that stable channel geometry
‘has been determined and the bedload constraint
‘has been satisified

netal! = gbload! / (density! * discharge! * slope!)
‘evaluate neta for backward difference point

pbed! =pbed! / .975 * 1.025
‘calculate pbed for forward duff
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CALL bedload2
‘satisfies continuity, bank stability and bedload
‘constraints for the trail Pbed value
‘indentical to Sub Bedload except the bounds of
‘the slope search has been reduced to reduce computations

neta2 = gbload! / (density! * discharge! * slope!)
‘calculates neta for forward difference value

pbed’ pbed! / 1.025
‘reset pbed to midpoint value

dnetabydpbed! = (neta2! - netal!) / (.05 * pbed!)
‘calculate first derivative by finite difference
‘to assess optimum condition

IF dnetabydpbed! <0 THEN ‘Trial Pbed is too wide
maxpbed! = pbed! ‘Reduce upper bound of Pbed
optcond$ = “too wide”

ELSETF dnetabydpbed! >0 THEN ‘Thai Pbed is too narrow
minpbedt= pbed! ‘Increase lower bound of Pbed
optcond$ = “too narrow”

ELSE
optcond$ = “optimum” ‘Optimum Achieved

END IF

IF (maxpbed! - minpbed!) / pbed! <.001 THEN optcond$ = “optimum”
‘Convergence attained. Second optimality criterion

ELSE ‘tnal Pbed too small for stable geomeuy: Increase minimum Pbed

pbed! = pbed! I .975
‘reset from backward difference to correct value

minpbed! =pbed!
‘set lower limit at current trial value
‘(as the optimum value must be greater)

optcond$ = “too narrow”

END IF
PRINT optcond$

LOOP

‘Evaluate geometiy at exact optimal Pbed
‘(not at forward or backward difference value)

IF banktype$ = “noncohesive” THEN
CALL bankstabilitynoncohesive

‘solve bank stability constraint for noncohesive banks
ELSE ‘banktype$ = “cohesive”

CALL bankstabilitycohesive
‘solve bank stability constraint for cohesive banks

END IF
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CALL bedload2
neta = gbload! / (density! * discharge! * slope!)

‘evaluate objective function

END SUB

FUNCTION shearforce
‘calculates the proportion of shear force on the banks

shearforce! = 1.766 * (pbed! / pbank! + 1.5) A -1.4026

END FUNCTION

SUB stabcurve
‘stability curves are from Figure 5.3

thetadegrees! = theta! / 2 / 3.14159 * 360

iF phidegrees! <20 THEN
‘use phiprime = 15 degree stability curve from Figure 5.3
‘from Taylor (1948)

SELECT CASE thetadegrees!

CASE 48.65 TO 90
stabnum! = -.141 * thetadegrees! + 17.46

CASE 29.36 TO 48.6499
stabnum! = -.533 * thetadegrees! + 36.53

CASE 20.12 TO 29.3599
stabnum! = -3.07 * thetadegrees! + 111

CASE 15.001 TO 20.11999
stabnum! = -189.6 * thetadegrees! + 3844

CASE IS <= 15
stabnum! = 1000000

END SELECT

ELSE

‘use phiprime =25 degrees curve from Figure 5.3
After Taylor, (1948)

SELECT CASE thetadegrees!

CASE 58.62 TO 90
stabnum! = -.212 * thetadegrees! + 24.86

CASE 39.11 TO 58.61999
stabnum? = -.8975 * thetadegrees! + 65.04

CASE 25 TO 39. 10999
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stabnum = -6.97 * thetadegrees! + 302.5

CASE IS <=25
stabnum? = 1000000

END SELECT
END IF

END SUB

FUNCTION surfwidth
Tunction to calculate the surface width

surfwidth? = pbed? + COS(theta’) * pbank

END FUNCTION

FUNCTION velocity!
‘calculates the mean velocity
rhbank! = bankshear! / (gamma! * slope!)
rhbed! = bedshear! / (gamma! * slope!)

Ibank! = (2.03 * LOG(12.2 * rhbank! / ksbank!) / LOG(10)) ‘ -2
ibed! = (2.03 * LOG(12.2 * rhbed! / ksbed!) / LOG(10)) A -2

ifactor! = (ibed! * pbed! / (pbed! + pbank!) + fipJç! * pbank! / (pbank! + pbed!)) A

velocity! = (8 * gravity! * hydrad! * slope!) A •5 * ifactor!

END FUNCTION
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APPENDIX C

FULL MODEL FORMULATION

The Full Model Formulation differs from the Bankfull:Variable Slope Model in that the fill

flow duration data is used as input, the sediment transporting capacity of the channel is

calculated over one year using the modified Parker (1990) surface-based sediment transport

relation, and the size distribution of the armour layer is treated as a dependent variable.

The source code for the computer program (rivmod6.bas) used in the thesis is presented below.

The programming was encoded and run using Microsoft Quick Basic (Version 3.0 or later).

This program can be used for channels with cohesive or noncohesive bank sediment.

The program is designed to use an input data ifie named rivmod.dat, and will write the output

data to a data file named rivmod.out. The input file contains data for one channel only and must

be set-up as follows (for noncohesive bank sediment):

291



m n Qbf Gb k3d k$bk banktype

1.0

Q Probability of Q1U Being Equalled or Exceeded

Q Probability of Q Being Equalled or Exceeded
Q Probability of Q Being Equalled or Exceeded
Q. Probability of Q’ Being Equalled or Exceeded

0
D 0
D1 Proportion Finer than D
D Proportion Finer than D
D Proportion Finer than D’
D Proportion Finer than D

D 1.0

D5Ob,

For noncohesive channel banks the banktype is equal to “n”, and for cohesive channels it is

equal to “c”.

For cohesive banks the last line of the data file becomes:

Ti C’ crit

In rivmod.dat m is the number of flow intervals in the numerical approximation of a flow

duration curve (See Figure 7.1); n is the number of intervals in the numerical approximation of

a sediment gradation curve (See Figure 7.2); Q is the discharge at the lower bound of flow

interval 1 which is the lowest flow on record (or an approximate value), Q, is the discharge at
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the upper bound of flow interval m and therefore the maximum flow on record (or an

approximation); D is equal to D0, and D is equal to D1. In both cases the superscript 1 or u

refer to the lower or upper bound of the interval, and the subscript indicates the interval

number. The upper bound of one interval is equal to the lower bound of the next interval. The

data for the input file is designed to be read directly from flow duration and sediment gradation

curves. The geometric mean values for each interval are calculated in the program.

The other symbols used above have been defined numerous times in the text and are given in

the List of Symbols.

The data values must be separated by at least one space although the number of spaces is not

important. An example of an input file is given below:

11 7 85 2500000 0.4 0.4 ii

3 1
22 0.2473
42 0.1064
55 0.0569
65 0.0365
75 0.0247
85 0,0172
90 0.01505

205 0.0095
115 0.007
125 0.0054
205 0

0.002 0
0.0064 0.1

0.01 0.2
0.018 0.4
0.032 0.6
0.06 0.8

0.091 0.9
0.15 1
0.07 40

The output data will be output to rivmod. out in the following order:
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W H 17* S D50 9 T*D50

The output data from the sample input data file given above is:

W H * S D50 theta T*D50
37.7 1.29 1.16 0.00427 0.073 19.1 0.043

The source code for the Full Optimisation Model is presented below.

‘OPTIMISATION MODEL BASED ON FULLY DEVELOPED MODEL
DESCRIBED IN PhD THESIS BY RG MILLAR
‘UNIVERSITY OF BRiTISH COLUMBIA
‘SEPTEMBER 1994
‘CALCULATES THE OPTIMUM (OR EQUILIBRIUM) CHANNEL GEOMETRY

DECLARE SUB stabcurve 0
DECLARE SUB bedload2 0
DECLARE SUB bankstabilitynoncohesive 0
DECLARE SUB bankstabiitycohesive 0
DECLARE SUB parkerl99O 0
DECLARE SUB capG 0
DECLARE SUB vaiytheta 0
DECLARE SUB optimum 0
DECLARE SUB bedload 0
DECLARE FUNCTION bankshear! 0
DECLARE FUNCTION bedshear! 0
DECLARE FUNCTION shearforce! 0
DECLARE SUB continuity (discharge!)
DECLARE FUNCTION velocity! 0
DECLARE FUNCTION hydrad! 0
DECLARE FUNCTION meandepth! 0
DECLARE FUNCTION area! 0
DECLARE FUNCTION surfwidth! 0
DECLARE FUNCTION depth! 0
program to calculate curves to demonstrate the optimum

COMMON SHARED gravity!, gamma!, ss!, viscosity!, density!, meandischargel
COMMON SHARED slope!, pbed!, pbank!, theta!, ddSO!, d50bank!
COMMON SHARED qbfl, gbcalc!, gbload!, phiprime!, stability!, phidegrees
COMMON SHARED thetacond$, xnincond$, alpha!, dSO!, bankcond$, pi!
COMMON SHARED ksbed!, ksbank!, phisgo!, sigmaphi!, sigxnaphitiial!, dsgttial!
COMMON SHARED capgamma!, capitalg!, dsg!, i%, j%, m%, n%, iefi%
COMMON SHARED banktype$, slopecond$

‘Global Variables

‘gravlty!= gravitational constant gamma! unit weight of water
‘ss!= specific gravity of sediment viscosity!=kinematic viscosity of water
‘density!=density of water slope!channel slope
‘pbed!=bed perimeter pbank!bank perimeter

294



‘theta!=bank angle (radians) ddSO!=inedian armour grain diameter
‘dSO!—median subarmour grain diameter d5Obank!median grain diameter of bank sediment
‘discharge!=bankfufl discharge gbload’=imposed bedload transport rate
‘gbload!=calculated bedload transport rate ‘neta’=coefficient of efficiency
‘phiprime!=friction angle of bank sediment (radians)
‘phidegrees!=friction angle ofbank sediment (degrees)
‘ksbed!measure ofbed roughness ksbank!=measure ofbank roughness
‘banktype$=type of bank sediment Wo=interger counter
‘gammat!=unit weight of cohesive bank sediment
‘stabnum!=stability number for cohesive sediment
‘cohesion!=soil cohesion taucrit!=critical shear stress
‘meandischarge!=mean annual discharge
‘phisgol=dimensionless bed shear stress (Eqn Eqn 4.31)
‘sigmaphi!=grainsize dispersion of armour (Eqn 4.37)
‘sigmaphitrial!=trial value of sigmaphil
‘dsg!=geometric mean grain diameter of pavement layer (Eqn 4.35)
‘capgamtna! = constant converts kg/sec to kg/year
‘capitalgl=dimensionless bedload function Eqn (4.32)
‘j%ith discharge j%jth sediment size
‘m%=numder of flow intervals n%=number of sediment size intervals

‘SET VALUES OF INDEPENDENT CONSTANTS

pi! = 3.14159
gravity! = 9.81
gamma! = 9810
viscosity! = .000001
density! = 1000
ss! =2.65
capganuna! = 365.25 * 24 * 3600

CLS
PRINT
PRINT
PRINT
PRINT” RIVERMOD AN OPTIMISATION MODEL FOR”
PRINT” PREDICTING THE ADJUSTMENT OF ALLUVIAL RIVERS”
PRINT
PRINT
PRINT
PRJNT” WR1TEN BY”
PRINT” ROBERT MILLAR”
PRINT
PRINT” UNIVERSITY OF BRITISH COLUMBIA”
PRINT
PRINT
PRINT
PRINT
PRINT” HiT <ENTER> TO CONTINUE”
SLEEP
INPUT dummy
OPEN “nvmod.dat” FOR INPUT AS #1
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OPEN “rivmod.out” FOR OUTPUT AS #2

iNPUT #1, m%, n%, qbfl, gbload!, ksbed!, ksbanld, banktype$
‘input number of flow and sediment size intervals respectively
‘bankfufl discharge, mean annual sediment load
bed and bank roughness heights

‘and bank type

IF bankt,e$ = “c” OR banktype$ = “C” THEN
banktype$ = “cohesive”

ELSEIF banktype$ = “N” OR banktype$ = “n” THEN
banktype$ = “noncohesive”

ELSE
BEEP
CLS
PRINT
PRINT
PRiNT
PRiNT “ERROR iN DATA FILE”
END

END IF

‘*4c************************************4*******************************************

DIM SHARED sediment(n%), f(n%), ff(n%), discharge(m%), qprob(m%), upperd(n%)
DIM SHARED propfiner(n%)
DIM SHARED qb(m%, n%), qbi(m%), upperq(m%), fload(n%), bedsheari(m%)
DIM SHARED probexceed(m%), depthi(m%)

‘declare shared array variables

i% =0
DOWHILEi%<m%

iNPUT #1, upperq(i%), probexceed(i%)
‘input flow data into array
‘upper bound of flow interval and probability of exceedence
‘i%=O corresponds to lower bound, m% to the maximum flow

i% = i% + 1
LOOP

j% =0
DO WHILEj% < n%

INPUT #1, upperd(j%), propflner(j%)
‘input sediment data into array
‘upper bound of sediment fraction an dvolumetric proportion
j%() corresponds to lower bound ie dO
j%% corresponds to dlOO

j%=j%+ 1
LOOP

CLS
PRINT “DATA SUMMARY”
PRINT
PRINT
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PRiNT” Discharge Data”
PRINT”i Qi pi”

‘calculate geometric mean flow and probability for each interval
i% = 1
qprob(O) =0
DO WHILE i% <= m%

discharge(i%) = (upperq(i%) * upperq(i% - 1)) ‘ .5
qprob(i%) = probexceed(i% - 1) - probexceed(i%)
PRINT USiNG “## ##L# #.###“; i%; discharge(i%); qprob(i%)
i% = i% + 1

LOOP
PRINT
PRINT
PRINT” HIT <ENTER> TO CONTINUE”
SLEEP
INPUT dununy$
CLS
PRINT “DATA SUMMARY”
PRINT
PRINT
PRINT” Sediment Data”
PRINT”j Di fl”

‘calculate geometric mean grain diameter for each grain interval
‘and volumetric proportion within each interval
j% = 1
f(O) = 0
DO WHTLEj% <= n%

sediment(j%) = (upperd(j%) * upperd(j% - 1)) A

f(j%) = propfiner(j%) - propfiner(j% - 1)
PRINT USING “#41 #.###41 #.###“; j%; sediment(j%); f(j%)
j%=j%+ 1

LOOP
PRINT

‘calculate mean annual discharge
i% = 1
totalq!=O
DOWHILEi%<=m%

totalq! = totalq! + discharge’(i%) * ciprob(i%)
i% = i% + 1

LOOP

meandischarge! = totalq!
PRINT USING ‘Mean Annual Discharge ##*#.# m”3/sec”; meandischarge
PRINT USING “Mean Annual Sediment Load II 111111111111 .41 kg/year”; gbload’
‘input bank stability parameters
IF banktype$ = “cohesive” OR banktype$ = “COHESIVE” THEN

banktype$ = “cohesive”
ELSEIF banktype$ = “NONCOHESIVE” OR banktype$ = “noncohesive” THEN

banktype$ = “noncohesive”
ELSE

PRINT “Banktype unknoii: Error in Data File”
BEEP
CLOSE #1
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CLOSE #2
END

END IF
PRINT
PRINT “Bank Sediment Type:

IF banktype$ = “noncohesive” THEN ‘input bank stability parameters
INPUT #1, d5Obank!, phidegrees!

PRINT USING “D50 bank
PRINT USING “Phi

#.### rn”; d50bank!
##.# degrees”; phidegrees!

ELSE ‘banktype$=”cohesive”
INPUT #1, gzmmt!, phidegrees!, cohesion!, taucrit!

PRiNT USING “ganunat
PRINT USING “Phi
PRINT USING “cohesion
PRiNT USING “Tau crit

END IF

##.## kN/m”2”; gammat! / 1000
#W.# degrees”; phidegrees!

#### J/jA”; cohesion! / 1000
##.# N/m’2”; taucrit!

phiprime! = phidegrees! * 2 * pi! I 360

PRINT

PRINT : INPUT “IS INPUT DATA OK (y/n) “; booleanS
IF boolean$ = “n” OR boolean$ = “N” THEN

CLOSE #1
CLOSE #2
END

END IF

CLS
PRINT
PRINT

dsgtrial! = (upperd(0) + upperd(n%)) /2
‘set trial dsg value at midpoint of sediment gradation

sigmaphitrial! = 1
‘set trial sigamphi value

‘COMMENCE OPTIMIZATION ROUTINE

CALL optimum

PRINT
PRINT” W H * S D50 theta T*D50”
PRINT USING “###.# #4.## ##.#4 #.IIihf liii #.### ##.# #.###“; surfwidth!; depth!; meandepth!; slope!;
dd5O!; theta! * 360 / 2 / pi!; bedshear! / (gamma! * dd5O! * (! - 1))
PRINT #2,” W H Y* S D50 theta T*D50”
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PRiNT #2, USING “##4t.# ##.## ##.## #.ihIIIiII( #.### ##.# #.###“; surfwidth?; depth!; meandepth!; slope!;
ddSO!; theta! * 360 / 2 /pi!; bedshear / (gamma! * dd5O! * (ss! - 1))

‘prints out the values of the dependent variables

CLOSE #1
CLOSE #2

END

,**********************************************************************************

FUNCTION area
‘function to calculate the cross-sectional area

area!=.5*(pbed!+surfwidth!)*depth!

END FUNCTION

FUNCTION bankshear
‘calculates the bank shear stress

bankshear! = gamma! * depth! * slope! * shearforce! * ((surfwidth! + pbed!) * S1N(theta!) / (4 * depth!))

END FUNCTION

SUB bankstabilitycohesive
‘satisfies bank stability constraint for cohesive banks

heightcond$ = “unknown”
shearcond$ = “unknown”
bankcond$ = “unknown”
thetamax!=90*2*pi!/360
thetamin! =0

‘initialise search and convergence criteria

Tirst test ifvertical bank is stable wrt bank height
theta! = thetamax!
CALL continuity(qbf!)

‘satisfy continuity

CALL stabcuive
‘catculate stability number

criticalheight! = stabnum! * cohesion! / gmmatI
‘calculate the critical height

stabilityl! = depth / criticaiheight!
‘calculates stability criteria wit bank height
‘if stabilityl! <= criticaiheight then bank is stable
‘with respect to bank height

IF stabilityl! <= 1.001 THEN
heightcondS = “stable”
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ELSE ‘vertical bank is not stable therefore reduce the bank angle.
Determine the maximum bank angle that is just stable.
‘This is theta max from Chapter 6.

DO UNTIL heightcond$ = ‘just stable”

theta! = (thetamax! + thetamin!) /2
‘calculate midpoint of range for
‘bisectrix convergence scheme

CALL continuity(qbfl)
‘satisfy continuity constraint

CALL stabcurve
‘calculate stability number

criticaiheight! = stabnum! * cohesion! / ganimat!
stability 1! = depth / criticalheight!

‘calculates critical height and stabilty number
‘for the bank height constraint

IF stabilityl! > 1.001 THEN
heightcond$ = “unstable”
thetamax! = theta!

ELSEIF stabiityl! <= .999 THEN
heightcond$ = “understable”
thetamin! = theta!

ELSE
heightcond$ = ‘just stable”

‘Bank Height = Critical Height
EN])IF

IF (thetainax! - thetainin!) / theta! <.001 THEN
heightcond$ = ‘just stable”
stabilityl! = 1

‘Secondary Convergence Criterion in case of
‘convergence problems due to numerical scheme

END IF

LOOP

END IF

‘bank height constraint now satisifled
‘now assess the bank shear constraint

thetamin!=0
thetaniax! = theta!

‘thetaniax is reset to maximum bankangle which satisfied the
‘bank height constraint above

stabilily2! = bankshear! / taucrit!
‘satbility criterion for bank shear constraint
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IF stability2! < 1.001 THEN
‘bank shear constraint is satisified
shearcond$ = “stable”
bankcond$ = “stable”

ELSE ‘must reduce theta!

DO UNTIL shearcond$ = “just stable”

theta! =(thetaniax! +thetaniiu!)/2
‘calculate mid point

IF theta! <10 * 2 * 3.14159/360 THEN
bank angles less than 10 degrees

‘nominally assumed to be unstable

shearcond$ = “unstable”
bankcond$ = “unstable”
EXIT DO

END IF

CALL continuity(qbfi)
‘satisfy continuity

stability2! = bankshear! / taucrit!
‘calculate stability criterion for bank shear constraint

IF stability2! >= 1.001 THEN
‘bankshear > taucnt

shearcond$ = “unstable”
thetainax! =theta!

ELSEIF stabiity2! <= .999 THEN
shearcond$ “understable”
thetaniin! = theta!

ELSE
shearcondS = “just stable”
bankcond$ = “stable”

END IF

IF (thetamax! - thetaniin!) / theta! <.001 THEN
shearcond$ = “just stable”
bankcond$ = “stable”
stability2! =1

END iF

LOOP
END IF

END SUB
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‘**********************************************************************************

SUB bankstabiitynoncohesive
‘calculates theta where banks just stable
bankcond$ = “unknown”
thetamax! = phiprime’
thetaniin! =0

‘initialise search bounds and convergence criteria

DO UNTIL bankcond$ = ‘just stable”
theta =(thetamax! +thetaniin!)/2

‘determine midpoint of search range

IF theta! <5*2*3.14159/360 THEN
bankcond$ = “unstable”
EXIT DO

‘if theta is less than 5 degrees the channel is assumed
‘to be unstable

END IF

CALL continuity(qbfl)
‘satisfies continuity constraint for qbf

stability! = (bankshear! / (gamma! * (ss! - 1) * d50bank!)) / (.048 * TAN(phiprime’) * (1 - S1N(theta!) “2/
SIN(phiprime!) A 2) .5)

‘calculates stability criterion

IF stability! >= 1.001 THEN
bankcond$ = “unstable”
thetamax! =theta!

ELSEEF stability! <= .999 THEN
bankcond$ = “stable”
thetamin! = theta!

ELSE
bankcond$ = “just stable”

‘pnmaiy convergence criterion
END IF

IF (thetamax! - thetamin!) / theta! <.001 THEN
bankcond$ = “just stable”
stability! = 1

‘secondaiy convergence criterion
ENDIF

LOOP

END SUB

SUB bedload

‘satisfies the bedload constraint using the Parker 1990
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‘surface-based sediment transport relation

gbcalc! =0
minslope! =0
maxslope! = .05

‘set bound of slope search

slopecond$ = “unknown”
‘initialise slope condition

DO WHILE slopecond$ “satisfied”

slope! = (minslope! + maxslope!) /2
‘calculate mid point of range for bisectrix convergence scheme

IF banktype$ = “noncohesive” THEN
CALL bankstabilitynoncohesive

‘solve bank stability constraint for noncohesive banks
ELSE ‘banktype$ = “cohesive”

CALL bankstabiitycohesive
‘solve bank stability constraint for cohesive banks

END IF

IF bankcond$ “unstable” THEN
‘bank stability is satisfied

CALL parker 1990
‘calculate sediment transporting capacity of trial channel

IF gbcalc! <.999 * gbload! THEN
‘compares calculated to imposed sediment load

slopecond$ = “too flat”
minslope! = slope!

ELSEIF gbcalc! > 1.001 * gbload! THEN
slopecond$ = “too steep”
maxslope! = slope!

ELSE
slopecond$ = “satisfied”

‘primary convergence criterion
‘sediment transporting capacity of the channel
‘equals the imposed load : bedload constraint satisfied

EN]) IF

IF (maxslope! - minslope!) / slope! <.00001 THEN
lFgbcalc! >.99*gbload! THEN

slopecond$ = “satisfied”
‘secondary convergence criterion
‘when bounds of slope very small: convergence attained
‘occasionally a problem with convergence due to numerical
‘approximations

ELSE
slopecond$ = “not satisfied”
EXIT DO
‘indicates that trial Pbed value is too narrow

END IF

303



END IF

ELSE
maxslope! = slope!
‘trial slope too steep: reduce upper bound

slopecond$ = “unstable”
END IF

LOOP

END SUB

SUB bedload2
‘identical to SUB bedload except search range for slope!
‘reduced to save on computations. Optimum slope! for forward
‘difference will be very close to that determined for
‘backward difference

minslope! = •9 * slope!
maxslope! = 1.1 * slope!

‘set bound of slope search

slopecond$ = “unknown”
‘initialise slope condition

DO WHILE slopecond$ <> “satisfied”
slope! = (minslope! + maxslope!) /2

‘calculate mid point of range for bisectrix convergence scheme

IF banktype$ = “noncohesive” THEN
CALL bankstabiitynoncohesive

‘solve bank stability constraint for noncohesive banks
ELSE banktype$ = “cohesive”

CALL bankstabiitycohesive
‘solve bank stability constraint for cohesive banks

END IF

IF bankcond$ “unstable” THEN
‘ifbank stability is satisfied

CALL parker 1990
‘calculate sediment transporting capacity of trial channel

IFgbcalc! <.999*gbload! THEN
‘compares calculated to imposed sediment load

slopecond$ = Htoo flat”
minslope! = slope!

ELSEIF gbcalc! > 1.001 * gbload! THEN
slopecond$ = “too steep”
maxslopel = slope!

ELSE
slopecondS = “satisfied”

‘sediment transporting capacity of the channel
‘equals the imposed load : bedload constraint satisfied

END IF
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IF (maxslope! - minslope!) / slope! <.00001 THEN slopecond$ = “satisfied”
‘secondary convergence criterion
‘when bounds of slope very small: convergence attained
‘occasionally a problem with convergence due to numerical
‘approximations

ELSE

‘ifbank stability constraint not satisfied
rnaxslope! = slope!

‘trial slope too steep: reduce upper bound
slopecond$ = “unstable”

END iF

LOOP

END SUB

‘**********************************************************************************

FUNCTION bedshear
‘calculates the bed shear stress

bedshear! = ganuna! * depth? * slope! * (1 - shearforce!) * ((surfwidth! / (2 * pbed!) + .5))

END FUNCTION

SUB capG

‘calculate straining function
SELECT CASE phisgo!

‘calculate omegao! based on piecewise linearisation of
‘function given in Parker (1990) (See figure 4.10 in thesis)

CASE IS <= 1.033
omegao! = 1.011

CASE IS <= 5.44
omegao! = 1.027 * phisgo! A -.483

CASE IS > 5.44
omegao! = .453

END SELECT

SELECT CASE phisgo!
‘calculate sigmaphio based on piecewise linearisation of
‘function given in Parker (1990) (See figure 4.10 in thesis)

CASE IS < .985
sigmaphio = .816

CASE IS <= 2.19
sigmaphio! = .395 * phisgo! + .426

CASE IS <=7
sigiuaphio’ = .044 * phisgo! + 1.194

CASE IS>7
signiaphio! = 1.501

END SELECT
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straining! = 1 + sigmaphil I sigmaphio! * (omegao! - 1)
‘Eqn4.38

‘calculate hiding function

hiding! = (sediment(j%) / dsg!) A -.095 1
‘Eqn 4,34 in thesis

modifiedphi! = phisgo! * hiding! * straining!
‘modifiedphi! is the product inside the square brackets
‘in Eqn 4.33

SELECT CASE modifiedphi!
‘calculate Capital G: dimensionless bedad function
‘Eqn 4.32 in thesis

CASE IS < 1
capitaig! =modifiedphi! A 14.2

CASE IS <= 1.59
capitalg! = EXP(14.2 * (modifiedphi! - 1) - 9.28 * (modifiedphi! - 1) A 2)

CASE IS> 1.59
capitaig! =5474*(1853/mjfipbj!)A45

END SELECT

END SUB

SUB continuity (discharge!)
‘varies pbank! for trial values of Pbed!, slope!, and theta! to
‘satisfy the contiuity constraint

pbankcond$ = “unknown”
errorcalcl = 1000
minpbank! =0
maxpbank! = 20 * discharge! A 35
‘initialise search and convergence criteria

DO UNTIL pbankcond$ = “OK”

pbank! = (minpbank! + maxpbank!) /2
‘calculate midpoint

errorcalc! = (area * velocity / discharge!)
‘calculate the normalised error

IF errorcaic! > 1.001 THEN
pbankcond$ = “too large”
niaxpbank! = pbank!

ELSEIF errorcalc! <.999 THEN
pbankcond$ = “too small”
minpbank! = pbank!
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ELSE
pbankcond$ = “OK”

END IF

IF (maxpbank! - minpbank!) / pbank! <.0001 AND pbankcond$ = “too small” THEN
‘resets maxpbánk! if too small
maxpbank! =2* maxpbank!

END IF
LOOP

END SUB

FUNCTION depth
‘ftmction to calculate flow depth of a trapezoidal channel

depth! = .5 * S1N(theta!) * phank!

END FUNCTION

FUNCTION hydrad!
‘function to calculate the hydraulic radius

hydrad! =area! /(pbed! +pbank!)

END FUNCTION

FUNCTION meandepth
‘function to calculate the mean depth

meandepth! = area / surfwidth

END FUNCTION

SUB optimum
‘determines the optimal geometry

optcond$ = “unknown”
‘initialises optimality test condition

lowerpbed! =0
upperpbed! = 10 * qbf! “.5

‘set bounds for Pbed based on Regime Eqns
‘typical optimal value of Pbed is 2 to 5 * discharge” .5

minpbed! = lowerpbed!
maxpbed! = upperpbed!

PRINT
PRINT

DO WHILE optcond$ <> “optimum”
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pbed! = (minpbed! + maxpbed!) /2
‘calculate mid point of search range

PRINT “Assessing Trial Bed Perimeter “;

PRINT USING “#### ##“; pbed
PRINT “m “;

pbed! = pbed! * .975
‘calculate backwards difference value of Pbed

IFp > 95 * upperpbed! THEN
upperpbed! =2 * upperpbedl
maxpbed’ = upperpbed!

‘reset upper bound if necessaly
END IF

CALL bedload
‘satisfies continuity, bank stability and bedload
‘constraints for the trail Pbed value

IF slopecond$ = “satisfied” AND bankcond$ <> “unstable” THEN
‘test conditions indicate that stable channel geometty
‘has been determined and the bedload constraint
‘has been satisified

netal! = gbload! I (capgamma! * density! * meandischarge! * slope!)
‘evaluate nets for backward difference point

pbed! =pbed! 1.975 * 1.025
‘calculate pbed for forward duff

CALL bedload2
‘satisfies continuity, bank stability and bedload
‘constraints for the trail Pbed value
‘indentical to Sub Bedload except the bounds of
‘the slope search has been reduced to reduce computations

neta2! = gbload! / (capgainma! * density! * meandischarge! * slope!)
‘calculates nets for forward difference value

pbed! = pbed! / 1.025
‘reset pbed to midpoint value

dnetabydpbed! = (neta2! - netal!) / (.05 * phed!)
‘calculate first derivative by finite difference
‘to assess optimum condition

IF dnetabydpbed! <0 THEN ‘Trial Pbed is too wide
maxpbed! =pbedl ‘ReduceupperboundofPbed
optcond$ “too wide”

ELSEIF dnetabydpbed! >0 THEN ‘Trial Pbed is too narrow
minpbed! = pbed! ‘Increase lower bound of Pbed
optcond$ = “too narrow”

ELSE
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optcond$ = “optimum” ‘Optimum Achieved
END IF

IF (maxpbed - nunpbedl) / pbed’ <.001 THEN optcond$ = “optimum”

‘Convergence attained. Second optimality criterion

ELSE
trial Pbed too small for stable geometry: Increase minimum Pbed

pbed! =pbed’ 1.975
‘reset from backward difference to correct value

minpbed! = pbed!
‘set lower limit at current trial value
‘(as the optimum value must be greater)

optcond$ = “too narrow”

END IF
PRINT optcond$

LOOP

‘Evaluate geometry at exact optimal Pbed
‘(not at forward or backward difference value)

IF banktype$ = “noncohesive” THEN
CALL bankstabilitynoncohesive

‘solve bank stability constraint for noncohesive banks
ELSE ‘banktype$ = “cohesive”

CALL bankstabilitycohesive
‘solve bank stability constraint for cohesive banks

END IF

CALL bedload2
‘satisfies continuity, bank stability and bedload
‘constraints for the midpoint Pbed value
‘indentical to Sub Bedload except the bounds of
‘the slope search has been reduced to reduce computations

END SUB

‘*********************************************************************************,

SUB parkerl99O

DIM OMEGAIJ(m% n%), OMEGAJ(n%)
‘OMEGAJ() and OmegalJ 0 are used in the snmmations in
‘Eqn 4.53 onwards. See Below for explanation
‘these are key functions in the modified Parker (1990)
‘bedload equation

= 1
DOWH[LEi%<=m%

discharge! = discharge(i%)
IF discharge! > qbfl THEN discharge! = qbfl
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‘sets all flows in excess of qbf equal to qbfl
‘in order to calculate sediment transport rate
‘for overbank flows

CALL continuity(dischargel)
‘satisify continuity for flow i%

bedsheari(i%) = bedshear!
depthi(i%) = depth!

‘calculate depth of flow and bedshear for each flow
‘this saves recalculation below
‘records depths and bedshear values in an array

= i% + 1
LOOP

dsgcond$ = “unknown”
sigmaphicondS = “unknown”

‘initialise convergence criteria for dsg! and sigmaphi!

DO WHILE dsgcond$ “converged” OR sigmaphicondS “converged”
dsg!=dsgtrial!
sigmaphi! = sigmaphitrial!

OMEGA! =0
j% = 1

DOWIIILEj%<=n%
= 1

OMEGAJj%) =0

DOWHILEi%<=m%
‘calculate for sediment(j%) over range of flows

phisgo! = bedsheari(i%) / (gamma! * (ss! - 1) * dsg!) / .0386
CALL capG
OMEGAIJ(i%, j%) = qprob(i%) * capitaig! * bedsheari(i%) A 1.5

‘OMEGAIJ(m%) is used in the summation over i% in the numerator
‘of Eqn 4.52

OMEGAJ(j%) = OMEGAJ(j%) + OMEGAIJ(i%, j%)
‘summation for all flows for sediment(j%) Eqn 4.52
‘OMEGAJ(n%) is the numerator in Eqn 4.52

= i% + 1
LOOP

OMEGA! = OMEGA! + f(j%) I OMEGAJ(j%)
‘OMEGA is the denomenator of Eqn 4.52

j%=j%+ 1
LOOP

‘calculate Fj and Dsg and sigmaphi!
j% = 1
lndsg! =0
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sigmaphi2! =0
ff1 =0

DOWHILEj%<=n%
ff(j%) = f(j%) / OMEGAJ(j%) / OMEGA!
Indsg! = lndsg! + ff(j%) * LOG(sediment(j%))
sigmaphi2! = sigiuaphi2! + (LOG(sediment(j%) / dsgl) /LOG(2)) “2 * ff(j%)
j%=j%+ 1

LOOP

dsg! = EXP(lndsg!)
sigmaphi! = sigmaphi2! “.5

‘test for convergence for dsg!
IF (dsg! / dsgtrial!) < .99 THEN

dsgcond$ = “too small”
ELSEIF (dsg! I dsgtrial!)> 1.01 THEN

dsgcond$ = “too large”
ELSE

dsgcond$ = “converged”
END IF

‘test for convergence for siginaphi!
IF (sigmaphi! / sigmaphitrial!) < .99 THEN

sigmaphicond$ = “too small”
ELSEIF (signiaphi! / sigmaphitrial!)> 1.01 THEN

sigmaphicondS = “too large”
ELSE

sigmaphicond$ = “converged”
END IF

sigmaphitrial! = sigmaphi
dsgtnal! dsg!

LOOP
‘loop until convergence for dsg! and signaphi!

‘calculate the median grain diameter
ff(0) = 0
sediment(0) =0
j% =0
totif! =0

DO WHILE totifi <.5
j%=j%+ 1
totifi = totfP + ff(j%)
LOOP

deldd50! = (totifi - .5) * (upperd(j%) - upperd(j% - 1)) / ff(j%)
ddSO! = upperd(j%) - deldd50!

‘calculate D50 by interpolation

qbcalc’ = .00218 I ((ss! - 1) * gravity! * densityV 1.5 * OMEGA!)
‘calculate the mean unit volumetric sediment transport rate
‘in units of m”2/sec
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gbcalc! = qbcalc? * pbed! * density! * ss! * capganuna!
‘cacluate the total load in mass units
‘transported over one year.

END SUB

FUNCTION shearforce
‘calculates the proportion of shear force on the banks

shearforce! = 1.766 * (pbed! /pbank! + 1.5) A -1.4026

END FUNCTION

,**********************************************************************************

SUB stabcurve
‘stability curves are from Figure 5.3
‘NB ‘!!!? THE STABILITY CURVES USED IN ThIS SUB ARE
‘FROM TAYLOR (1948) AND APPLY TO HOMOGENEOUS FULLY DRAINED
‘SOIL:- THESE ARE FOR ILLUSTRATIVE PURPOSES ONLY!!!

thetadegrees! = theta! / 2/3.14159 * 360

IF phidegrees! <20 THEN
‘use phiprime = 15 degree stability curve from Figure 5.3
‘from Taylor (1948)

SELECT CASE thetadegrees!

CASE 48.65 TO 90
stabnum! = -.141 * thetadegrees? + 17.46

CASE 29.36 TO 48.6499
stabnum! = -.533 * thetadegrees? + 36.53

CASE 20.12 TO 29.3599
stabnum! = -3.07 * thetadegrees! + 111

CASE 15.001 TO 20.11999
stabnum! = -189.6 * thetadegrees! + 3844

CASE IS <=15
stabnum! = 1000000

‘bank of infinite height is stable
END SELECT

ELSE

‘use phiprinie =25 degrees curve from Figure 5.3
‘After Taylor, (1948)

SELECT CASE thetadegrees!

CASE 58.62 TO 90
stabnum! = -.2 12 * thetadegrees! + 24.86
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CASE 39.11 TO 58.61999
stabnum! = -.8975 * thetadegrees! + 65.04

CASE 25 TO 39.10999
stabnum! = -6.97 * thetadegrees! + 302.5

CASE IS <=25
stabnuml = 1000000

bank of infinite height is stable
END SELECT

END IF

END SUB

FUNCTION surfwidth
‘function to calculate the surface width

surfwidth! = pbed’ + COS(theta!) * pbank!
END FUNCTION

FUNCTION velocity!
‘calculates the mean velocity
rhbank! = bankshear! / (gamma! * slope?)
rhbed? = bedshear! / (gamma! * slope!)

Ibank! = (2.03 * LOG(12.2 * rhbank! / ksbank!) / LOG(10)) “-2
Ibed! = (2.03 * LOG(12.2 * rhbed! / ksbed!) / LOG(10)) A -2

ffactor2! = (Ibed! * pbed! / (pbed! + pbank!) + thank! * pbank! / (pbank! + pbed!)) A

velocity! = (8 * gravity! * hydrad! * slope!) A 5 * fl’actor2!
END FUNCTION
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APPENDIX D

DATA FROM HEY AND THORNE (1986)
AND ANDREWS (1984)

Table D-1 contains the data from Hey and Thorne (1986). The “Observed” columns contain the

actual published data: Qbfi W, Y, D50 and Vegetation Type. The values of k3 and Gbf are

calculated from the observed hydraulic geometry using Eqn (3.2) and the Einstein-Brown

Equation (Eqn 6.2) respectively. The value Of is set equal to D50, and d50 is set equal to

D50/3.

Table D-2 contains the data from Andrews (1984). The “Observed” columns contain the actual

published data: QbJ; W, Y, d50 and Vegetation Type. The values of k and Gbf are

calculated from the observed hydraulic geometry using Eqn (3.2) and the Einstein-Brown

Equation (Eqn 6.2) respectively. The value of is set equal to 1)5o. Channel Number

9074800 from Andrews (1984) was excluded from the analysis. (See Section 6.3.3).
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APPENDIX E

DATA FROM CHARLTON ETAL. (1978)

Table E-1 contains the data from Chariton eta!. (1978) for channels with cohesive banks which

was analysed in Chapter 6. The actual published data are: Q W, 7, S, D.50, q, and the

Vegetation Type. The values for k are calculated from the observed hydraulic geometry using

Eqn (3.2), and c’ is calculated from qu using Eqn (6.4) with the assumption of ç4’ = 25° for all

channels. The value ofd50 is set equal toD50/3, and the drained and saturated values of the unit

soil weight are assumed to be 20.0 and 22.45 kN/m3respectively for all channels.

The modelled output data is presented in Table 6.4.
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