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Abstract

The mathematical equations used in civil engineering design procedures are predomi

nantly nonlinear. Most civil engineering design optimization problems would therefore

require the use of nonlinear programming (NLP) techniques for their solution. Those

NLP packages with the ability to handle practical sizes of problems, and have been

available on mainframe computers for many years, are only now becoming available on

microcomputers. On top of this, these existing NLP techniques, which are dominated

by the gradient methods, do not guarantee global solutions. As a consequence suitable

optimization methods for civil engineering design are not being enjoyed by practitioners.

In this thesis, the level set optimization method, whose theory was initially presented

in “Integral global optimization” by [Chew & Zheng, 1988] was further developed to

address, in particular, practical engineering problems. It was found that Level Set Pro

gramming (LSP), offers a viable alternative to existing nonlinear optimization methods.

While LSP does not radically alter the computational effort involved it has some unique

characteristics which appear to be significant from the engineering users point of view.

LSP which is classified as a direct search method of optimization, utilizes the set

theory concept of a level set. It uses estimates of moments of the objective function

values at the confirmed points within a level set to control the search advance and as a

measure of convergence on the global optimum.

The reliability and efficiency of LSP was verified by comparing its results with pub

lished results for both mathematical and engineering test problems. In addition to the

published test problems, a new parametrically adjustable mathematical test problem was

designed to test global optimization methods in general and to explore the strengths and
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weaknesses of LSP in particular. Experience with these test problems showed that LSP

gave similar results to those cited in the literature as well as improved results or more

complete sets of global solution.

The large number of solutions developed at each iteration of LSP permits meaningful

graphical displays of the progressive reduction in the level set boundaries as the global

solution is approached. Other displays were also found to provide insights into the

solution process and a basis for diagnosing search difficulties.
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Chapter 1

INTRODUCTION

1.1 Nonlinear Programming (NLP)

The equations used by engineers to mathematically describe engineering problems and

to describe physical behaviour are predominantly nonlinear. When an explicit optimiza

tion objective is involved then a mathematical formulation of the optimization problem

will conform to the conventional nonlinear progranuning problem. The mathematical

formulation of such an optimization problem can be written as

Minimize or Maximize f(x)

Subject to:

g(x)O fori=1,m

h(x)=O for j=1,1

where x is an n-tuple vector of independent variables and f(x), gi(x), g2(x), ...,gn(x),

hi(x), h2(x), ..., hj(x) are nonlinear functions defined on the Enclidian ii space.

The equation f(x) is known as the objective function while the other two equation

types, gj(x) 0 and the h(x) = 0, are the set of constraints. The space or region defined

by these constraints is known as the feasible space or the feasible region.

The non linearity of any of these equations precludes the use of the well established

and reliable Linear Programming methods. Approximation of the nonlinear equations to

1



Chapter 1. INTRODUCTION 2

linear or qnadratic expressions might facilitate a solution being found but can substan

tially alter the problem being solved. Finding a satisfactory solution generally necessi

tates the use of true nonlinear approaches to preserve the characteristics of the problem.

Currently the methods used in nonlinear programming are categorized as direct search

or gradient search [Reklaitis et al., 1983]. These two method classes are discussed in the

next sections.

1.1.1 Direct Search Methods

Direct search methods range from simple simultaneous point sampling techniques to more

elaborate procedures that involve a coupling of sequential sampling with heuristic hill

climbing methods [Reklaitis et al., 1983]. None of the direct search methods require

the use of derivatives. Some of the most frequently cited direct search methods in the

literature are: Blind search; Grid search; IJuivariate search; Conjugate direction methods;

Powell’s conjugate direction methods; Simplex method and Complex method.

Many of these methods have elements in common with each other and the level set

method described in this thesis is no exception. Descriptions of each of the above listed

methods are included in Appendix B of this thesis for reference purposes.

The blind search, which is also known as simultaneous search, is quite inefficient in

its use of function evaluations [Leon , 1966 & Reklaitis et al., 1983]. In this strategy, Nf

random points are generated and the objective function evaluated at each point. The Nf

objective function values are compared and the lowest value is selected as the optimum

value.

The size of N1 depends upon the desired probability of successfully finding the global

optimum. For a bounded but otherwise unconstrained problem involving n variables and

a length of d units on each side of the feasible region, the volume of the feasible region

would be d. Take a small fraction of the feasible volume a = (, where 6 is a small
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length on each side of the bounded feasible region. The size of a is so small that variation

of the objective function value within that region can be tolerated. Then for a purely

random search, the probability of a single test to be outside of a would be 1 — a.

Assume the probability of having at least one point in a is F, then, with N1 points

F = 1 — (1 — a)Vf

N = log(l—F)
f log(1—a)

and for small a,

N1 231og(1—F)

For F = 0.90, which corresponds to a 0.90 confidence of obtaining the global optimum,

the computational effort reflected by N1, would be 2.3Q) [Reklaitis et al., 1983]. With

a value of 6 = %, a ten variable problem would need about 2.4*1016 function evaluations

for 0.90 confidence. This number is prohibitively large from a computational standpoint.

The optimal solution can be obtained with probability of 1.0 only as the number of

sample points approaches infinity. Because of the high number of function evaluations

involved, a blind search is not recommended for solving problems of even moderate size.

1.1.2 Gradient based methods

Gradient based methods make use of derivatives to determine the search direction for

optimization. One of the common gradient based methods, the steepest descent method,

uses only the first derivatives of the objective function for unconstrained problems [Edgar

& Himmelblau, 1988]. The gradient vector at a point gives the direction of the greatest

decrease in f(x). For a minimization problem the search direction is specified by the

negative of the gradient, i.e.

= vj’f(xj.
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8k is the search direction at point k.

vjf(xj is the derivative of f(x) at

At any stage of minimization the transition from one point to the next is given by

= + z\xk = xk + ASk = xC
— f(xj.

Axk is the vector of increments from xV to x1

VC is a scalar quantity that determines the step length in direction 8k and it can be either

a predefined fixed value or its value can be optimized at each iteration to improve the

speed of the convergence on the optimum point. In some cases it is possible to simplify

a nonlinear function by making use of the quadratic approximation, at any point xk,

f(x) f(xk) + vTf(xjz1xxk + .5(xk)TH(xk)zxk

where H(xj is the Hessian matrix of f(x). Some methods then use this second-order

approximation of the objective function and the information obtained from the second

partial derivatives of f(x) with respect to the independent variables.

The quadratic approximation of f(x) at is differentiated with respect to each

independent variable and the resulting expression equated to zero to define a stationary

point.

f(x) =7f(xj + H(xj/Xxk = 0 (1.1)

The next search point, at point Ic + 1, is obtained from this expression as

— xk = = —[H(xj]1 f(xj or

xl = x — [H(xj]1v f(x’fl

where [H(x’)]1 is the inverse of the Hessian matrix H(xj

Both the step length and direction of search are determined from the same expression,

Equation 1.1. Only one step would be necessary to reach the optimum if f(x) was a true
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quadratic equation. But, since in general this is not the case, there would be multiple

steps.

1.2 Limitations of existing NLP methods

For simple two variable problems, elementary direct search methods are often quite satis

factory, but they are neither efficient nor reliable for the higher dimensionality problems

which typically arise in engineering [Edgar & Bimmelblau, 1988].

Gradient procedures that use second order information are superior to those that use

first order information only. But the danger is that usually the second order information

may be only approximate as it is based, not on second derivatives, but approximates to

second derivatives, with the consequence that it is no longer the original problem that is

being solved [Edgar & Himmelblau, 1988].

All gradient procedures start their search from a point and follow a single path until

the convergence criterion is met. The point at which the convergence criterion is met

is regarded as the optimum point. If a different starting point is used to perform the

search again, it is possible that it can lead to a different optimum point. This reveals

that solutions found with gradient based optimization methods are often local optima.

For a solution point x to be a local optimum (local minimum in this case) the objective

function value at that point should be the least of all the objective function values in the

neighbourhood. That is

f(x*) f(x)

where x — x* W C, and C is a small value.

Unfortunately, except in certain mathematically simple cases, there is no mechanism

which can confirm the global nature of the optimum point obtained with gradient meth

ods. The global minimum is defined as the smallest of all the local minima in the region
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of interest. In some particular cases, the global minimum can appear at multiple points.

In order to apply gradient methods, the functions have to be continuous and differ

entiable so that their derivatives can be evaluated. But in engineering design we are

often confronted with problems which involve un-differentiable functions, discontinuous

functions and/or discrete variables. In such cases the use of gradient based methods is

limited.

Nonlinear optimization problems may have more than one global optimum solution.

Furthermore there may be other solutions which, while not globally optimal, produce

values of the objective function close to the global optimum value and are of considerable

practical interest. Unfortunately almost all existing NLP algorithms are incapable of

identifying the full set of optimal points and provide little or no indication of near optimal

solutions.

Information obtained as a byproduct of gradient searches, primarily in the form of

Lagrange multipliers, Hessian and Jacobean matrices, does provide information but only

in the immediate vicinity of the optimal solution. But this information can also be

difficult to interpret, especially in the context of the original engineering problem and

when the global nature of the solution is in question. It provides no clues concerning

multiple global optima or near optimal solutions. In the event of an NLP method failing

to confirm even a local optimum, the user is left with no suggestionfor his next move.

Much of the information we get from the intermediate stages of gradient based NLP

searches does not have pertinence to the engineering problem being solved. It simply in

dicates the outcome of some mathematical manipulations which are incidental to the real

world problem and therefore have no real relevance to an engineering practitioner. Most

of the existing NLP methods will perform well on certain specific types of problems but

these are rarely representative of the more general nonlinear optimization problems faced

by engineers. Thus, in general, existing gradient based or direct search NLP methods
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have limitations in addressing real world problems.

Other optimization techniqnes, which represent departures from the two classes which

have been described above, have also emerged in the last decade. Genetic Optimization

for example, which “mutates” binary strings, has already appeared in the engineering lit

erature [Goldberg, 1989], while Random Tunnelling and Simulated Annealing have been

proposed in the last few years. These methods have some limitation in their applica

tion, for instance Random Tunnelling converges rapidly for problems involving only one

variable but good results are not expected for higher dimensional problems [Kan and

Timmer, 1989], and Simulated Annealing is reported to be inefficient [Torn & Zilinskas,

1988], [Corana et al., 1987] and [Kan & Timmer, 1989].

1.3 Global optimization

When dealing with nonlinear optimization problems, it is possible that the problem

possesses many local optima. Because of the highly nonlinear nature of the equations

often involved this phenomenon is quite common with engineering system designs [Luns

& Jaakola, 1973]. For general engineering optimization purposes a method is required

that can identify the overall optimal solution among the many alternative local solutions.

Such a method is known as a global optimizer. Its aim is to identify the smallest of all

the minima in the region of interest and may not necessarily evaluate all of the local

minima.

A sufficient gradient related criterion to positively confirm that a global optimum

value has been achieved at a point does not exist. The only way to confirm that the

point is a global solution is to evaluate the objective function at that point and compare

it with objective function values at all other points.

In any optimization method the search for the optimum solution is performed by
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evaluating the objective function at some trial points within the search domain. A

number of points, obviously more than one, have to be used to reach the final solution.

The distribution of these trial points within the search domain is influenced by two

distinct optimization goals, these are the global reliability goal and the local refinement

goal [Torn & Zilinskas, 1988].

The global reliability goal is based on the assumption that the global optimum could

be located at a point anywhere in the search domain and therefore assumes that no part

of the search domain can be neglected if the global optimum is sought. Without any

refinement in strategy it leads to search procedures where the trial points are distributed

uniformly over the entire search domain. On the other hand, the local refinement goal is

based on the assumption that the probability of detecting a point with improved solution

is higher in the neighbourhood of a point with a relatively low objective function value

than in the neighbourhood of a point with a relatively high objective function value.

Again, without refinement, this goal has a natural tendency to generate sequences of

points with decreasing function values that converge to local minima.

Most global optimization methods focus on exploring the whole of the search do

main, but use local search strategies to numerically refine solutions. The various global

optimization methods differ on how the search strategy shifts from one goal to the other.

The performance evaluation of local and global minimization methods differ in prin

ciple. Local methods are evaluated on the basis of how often and how efficiently they

converge on a confirmable optimal point of any kind. But a global method is evaluated

on two distinct qualities, the first one addresses the same issues as for local optimiza

tion methods but a second one, called reliability, measures the capacity to identify the

true global optimum [Wang & Luus, 1978]. Clearly, because of these dual requirements

and the complex nonlinear problems addressed, global techniques must be tested more

comprehensively than gradient methods to prove their effectiveness.



Chapter 1. INTRODUCTION 9

Rather than strictly following mathematically formulated procedures, global opti

mization methods are more inclined to adopt some heuristic approaches than are gradient

methods. For example, if the global optimum is difficult to find, it may be attractive

to deal with an approximation of the objective functiou which yields a computational

enumeration advantage over the original objective function. A second example of an

heuristic approach is subdividing the search domain to smaller regions at some stage

of the search and then performing the search in each of the subregions. Justification

for introducing heuristics into optimization methods are discussed in [Zanakis & Evens,

1981] where they state the following.

“The need for good heuristics in both academia and business will continue

increasing fast. When confronted with real world problems, a researcher in

academia experiences at least once the painful disappointment of seeing his

product, a theoretically sound and mathematically ‘respectable’ procedure,

not used by its ultimate user. This has encouraged researchers to develop new

improved heuristics and rigorously evaluate their performance, thus spreading

further their usage in practice, where heuristics have been advocated for a long

time.”

1.4 Optimization needs for the professional

In addition to the limitations of the existing methods in dealing with nonlinear opti

mization problems, mentioned in section 1.2, many of them have until recently been

confined to implementation on mainframe computers. The fact that access to mainframe

computers has been severely limited to most civil engineers has deterred practitioners

from using the existing NLP optimization methods. But the substantial improvement

in access to computers in recent years, through the introduction of personal computers
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and their rapid development, has not yet lead to a corresponding growth in the nse of

optimization methods in civil engineering practice.

As stated previously, the mathematical equations used in civil engineering design pro

cedures are predominantly nonlinear, therefore most civil engineering design optimization

problems require the use of nonlinear programming techniques for their solution. Those

NLP methods with the ability to handle practical sizes of problems that have been avail

able on mainframe computers for many years are only just beginning to become available

on microcomputers. But there are other problems still facing the practitioner which will

not be solved simply by improved access.

None of the nonlinear optimization methods which have been widely implemented

to date offer any absolute assurance of finding the global optimum except under very

ideal conditions. Generally they rely on the user to initiate the search from a number of

different starting points so that the chances of stumbling onto the global optimum are

enhanced. No systematic way of selecting starting points to ensure finding the global

optimum is available and the responsibility for the overall global search strategy and its

success is left entirely to the user.

Perhaps, most seriously of all, a practising civil engineer is not generally trained or

skilled in numerical analysis. He therefore faces a considerable investment in time and

money to confidently embark on nonlinear optimization to solve a real world problem.

If he makes this investment then he still faces the shortcomings of existing methods

described in the two previous paragraphs. Although not an uncommon topic in the

civil engineering research literature, there has been evidence of only rare and limited

use of optimization methods in civil engineering practice. Clearly existing nonlinear

optimization methods have had insufficient appeal to convince civil engineers that their

time should be invested in that direction. This prompted the research, reported in this

thesis, into a methodology based on the exploration of level sets, that has received very
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little attention. Amongst many of the other positive attribntes explained snbsequently

in this thesis, it has the potential of being a far more appealing nonlinear optimization

methodology to the person who is not a specialist in nnmerical analysis.

1.5 Earlier work on level set optimization

The theory discussed in [Chew & Zheng, 1988] under “Integral global optimization” opens

a new alternative to global optimization based on level set theory. But some other authors

have expressed opinions that the level set method is not designed for solving practical

problems [Torn & Ziliuskas, 1988]. This is because, from the practitioner’s point of view,

there are certain issues, important in engineering problems, which Chew and Zheng

did not address. As described below, these issues deal with superiority of the method,

computational effort, multiple optima and significance of intermediate outputs.

Even though the authors hint that there had been improvements made in their work,

the improvements are neither enumerated nor documented. This remains a hinderauce in

identifying their contribution to optimization methodology and assessing the superiority

of the level set method over other existing methods.

A general statement was given stating that less computational effort is expended

with the level set method compared to the pure random search method. Apart from

this statement there was no systematic comparison between the level set method and the

predominant (gradient) methods. Lack of comparative performance tests with respect to

efficiency, reliability or global convergence provided no incentive for others to adopt level

set optimization.

The authors admitted that only problems which have single global optimum had

been fully addressed and made only a minor comment on the multiple global optima

case. There was no discussion of recognizing near global optimum solutions. But the
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identification of mnltiple optima and near optimal solutions are some of the important

benefits to practitioners which are identified and investigated in this thesis.

The significance of the level set method output values was also not recognized in [Chew

& Zheng, 1988] and consequently the benefits of a graphical interface was overlooked.

1.6 Level Set Programming (LSP)

The formal mathematical presentation of the methodology upon which LSP is based has

been presented under the title “Integral Global Optimization” [Chew & Zheng, 1988].

They claim equal or better performance when compared with some of the best “con

ventional” gradient search NLP methods. Their experience in solving a series of NLP

problems supported this finding.

Level Set Programming (LSP) is classified as a direct search method of optimization.

Like any other direct search optimization method, LSP avoids gradient evaluations and

relies solely on evaluations of the objective and constraint functions at solution points. In

comparison with most direct search methods it carries a much larger number of solutions

at any one time and these solutions are dispersed over larger regions of the design space.

LSP utilizes the simple set theory concept of a level set which will be defined in

Chapter 2. It uses estimates of statistical moments of a level set to assess the level set

properties, to guide the search algorithm, as well as to measure convergence on a solution

optimum. LSP adopts a global strategy where, at least in theory, the whole of the search

domain is explored in the search for the global minimum.

The most significant features of LSP from a conventional engineering standpoint are:

LSP is a global search method; the search does not follow a single path or is not influenced

by a single point; it covers the whole search domain; its reliability to identify the global

solution is high; the method is conceptually simple; all the computations and numerical
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results geuerated during the search are meaningful; and an elementary, and therefore

fast, graphical interface can display much of the useful information at any stage of the

search. Based on our experience to date, its computational burden is in the same order

as gradient based search methods while its assurance of a successful global search is

substantially better.

The name Level Set Programming is adopted to emphasize the central level set fea

ture. The word programming, as appended here, appears to be justified in that the

implementation of the methodology has an algorithmic structure with a rigorous theo

retical criterion for convergence on the global optimum.

Although the theory of level set optimization already existed prior to this research,

its full implementation and testing had never been documented. In this research, a

comprehensive level set optimization algorithm named Level Set Programming (or LSP)

has been developed.

Refinements to the level set approach, which helped increase the chances of identi

fying the global solution, increased computational efficiency and enabled the method to

handle a wider range of problems were investigated and implemented. These refinements

included the use of cluster analysis, penalty functions and constraint relaxation. It was

also demonstrated that conventional engineering routines, which are necessary for eval

uating the objective function or constraints (such as structural analysis methods and

Hardy Cross pipe network analysis method), could be readily embedded into the opti

mization method. A set of control parameters were also introduced into the algorithm

and their optimal values investigated. Furthermore, it was found that these parameters

could be adjusted during the course of the search to increase the reliability and efficiency

of the search.
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Graphical displays of intermediate and final search resnlts were also developed during

the research and these have opened up a new perspective on the process of optimization.

The human-machine interaction during optimization was also significantly improved with

these graphical displays which guide the user towards search parameter adjustments for

increased efficiency of search as well as facilitate a better understanding of the optimiza

tion process as it unfolds.

The strength of LSP has been demonstrated by solving a wide range of mathematical

problems (about 200) and many difficult and realistic engineering problems (about 20)

which have been presented in the literature as being challenging for optimization methods.

In addition, a parametrically adjustable mathematical test problem was developed during

the course of the research to further strengthen confidence in LSP’s global optimization

capabilities and to challenge global optimization methods in general.

1.7 Thesis outline

The theory behind level set programming and its implementation is explained in Chapter

2. Refinements in the LSP scheme and the introduction of some heuristic methods are

then explained in Chapter 3.

Chapter 4 explains the general strategy and performances of LSP in solving mathe

matical and engineering problems. The engineering test problems formulation and their

solutions are presented in the same chapter. The mathematical problems formulation

and solutions are documented in Appendix A.

The experience gained in developing LSP and in solving test problems are explained in

Chapter 5. This chapter explains the interpretation of intermediate results, discusses the

use and adjustments of LSP parameters, the relationship between the volume of search

domain and computational overhead, and finally identifies the principal difficulties which
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might be encountered while implementing LSP.

The established approaches for evaluating NLP methods and some new proposed

criteria are given in Chapter 6. The most important factors in the field of optimization

from an engineering practitioners point of view are also enumerated in the same chapter

and contrasted with the established approaches to evaluating NLP methods.

Chapter 7 explains the operational use of LSP. The subroutines in the computer

program developed and its input/output procedures are discussed.

Chapter 8 discusses sensitivity analysis with LSP. A contrast on the definition of

sensitivity analysis between the classical methods and in the LSP context are presented.

Interpretations of sensitivity information from LSP plots are also included. Finally Chap

ter 9 gives the general conclusions concerning LSP’s effectiveness and suitability as an

engineering tool.



Chapter 2

LEVEL SET PROGRAMMING

This chapter outlines the basic theory of LSP and then considers extensions and variations

of the algorithm which were investigated in the conrse of this research.

2.1 Basic theory of Level Set Programming (LSP)

This section summarizes the essential theory for the implementation of LSP as described

in this thesis. More extensive theory is provided in [Chew & Zheng, 1988] and includes

details such as the properties of higher moments (third, forth, etc.) of the level set,

etc., which do not appear to have any bearing on engineering implementation, and are

therefore omitted here.

The general formnlation of an optimization problem is

Minimize f(x)

Subject to

g(x)O fori=l,2,...,m

h,(x)=O forj=1,2,...,l

xcX (2.1)

where

f(x) is a single valued objective function

gm(x) are inequality constraints

hi(x) are equality constraints

16
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X is a subset of E, and

x is a vector of n components x1, ..., x,1.

and all fnnctions are defined on Euclidian n space, E’t.

The optimization problem given in Equation 2.1 is a nonlinear programming prob

lem when any or all of the constraints or the objective fnnction are nonlinear. In the

applications of interest here, x corresponds to a set of design or decision variables.

For an unconstrained but bounded minimization problem the goal is to identify x,

which is called the global optimum point, or a set of global optimal points, and c*, which

denotes the global optimum value of f(x*), where the relation f(x) f(x) = C would

be true for all feasible points x. Thus the minimization problem is to find the minimum

of f(x) over 5b, where 5b is the region defined by the upper and lower bounds of each

variable x, so that

= min{f(x) I x C Sb} (2.2)

A level set, which is at the heart of the optimization methodology in

this thesis, is defined as the set of points which provide an objective

function value below or equal to some specified value. If this specified

value is represented by c, then the associated level set H0 can be defined

by

H0 = {x f(x) S c}. (2.3)

Bounds on each component of x are implicit but constraints are not

considered in this definition.

Certain first and second moments of the objective function values of the points con

tained in the level set play important roles in LSP and are defined below. The following
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expressions are for continnous integrable functions on 8b only adopted from [Chew &

Zheng, 1988].

Mean value over the level set H

M(f, c)
=

f(x)dp (2.4)

and for c

M(Lc)c

while for constants c2 c1

M(f,c2) M(f,ci)

where Chew & Zheng defined t as a measure of the level set and, c1 and c2 represent any

two constants greater than or equal to the global optimum value.

Variance over the level set H

Similarly Chew and Zheng specified the variance and a modified variance over the

level set H as

V(f, c)
= p(H)

- M(f, c)]2dp

VM(f, c)
=

J[f(x) - c]2djz (2.5)

The modified variance is slightly easier to compute and has the same general proper

ties as the variance.

For the discrete sampling case Equations 2.4 and 2.5 can be written in the form of

summations to provide estimates of M(f, c) and VM(f, c)
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M(f,c)
= 1

af(x)
ZXJEHCa XiEH

VU, C; 5)
=

E a[f(x)
— MU c)]2

ZXJEHC a

VM(f,c;S)=
1

a[f(x)—c]2 (2.6)
YZXJEHCa xieH

In practice, there would be only a limited number of points in a level set, therefore,

Equations 2.4 and 2.5 are rewritten to reflect this as follows.

1
Nkeep

M(f,c)
= N > f(x3) (2.7)

keep j=1

1
VU, c)

= N E [f(x)
- MU, c)]2

keep j=1

1 Nkeep

VM(fc)=N YZ[f(x)-c]2 (2.8)
keep j=1

where Nkeep, the number of points at which f(x) is calculated for a discrete sampling

scheme, is the number of points in the level set, and plays the role of the measure p(H) in

Equation 2.4. The equivalent moments for the integer variable or discontinuous function

cases are computed by evaluating the objective function at discrete points.

Convergence on global optimum

Take a large real number c0 such that the level set defined by this number over the

function f(x) is non empty, that is
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H0—_{xf(x)<co}O.

Define a decreasing series ck

Ck+1 = M(f, Ck)

so that

CQ>C1...>Ck>Ck+1>...>C.

where c is the global minimum value of f(x) Now define a decreasing sequence of level

sets HCk as

Hck={xf(x)<ck}

then

H1 ... H÷1 2 ... 2 (2.9)

where is the set of global minima of f(x).

Both cj and Hck are decreasing and are bounded below. rhe lower bounds can be

defined by

c = lim ck (2.10)
k—boo

= lim Hck = fl Hck (2.11)
k—+oc

Equations 2.9, 2.10 and 2.11 are important properties of level set values and level sets

and are critical to LSP’s optimization capabilities. At a global optimal point x’, where



Chapter 2. LEVEL SET PROGRAMMING 21

= f(x*) is the corresponding global minimum value, the following are also important

properties.

For c

M(f,c) c

M(f, C) = C

V(f,c) 0

VM(f,c) 0

V(f,c*) = 0

VM(f,C*) = 0

The fact that M(f, c), V(f, c) and VM(f, c) are always single valued quantities, re

gardless of the dimensionality of x, is exploited in the LSP algorithm. The first moment

is used to redefine a new level set value-c and advance the LSP search. The properties

of V(f, c) and 14(f, c) provide a theoretical global convergence criterion. V(f, c) and

VM (f, c) are always non negative and approach zero from the positive direction as the

value of c approaches C. Either V(f, c) or VM(f, c) can be used for search termination,

but in this thesis, VM(f, c) was used throughout the test problems.

A closed region in the decision domain is defined by the set of constraints, which

includes the variable bounds, and is specified here as the feasible region S. In a con

strained minimization problem the goal is to identify xK and C, where the relation

f(x) f(x*) = C would be true for all feasible points x. Thus the minimization

problem is to find the infimum of f(x) over S so that

C = inff(x). (2.12)

Assuming that there is a real number c such that the intersection of the level set
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and S is non empty, that is H fl S 0, where 0 signifies the null set, then the optimal

solution for a constrained problem can be restated as

= mm f(x). (2.13)
xeH fl s

For any H, the level set associated with c is defined by

= {x f(x) = c*;x S} (2.14)

which constitutes the set of global optima. Restated in terms of level sets, the global

optimization problem is to find c and In any point sampling scheme only a limited

number of points can be realized.

The existence of linear or nonlinear constraints can be accommodated by defining a

set of points which fulfil the condition of being both f(x) c and x feasible.

Feasible points which fulfil the f(x) c condition are called accept

able points in this thesis. The acceptance set, which consists only

of acceptable points is defined as

HHcflS{xf(x)<c; xeS}. (2.15)

Equation 2.11 can be extended to accommodate constrained problems. The lower

bound of the acceptance set at convergence on the global optimum c is

HcflS{xIf(x)c;xS}

HCflS = lirn(HCkflS)
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H. = lim(HCkflS) (2.16)

2.2 Overview of the LSP algorithm - one dimensional case

Figure 2.1 conveys the essential idea behind LSP. It shows a nonlinear function f(x) which

is to be minimized within specified bounds x’ and xU of the single decision variable x.

The problem is otherwise unconstrained.

If x is a continuous variable then there will be an infinite number of elements in

the level set within the lower and upper bounds. It will simplify the exposition of the

remaining theory, and more accurately reflect its implementation, if we think of level sets

only in terms of samples at a set of discrete values of x or, equivalently, at a set of points

in the decision space. This is not to suggest that x is necessarily a discrete variable,

although discrete variables are not excluded in this formulation.

To determine an initial level set, a set of feasible points is first established and the

objective function evaluated at each point. The initial level set value-c is then set equal

to the highest objective function value, that is

c = Max{f(x2)}

Those points which yield f(x) values either equal to or less than c, and do not violate

the bounds, then constitute the level set H for level c, that is H0 = {x f(x) e}.

Figure 2.1(a) shows the randomly generated points within the initial bounds and the size

of the level set H0 for the corresponding level set value-c.

Estimates of the mean and variance of the f(x) values corresponding to the x values

in the level set H0 are established using Equations 2.4 and 2.5 as

Mc, c) =

1
E f(x)

Nkeep
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Figure 2.1: Sequential improvement of level set value-c.
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VUc)
= [ZU(x) -

M([c))2].
Nkeep H,j

VM(f, c)
= 1

(f(x) - c)2].

H,j

The search or algorithmic aspect of LSP is driven by using M(f, c) to provide a revised

and lower value for c, say c’, at a successive iteration by simply setting c’ = M(f, c). The

level set value c’ is then used to establish a new “improved” level set II’. Once the new

level set c’ is identified, new points are randomly generated in the improved level set

H’ to bring the total number of points in the level set to Nkeep, see Figure 2.1(b). It is

important to note that the level set will always be a subset of the level set H (see

Equation 2.9) although these subsets may not necessarily be connected (see definition

in Chapter 3, section 3.1). Once H’ is established then the value of M(f, c’) can be

obtained. The level set value can again be revised to c” = M(f, c’) and a new level set

He” established.

This procedure of estimating M(f, c) for the current level set, revising the level set

value-c, and establishing the new corresponding level set, is then repeated with obvious

progressive reduction in the level set value-c.

Finally,the search terminates at the global minimum point x’ with objective function

value f(x) = c as shown in Figure 2.1(c). The value of V(f, c) acts as an indicator

of convergence on the global optimum value c. Most significantly, the convergence of

V(f, c) on zero at the global optimum is not affected by the existence of local optima

or by the existence of a number of separate global optimal solutions. The optimal level

set H. can include any number of points some distance apart but, as V(f, c) measures
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dispersion only in 1(x), then the value of V(f, c*) would still be zero. In the special case

where the problem has a single global optimum, reduces to a single point.

2.3 LSP Implementation

In an application of LSP the predominant computational load is in evaluating the objec

tive function and testing the constraints for feasibility at the many trial solution points

which are prospective members of the sequence of level sets. This imposes a practical

limit on the number of points which can be confirmed to lie within any one level set.

At the same time it is essential that this number be large enough to ensure that the

sampling is dense enough to reduce, to an acceptably low value, the risk of overlooking

a global solution. More precisely, we would like the sample to be dense enough to avoid

overlooking important features in the level set boundaries which are being inferred from

the level set sample. The algorithmic scheme in LSP exploits the fact that a substantial

number of the Nk€ sample x points present in H will also be present in the revel set

H’ at the next iteration. In practice, using the mean value criterion for the revised level

set value as indicated in section 2.2, the number of these “surviving” points has been

found to be close to f5P. The set of surviving points is used to provide a cuboidal

approximation of the new level set boundary (see “Cuboid approximation” below). This

approximate boundary is then used to support the efficient regeneration of acceptable

points in the new level set. To infer the new level set boundary approximation with

acceptable accuracy, and to minimize the risk of omitting any global solution, it is nec

essary for the number of points in the level set sample to be restored to prior to

each revision in the level set value-c.

In the next subsections the important features of LSP implementation are discussed

in detail. In the first subsection, approximation of the search domain at every iteration
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is addressed. Then, alternate methods of sample point generation are explored to iden

tify a more reliable and efficient search. Reliability and efficiency of the LSP search is

discnssed in section 2.3.3. Initialization of the LSP search and a detailed description of

the algorithm are presented in snbsection 2.3.4. While V(f, c) is the theoretical criterion

for convergence, other search termination criteria are reviewed in section 2.3.5. Finally

subsection 2.3.6 explains how the implementation of LSP is extended from the uncon

strained case to the general constrained problem. This subsection describes a variety of

techniques for handling constraints in the LSP search.

2.3.1 Cuboid approximation of level set boundary

A cuboid, which is also known as a hypercube or hyper-rectangle, is

defined here as a rectangular parallelepiped in the decision domain.

The sides of a cuboid are always parallel to the variable axes. It is

defined by

D={xb xj b, i=l,2,..n}

where bt and b are the lower and upper cuboid bounds respectively

for each variable i.

The points in a current level set can be used to infer the boundaries of a minimal

cuboid which envelops the level set. This is computationally far more economical than

attempting to generate more accurate but nonlinear estimates of a minimal envelope of

the level set. It should, at the same time, be recognized that more precise boundary

estimates using say ellipsoids might provide greater computational efficiency when gen

erating new level set points. The simplicity of the cuboid approach is appealing however
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and the use of nonlinear envelopes has not been explored in this work.

A general n dimensional optimization problem will be assumed so that the variable

vector will be x = (xi, x2,.. . , x,j. To initiate the search, Nkeep points are first generated

within the feasible region. The highest objective function value defines the initial level

set value-c and a corresponding level set H.

The first general iterative cycle begins by reassigning the level set value to c’ = M(f, c)

(where the prime symbol denotes the next iteration). Points whose objective function

value is greater than e’ are discarded. Only n points (where in practice r Njceep/2)

would then remain in the new level set Ply. The minimum and maximum values for the i

variable (i.e. i11’ dimension) in the new level set, estimated from the n, surviving points,

would be bL = Min{x, 4,. ..
, r} and b’ = Max{xt , 4,. ..

, x} respectively. Thus

the vector of lower bounds for all variables would be

b’L = {IV[inH,[x1], &1i72H,[X2]

and the upper bound vector would be

b’U = {Maxj-j,[xi], MaXH,[x2J,..., Max H,[xj}

Then [b’L, b”fl defines the cuboid for the level set and its volume is designated as

Vol.

Volume is defined here as the product of the sides of a cuboid. For an

n dimensional cuboid, the volume is expressed as

Vol=fJd1

where cl is the length of the side of the cuboid measured on the

variable axis.
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This cuboid, in effect, is an approximation of the boundary of the true level set

H0. New points are randomly generated within this cuboid and those which satisfy the

f(x) c condition enter into the level set k[’. The number of new points is as many as

those discarded in the previous iteration.

Those feasible points which have been sampled are defined as con

firmed points. This is introduced here to distinguished between points

which exist in theory and those points which have been verified numer

ically to meet the relevant set conditions.

There is a danger that the cuboid estimate based on a limited number of confirmed

points in a level set will be an underestimate, i.e. exclude a portion of the true level

set with the consequent risk of missing a global optimum. Figure 2.2 displays a cuboid

derived from limited number of confirmed points. The figure clearly shows that part of

the level set is excluded from the cuboid. Corrections to the cuboid size to minimize the

risk are discussed in Chapter 3, section 3.5.

It is clear in the example shown in Figure 2.1(b) that the level set H1 does not form

a continuous set but consists of two disconnected subsets, technically a “partition set”,

which will be discussed in Chapter 3, section 3.1. The concept of a level set remains

but the more complex boundaries make generation of new points in the level set far less

efficient when the cuboid approximation is adopted. Such inefficiencies will often arise

with multiple optima problems, when clusters of confirmed level set points eventually

form around each optimum. One method of restoring the efficiency of the search is to

handle each distinctive cluster as a separate sub-problem. In that case the search is

run independently within a set of smaller cuboids, each enveloping one cluster, and will

lead to the optimum solution for each sub-problem. The global solution to the original
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x2

Figure 2.2: Cuboid derived from limited number of confirmed points.

problem is then given by the best of the sub-problem solutions. Identifying clusters and

partitioning them is a problem which can be resolved by statistical approaches and these

are also discussed in Chapter 3. section 3.1.

2.3.2 Alternative methods of sample point generation

The point generation scheme based on cuboids was described under LSP implementation

in section 2.3.1 above. Other methods were considered in this research and are reviewed

here.

In all direct search methods experimental feasible points are generated, the objective

function is evaluated at each point, and then a ranking procedure based on the objective

function values is used to guide the next stages of the search or detect the overall optimum

solution. A good, computationally efficient, point generation method provides the maxi

mum number of acceptable points for a given computational effort. and thereby increases

the chance of finding the global optimum. The greatest opportunity for increasing the

Observed points

Lev& set
boundary

xl
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computational efficiency of direct search methods lies in an efficient sampling technique.

In addition to increasing the efficiency of the search, a good sample point strategy also

increases the reliability of finding the true optimum solution. Here, reliability is defined

as the number of runs producing the true optimum solution divided by the total number

of runs.

Grid sampling

This type of point generation occurs entirely at discretized, or systematically spaced,

grid points. This method has two major shortcomings;

i) The location of sample points is fixed once the grid size and the starting point of the

grid system are chosen. Variation in either the grid size or its starting point can

lead to different solutions.

ii) If the grid point generation is adapted to iterative search with progressive domain

reduction, there is a grid scaling problem after each iteration.

\‘Vith grid scaling changes, and the retention of some points from earlier grid samples,

the distribution of points can become distinctly non random after just a few iterations.

Any appeal of systematic grid sampling is therefore lost with progressive domain reduc

tion techniques such as LSP.

Sampling around existing best points

In this strategy a set of sample points is generated randomly and the best points

identified by comparison. The bad points are discarded and replaced by new points gen

erated around the surviving points. The principal difficulty with this method is in fixing

the scale of the perturbation around the confirmed points. Too big a perturbation leads

to an unnecessarily inefficient search. Too small a perturbation leads to greater efficiency
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in generating new points, but the risk of converging on local optima is significantly in

creased. With a small perturbation there is a natural tendency for the new points to

form clusters around the best points sampled early in the search, but at the expense of

exploring the rest of the feasible region. This leads to local convergence, especially with

low Nk€€.

Experiments were performed with all the above methods in conjunction with LSP

and were rejected in favour of a point generation strategy based on cuboids. The cuboid

strategy was found to produce the greatest search reliability and reasonable efficiency.

2.3.3 Revision of level set value-c

At every iteration some of the points in the previous acceptance set are discarded and

the rest remain in the current level set. The screening criterion for keeping points in the

acceptance set is simply that their objective function value is less than or equal to the

current level set value-c. The current level set value-c can be set to any value between

the minimum and the maximum objective function values at the confirmed points in

the previous acceptance set. Only the mean value of the previous level set, which was

proposed in [Chew & Zheng, 1988] though without justification, has been considered

so far in this chapter, but other possibilities were explored in this research. First two

extreme possibilities will be discussed.

If the maximum objective function value in the previous acceptance set is used as

the new level set value then the cuboid volume and the level set value-c would remain

nearly constant throughout the search, irrespective of the type of problem. In that case

the search becomes almost a blind search, which is computationally inefficient.

If a small value is used as the level set value-c, so that just a few points with the

smallest objective function values survive to the next acceptance set, the search loses its

global nature and focuses on a small region in the search domain. As the volume of the
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cuboid reduces to a small size at the early stages of the search, the search can terminate

at a non optimal arbitrary point, as shown in Figure 2.3(a) for a single variable problem.

Another example where the generation of new points would be almost impossible is

shown in Figure 2.3(b). For the single variable problem, the two points which give close

to the minimum objective function value are observed at the first iteration, say at points

A and B as shown in Figure 2.3(b). When the minimum objective function value is taken

as the level set value-c then the new cuboid would be the length A. Unfortunately there

is no point which fulfils the level set condition in the cuboid except the extreme points

themselves. In this case the search would be extremely inefficient or fail completely.

Figure 2.3: Cuboid defined by the smallest objective function values.

In general the revision in the level set value-c has to fulfil two conditions. Firstly, all

of the important regions in the search domain should be retained in the cuboid following

the process of discarding points which do not fulfil the level set condition. Secondly,

the improvement in the level set value-c at each iteration must be substantial to avoid

an impracticably large number of iterations and hence computationallv unacceptable

x x

(a) Cuboid excluding the optimum point (b) Cuboid excluding the level set

A B
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searches.

A set of test problems were used to iuvestigate the relationship between the number of

function evaluations and the level set value-c reduction at each iteration and, if possible,

to identify a better alternative to setting c’ = M(f, c). Two different approaches were

used to fix the revised level set values and define the current cuboid.

In the first approach, Nkeep feasible points are first generated in the initial cuboid.

Then the highest and lowest objective function values are identified and set to Maxf and

Minj respectively. The level set value-c is then defined as

= Minj + lc(Maxf — Minf) (2.17)

where it is a constant and 0 i 1.

Once the new level set value-c is established, points whose objective function values

are less than c (say n points) are retained and the rest discarded. The current cuboid

is defined using the retained n points. New feasible points are generated to replace the

discarded points, each point fulfilling the f(x) c condition. This same procedure is

then repeated at all subsequent iterations.

The results presented in Figure 2.4(a) and (b) were obtained with the Rosenbrock

valley test problem [Problem 2-7-0-0, Appendix A]. The figures show the plots of it

versus the number of function evaluations. The values were averaged over 10 different

runs. Different runs of the same problem with different values of it were tried to identify

the it value which produces the least number of function evaluations. The same number

of points, Nkeep, in a level set and the same convergence criterion were used for all runs.

A typical plot of the number of function evaluations versus it for the first approach is

given in Figure 2.4(a). As shown in the figure, the highest number of function evaluations
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to meet the convergence criterion occurs when = I. and this number gets lower as the

value of k approaches 0. But as i approaches zero, the reliability of converging on the

global optimum also declines, i.e. the global nature of the search is lost and it becomes

a local search. In addition, indications of the existence of multiple optima are lost.

The second approach always generates new points within a cuboid prescribed by

confirmed points in a level set defined by M(f. c) but allows the value of c to advance

below this level. This approach ensures that approximately n = points are used to

estimate the cuboid for point generation purposes. It avoids the difficulty of estimating

cuboid bounds where nr is very small. To generate new points a new level set value-c is

defined as in equation 2.17. The new level set value-c could be as high as roughly M(f,c)

when , = .5 or as low as Minj when , = 0. A plot of number of function evaluations

against K is given in Figure 2.4(b).

t

S 1

a

•.•.•I

03

1.0

k k‘ A

_______

Re Ry

by Q) Cuboid defined by M(f.c), acceptability of points defined by c

Figure 2.4: N for cuboids defined by different level set value criteria.

In the case of this second approach, the search maintains its global nature, and can

detect multiple optima. The numerical experiments showed that decreasing the level set
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value-c below M(f, c) slightly improves the reliability. On the other hand, the number of

function evaluations increases with lower values of c, and the search can be as inefficient

as the blind search in the worst case i.e. when t = 0.

In general, it is recommended that M(f, c) be used as a criterion to advance the search,

that is to set the level set value-c equal to M(f, c). Then redefine the current cuboid using

the approximately f1 surviving points which fulfil the f(x) c = M(f, c) condition,

and regenerate new points within this new cuboid. Although the choice of M(f, c) for

the revised level set value is essentially heuristic, these limited numerical experiments, as

well as experience with the many test problems, appears to support this choice.

2.3.4 Detailed description of the LSP Algorithm - general case

Implementation of the LSP algorithm for the constrained case, using a cuboid approxi

mation for the level set, is given below.

Let e he a small number which will be compared with the variance of the objective

function values to confirm convergence.

Let D0 = [bf, b] for i = 1,2, .., n; be the initial cuboid, where bf and b are the

initial lower and upper bounds respectively for the variable.

Let ‘ = (, , ..., ) be an independent n - tuple random number which is uniformly

distributed on [0, 1].

LSP operates by following the steps described below.
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Initialization

1. Generate Niveep feasible random points in D0 as follows:

Foratrialpointj,generatex=bf+(b—b) fori=1,2,...,n

This will establish a trial point j, where x° = (x{, x ,...,x). Note that the gener

ated point will be random uniform distribnted within D0.

Test for feasibility, reject if infeasible. Continue until Nkeep feasible points are

obtained.

2. Evaluate the objective function, f(x) for each generated point. Assign the highest

objective function value, c1 as the initial level set value-c, that is

= Max{f(x2)}

Algorithm

3. Redefine a new cuboid B1 using the remaining approximately points as

D1={xI1fxbY1, i=1,2

where bf” and b’ are the lowest and highest values of the 1th variable among those

points in the current level set.

4. Generate new points in the new cuboid.

For a new trial point j, generate x = bf’ + (b1 — b’) for i = 1,2, ..., n

Test for feasibility, reject if infeasible.

Evaluate f(x); reject if f(x) > level set value c.

Generate as many confirmed points as those discarded in step 8 of the previous

iteration. That is, restore the number of points in the acceptance set to a total of
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5. Evaluate the mean of the objective fuuction values, and assign this mean value to

the new level set value-c for the next iteration. That is

= M(f, c)

6. Calculate V(f, c), the variance of the objective function values.

V(f, e)
= N [EU(x) - MU, e2]

keep 11

If the variance is less than the pre-specified convergence tolerance, e, terminate the

search, otherwise continue to the next step.

7. Discard points whose objective function values are greater than c’.

8. Set c =

9. Go back to step 4 and redefine a new cuboid.

Let the value of c at termination be represented by ct. V(f, Ct) e is satisfied so that

M(f, e1). The solution is presented in the form of a final acceptance set H.

and will contain points in the immediate vicinity of the global optimum or optima.

2.3.5 Alternate termination criteria

Because of its unique search mechanism, LSP’s requirements for a termination criterion

differ from other NLP search methods. In addition to the termination criterion described

in section 2.3.4, three other alternatives were considered and are described below.

i) Size of cuboid
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In the special case where the problem is unimodal, the cuboid at c = C is theoret

ically a single point and cnboid volume can he exploited to provide a convergence

criterion.

If Vol = flL1 d1 defines the volume of the cuboid at any stage of the LSP search in

an n dimensional problem, where d1 is the length of the side of the cuboid measured

on the jth variable axis, then this volume tends to zero as convergence is approached.

The search could be terminated when the volume is less than a pre-specified small

value. Since the length of each side of the cuboid gets closer to zero as the search

progresses, the fact that Vol —* 0 as d1 —+ 0 for i = 1, ..., n is obvious. But the

danger is that the convergence criterion could be met even if only one or two sides

approach zero length and a premature or pseudo-convergence could result. To avoid

this a criterion requiring that the sum of the cuboid side lengths, Z1 d, be close

to zero could be used in addition to the volume criterion. As a further alternative

the size of each individual cuboid side length in the final cuboid could be compared

to pre-specified termination criterion. This last mentioned criterion is similar to

that used in many local optimization methods [Archetti & Schoen,1984; Betro &

Schoen, 1987; Boender & Kan, 1987], which stipulate that if x is the current

estimate of the minimum point and x is the last predicted minimum point then

convergence is considered to have been achieved if

— 4 < E for i = 1,2, ..., n.

where a0 is a pre-specified small value.

ii,) Difference between consecutive level set values

The difference between the objective function values at consecutive iterations is

used as a convergence criterion by some direct search methods. For instance, the
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following simultaneous termination criteria are used for Newton’s direct search

method [Edgar and Himmelblau, 1988].

— f(xj

f(xk)
I<6i

or as f(x) —, 0,

f(x41)- f(xj 1< e

—

I Ic <63xi

or as x —* 0,

— x1 1< 64

js’II <

or

WVf(x)W <66

where k is the iteration number, s is the search direction and V is the gradient

operator.

Similarly with LSP, differences between level set values at consecutive iterations

can be used as a termination criterion. In the later iterations of a successful LSP

search, improvement of the level set value-c with each iteration decreases. This is an

indication that the points in the level set are distributed around stationary points in

the objective function surface. A maximum acceptable value, e, for the difference

between two consecutive level set values, can serve as a termination criterion. That

is, c —
c41 e dictates termination.
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iii) Coefficient of variation of the objective function values

The variance of the objective fnnction valnes in the acceptance set give a precise

theoretical convergence condition, and has to be equal to zero at the global optima.

But in actual implementation, the variance of the objective function values is com

pared against a predefined small value at each stage of the search. Since values

of the objective function with high absolute value produce a higher variance, and

objective function values close to zero prodnce lower variance, a scaling difficulty

arises with the implementation of variance as a convergence criterion.

To overcome the scaling difficulty, the dimensionless coefficient of variation, defined

here as modified variance divided by the level set value-c, can be used as a conver

gence criterion. This criterion seems to be quite satisfactory for a wide range of

problems, but a difficulty arises when the level set value equals zero and the search

stops because of numerical overflow. The level set value can be equal to zero for

two reasons: when the global optimum is just below or equal to zero; and when the

level set value starts with a positive number and improves to a negative optimal

value, taking a value equal to zero in the course of the search process.

Generally then, the choice of search termination criterion is tied to the magnitude of

the optimum objective function. Except for the criterion discussed under ‘size of euboid’,

any of the above mentioned criteria, as well as the one discussed in section 2.3.4, can be

used for LSP search termination. The ‘size of cuboid’ criterion undermines the search for

multiple optima solutions.
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2.3.6 Handling Constraints in LSP

LSP can accommodate constraints by making use of three simple and straightforward

approaches. These are: rejection, reduction and penalty methods. All three methods

can be applied in the same LSP solution of a given problem, depending on the nature of

the constraints involved. An explanation of each method is given below.

Rejection method

For a constrained problem with a feasible region 8, defined by the set of the con

straints, the mean value and the variances over the level set were redefined by [Chew &

Zheug, 1988] as

M(f, C; 5) =

p(Hck fl 5)
f(x)djt

V(f,c; 5) =

(Hck flS)
— M(f,c; S)]2djz

VM(f, c; 5) =

fl 5) LCk
[f(x)

- c]2dR (2.18)

where k indicates the iteration.

The above expressions are called the rejection mean value, rejection variance and

rejection modified variance of f(x) over H fl S respectively as discussed in section 2.1.

The following important characteristics are retained. Given

e S is the global minimum solution and

C = f(x*) is the corresponding global minimum value.

for c> C

then

M(Lc;S) C

MU, C; 5) = C
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V(f,c*;S) = 0

VM(f,c*;S) = 0

For a discrete sampling (or integer problem), equation 2.18 can be rewritten as

MQf,c;S)
= 1

a°f(x3)
ZVEHflsa

XJEHcflS

VU, C; 3) =
1

a [f(x)
— MU c)]2

ZX3EHCnSa xicHflS

YwUc;S)=
1

a[f(x)—c]2 (2.19)
ZXJEHCnSa xieHflS

Reduction method

Whenever there are equality constraints, the number of variables in the problem can

theoretically be reduced by the number of equality constraints. In effect reduction can

be performed by solving a system of simultaneous nonlinear equations. Most of the time

handling equality constraints in this fashion is difficult, if not impossible, since in practice

nonlinear constraint functions are seldom simple enough to be able to equate the function

with a single variable.

Penalty method

When the set of constraints defines a very small or narrow feasible region, or one

governed by equality constraints, generating feasible points can be difficult. In this case

the objective function can be modified by adding some terms which penalize (i.e. increase)

the value of the objective function when any sample point outside the feasible region is

evaluated. The existence of points that violate the constraints is permitted within the

acceptance set but is discouraged later in the search. This approach is common to all

penalty function methods.
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Let S be a closed subset of X. Consider the constrained minimization problem

C = min[f(x) + ap(x)]

where a is a positive value.

Definition:- a function p on X is a penalty function for the constrained set S if

p(x)0 VxcX

p(x)=0 iffxeS

p(x)>0 VxS

Suppose ek, the level set value at the kt iteration, so that cj C, is decreasing and

tends to c* as k —‘ cc and cvk is a positive increasing sequence which tends to infinity as

k —* cc. Let

= {x f(x) + akP(X) C} (2.20)

then

limHk = fllik = li flS

and

lzm(H) Lkm4 = (HflS)

As defined earlier, the mean value of f(x) over its level set H within a closed feasible

region defined by the constraint set S is given by

M(f,c;S)
= p(HflS)

Because C is a lower bound of c

lim
1

j f(x)dR = M(f, c; 5)
k_icc fz(JJk) Hk
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The limit does not depend on the choices of sequences {ck} and {ak}.

Suppose c > c then the limit

M([c;p) = lim
1

j f(x)dR
k—*oo /A(Hk) uk

is called the penalty mean value of f(x) over the level set Hk. Suppose c* = f(x*) is the

global minimum value of f(x) over 5; then

= M(f,c*;S) = M(f,c*;p)

The penalty mean value, variance and modified variance of f(x) have the same conver

gence properties as the constrained mean value, variance and modified variance; therefore

they share the same properties [Chew & Zheng, 1988].

2.4 Summary

The general theoretical description of the use of level sets for nonlinear optimization was

laid down by Chew and Zheng [Chew & Zheng, 1988]. In this chapter, the theory has

been extended, the potential importance elaborated and some practical application issues

addressed.

One of the main ideas explored is the relationship between the reliability of LSP solu

tions and the revision of the level set value at each iteration. The choice of revised level

set value was found to affect the reliability of the solutions and the overall performance of

LSP but the use of M(f, c) was confirmed as being appropriate for general applications.

Different methods of sample point generation were also investigated. The exploration

of alternative methods has helped to give more insight into a key numerical and computa

tional aspect of this implementation of level set theory. Even though many methods were

examined, only one of the methods, the cuboid approach, is recommended for general

application.
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Various search termination criteria were also examined. Any of these criteria can

be used in practice without affecting the theoretical global convergence characteristics

thongh the best choice is dependent upon the nature of the problem being solved.

In practical implementations of LSP, the modified variance, VM is adopted as a ter

mination criterion instead of the variance evaluated around the mean. The reason is that

the modified variance is larger and therefore provides a stronger convergence condition

and is, as well, easier to evaluate. Moreover the modified variance is more sensitive to

the entry of points into the acceptance set which have the lowest values of the objec

tive function. This becomes a significant benefit in the final convergence stages of the

search. In addition to using variance as a convergence criterion, a plot of level set value-c

against each iteration is displayed to give a visual indication of the typically asymptotic

convergence of level set valne-c on c.

How closely the final value of the convergence criterion VM(f, c) approaches zero in

practice is a qnestion of numerical precision and the practical needs of the problem. It

is governed primarily by the number of sample points maintained in the level set and

accuracy of the computational device used in evaluating the various nonlinear functions

involved in the problem. In general the most important aspect of LSP is fixing the

number of points in an acceptance set. Too few points increases the chances of missing

very localized but significant fissures in the objective function surface, too many points

places an unnecessarily high computational burden. For a fixed number, Nseep, of points

in the acceptance set the density of points per unit length on the variable axes increases

with the number of iterations.

The search process is not infallible, a very localized fissure in the f(x) surface which

contains the global optimum can be overlooked, but the VM(f, c) valne still converges

on zero over one or more local optima. Such problems are more likely to emerge when

the number of sampling points in a level set is too low. Problems which are peculiarly
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difficult for LSP are thus possible aud some of these are discussed in Chapter 5, section

5.5.



Chapter 3

LSP PERFORMANCE IMPROVEMENT

Optimization based purely on the exploration of level sets has been described by some au

thors as a theoretical approach with little practical significance [Torn & Zilinskas, 1988],

since they felt that the method lacks strong convergence characteristics. There have been

few attempts to implement pure level set methods in any general way. Those implemen

tations that have been made are poorly docnmented and there is little existing literatnre

on enhancing the performance with LSP type methods. A variety of approaches to im

prove the efficiency of the LSP search have therefore been investigated in this research.

The more successful techniques dealing with partitioning of search domain, relaxation of

constraints and redefining of search domain are discussed in this chapter. In addition

to improving the computational efficiency of LSP, these techniques also tend to produce

more accurate convergence on optimal solutions, and enhance the reliability of detection

of boundary solutions. Further discussion of actual experience when implementing these

techniques and setting the values of the various LSP parameters is provided in chapter

5.

3.1 Partition sets and cluster analysis

The volume occupied by the level set is always less than or equal to any containing

cuboid volume. The ratio of level set volume to cuboid volume has a direct influence on

the efficiency of generating new points in the level set; when this ratio is low considerable

computational effort will be expended on unsuccessful point generation. Very low ratios

48
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can result from problems involving widely separated, multiple global optima, or from a

long, narrow, level set with its principal axis at an oblique angle (e.g. 45°) to the variable

axes.

For a typical unimodal problem, the ratio of level set to cuboid volume remains both

high and nearly constant throughout the search. But if the optimization problem has

multiple global optima, then the cuboid would include a large amount of non level set

space. This results in a very low level set to cuboid volume ratio. Moreover the level set

could consist of discontinuous sets within the cuboid.

Some new terms are introduced here to facilitate discussion of the computational

implications when the level set becomes discontinuous.

Two sets B and C, where B 0 C, define a disjoint set if B fl C = 0,

that is if B and C do not have any element in common. A class A of

sets is called a disjoint class of sets if each pair of distinct sets in A is

disjoint [Lipschutz, 1965].

A class A of non empty subsets of A is called a partition of A if and

only if each a E A belongs to some member of A and the members of

A are mutually disjoint [Lipschutz, 1965].

A space A is connected if, whenever it is decomposed as the union

BUC of two non empty subsets, then BflC 00 or GflB $0, where

the upper bar designates the complement set and 0 designates the null

set [Armstrong, 1983].

If a level set defines a region where all points in the level set belong to a single set,

then the level set is called connected as in Figure 3.1(a). Henceforth in this thesis a



Chapter 3. LSP PERFORMANCE IMPROVEMENT 50

connected subset of the partition will be referred to simply as a “subset”.

If a level set defines a set of small subregions and there is no com

mon point between any two subregions, then the level set is called a

partition level set.

When the subsets of the partition are close together they will, in practice, be treated as

if they were a connected set. Figure 3.1(b) shows a partition level set in two dimensions.

Sub—cuboid will be defined here as the cuboid enclosing an individual

subset of a partition level set.

Minimal cuboid enclosure will be defined in this thesis as the set

of sub-cuboids which enclose the level set in a specific cuboid. The

minimal cuboid enclosure would be equal to the cuboid itself if the

level set is connected, otherwise it would be a collection of more than

one sub-cuboid.

As the iterative process of LSP unfolds, the size of the region occupied by the ac

ceptance set gets smaller. However, this region may contain a single connected level

set in the special unimodal case, or it can enclose a partition level set forming separate

discontinuous regions. Points generated in any of these subregions would be accepted

if they meet the level set condition f(x) c and do not violate any of the constraints.

The efficiency of generating an acceptable sample point in the cuboid would be directly

proportional to the ratio of the acceptance region volume to the cuboid volume.

For a multiple optima problem, the chances of generating an acceptable point becomes

smaller as the search approaches the global optimum value of the objective function. This
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x2 x2
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Figure 3.1: Connected and partition sets.

is because the volume of the acceptance region becomes extremely small near convergence

whereas, at this stage of the search, the cuboid typically maintains more or less a constant

volume. This is particularly true when the global optimum points are at stationary points

in the objective function surface. Although an inefficient search may eventually converge,

the time required to obtain a solution may be prohibitive. To overcome the inefficiency

due to the presence of multiple optima it is possible to subdivide the cuboid into a

set of smaller cuboids without sacrificing the integrity of the search. This is provided,

of course, that no subregion containing a global optimum is omitted from the smaller

cuboid set. If the existence of distinct clusters of points is suspected during a search,

statistical cluster analysis can be used as an aid to identifying the clusters, and hence

the sub-cuboid boundaries. Details on cluster identification and classification will be

discussed in section 3.1.1. The current level set value-c would be applicable to all of the

sub-cuboids at the point of dividing the cuboid into smaller sub-cuboids.

xl

(a) Connected set (b) Partition set
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After the clusters have been identified their individual subcuboid dimensions are

defined. The combined sum of the volume of all sub-cuboids would be smaller than the

volume of the cuboid before subdividing into smaller subregions. Thus the total volume

of search is reduced relative to the volume of the level set.

Once subcuboids are defined the optimization problem is then treated as a separate

problem in each subregion and each is solved independently. The process of performing

cluster analysis and subdividing the cuboid into smaller subcuboids can be repeated at

subsequent stages of the LSP search but will result in solving an ever increasing number

of sub-problems. Such an exhaustive division of search domain leads to an inefficient

search and is generally unjustified.

An example to show the merits of using smaller cuboids at some stage of the search

for the unconstrained but bounded one dimensional case is given in Figure 3.2. Here

the cuboid is one dimensional and its “volume” is represented by the length of its single

side. At the kth iteration, the chances of generating a feasible point fulfilling f(x)

is roughly 0.5, that is the level set designated as Hek in the figure, occupies about half

the cuboid length. At the next iteration, the level set value-c is lowered to and the

corresponding level set volume becomes so small that the efficiency of generating

feasible points fulfilling f(x) CJcfl drops to below 0.25. After this stage of the search it

would be advantageous to work with two distinct cuboids where the chances of generating

points fulfilling the level set condition would approach 1.0, depending on how precisely

the cuboid boundaries are estimated.

Recognizing such benefits from partitioning, it is almost essential that a cluster analy

sis subroutine be incorporated into LSP. From the implementation point of view, the pre

cision needs for the identification of clusters and cluster bounds are not critical. Except,

of course, that the cluster boundaries and hence cuboid boundaries do not inadvertently

exclude a global optimum.
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Hck = {xjf(x) Ck }

Hck+l = {xlf(x) ck.H }

— ‘1 ___r-
—

Cuboid side at k+1 et iteration
4

Cuboid sidó at kth Iteration

Figure 3.2: Level set “volume” in one dimensional problem with and without partitioning.

3.1.1 Cluster analysis methods

A cluster can be defined as a set of points that possess some common characteristic

which is not shared by members of another group, or as a set of points that bear some

relationship to each other but not with those outside that particular set. In Euclidean

space, where the relationship between points is a function of their distance from each

other, clusters are defined as points which are located close to each other. In some

cases a similarity criterion, which expresses the common characteristics shared between

points, is used instead of distance to classify points into clusters. When partitioning level

sets, Euclidian distance is the appropriate measure of the relationship between points in

the decision space. Cluster analysis is a technique which allocates points to a cluster

in such a way as to maximize the distance between clusters and minimize the distance

between points within a cluster. Cluster analysis procedures can be divided into two

major categories, which are briefly explained here.

f(x)

Ck

Ck+l

/
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• Hierarchical Methods:

These produce a tree-like taxouomic system where, at oue end of the tree every

individual point is a cluster and at the other end all points are included in a

common cluster. At intermediate levels, clusters are formed by aggregating lower

clusters. The hierarchical cluster configuration is usually represented graphically

as a dendrogram as shown in Figure 3.4. This graphical structure is a common tool

used to express the results of a clustering analysis. The hierarchical method can

he divided into agglomerative and divisive methods.

i) Agglomerative methods: These are methods where similar data points are sequen

tially aggregated to form a single cluster. The methods construct the hierarchical

tree from individual points at the branch tips to a single root. Specific agglomera

tive methods differ according to their definition of distance between a point and a

cluster, or between two clusters [Mezzich & Solomon, 1980].

ii) Divisive clustering methods: These methods subdivide the aggregate set of data

points into smaller subgroups by partitioning, such that the variance within each

group is minimized and the variance among the groups, their mutual separation,

is maximized without breaking up natural groupings. One of the techniques is

the Automatic Interaction Detection, AID, which employs a series of discrete vari

able splits, each dictated by the maximum reduction in the empirical unexplained

variance [Jenson, 1977].

• Non-hierarchical methods: In contrast to hierarchical methods, these produce con

figurations that do not present rankings in which lower order clusters must become

members of larger more inclusive clusters. These are methods which essentially

produce the final partition in a single step. The major approaches used in non

hierarchal methods are as follows [Mezzich & Solomon, 1980].
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i) Total enumeration of partitions methods: In this method an attempt is made to

enumerate all clustering possibilities, and then select the best cluster arrangement.

A quantitative clustering index is used to choose the best alternative. Since this

method involves exhaustive searches, it appears to be computationally unattractive

even for modest data sets.

ii) Nearest centroid sorting methods: The basic feature in this method is the

selection of seed points to be used as cluster nuclei around which the set of points

can be grouped. When the number of clusters is fixed, the location of the centres

of the clusters are updated after each full cycle of allocation of points. Given the

number of clusters, the method allocates points so that the within cluster sum of

squares are minimized [Hartigan, 1977]. For a variable number of clusters, points

are allocated on the basis of the nearest centroid sorting process. The number of

clusters changes during the allocation process by partitioning those clusters which

have a large within cluster sum of squares to form smaller clusters, and joining any

two clusters with small between cluster sum of squares to form a larger cluster.

This is controlled by using certain parameters for “coarsening” and “refinement”

set by the user [Mezzich & Solomon, 1980].

iii) Reallocation methods using variance-covariance criteria: The basic procedure

in this category is to reallocate points among a set of clusters in such a way as to

optimize some overall discriminant function or variance-covariance criterion.

iv) Density search methods: These methods use the allocation of points in a metric

space, looking for regions of high point density separated by regions of low density

for identification of clusters.
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From the experience in this research, the agglomerative hierarchical clustering method

was fonnd to be easy to implement with the least complications in theory and application

and providing acceptable precision for LSP purposes. This method is discussed in detail

in the next section.

3.1.2 General implementation of cluster analysis methods

Suppose there are in points, in n dimensional Euclidean space, which we wish to arrange

into a hierarchal classification. The data set for the in points forms an in x ri matrix. The

unit of measurement for the in x ii raw data matrix is standardized, which means that

all variables are transformed to a single unit, before computing distance measurements.

This ensures that each variable is weighted equally, otherwise the Euclidean distance d1

will be influenced most strongly by the variable which has the greatest magnitude [Davis,

1973]. The Euclidean distance, between two points is computed using equation 3.1.

=
—
Xj (3.1)

where XjJç, denotes the kt variable measured at point i and Xjk is the kth variable measured

at point j. In all, n variables are measured at each point and is the distance between

point i and point j. The distance between all possible pairs of points will result in an

in x in symmetrical matrix. The points are arranged into a hierarchy based upon the

magnitude of d1. Initially all pairs of points with mutually short distances are grouped

together to form the beginning of clusters. Then those points which are not in any of the

clusters formed at the initial stage, together with the small clusters already formed, are

regrouped to form larger clusters. Small clusters are treated in the same way as points,

and are lumped together on the basis of their mutual distances. The process of regrouping

is repeated until all of the points have been placed into a complete classification scheme.
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The first step in clustering by the pair-group method is to find the mutually closest

distance in the matrix, the corresponding data pairs form the centres of subsequent

clusters. After the centres have been identified, all the other points are connected to the

centres one by one to form a dendrogram.

The most common and simple clustering method is the single hnkage method, which

employs a predefined arbitrary critical distance as a criterion for clustering. Clustering

will only occur between pairs of points and small clusters if the distance between them

is less than the critical distance. If all pairwise distances are greater than the critical

distance no clustering can occur. After the initial clusters have been formed the distances

between the remaining points and the closest point within a cluster are computed one by

one. Those points which have distances less than the critical distance from a cluster are

entered into the cluster. The procedure continues until either no more points can enter

any cluster, or all points agglomerate to a single cluster.

A similar method, referred to as the multiple linkage or complete linkage method,

uses the distance between an unclustered point, and the farthest point in a cluster as a

measure for clustering. The distance between an unclustered point and the most distant

point within a cluster is checked against the critical distance for the viability of being a

member in that cluster. Figure 3.3 shows two different results of cluster analysis resulting

from a single data set using single and multiple linkage cluster analysis methods.

Another type of cluster analysis method, the weighted average cluster analysis, uses

equally weighted average distance between the cluster and a newly connected point.

This method gives equal importance to the set of points which have already formed a

cluster and the new point which is to enter the cluster, hence the greater influence of the

latter. In this method, once the first grouping is completed, the distance matrix must be

recalculated, treating each set of grouped points as a single point. Then the next step is

to regroup the small clusters already formed on the basis of shortest mutual distance to
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(b) Multiple linkage

Figure 3.3: Single and multiple linkage clustering methods.
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form a larger cluster. A simple and effective way to calculate the distance between the

grouped points is to use the arithmetic mean of distances between every pair of points,

each point from a different cluster. For example, two clusters, say the first one containing

points A&B, and the second one containing points C&D, are made to be regrouped to

form a single big cluster. The distance between the two small clusters is calculated as

(A + XD + + )/4, where each pair of letters under a bar line designate the

distance between the two points. In general the distance between two clusters, D1, is

expressed as

(3.2)

where

D1 is the distance between cluster I and cluster J.

nj and nj are number of points in cluster I and J respectively.
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d1 is the distance between points i and j.

Becanse points in a cluster are treated as a single point, averaging the distances

in the cluster introduces distortion into the dendrogram. Points located far out from

the centre of the cluster have the greatest influence on the structure. The distortion

is introduced when two clusters with unequal number of points join to form a bigger

cluster. For example, if two points A and B are in a cluster, and a third point C is to

enter the cluster, then the distance between the cluster and the third point is calculated

as the average distance between points A and C and the distance between points B and

C. Thus point C is involved twice while the other points are each used only once. The

distortion is increasingly apparent as successive levels of clusters are averaged together.

The severity of this distortion can be evaluated by examining the matrix of cophentic

values, which describes the apparent distance within the dendrogram. The cophentic

values and original distance matrix can be correlated to reveal the overall degree of

distortion.

Unweighted average clustering methods are similar to the weighted average cluster

ing methods except that they assume an equal number of points in each cluster. In

these methods late entries into a large cluster have almost no influence on the distance

calculations of the clusters.

Figure 3.4 demonstrates how to construct a dendrogram using 9 data points in a two

dimensional space. Figure 3.4(a) shows the original data set in two dimensions. The

matrix of distances is calculated from the ordinates of each point. The pairs of points

with mutually closest distances, are grouped and connected together as shown in figure

3.4(b). Figure 3.4(c), 3.4(d) and 3.4(e) demonstrate, step by step, how the distance

matrixes are calculated for already clustered points, how new points are entered into

the structure, and how small clusters are sequentially agglomerated to form the final

dendrogram.
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Figure 3.4: Stepwise dendrogram construction.
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There are many ways of allocating points into taxonomic classifications. The choice

of methods depends mostly on how the analyst views the needs of his problem and wishes

to trade off compntational effort against the desire for accuracy of cluster identification.

3.1.3 A clustering routine for LSP

A cluster analysis subroutine which performs a weighted average cluster analysis was in

corporated to LSP. This method is chosen for its simplicity and the fact that it needs only

a few user selected parameters. Even though the method might not be the most accu

rate, it is good enough for LSP purposes since the search does not need precise clustering

method for its solntion. With LSP the potential for overall reduction in computational

load and gain in reliability from sophisticated clustering methods is not obvious.

A user selected type clustering criterion, which is expressed as the ratio of the mini

mum distance between two clusters and the distance between the mutually farthest points

within a cluster, is used as an iuput for the analysis. The subroutine checks if the cluster

ing criterion is met, and performs sub-grouping of the data set into a number of clusters

when the criterion is met. The bounds for each cluster, or subgroup, are identified and

then used to define the initial cuhoids for the respective clusters. This subroutine is

adapted from [Zupan, 1982].

The computational time the search needs while performing the clustering routines

depends on the strength of the clustering criterion. In this thesis, a clustering criterion

is referred to as a strong criterion when the ratio of distances between two clusters to the

distance between the farthest points within a single cluster is high. A strong criterion

implies the expectation of very distinct clusters.

If a very strong clustering criterion is used, it might take longer computational time

to meet the criterion, but once the clusters are identified and the problem is subdivided

into the true set of distinct sub-problems, the subsequent LSP search becomes faster.
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The increase in efficiency is demonstrated in Table 3.1 through an example in the latter

part of this section. Since aggregating points into clusters and identifying their bounds

does not need high precision in LSP, the clustering criterion does not in fact need to be

strong. But if a weak criterion is used for problems whose optimal points are at extreme

corners of the initial cuboid, the imperfect cluster identification might result in missing

the global optima. In practice, the probability of generating a sample point at an extreme

boundary corner is almost nil for finite sampling schemes. A heuristic method has been

developed to avoid this situation and is discussed in section 3.5.

The following two variable, unconstrained but bounded, problem with two global

optima demonstrates the danger of premature clustering and the computational benefit

of introducing cluster analysis into LSP.

Minimize f(x) = 100 — (x1 + x2 — 10)2

Subject to:

0 x1 10

0 x2 10

The true global optimum is f(x*) = 0.0 and the optimal points are located at (0, 0)

and (10, 10), which are the diagonal corners of the initial cuboid.

Figures 3.5(a) and 3.5(b) show this optimization problem in three and two dimensions

respectively. Figures 3.5(c) and 3.5(d) show plots of the points in the level set in the

x2 plane at consecutive iterations. In both cases the two small rectangles around the

clusters of points inside the initial cuboid show the dimensions of the new sub-cuboids if

the problem is to be partitioned into two sub-problems. Figure 3.5(c) demonstrates how

a premature clustering can exclude the true global optimal points. However if clustering

is performed at the next iteration, the global optimal points would be included in the
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new sub-cuboids, as shown in Figure 3.5(d). Premature clustering can be avoided by

adopting a stronger clustering criterion.

Table 3.1 shows the number of function evaluations required to meet the LSP conver

gence criterion for the above example, with and without using cluster analysis method.

These results are from a single LSP run for each case. The number of points maintained

in the acceptance set for each sub-problem was the same as for the acceptance set without

the cluster analysis.

Number of function evaluations
Iteration without cluster with cluster

analysis analysis
5 3,024 3,243
6 4,236 4,940

13 1,420,092 —

14 3,686,648
15 8,018,142 —

37 6,550

Table 3.1: Reduced number of function evaluations due to cluster analysis methods

1eep value of 30 was used for this example. This is higher than the recommended

value of Nkeep = 20 but appropriate in known multiple global optima cases. Without

cluster analysis, this example had not met the convergence criterion VM 0.0001 at the

15th iteration when the number of function evaluations was over 8.0 * 106. In the second

case, where the cluster analysis method was used, the problem was partitioned into two

different sub-cuboids immediately after the sixth iteration. With Neep = 30 in each

of the two sub-problems, it took 37 iterations to meet the convergence criterion. The

number of iterations cited is the sum of iterations expended before dividing the problem

into smaller regions plus iterations expended to meet the convergence criterion for both

sub-problems. Even though the number of LSP iterations is high when the problem is

handled in two separate subregions, the total number of function evaluations is only 6,550.
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Figure 3.5: Cluster analysis approach for a two variable problem.
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As was experienced in a nnmber of other examples, the high number of LSP iterations

does not necessarily imply inefficiency of the overall search, but the cumniative nnmber

of function evaluations. In this instance partitioning of the problem permitted efficient

point generation and lowered the number of function evaluations by a factor estimated

at or lower.

3.2 Penalty functions

Generally, feasible sample points are randomly generated with LSP for constrained op

timization problems. In some cases the feasible region defined by the set of ineqnality

constraints might be so small compared with the initial variable bounds that acceptable

point generation reqnires an impractically large number of trial points. Similarly other

problems might have equality constraints involving nonlinear eqnations which do not lead

to reducing the nnmber of variables by elimination. Such difficulties can be overcome by

introducing penalties into the objective function.

One conventional penalty approach converts the constrained problem to an eqnivalent

unconstrained problem so that those methods developed for unconstrained problems can

then be applied [Bazaraa, 1979]. Suppose there is an optimization problem with only

equality constraints, given as follows

Minimize f(x)

Subject to: h(x) = 0 for i = 1,2,..,l

x e Ftm

This constrained problem can be transformed to an equivalent unconstrained form as

Minimize f(x) + /3(h(x))2

Subject to: x C Ftm
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where /3 is the penalty parameter, a non-negative large number.

A similar modification is made to problems with inequality constraints. If the original

problem is

Minimize f(x)

Subject to: gj(x) 0 forj = 1,2 ,rn

x e B’2

then the transformed problem would be expressed as

Minimize [f(x) + /3 maximum {0,g(x)}]

Subject to: x E B’2.

For general optimization problems involving both equality and inequality constraints,

given as

Minimize f(x)

Subject to: h1(x) = 0 for i = 1,2,...,l

g(x)0 forj=1,2,...,rn

x e B’2

a penalty function, a(x) is defined as

m 1

a(x) = >: ql[gj(x)] + i,b[h(x)] (3.3)
j=1 i=1

where and 5 are functions satisfying

f th(y)=O

I q5(y) > 0 otherwise

I z(y) =0 ify= 0

I.. z/’(y) > 0 otherwise

and y is a dummy variable representing h(x) and gj(x) respectively.



Chapter 3. LSP PERFORMANCE IMPROVEMENT 67

Usually, and ‘ are used in their power form as

(y) = [max{O,y}]r

where i’ is a positive integer [Bazaraa, 1979].

The modified objective function, which is also called the auxiliary function, is theu

writteu

f(x)+Ba(x) (3.5)

aud the transformed problem would be finally expressed as

Minimize f(x) + 5a(x)

Subject to: x e K’

In the above expressions the penalty parameter 5 could be a fixed value or a se

quence tending to infinity such that for each iteration k, /3k 0 and Pk+1 > /3k. With the

quadratic penalty function, where ct(x) =
ç[g3(x)]2f1i/i[h1(x)]2,the penalty pa

rameter 5 in Equation 3.5 must become infinite in order to achieve complete convergence

on x [Gill et al., 1989].

In the case of an exact penalty function, where cv(x) = I g(x) I + Z=1 ‘ I
h1(x) I the penalty parameter /3 in equation 3.5 takes a constant value and /3 0. There

is then a specific value of /3 50 that x, the unconstrained problem minimizer, is also the

solution to the original constrained problem [Gill et al., 1989].

The meaning of “large value” in connection with specifying /3 is not very clear for a

particular problem and selecting an inappropriate value of /3 can lead to computational

difficulty If /3 is too small, the penalty function may be unbounded below and as a
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consequence produce a solution point far from the feasible region. If j3 is too large then

it induces an ill conditioned Hessian matrix which can imply slow convergence for many

NLP algorithms. Matrix condition is defined as the ratio of its largest and smallest

eigenvalues, and a matrix is ill conditioned if this ratio is large.

With large values of more emphasis is placed on feasibility and most procedures

for unconstrained optimization will move quickly towards a feasible point. But it is

possible for search termination to occur on a feasible point even though the point is far

from optimum. This is especially true in the presence of nonlinear equality constraints

[Bazaraa, 1979].

There is no clear indication that progressively increasing fi has any advantage over a

fixed large 3 in saving computational effort. But using several values of j3, together with

their corresponding solution points, to predict the solution point with the next /9 value is

a classical search procedure. Interpolation is sometimes used to predict the next /9 from

the past values [Gill et al., 1989].

3.2.1 Penalty parameters and LSP

Generally LSP responded best to the use of an exact penalty function as opposed to the

quadratic penalty function. The gentle slopes induced in the objective function surface by

exact penalty functions encourages LSP to form larger volume cuboids at every iteration

when compared with the surface produced by the quadratic penalty function.

In practice, LSP starts finding the solution for the auxiliary function with a large /3,

and reduces the value of 3 by 1O%-30% at every iteration. In this research a sequential

reduction of the penalty parameter has been found to provide the greatest enhancement

to the efficiency of the LSP search. This approach is exactly the opposite of the traditional

NLP penalty function strategy, where the value of 3 increases as optimum is approached.

The advantage of sequentially reducing the penalty parameter is that the decrease
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brings about the acceptance of more infeasible points to the cnrrent cuboid. With the

introduction of more infeasible points into the cuhoid, the cuboid volume is larger than

in the constant penalty parameter case. This in effect retards the rate of reduction of

cuboid volume over consecutive iterations. Although slow cuboid reduction requires more

iterations to reach convergence, its compensating advantage is that the newly generated

points are retained for a greater number of iterations than with the constant penalty

parameter strategy. Furthermore, because points farther out of the true feasible region

are tolerated with a lower penalty parameter value, fewer function evaluations per ac

ceptable point are required. The process of reducing j3 continues until a(x), and hence

the penalty term /3a(x), goes to zero. This must occur before convergence so that all of

the unmodified constraints are satisfied and the original problem is finally solved.

Figure 3.6 demonstrates the effect on the level set boundaries of modifying the penalty

parameter for a one variable problem with two constraints. The objective function is a

straight line. The problem can be formulated as follows

Minf(x) = kx

Subject to:

x>3

x 3.1

where Iv is a constant.

A penalty is applied to just one of the constraints, i.e. to x 3 only. Those lines

designated as Pi(x), P2(x), etc. indicate plots of the auxiliary functions, that is the ob

jective function plus the penalty term, at the first, second, etc. iterations. The c1, c2, etc.

indicate the level set c-value established in the LSP search at the corresponding iterations.

The plot of the intersection points of the level set values and the corresponding
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auxiliary function values represents the objective function of an equivalent unconstrained

problem.

The whole idea of reducing the penalty parameter is to generate new points more

efficiently and at the same time smoothly contract the level set boundary so that the

search eventually excludes any infeasible space. The full benefits of penalty modification

may not be achieved unless a near optimum rate of reduction is used, otherwise the

following problems may arise:

• If the reduction of 9 between consecutive iterations is large in the initial iteration,

then the influence of the penalty term on the objective function must be small in

the later iterations as 3 approaches its lower bound value. Then many infeasible

points generated at the later iterations would be present in the acceptance set. In

that case the search is not directed towards the feasible region and may converge

on an infeasible point.
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A large reduction of /3 allows more infeasible points to remain in the level set for

a longer period, If the problem is divided into subregions because of suspected

multiple optima, it is possible that a subregiou may contain only infeasible points.

Then the search in that subregion would obviously lead to an infeasible solution

point.

• A very small reduction of /3 does not allow many infeasible points into the accep

tance set, hence introduces an inefficient search.

In order to overcome the problems mentioned, two measures are taken.

i) The reduction of /3 between consecutive iterations is kept small (between 0.1 and

0.25 of /3).
ii) A lower bound for the parameter /3 is predetermined. The upper bound can be as

high as required, though extremely high values would lead to an inefficient search.

Typical values of /3 and its reduction are given in Chapter 5, section 5.2.6.

3.3 Inequality and equality constraint relaxation

When the feasible region defined by the set of the constraints is very small or very narrow,

or defined by equality constraints, the generation of acceptable points can he inefficient

and even difficult. To overcome such difficulties and speed up the search, the constraint

functions can be initially relaxed and the relaxation eliminated in the later iterations.

The relaxation method may also be applied to the bounds of the original cuboid if it is

felt that the bounds are too tight for efficient point generation. Penalties are associated

with the relaxation of constraints, so that infeasible points are discouraged from staying

in the acceptance set. As a result of the penalties introduced into the problem, the final

solution is likely to he found in the feasible region.
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The idea of constraint relaxation in this research was first investigated using slack

variables as introduced in the reduced gradient method [Lasdon & Waren, 1982]. But

the introduction of these new variables increased the dimensionality of the problem with

out any compensating gain in performance. Instead, the constraints are allowed to relax

by simply adding (or subtracting) a constant term to the right hand side of the con

straints. Equality constraints are replaced by two constraints with the constant added

or subtracted from their right hand sides to form an interval. The constraint relaxation

raises the volume of the feasible region which in turn raises the ratio of the feasible region

volume to the cuhoid volume, as a result the efficiency of generating acceptable points

is increased. Figure 3.7(a) and (b) demonstrate how constraints are relaxed for equality

and inequality constraints respectively for a two variable problem.

The number of function evaluations at the first iteration N), gives a general indication

on how tight the constraints are. For a highly constrained problem, N) would be very

large when compared with the value of 2 x Niceep expected for an ideal unconstrained

problem.

Setting the magnitude of the relaxation is a trial and error process. The constraints

are relaxed by an initial value and N) is compared with 2 x Nkeep. If the response to

this initial relaxation does not seem to be promising, the search should be interrupted

during or after the first iteration and the constraint relaxation adjusted until the user

feels efficient point generation has been achieved. While this process is unquestionably

heuristic, initial trial relaxation values which appeared to he “sensible” in the context of

the problem being solved were often successful or were easily corrected from the feedback

provided by N.
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3.3.1 Tightening of relaxed constraints

The initially relaxed constraints are progressively tightened so that the level set will ulti

mately be confined to the feasible region. Ideally the relaxed constraints will be tightened

back to their original form before the convergence criterion is met. This is achieved by re

ducing the relaxation by a fixed fraction at each iteration. How far constraints should be

tightened at each iteration is a compromise between the smallness of the feasible region

and how fast the search is expectd to achieve convergence. If the relaxation reduction

per iteration is high, the search might contract into a very small region and the original

difficulty will again be faced. On the other hand a very small reduction at each iteration

can lead to a high number of iterations. Reducing the relaxation to a typical value of 0.75

of its value at the previous iteration would leave to a reduction to 0.01 (i.e. 0.7516) of the

initial relaxation after the l6” iteration. The ideal value of the tightening parameter is

related to the complexity of the constraint functions and the size of the feasible region

but was found to be robust in the region of 0.75 for virtually all of the test problems

K2 h(x)=O

x2

Rilaxid band
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p
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Figure 3.7: Relaxation of constraints.
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where relaxation was appropriate.

3.4 Cuboid stretching

At any stage of the search, the acceptance set is expected to be a subset of the cuboid.

The minimum and maximum coordinate values of the confirmed points are used to locate

the cuboid sides. Dne to limited sampling, the true bounds of the level set may actually

extend beyond the observed points. Therefore, the confirmed points always tend to

produce a biased under estimate of the bounds of the true level set. This bias is corrected

by extending the cuboid faces outwards by some prescribed amount. This is referred to

as cuboid stretching. The ideal size of this correction is not known in practice but over

correction only incurs a small penalty in the efficiency of point generation, while under

correction can have serious consequences of omitting a global solution. Overcorrection is

preferred and a good heuristic estimate can be made.

The following expressions to stretch the bounds of the cuboid were proposed in [Chew

a Zheng, 1988]. For a one dimension case, let be a random variable on the interval

[a, b] with distribution function F, and F is assumed to be a uniform distribution.

Assume that t points are sampled, that is i,e2,...,e± are confirmed points in the

acceptance set and t is the number of confirmed points. We consider to estimate the

unbiased estimators of a and b from the sampled points. Suppose a = 0 and b = 1

B1 = mm {1,2

B = max

Then the distribution functions çór and 4j of B1 and B are respectively

0 yO

co(Y)= 1_[1_F(y)]t 0<<1

1 y1
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0 iO

&(u) = [F(y)]’

1 yl

The expected mean values for each bound are given as

E[B1] JJ (1 — F(y))tdy, which for uniformly distributed F is simpilfied to and

E[BU] = 1
— JJ (F(y))tdy, which is simplified to

The corrected new bounds are estimated as

B1” = B1 —

_______

Ba” = B + B-B1

where B1” and BU” are the unbiased estimators of the end points.

The consequence of this bias correction is that each cuboid side is stretched by
—---

times the length of the original size at every iteration, where n is the number of confirmed

points surviving in the acceptance set.

3.5 Skewness adjustment

Skewness adjustment is a combination of shift of cuboid location and cuboid stretching

at the end of each iteration, and was also proposed in [Chew & Zheng, 1988]. It was

confirmed in this research to be one of the most important heuristic devices for speeding

up an LSP search and increasing the reliability of convergence on optimal points.

Since the adopted point generation scheme for new points in a cuboid utilizes a

uniform random distribution along the axis of each variable, the possibility of missing

an important point is high when the optimal point lies at a boundary, and even greater

if it lies at a corner of the feasible region formed by multiple boundaries. The danger
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of missing an important boundary point can be lowered either by substantially raising

which would in turn increase the total number of function evaluations, or shifting

the cuboid to ensure that it straddles the most promising region. When the acceptance

set at any iteration is skewed, that is when the point with the lowest objective value is

close to the boundary of the cuboid, an adjustment can be made to both the size and

location of the cuboid so that the minimum point would be shifted towards the centre

of the cuboid. A slight shift of the cuboid about the current minimum point helps more

points to be generated around the current minimum point.

With a skewness adjustment the shift or translation of the cuboid is governed by the

location of the single best confirmed point. This introduces a bias where more points

are generated close to the current best point. But, since the magnitudes of the shift

are controlled by certain user selected parameters, there is a risk that the detection of

multiple optima can be undermined with imperfect skewness parameters.

The magnitude of the shift is somewhat arbitrary. Quantitatively a shift which is too

large may lead to missing an optimal point, while a shift which is too small does not

speed up the search nor direct the search towards the optimum significantly. Experience

in this research suggests that there is a rauge of shift which results in very low chance of

missiug the global optimum and this range is in the order of 4% to 10% of each current

cuboid side length.

Figure 3.8 demonstrates the principle of skewness adjustment in a two dimensional

problem. There, the global optimum is located at x’, while .Qi and 92 are two constraint

functions and the objective function and its gradient is represented by the f(x) isoquants

and the arrows. The rectangular boxes represent the cuboids at consecutive iterations,

the largest at the earliest iteration and the smallest at the last iteration. In the iterative

process of LSP, points generated close to the right corner of the cuboid would be discarded

earlier since they would not fulfil the level set condition. The remaining points would
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tend to cluster towards the global optimum point. But because of the limited sample

point generation and deficiency of sampling on the boundary itself, points around the

lower left corner of each cuboid may not be sampled. An unadjusted cuboid at any

iteration except the first excludes the lower left corner of the previous cuboid. Therefore

the location of the current cuboid gets further away from the global optimum with each

iteration. Consequently, convergence without skewness adjustment would occur at a non

optimal point x”.

When the skewness adjustment is implemented, as shown in Figure 3.8(b), the cuboid

is shifted towards the global optimum at every iteration and eventually convergence

occurs at the true global optimum.

(a) No skewness adjustment (b) Skewness adjusted

x2

I

‘

x2

I

I

xl
XI

xl

Figure 3.8: Shift of cuboid with skewness adjustment.
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Skewness adjustment can be nsed for problems of any dimensionality and the adjust

ment is applied independently in each dimension. The procedure in each dimension is as

follows.

Define the skewness adjustment 6 at a single iteration as

6
— (x’ — B1)

— (B — x’)
— (B—B1)

defining X,. = B — B1, then

6
(2x’—(B11+B)

(3.6)

Where B1 and B are the lowest and highest observed points measured on this variable’s

axis, x’ is the coordinate of the minimum confirmed solution point in the current cuboid

and Xr is the length of the cuboid side in this dimension. Note that 6 can be +ve or

—ye in the interval —1 6 1.

Adopt three skew parameters: which acts as a skewness activator threshold; and

6 and 62, which limit the size of the skewness adjustment. Their specific values will be

discussed in Chapter 5, section 5.2.5, but must be bounded as follows.

o 6 1

o 62 6 1

Adjustments to the cuboid bounds are made in relation to the size of the skew and

the skew parameters 6 and applied only if 6> 6 or 6 < —6 [Chew & Zheng, 1988].

I B B1 + 662Xr
If 6 6

B = B + 661X

I B = B1 + 661X
ff6 —6

B = B + 6623Cr
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where B and B are the new lower and upper bounds of the cuboid.

Such an adjustment results in both stretching and shifting of the cuboid. The stretch

ing of the cuboid z\ would be between 6(6 — 62) and (6 — 62), whereas the shift of the

centroid of the cuboid A ranges from 66 up to 6, depending upon the degree of the

skew, that is

— 62) S (6 — 62)

66 S A S 6. (3.7)

Experience in this research revealed that skewness adjustment is not a good approach

for discrete variable problems, especially when the sides of the cuboid become small

relative to the discretization interval. For a discrete variable problem, the shift and

stretch of the cuboid introduced by skewness adjustment is not just a small fraction of

the cuboid dimensions. If the cuhoid side length for an integer variable was say 3 units,

then the minimum shift along that axis, will result in a shift of 33% of the total length.

Such a significant alteration in the location of the cuboid can lead to the exclusion of

important points.

3.6 Search domain modification

The efficiency of generating acceptable points in a cuboid declines as the volume ratio

between the region occupied by the acceptance set and the cuboid gets smaller. One

of the typical cases is when the x r%1 xj scatter diagram of points in the acceptance set

form a cluster around a diagonal of the current cuboid. In such cases generating points

within the cuboid boundary is inefficient. Two different techniques were considered in

this thesis to improve on this situation. The first technique was the rotation of the axes

of the cuboid so that one of the sides of the new cuboid would be almost parallel to the
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line which passes through the centre of the cluster. This technique requires substantial

extra computational effort since it involves transforming all points to the new rotated

axes, constructing the cuboid and generating new points, and then transforming each

new point back to the initial axes to check feasibility and compute objective function.

The second technique, which is discussed in detail in this section uses a non-right angle

parallelepiped as shown in Figure 3.9 instead of a cuboid as a search domain. The

non-right angle parallelepiped is referred to here as a rhombohedron.

Rhombohedron is defined as a parallelepiped whose faces are parallel

ograms in which the angles are oblique and adjacent sides are unequal.

The use of a rhombohedron increases the search efficiency by the ratio of the volume

of the (minimal) cuboid to the volume of the (minimal) rhombohedron.

Xj

V
—

• /]...Confirrned points
. •

. Cuboid

Rhombohedron

xi

Figure 3.9: Contrast between cuboid and rhombohedron in two variable space.

The shift from the cuboid to the rhombohedron search domain can be instigated

when the displayed scatter diagrams of the current acceptance set indicate a strong
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correlation between a pair of variables. Alternatively a statistical procednre to calculate

a correlation matrix of all variables can be initiated at any stage of the search. If the

absolute value of any of the correlation coefficients is greater than a pre-specified value,

a linear regression analysis can be performed between the highly correlated variables.

Choice of the dependant and independent variables is arbitrary.

Point generation in a rhombohedron is demonstrated in Figure 3.10. Initially a point

is randomly generated on the independent variable axis within the current cuboid, for

example point a in Figure 3.10. The corresponding value of the dependent variable is

then calculated on the regression line, i.e. at point b in the figure. The generated point

to be considered in the level set would be randomly chosen around the regression line

plus or minus a pre-specified band width. That is to say the candidate point would be

generated randomly on the line joining points c and d.

Finally the dependent variable value at point b is randomly perturbed up or down to

produce a generated point. The limits of this perturbation were defined in this work by

+ 3x se, where se is the standard error of the estimate returned by the regression analysis.

This ensured that the random generation of new points occurred within a rhombohedron

large enough to virtually eliminate the risk of excluding any of the acceptance set.
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.

Regression line

b/f — Range of perturbation

Current cubold

xi

Figure 3.10: Point generation in a rhombohedron search domain.



Chapter 4

TEST PROBLEMS

The merits of an optimization method lie in its ability to solve a wide range of problems

within the reqnired bounds of accuracy and reliability A newly developed method cannot

be evaluated solely on its theoretical details but has to be tested numerically. Ideally

the same standardized testing procedure can be applied to all optimization methods

but such a procedure has not yet evolved. The practical alternative is to apply the

optimization method to a wide variety of suitably challenging test problems. Another

equally important alternative is to use test problems which provide insights into the

strengths and weaknesses of a particular method.

A major component of this research effort was expended on exploring the viability

of LSP in solving both mathematical and practical engineering problems. This involved

solving some practical engineering optimization problems where the dimensions and the

non linearities of the problem challenge existing optimization methods. In addition, a

new test problem, designed specifically to explore perceived weaknesses with LSP, was

developed.

About 200 nonlinear optimization problems with published solutions were collected

from the mathematical literature. A selection of 78 of the more challenging of the 200

mathematical test problems solved with LSP are listed in Appendix A. Solutions cited

in the literature and the LSP solution(s) are given for each problem. The problems

documented in the Appendix were chosen for two major reasons. First, for the challenge

they have presented to many of the existing NLP methods. Second, because they were

83
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found to provide useful insights into LSP performance.

A second group of test problems consists solely of engineering problems. The prob

lems in this group are pubhshed practical problems known to be difficult for many NLP

methods and of interest to engineers. Some of these publications present specific NLP

approaches developed to solve just one of these problems.

A third group of test problems involves parameter fitting for a specified model. The

values of the model parameters are established by optimizing various nonlinear best fit

criteria. This is an area of apphcation where LSP provides a unique and potentially

attractive perspective. Some of these models are used to demonstrate the capacity of

LSP to refine estimates of parameters previously established with nonlinear regression

methods.

In every one of the problems, the problem formulation used with LSP was tested for

numerical agreement with the published solutions. Except for very few cases, all the

solutions in the source literature were verified. Any deviation from the original solution

is reported and the discrepancy discussed.

Whenever possible, the widest possible variety of problems are addressed to explore

the robustness of LSP. However, the main difficulty experienced was in finding suitably

challenging mathematical and engineering test problems. Most of the published test

problems uncovered in the literature were felt to be inadequate for testing all qualities

of LSP. In response, one new, parametrically adjustable, mathematical test problem was

developed during this research. Significantly, many of the existing NLP methods fail to

solve this new test problem unless a favourable starting point is selected. Details of this

new test problem are provided in section 4.2.1 of this chapter.

The algorithm used in addressing all of the test problems in this research is presented

in Figure 4.1 as a flow chart. The algorithm performs all tasks automatically except

those indicated as optional in the figure. The optional tasks can be made functional at
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Relax constraints

85

Generate replacement points * optional

Evaluate objective at each point

Evaluate moments
level set value; c=Max{f(X)1

I Discard bad points

Check for linear correlation *

Check for distinct clusters *

Define new cuboid
Stretch cuboid bounds

Make skewness adjustment

Figure 4.1: The LSP algorithm as implemented in this thesis.
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any stage of the search by the user as the need arises or may be triggered automatically

when default conditions occur. These optional tasks can be computationally intensive

and are often not crucial to finding a solution.

4.1 Coding of mathematical test problems

The mathematical problems documented in Appendix A are coded in such a way that

the number of variables and constraints involved can be easily recognized from the code.

Each problem coding takes the form

[Problem A — B — C — D, Location in thesis]

where

A designates the number of variables in the problem

B designates the index number within that particular dimeusionality group

C designates the number of equality constraints

D designates the number of inequality constraints.

For instance, [Problem 3-7-2-1, Appendix A] would mean the seventh problem within

the set of 3 variable problems, and the problem has two equality and one inequality

constraint. It is documented in Appendix A of this thesis.

Most practical optimization problems assume upper and lower bounds on each vari

able but these bounds are not counted here as constraints. The only instances when

bounds are considered as inequality constraints are where the source literature dictates

their use for specific reasons.

The original source for each problem is referenced.
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4.2 Mathematical problems

It is not easy to find test problems which can reveal all the strengths and weaknesses of

a single NLP method. Recognizing this difficulty, a wide range of solved test problems

were chosen from different journals and books. The more interesting mathematical test

problems solved using LSP are documented in Appendix A. Results given in the literature

and those obtained with LSP are documented along with each problem. The distribution

of these problems according to the number of variables is summarized in Table 4.1.

Number of Unconstrained Constrained
variables problems problems Total

1 5 1 6
2 8 15 23
3 5 12 17
4 3 9 12
5 - 4 4
6 - 6 6
7 - 3 3
8 - 3 3
9 - 2 2

15 - 1 1
20 1 - 1

Table 4.1: Summary of test problems reported in Appendix A

About two thirds of the test problems documented in Appendix A involve up to 4

variables. Their specific characteristics are intended to challenge NLP methods apart

from the issue of dimensionality. Furthermore, these low dimensional problems are rela

tively easy to visualize. The space defined by the set of constraints and the surface of the

objective function can often be interpreted and clarified in simple 2 and 3 dimensional

graphs. Such graphs help visualization of the search process and its response to the

difficulties presented by the problem. The experience gained with the low dimensional

problems can often be exploited in higher dimensional problems.
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Comparison of LSP results with the solutions given in the literature showed that,

in about 95% of the cases, the LSP results confirmed those cited in the literature. In

about 5% of the cases, LSP gave better results than have been previously published. Two

types of improvements were observed. One was the identification of multiple solutions

with LSP when the source literature gives only some of these solutions. LSP generally

found the extra solution point(s) on a single run. For example, only two solution points

were reported in the literature for [Problem 2-11-0-0, Appendix A], but LSP found two

additional global optimal points. A second type of improvement was observed when LSP

converged at a different solution point from the one given in the literature and with an

improved objective function value. Such improvements were rare since test problems

often favour the NLP methods that they were developed to demonstrate. Examples of

test problems with improved solutions are: [Problem 4-8-0-3]; [Problem 4-10-1-2]; and

[Problem 7-2-0-3, Appendix A].

There were several instances where, when the solution cited in the literature was

tested, the constraints had been significantly violated, although this was not acknowl

edged. In other instances, the claimed optimal value of the objective function did not

agree with the calculated value at the solution point cited. For example, the constraints

of [Problem 9-2-6-0, Appendix A] were significantly violated at the optimal solution point

in the published solution. Similarly the optimal objective function value cited in the liter

ature for [Problem 1-4-0-0, Appendix A] can not be achieved at the given solution points.

LSP found multiple global optimal points which produce a superior objective function

value for the same problem. When corrections are made to such incorrect solutions in

this thesis they are not reported as improvements, but as errors in the source literature.

Some special problems were encountered by LSP when solving some of the test prob

lems and are reported. Either the results were inferior to those mentioned in the literature

or the number of function evaluations was considerably higher. An interesting example
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is [Problem 2-12-0-4, Appendix A], discussed in detail in Chapter 5, section 5.5, where

the cause for the difficulty is associated with the geometry of the feasible region.

4.2.1 The Road Runner function

This new test problem was designed to test global optimization methods in general as

well as to specifically challenge LSP and explore its weaknesses. It produces an objective

function surface which has an easily missed fissure containing the global optimum and

a topology which can cause fragmentation and dispersion of the level set. The scale of

its prominent features and the location of the global optimum point are controlled by

two parameters. The first parameter a, in Equation 4.1 adjusts the size of the fissure

on the objective function surface. It controls how wide and how deep the fissure can

be. Here, fissure width is defined as the distance between the fissure edges on each

variable axis. Depth of the fissure is defined as the difference between the maximum and

minimum objective function values. The second parameter b controls the location of the

global minimum. Figure 4.2 shows the influence of parameters a and b on the objective

function, particularly at the edges of the fissure region.

This test problem has been named “The Road Runner function”, after a popular film

cartoon which is set in terrain which resembles the extreme topography of the objective

function surface produced. The problem is a challenge for all local optimization methods

unless a favourable starting point is chosen. It is also a challenge for LSP since it is

particularly sensitive to sparse sampling of the level set. The additive structure of this

function allows it to be easily extended to any number of dimensions while retaining the

same critical features.

The general n dimensional formulation of the Road Runner function is given in Equa

tion 4.1
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a x @ fissure edges 1(x) at edges Fissure width Fissure depth

5 ..431l4, 127782 4.22497, 1.76965 1.70894 4.22497

10 •0.32818, 100210 7.24521, 2.31046 1.41029 7.24521

20 .0.26295,0.95756 13.24932,3.21143 122051 13.24932

Figure 4.2: The Road Runner function in one dimension to show the influence of a.

n

f(x)={(xj_b)2+aIxj_bI}?
s=1

90

(4.1)

where a and b are parameters which directly adjust the scale of the critical topographic

features and n is the required dimensionality for x. This function will always have its

single global minimum at x, = b; i = 1, ..., n where f(x) = ZerO.

The function becomes a unimodal problem if the search domain is restricted to the

small region around the global optimum. The search domain has to be bigger than this

15

10

5

0

x

a=5 a=10 a=20
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minimal region to observe all of the features of the function. Thus, the bounds on each

variable should be wide enough to enclose regions beyond the fissure width. Multiple

local optimal points develop with this bigger search domain and their number increases

exponentially with dimensionality. The total number of local optimal points is 3, 9 and

27 for one, two and three dimensional functions respectively. In general, there are

local optima for an ii dimensional function. Only one of the local points is the global

optimum for each case. Two and three dimensional plots of the two dimensional version

of this function are given in Figure 4.3 using the values a = 10 and b = 0.5. In this case

the function is

1 1

f(x) = {(xi — .5)2 + 10 — .5 }T + {(x2 — .5)2 + 10 I — .5 I}’.

Figure 4.3(a) shows that the function has two sets of valleys. Each set consists of four

valleys having similar depths. The depth of each valley increases as it goes farther away

from the global optimum. The 4 valleys which are parallel to the axes have all equal

depths. The other 4 valleys which are diagonal to the axes have also similar depths hut

different from the first four. The local optimal points appear at the intersection of the

valleys and at the boundaries formed by the bounds of each variable. The global point

is at x = (0.5, 0.5), at the centre of a very narrow fissure, where f(x) achieves its global

minimum of zero.

Figure 4.3(b) clearly reveals the influence of starting point location on the solutions

obtained with gradient optimization methods. Gradient based methods always converged

at a local optimum unless they started at a point very close to the global optimum. Figure

4.3(b) shows 36 arbitrarily chosen starting points, and the corresponding optimal values

obtained using gradient optimization methods. The results shown in Figure 4.3(b) were

found using the popular NLP methods such as FMIN, GRG2 and GAMS which uses
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MINOS. Searches starting at points with circular marks converge at the true global

optimum. Those searches which started at points other than those identified by circles

converged at local optimal points. The optimal objective function values mentioned in

the figure are for the purely unconstrained cases, i.e. where there were no bounds on the

variables.

As was intended this problem challenges LSP, particularly when the initial variable

bounds are wide and the value of I’keep is low. With a large cnhoid, the ratio of the fissure

volume to the cuboid volume becomes very small, so points generated in the early stage

of the search are unlikely to fall within the fissure. Because of the nature of the objective

function surface, points far away from the fissure produce better objective function values

than those that are close to the fissure but not actually within it. As the level set value-c

approaches 1.0, there is little size reduction in the cuboid with successive iterations, but

the level set value-c continues to improve at each iteration. This situation is the least

advantageous for LSP because the ratio between acceptance region and cnboid volumes

gets very small where the search becomes inefficient.

If an initial cuboid with one of its corners very close to the global optimum is used,

the chances of generating sample points within the fissure are much lower than when the

global solution is more centrally located in the cnboid. The reason is that, in regions close

to the global optimum, points produce very high objective function values and are quickly

rejected from the level set. Therefore, unless points with low objective function value

are sampled on either side of the global minimum, the region close to the global point

can be excluded from the current cuboid at an early stage of the search. The situation

gets worse with low Nkeep. Consequently the search terminates at a point other than the

global optimum. The reliability of LSP can always be improved by raising With

a higher number of points, the chances of generating points in the fissure is increased at

the early stage of the search.
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Figure 4.3: The Road Runner function in two dimensions.



Chapter 4. TEST PROBLEMS 94

The Road Runner function was solved using LSP for various number of variables. The

result for the 2 dimensional function with iV = 20, convergence criterion VM i*1O°,

a = 10 and b = 0.5 and the initial bounds —4< xi,x2 4, was

f(x*) = 4.0E — 4

at xK = (0.5000, 0.5000).

The number of function evaluations expended to meet this convergence criterion was

4,230.

For a two dimensional Road Runner function there are 8 valleys stretching radially

away from the global optimum. The valleys are equally spread in the search domain and

the minimum point in each valley occurs at the boundaries formed by the variable bounds.

Such a distribution of the local minimal points is believed to introduce the greatest

inefficiency in set based search schemes and in particular to LSP. Due to the orientation

and spatial distribution of the valleys, the domain modifications discussed in Chapter 3,

section 3.6, do not improve the LSP efficiency as there is no search domain which can

enclose all confirmed points more efficiently than the cuboid. The function with rotated

axes has features similar to the original one, so it does not bring any computational gain

whatsoever.

4.3 Engineering test problems

For the most part real world engineering test problems for optimization methods deal with

the search for superior designs. Such problems often involve both continuous and discrete

variables. In addition the functions involved may be discontinuous and non differentiable.

Most of the established nonlinear optimization methods are designed to handle only

continuous and differentiable functions and are local rather than global optimizers. These
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restrictions may account for some of the resistance by civil engineering practitioners to

the application of these existing optimization methods for solving practical problems.

There are very few well documented civil engineering test problems in the literature and

this scarcity represented one of the major difficulties in testing LSP’s capabilities in that

field of specialization. In addition, those examples which do exist in civil engineering

were not developed to isolate and test specific qualities of optimization methods, other

than perhaps their high dimensionality capabilities.

Floudas and Pardalos [Floudas & Pardalos, 1990] documented a collection of engi

neerin test problems for constrained global optimization algorithms. A few of the more

interesting problems have been selected from this collection. Significantly, some of the

results given in the literature are not global solutions. For instance, solutions to the

4-variable problem [Problem 4-10-1-2, Appendix A] and the six variable problem [Prob

lem 6-5-3-12, Appendix A] are far from the optimums which are cited on page 29 of the

book entitled 4 collection of test problems for constrained global optimization algorithms,

[Floudas & Pardalos, 1990]. In some cases the reported optimum value of the objective

function is different from that obtained by using the values in the solution vector. The

4-variable problem already mentioned [Problem 4-10-1-2, Appendix A] is an example of

such inconsistency. In other cases the optimal points given for some test problems violate

the constraints. Examples of these are the 7-variable problem on page 153 and the 27

variable on page 67 in the same mentioned book.

Because of such inconsistencies, many test problems which at first sight seem to be

well documented were not of any value for LSP testing purposes. In spite of having to

reject many, about 20 credible published engineering problems were found and used for

test purposes. These problems varied from 3 to 38 variables, and included both discrete

and continuous variables. They cover applications of optimization to pipe network de

sign, structural truss design, treatment basin design, heat exchange design, air pollution
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control design, irrigation system design and hydrological model parameter determination.

Details of 11 of the most challenging problems, including their solutions, are given in the

next subsections.

In most cases the LSP results were comparable to the solutions given in the literature,

but again some improvements were observed. For instance, a 12.91% improvement on

the published objective function value was found with the pipe network design [Problem

32-1-40-34, section 4.3.2]. Another improvement was obtained with a better fit for the

hydrologic model parameters which, from a hydrologist’s point of view, produced a far

more reasonable unit hydrograph for the UH ordinate determination problem [Problem

19-1-21-0, section 4.3.5].

4.3.1 Basin design [Problem 3-16-1-3]

Source: F. Douglas Shields Jr., and Edward L. Thackston, “Designing Treatment Basin

Dimensions to Reduce Cost”, ASCE, Journal of Environmental Engineering Vol 117 No

3 May/June 1991.

Method of optimization used in the source literature: Choosing the best curve out of a

series of Length/Width versus cost plots drawn separately for different number of spurs.

Problem formulation:

A rectangular shallow treatment basin is to be designed with internal spur dikes, as

shown in Figure 4.4. The designer is expected to choose the basin length L, the basin

width I4 at water surface, the number of dikes N and the ratio of spur dike length to

basin length r. The choices have to satisfy the governing constraints at a minimum cost.

The geometric and hydrologic relationships are given as follows.

Geometric relationships



Figure 4.4: Treatment basin.

A=LW—NrLW3

V=LWD-NrLV

L1 W
w =rL(N+1)±(Nl)

or
Lf L 2

V =(W)r(N+l)

where

A is the water surface area calculated as the total basin area at the water

surface elevation minus the area occupied by the spur dikes

V is the basin volume, which is calculated as the total basin volume

assuming that the volume of side slopes below water is negligible,

minus the volume of the spur dikes

L is the length of basin
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W is the width of basin

W3 is the width of spur dike at the water surface

N is the number of spur dikes

r is the ratio of spur dike length to basin length

D is the depth of water

V’ is the unit volume of spur dike below the water line

Lf is the flow length

Wf is the flow width

Hydraulic relationships

HE4

where

HE = hydraulic efficiency

t = mean hydraulic retention time

T = volumetric residence time

Q = mean flow rate

For a given Q, the value of T can be adjusted by changing the basin geometry.

Experimentally the hydraulic efficiency is found to be related to the flow length, Lf,

width, Wf, ratio, expressed as

HE = O.84[1 — exp(O.59J)}

Therefore
v_t
QHE
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or
LWD—NrLV t

Q — O.84{1 — exp[_O.59()r(AT + 1)2]}

For a small volume of the spur dikes, NrLV, the basin volume is approximately LWD,

then

LW=
tQ

O.84D{l — exp[—O.59()r(N + l)2]}

Normally t, Q, and D are fixed by design constraints so

LW
a

- {1 - exp[-O.59(4)r(N + l)2]}

where a = tQ/O.84D.

The basin cost includes the costs of land, dikes, inlet and outlet structures and access

roads. If f is the ratio of the unit cost per foot of spur dike to the unit cost of the

perimeter dike, and if all other costs are negligible relative to the cost of the dikes and

land, then the basin cost may be approximated by

cost = [(2L + 2W + 4w) + fNrL]cd + [(L + 2w)(W + 2w)] ci

where w is the base width of the perimeter dike, cd is the cost per unit length of perimeter

dike and c1 is the cost per unit area of land.

If Q and t are known and the dike design has determined B, r and w then the only

remaining geometric variables to be chosen are L, W and N.

Two cases are considered:

Case a) No constraint on land.

Case b) Land is a constraint, width is fixed to 500 ft.
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The optimization problem has a nonlinear objective fnnction involving three decision

variables. One of the decision variables, N, takes integer valnes only. The problem has

one nonlinear eqnality constraint. The formnlation is

Minimize cost = [(2L -f- 2W + 4w) + fNrL]cd + [(L + 2w)(W + 2w)]ci

Subject to:

LW=
a

{1 — exp[—0.59(4)r(N + i)2J}

W,L,N 0

The predetermined constant values used and physical conditions of the basin are given

as follows.

- The basin is rectangular, and spur dikes are longitudinal, with r = 0.85.

- Perimeter dikes have crown widths of 10 ft, heights of 7 ft and side slopes of 1:3,

their unit volume is 217 cu ft/ft, with a base width, w, of 52 ft.

- Spur dikes have crown widths of 2 ft, heights of 7 ft, and side slopes of 1:2. Width

at the water line, W5, is 10 ft, and the unit volume below the water line is 100 cu ft/ft.

- Basin depth is 5 ft.

- Average flow rate, Q, is 27 cu ft/sec.

- The required residence time is 45 hours.

- The unit cost of the perimeter dikes Cd, is $20/ft.

- Unit cost of spur dikes is 810/ft, so f = 0.5.

- The unit cost of land is 81000/acre, or $0.23/sq ft.

The optimal solution cited in the literature and LSP’s output are given in Table 4.2.

Observations:

• It took 34 minutes to find the optimal solution for Case a of Table 4.2, and only 4

seconds for Case b with LSP on a 80386-33Mhz microcomputer.
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Case a Case b
Literature LSP Literature LSP

N 1 1 0 1
L(ft) 1245 1266 2310 2083.3
W(ft) 890 869 500 500
Cost (1000 $) 131 131 150 155.5
Error (ft2) 368.58 0.67 314.57 0.26

Error is the violation of constraints

Table 4.2: Optimal results for the basin design problem

• LSP found that the problem has multiple global optima for case (a). A number of

near optimal points were also found. The sizes of the final cuboid on the length

variable L side ranged between 1,267 and 1,303 ft. On the width side it ranged

between 853 and 869 ft whereas the number of spur dikes was always one. The

value of the cost within the final acceptance set varied only by about 0.15%.

• When the results cited in the literature are used, some constraints are violated

significantly.

4.3.2 Pipe network design [Problem 32-1-40-34]

Source:

1. E. Alperovits and U. Shamir, “Design of optimal water distribution systems”, Water

resources research, Vol 13, No 6, pp 885-900, 1977.

2. 0. Fujiwara, B. Jenchaimahakoon, N. C. Edirisinghe, “A modified Linear program

ming gradient method for optimal design of looped water distribution networks”,

Water Resources Research, Vol 23, No 6, pp 977-982, June 1987.

3. G. V. Loganathan and J. J. Greene, “Global approaches for the nonconvex opti

mization of pipe networks”, Water Management in the 90’s, 1993.
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Methods of optimization used in the source literature: LPG, Linear programming gradient

in [Alperovits & Shamir, 1977] and [Fnjiwara et al., 1987]. The solution is obtained via

a hierarchial decomposition of the optimization problem. The primary variables are the

flow in the network. For each flow distribution the other decision variables are optimized

by linear prograrmning. Post optimality analysis of the linear program provides the

information necessary to compute the gradient of the total cost with respect to changes

in the flow distribution. The gradient is used to change the flows so that a (local)

optimum is approached.

Two global search schemes, MULTISTART and ANNEALING, were used in [Lo

ganathan & Greene, 1993]. The problem is decomposed into a two stage problem where

one search strategy selects link flows and a second strategy, linear programming, seeks

the optimal pipe design.

Problem formulation:

Consider the network shown in Figure 4.5.

• the network has 7 nodes, the water demand and ground elevation at each node are

known.

• the head at each node has to be at least 30 rn above the ground elevation of the

node.

• the network has 8 links with known lengths.

• the data on allowable gradient, available pipe dimensions, maximum diameter of

pipe to be used, Hazen Williams coefficients and unit prices for each pipe size are

known.

Each link is assumed to comprise m pipes and the overall pipe cost is calculated as
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Figure 4.5: Two-looped water supply system.

COSt = qjmxijm

ijm

The objective of the problem is to minimize cost under the following constraints.

Xijm =

Xijm 0

LHi,m = JijmX:jm

103

(100)

link

0 node

0
demand

J = a(Q/C)’2D487
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Hmin <H8 + > J’ijmnijm H,,
m

where the first summation is over all links (i,j) connecting node s and node ii, and the

second summation is over all segments rn in each link.

The nomenclatnre is as follows:

Xjjm is the length of a pipe segment of the m’ diameter in the link

connecting nodes i and j;

cjjm is the unit cost of the m’ diameter in the link connecting nodes i and j;
L1 is the length of the link connecting nodes i and j;

AHijm is the head loss of the mth diameter in the link connecting nodes i and j;

ijm is the hydraulic gradient of the mt diameter;

Q is the discharge;

C is the Hazen Williams constant;

D is the pipe diameter;

113 is the head at node s;

Hmin and Hmax are the lower and upper head constraints at each node ii; and

a is a coefficient = 1.526 * 1010 when Q is in m3/s and B in cm.

Input data for the pipe system are given in Table 4.3 and Table 4.4. The flow in

each pipe for a given set of pipe diameters and this input data was solved using the

conventional Hardy Cross relaxation method.

The least cost solution for looped pipe network problems demands that some links will

have two sections with different diameters [Orth, 1986]. Therefore, each link is assumed

to consist of two different sized pipes i.e. in = 2. The sizes of the pipes in a link are to be

consecutive sizes available in the market. The problem has 16 pipe diameter variables,
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Node Demand Elevation Head Link Length
1 -1120 210 210 1 1000
2 100 150 2 1000
3 100 160 3 1000
4 120 155 — 4 1000
5 270 150 5 1000
6 330 165 6 1000
7 200 160 — 7 1000

8 1000

data for the pipe

Diameter Unit cost Diameter Unit cost
(in) ( $/ft) (in) ( 8/ft)

1 2 12 50
2 5 14 60
3 8 16 90
4 11 18 130
6 16 20 170
8 23 22 300

10 32 24 550

Table 4.4: Available pipe diameters and nnit prices

which take discrete values, and another 16 continnous pipe length variables. Therefore,

the problem has a total of 32 decision variables.

Observations:

Optimal solutions cited in the first source literature and those found with LSP are

given in Table 4.5 and Table 4.6 respectively. It is reported in [Alperovits & Shamir,

1977] that the problem was solved after 19 iterations, which took 4.05 seconds CPU time

on IBM 370/168 machine. LSP found an optimal solution different from the one cited in

the literature. The solution found with LSP showed about 12.91% improvement on the

objective fnnction value over the solution cited in [Alperovits and Sharnir, 1977]. In the

second source literature, [Fujiwara et al., 1987], a minimum cost of $ 415, 271 is reported.

Table 4.3: Input network
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Unfortunately no details of the solution are given in the literature, hence no comparison

could be made with the LSP results. In the third source literature, Loganathan and

Greene found a minimum cost of $ 405,301, which is an improvement over the solution

found with LSP. A close examination of this solution revealed that the minimum head

requirements at two nodes were violated.

Bigger pipe Smaller pipe
Link Total length Length Diameter Length Diameter

(m) (m) (in) (m) (in)
1 1000 255.97 20 744.00 18
2 1000 996.37 8 3.61 6
3 1000 999.98 18 0 0
4 1000 319.38 8 680.62 6
5 1000 1000.00 16 0 0
6 1000 784.94 12 215.06 10
7 1000 999.99 6 0 0
8 1000 990.91 6 9.06 4

Total cost = $ 479,525

Table 4.5: Optimal design for the pipe network given in ASCE, 1977

Bigger pipe Smaller pipe
Link Total length Length Diameter Length Diameter

(m) (m) (in) (m) (in)
1 1000 0 22 1000 20
2 1000 0 12 1000 10
3 1000 632.13 16 367.87 14
4 1000 232.30 2 767.70 1
5 1000 294.89 16 705.11 14
6 1000 0 12 1000 10
7 1000 860.36 10 139.64 8
8 1000 114.14 2 885.86 1

Total cost = $ 417,607

Table 4.6: Optimal design for the pipe network found with LSP
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4.3.3 10-member truss design [Problem 10-2-0-40]

Source:

1. Venkayya, \7 B., “Design of optimum structures” in Computers and Structures,

Vol 1, pp 265-309, 1971.

2. David E. Goldberg and Manohar P. Samtani, “Engineering optimization via genetic

algorithm”, in Electronic computation, pp 471-482, Kenneth M Will ed 1986.

Methods of optimization used in the source literature: Venkayya used a method based

on an energy criteria and a gradient search procedure for design of structures subjected

to static loading. A Genetic Algorithm was used in [Goldberg & Samtani, 1986].

Problem formulation:

The geometry and loading system of an indeterminate structure for a 10 member

truss is given, as shown in Figure 4.6. The cross sectional area of all members to give the

minimum weight of the structure is required. The optimization problem is formulated as

follows.

Minimize Weight
= p L 4

where

p is the specific weight of the material used

W is the total weight of the members

A is the cross sectional area of the member j in square inches

L is the member j length in inches

The problem is constrained by the allowable stresses and the bounds on member

sections.
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Figure 4.6: 10-member truss.

‘7mifl j umax

Amin A2 Amax

where

o is member stress

°min and °maa are the minimum and maximum stresses.

Amin and A,, are the minimum and maximum areas allowable,

which are given as 0.1 in2 and 10 in2 respectively.

The material to be used is aluminum which has maximum stress of 2,000 psi (com

pression and tension), Modulus of elasticity iO psi and specific weight of 0.1 lb/in3.

Both loads shown in Figure 4.6 are 100K lb each. A stiffness analysis computer program

developed by Fleming [Fleming, 1986] was used with LSP to solve the structural analysis.

360”

1

360”

2

6
C)

100KIb lOOKIb

Observations:
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This problem has been solved by many authors using different niethods. Goldberg

and Samtani [Goldenberg & Samtani, 1986] are those who addressed the problem to

demonstrate the use of the “Genetic Algorithm” for solving engineering problems. They

compare their result with Venkayya’s [Venkayya, 1971] result. Assuming Venkayya’s

confirmed feasible solution as the ‘true’ solution, their three best-of-run results show

that the Genetic Algorithm results deviated from the ‘true’ solution by 0.82%, 1.32%

and 2%. Unfortunately the best run cited in [Goldenberg & Samtani, 1986] violates six

of the ten stress constraints, which is acknowledged as ‘minor excursions beyond the

stress constraint’. Figure 5 of the original source paper shows the violations. It cited

that 6,400 points were explored to reach the solution in all the three runs.

A number of LSP runs were made to compare results with the ‘true’ solution results.

The three best LSP feasible results showed 0.6%, 0.9% and 1.00% deviation from the

results given by Venkayya. LSP found a set of well separated near optimal points, which

suggests that the problem has multiple global optima The LSP results given in Table 4 7

were found, on the average, after 73,800 function evaluations per each run which took 5

minutes and 15 seconds on a 80386-33Mhz microcomputer. The detailed results cited by

Venkayya and those found with LSP are given in Table 4.7. The three different solutions

found with LSP and Venkayya’s optimum solution are shown in Figure 4.7. Figure 4.7(a)

shows the optimal decision variables, whereas Figure 4.7(b) shows the stress in each

member of the optimal solution.

LSP’s failure to identify the optimal solution in this instance can be attributed to the

fact that it lies on the boundary of the original search domain. Further improvement in

the LSP solution might be achieved through local refinement using a gradient method

but was not attempted.

For a general comparison, a summary of minimum objective function values for the

truss problem found with the two methods mentioned above, and LSP, are given in Table

4.8.
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(a) Optimal dimensions
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Members
V.nkayya Run I Run 2 ES] Run 3

(b) Optimal member stresses

Figure 4.7: Detailed results for Venkayya’s 10-member truss problem.
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Cross sectional area (in2)
Member Venkayya LSP

run I run 2 run 3
1 7.938 7.826 7.753 7.778
2 0.100 0.236 0.321 0.289
3 8.062 8.179 8.251 8.223
4 3.938 3.827 3.754 3.779
5 0.100 0.100 0.100 0.101
6 0.100 0.223 0.359 0.295
7 5.745 5.906 6.028 5.992
8 5.569 5.411 5.308 5.343
9 5.569 5.411 5.309 5.343

10 0.100 0.330 0.447 0.421
Truss weight (ib) 1,593.2 1,602.6 1,609.6 1,607.2

Table 4.7: Detailed results for the 10-member truss design

Venkayya Goldberg LSP 7
1,593.2 run 1 1,606 1,602.6
‘True’ run 2 1,614 1,609.6

solution run 3 1,625 1,607.2

Table 4.8: Comparison of truss weights for the 10-member truss design
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4.3.4 38-member truss design [Problem 38-1-0-77j

Source: Andrew B. Templeman, “Discrete optimum structural design”, Computer and

Structures, Vol 30, No 3 pp 511-518, 1988.

Method of optimization used in the source literature: Heuristic methods for finding dis

crete optimum solution.

Problem formulation:

Consider the 38-member truss shown in Figure 4.8. With the given loading system,

the truss is to be designed in such a way that the tip displacement does not exceed 10

millimetres. Members should be chosen from the five different cross section bars available,

that is 5.0, 10.0, 20.0 40.0 and 75.0 * iO mm2. All bars are of the same material with

mass density, p = 7.85 * 10-6 Kg/mm3 and Young’s Modulus, E = 21OKN/mm2.

Figure 4.8: 38-member truss.

The total mass of the truss is used to represent the cost so the optimization problem

is formulated as

Minimize Mass = p L A1

lu
--

-f
IN

1. i.m i. • ,. 1. II II U II

f-ar

1o@1 h
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Subject to 6 10mm

where L1 and A1 are the length and cross section of the ith member, and 6 is the displace

ment at the tip of the truss. L1 are known quantities and the A1 are discrete variables.

Observations:

The result given in the literature is reported to he the global discrete optimum design.

Even though the difference is small, LSP achieved a slight improvement in the objective

function. The most interesting aspect is that LSP identified multiple global optima. Over

40 different global optimal solutions were identified, of which only ten are given in Table

4.9 along with the single solution given in the source literature.

Fleming’s [Fleming, 1986) computer programme for plane trusses was used with LSP

to solve the structural analysis problem using the stiffness method. It took about 75

hours to meet the modified variance convergence criterion using an 80386-33Mhz mi

crocomputer, but the total number of function evaluations was less than 500,000. The

reason for such a long computation time is the effort expended on the determination of

the deflection for the many designs evaluated in the LSP search.

As was pointed out by the external examiner Dr. A. Templeman, there exists a unique

algebraic equation for the tip deflection of this truss. While use of the equation would

have significantly reduced the computational time needed for constraint evaluations the

number of function evaluations would remain unchanged.
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Member areas (1000mm2) —

Member Literature LSP solutions
1 10 10 10 10 10 10 10 10 10 10 10
2 510555105555 Sf
3 10 10 10 10 10 10 10 10 10 10 10
4 10 5 10 10 10 10 5 10 10 5 10 f
5 10 10 10 10 10 10 10 10 10 10 10
6 10 10 5 10 5 10 10 10 10 10 10 f
7 10 10 10 10 10 10 10 10 10 10 10
8 10 10 10 10 10 10 5 5 10 10 10 f
9 10 10 10 10 10 10 10 10 10 10 10

10 10 5 10 10 10 5 10 10 10 10 10 f
11 10 10 10 10 10 10 10 10 10 10 10
12 10 10 10 10 10 10 10 10 10 10 5 f
13 10 10 10 10 10 10 10 10 20 10 10 *

14 10 10 10 10 10 10 10 10 10 10 10
15 10 10 10 10 10 10 10 10 10 10 10
16 10 10 10 10 10 10 10 10 10 10 10
17 10 10 20 20 10 10 10 20 10 10 10 *

18 10 10 10 10 10 10 10 10 10 10 10
19 10 20 10 10 20 20 20 10 10 20 20 *

20 5 55105551055Sf
21 20 10 10 10 10 10 10 10 10 20 10 *

22 20 20 20 20 20 20 20 20 20 20 20
23 40 40 40 40 40 40 40 40 40 40 40
24 40 40 40 40 40 40 40 40 40 40 40
25 40 40 40 40 40 40 40 40 40 40 40
26 75 75 75 75 75 75 75 75 75 75 75
27 75 75 75 75 75 75 75 75 75 75 75
28 73 75 75 75 75 75 75 75 75 75 73
29 55555101010105 5f
30 20 20 20 10 20 10 20 10 10 10 20 *

31 20 20 20 20 20 20 20 20 20 20 20
32 40 40 40 40 40 40 40 40 40 40 40
33 40 40 40 40 40 40 40 40 40 40 40
34 40 40 40 40 40 40 40 40 40 40 40
35 75 75 75 75 75 75 75 75 75 75 75
36 75 75 75 75 75 75 75 75 75 75 75
37 75 75 75 75 75 75 75 75 75 75 75
38 75 75 75 75 75 75 75 75 75 75 75

Mass (Kg) 8489.16 8482.42
f takes eitner 5 or 10 * takes either 10 or 20

Table 4.9: Alternate optimal designs for the 38-member truss
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4.3.5 Unit Hydrograph ordinate determination. [Problem 19-1-21-Oj

Source: Larry W. Mays and Cheng-Kang Tanr, “Unit Hydrographs via Nonlinear Pro

gramming”, Water Resources Research, Vol 18, No 4 pp 744-752, 1982.

Method of optimization used in the source literature: Large scale Generalized Reduced

Gradient Technique, where the output from a linear programming version of the problem

is used as the starting point for GRG2.

Problem formulation:

The optimal unit hydrograph from a set of known rainfall and runoff data is required.

The unit hydrograph should be able to produce either a minimum sum of deviations or a

minimum sum of squares of deviations between observed and derived runoff hydrographs.

Unlike the traditional approach, determination of rainfall excess does not need to be

defined in advance. Therefore rainfall excess values are considered as part of the set of

decision variables. The relationship between rainfall excess and total rainfall is shown in

Figure 4.9.

At any time much of the rainfall is lost as ground water flow and evapotranspiration

and only the rest contributes to the surface runoff. The rainfall excess, which contributes

to the surface runoff, is expressed as

i=1,2

where

is the total rainfall intensity of event i at time n.

H1, is the rainfall loss of event i at time n.

is the rainfall excess of event i at time n.

I is the total number of observed hydrographs.
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U,

0

Figure 4.9: Rainfall components.
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N1 is the total number of ordinates of observed hydrograph from the th event.

The objective of this problem is to minimize the sum of absolute deviations between

the observed runoff and the runoff derived from the unit hydrograph. The optimization

problem is formulated, in its general form, as

Subject to:

IN,

Minimize > F1,,
— Q I’

i1 n1

= P1,,U1 +P1,_iU2+ ... + Pi,n_m+iUm

fori=1,2,...,Iandn=1,2,...,N1

= 13,

N,

M

KUm = 1

. . .

Time
n—I n—2 n—S
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Urn0 m=1,2,..,M

\There

IVI is total number of unit hydrograph ordinates.

Urn is the value of the rn unit hydrograph ordinate.

F1, is observed direct runoff from the i/h hydrograph at the n11’ ordinate.

Q is derived direct runoff from the i/h hydrograph at the nt’’ ordinate.

D is the direct runoff volume for the i/h rainfall event.

L1 is the number of periods of rainfall excess for the ith event.

r is a constant which takes a value of 1 or 2 depending upon

the definition of the objective function.

K is a constant expressed as

K—
12(3600)At

— (5280)2 A

where t is the interval in hours between hydrograph ordinates, and A is the drainage

area of the watershed in miles2.

LSP solved the Little Walnut Creek watershed in Austin, Texas, hydrograph using the

data given in the literature. Table 4.10 shows details of the data recorded on 07/19/79.

The watershed has a drainage area of 5.57 miles2. The problem has 9 excess rainfall

variables and 10 unit hydrograph ordinates which makes the total number of decision

variables to be 19.

In the source literature this problem was solved using different approaches. The best

result was claimed to be the minimization of the sum of absolute deviations using GRG2.

It is reported that optimal solution was reached after 7.8 seconds on CDC Cyber 170/750

B computer system. The results cited for the ‘best’ result were used to make a comparison

with the LSP results and are given in Table 4.11. The optimal unit hydrographs suggested

in the literature and the one found with LSP are given in Figure 4.10.
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Total Observed
Time rainfall runoff
(hr) (in) (cfs)
1845 0.02 0.4
1915 0.36 3.0
1945 0.19 12.5
2015 0.16 62.
2045 0.49 466.00
2115 0.87 1750.00
2145 0.13 985.00
2215 0.04 647.00
2245 0.01 330.00
2315 216.00
2345 97.00
0015 52.00
0045 43.00
0115 33.80
0145 24.60
0213 19.60
0245 18.80
0315 17.90

Table 4.10: Rainfall-Runoff data for Little Walnut Creek

Observations:

The results with LSP show a considerable improvement in the objective function

value over that is cited in the literature. The total sum of deviation between observed

and calculated runoff cited in the literature is 54.7 whereas the LSP results show the sum

of deviations to be 50.57. This is about an 8% improvement on the optimum value. But

an equally significant improvement from a hydrological modelling standpoint is that the

unit hydrograph derived from the LSP results is superior to the hydrograph result cited

in the literature. The recession side of the hydrograph derived from LSP results shows

the smooth monotone decay expected in a unit hydrograph. Figure 4.10 contrasts the

unit hydrographs derived from the two results.
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Literature LSP
Unit Unit

Rainfall Hydrograph Calculated Rainfall Hydrograph Calculated
Loss Ordinates Runoff Loss Ordinates Runoff
(in) (cfs) (cfs) (in) (cfs) (cfs)

0.020 4445.00 0.40 0.0199 3638.42 0.37
0.359 841.90 3.00 0.3592 1506.41 3.00
0.187 881.70 12.50 0.1869 964.16 12.47
0.147 271.30 62.00 0.1445 399.77 62.03
0.388 347.30 466.00 0.3693 335.04 466.01
0.498 70.00 1750.00 0.4436 124.20 1749.96
0.000 50.50 985.00 0.0698 58.79 985.10
0.000 68.60 647.00 0.0148 64.24 647.30
0.000 36.10 330.00 0.0042 52.10 330.05

86.30 216.00 45.79 216.06
97.00 97.05
52.00 51.99
43.00 43.00
33.80 33.81
40.00 24.62
12.35 4.44
3.80 1.45
0.90 0.27

Table 4.11: Optimal hydrograph for the Little Walnut Creek

4.3.6 Air pollution control design [Problem 4-11-0-40]

Source: Wang, Bi-Chong and Luus, Ruin, “Reliability of optimization procedures for

obtaining global optimum”, AIChE Journal Vol 24, No 4, pp 619-626, 1978.

Method of optimization used in the source literature: Direct search method based on

random sampling and search domain contraction.

Problem formulation:

The maximum ground level concentration of a pollutant resulting from the emission

of multiple sources is required. Holland’s plume rise equation and Gifford’s dispersion
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= In

U

Figure 4.10: Optimal unit hydrographs for Little Walnut Creek.

equation are used for estimating the ground level sulphur dioxide concentration [Turner,

1973]. Under adiabatic conditions, the ground level concentration of sulphur dioxide is

given by

=
c, exp[_.5()2 — .5()2j

i=1 0•Y °Zi •yj °Zi

where

= .sin9(x — a1) + cosO(y — b1)

X1 = cos6(x — a) — .sin6Q,, — b1)

1H1 = [1.5 + 2.68TçTad1}

H1=H31+tH.

Time (hours)
- - - - Litrure LSP

for 1, 2, ..., 10
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0.9591 X 10

0.1136X?9265 10 < X, <2 * iO
o•gi =

O.1385X9015 2 * iO < X, iO

0.2O30X°° iO < X < iO

0.07925 X 10

4.828 *1O5(lnX)88766 10 < X < 200

= 3.108 *106(lnX)105295 200 <X < iO

1.808 *107(lnX)1198 io <X 5 * iO

1.892 * 10—9(lmX)14’2 5 * 103X < iO

and the values of all constants are given in Table 4.12.

a b H8 d T3
-3000 -2500 183.0 8.0 413 2882.6 19.245
-2600 -300 183.0 8.0 413 2882.6 19.245
-1100 -1700 160.0 7.6 413 2391.3 17.690
1000 -2500 160.0 7.6 413 2391.3 17.690
1000 2200 152.4 6.3 413 2173.9 23.404
2700 1000 152.4 6.3 413 2173.9 23.404
3000 -1600 121.9 4.3 413 1173.9 27.128

-2000 2500 121.9 4.3 413 1173.9 27.128
0 0 91.4 5.0 413 1304.3 22.293

1500 -1600 91.4 5.0 413 1304.3 22.293

Table 4.12: Stack and Emission data

where

a = x coordinate of stack i, (m)

= y coordinate of stack i, (m)

C = average ground level sulphur dioxide concentration based on

30 minute sampling time, (g/m3)
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= exit diameter of stack i, (m)

H1 = effective height of stack i, (m) H31 = height of stack i, (m)

= emission rate of stack i, (m/s)

T = air temperature, taken as (283°K)

= exit gas temperature at top of stack i, (°K) it = wind velocity, (m/s)

V31 = exit gas velocity of stack i, (m/s)

X1 = downwind distance from stack i, (m)

= crosswind distance from the plume centre line of stack i, (m)

zXH1 = plume rise from stack i, (m)

o = wind direction measured clockwise from x axis, (radian)

The optimization problem is to find the coordinates on the ground .x y, the wind

velocity it, and the wind direction 0 for which C is maximized. From physical consider

ations, the following constraints are imposed.

—20000 x 20000

—20000 y 20000

0 ‘a 12.5

0 <0 <27r

It is reported in the literature that this 4-variable problem has numerous local optima.

It is also mentioned that one of the local optimal values which is C = —7.5316 is close

to the global optimum value. The closeness of these objective function values makes the

search more challenging for both gradient and LSP methodologies.

Observations:

The global solution cited in the source literature and that found with LSP are given

in Table 4.13.



Chapter 4. TEST PROBLEMS 123

Variable Literature LSP
x -8039.6 -8038.06
y 9369.2 9369.70
u 5.6371 5.641006
0 3.996 3.9966
C —7.711410 —7.709210—

Table 4.13: Optimal design cited in the literature and that found with LSP

The result found with LSP is similar to the result cited in the source literature. The

convergence criterion was set by trial at T4 1 * 10_19 to achieve comparable accuracy

to the cited solution. LSP reached convergence after 28,220 function evaluations which

took 3 minutes and 35 seconds on a 80386-33Mhz microcomputer.

4.3.7 Irrigation system design [Problem 6-7-1-4]

Source:

1. Holzapfel, Edward A., Marino, Mignal A. and Chavez-Morales, Juses, “Surface Irri

gation Optimization Model”, ASCE, Irrigation and Drainage Engineering Journal,

Vol 112 No 1, pp 1-19, Feb 1986.

2. Holzapfel, Edward A. and Marino, Migual A., “Surface Irrigation Nonlinear Opti

mization Models”, ASCE Journal of Irrigation and Drainage Engineering, Vol 113

No. 3 pp 379-392, August 1987.

Methods of optimization used in the source literature: The first authors, [Holzapfel et

al., 1986], solved this problem using linear approximations of the nonlinear objective

function and constraint equations, then they used linear programming packages. The

second authors, [Rolzapfel et al., 1987], used MINOS 5.0 to solve the same problem.

Problem formulation:
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An irrigation system is to be designed so that the maximum profit from the crop can be

obtained by identifying the most efficient furrow irrigation system. The example adopts

the field data and profit yield relationship for the Chillan project in Chile. A surface

irrigation system is designed on the basis of soil, crop, topography, size and shape of the

irrigable area, and the availability of farm equipment. For this particular case the six

design variables involved in the problem formulation are: 1) the flow discharge; 2) the

length of run in the direction of the flow; 3) the time of irrigation cutoff; 4) the number

of furrows per set; 5) the number of runs per set; and 6) the number of sets per day.

The objective of the design is to maximize profit (PRO) which is defined as total

revenue minus total cost, expressed as

PRO =yP-(W-I-L)-OC

where

PRO =Profit in dollars per hectare

= Yield in metric tons per hectare

P = Price of crop in dollars per ton

W = Water cost in dollars per hectare

= Seasonal labour cost in dollars per hectare

00 = Other costs (cost of crop, fertilizer, pesticides, harvesting, etc). Since

00 does not change with alternative irrigation systems, it can be dropped from the

analysis.

It was reported in the source literature that, in all the studies they made earlier, a

good correlation was found between profit and requirement distribution efficiency (RDE).

The relationship of PRO and RDE is given as

PRO = C1RDE + B1

where Cj and B1 are regression coefficients with known values.

The mathematical relationship between RDE and the design variables considers the
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water distribution in the soil and involves the following problem variables.

The mathematical expressions are

RDE =

therefore

PRO =C11WQcLbT:0+ B1

where

Q = inflow discharge in millilitre per second

L = Length of run in meters

= Time of irrigation cutoff in minutes

N,1 = Number of furrows per set

N,. = Number of runs

N3 = Number of irrigation sets per day

Qr = Total discharge available in millilitres per second

Qmaxf = Maximum discharge in furrow in millilitres per second

= Total length in meters

Lmin = Minimum run length in meters

Amin = Minimum area irrigated per day in square meters

F3 = Furrow spacing in meters

= Maximum allowable number of irrigation sets

Tmar = Maximum time per day to irrigate minimum area

EFFm = Minimum required distribution efficiency allowable in7c

Kq,M,a,b,c,u,w,Ce and B1 are constants.

Since 01, M and B1 are constant values, taking them out of the objective function

equation would not change the optimal solution. The reduced form of the objective

function would then be
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Maximize QaL_bTc

The design variables are restricted within specified limits depending upon given field

conditions, and fulfil certain physical conditions. Finally the model formulation is

Maximize QaL_bTc

Subject to:

Q Qrnaxj

QLTc i KQ

QT

LIVr = LT

LiVf N8 14min/F8

T0N8 Tm

QaL_bTc 100/M

QaL—bTc EFFm/M

L Lmin

N,Nf 1

N8<S

All necessary data for the design is given in Table 4.14.

QT 32,000 mI/s Kq 25
Qrnaxf 1,300 mi/S M 0.129
LT 800 m a 0.706
Lmin 50 m b 0.645
Amin 20,000 sq. m c 0.809
F5 im u 1.02
Tma 1200 mm w 0.26
S 6 01 9.98
EFFm 20% B1 443

Table 4.14: Constants for the irrigation system design
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The problem involves six variables with one equallty and six inequality constraints.

Lower and upper bounds on each variable are also specified. In solving the problem with

LSP, three of the variables, Nf, N7 and N3 were assumed to take integer values even

though it was not clearly stated in the literature.

The problem was solved under two different conditions [Holzapfel et al., 1987]. The

first case was where all variables were allowed to take any value within the variable

domain, and the second case where the length of the run was restricted to a fixed value.

Their solution to the first case was questionable so that only the second case with L = 200

was solved using LSP.

Observations:

Results cited in the source literatures and those found with LSP are given in Table

4.15. It took 5,785 function evaluations to meet the convergence criterion of VM 0.0001

with LSP.

Literature
Variables 1986 1987 LSP
Q (ml/s) 1,260 1,255 1,280
L (m) 200 200 200
To (mm) 306 305.9 300
Nf 26 25 25
N7 4 4 4
N3 4 4 4
Profit (8) 525 524 523

Table 4.15: Optimal solution for the irrigation system design

The optimal objective function value found with LSP is slightly inferior, by about

0.19%, to those values given in the literature. But the LSP result is feasible while the

other two cited are infeasible. That is

i) Q * iV = 32, 760 32,000 (about 2.38% violation) [Holzapfel et al., 1986].
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ii) T0*N3= 1,224 1,200 (about 1.97% violation) [Holzapfelet al., 1986 and 1987].

If the same constraint violations are allowed with LSP, the objective function value

can be improved by about 2.53% over the solutions cited in the literature.

Amongst all engineering fields there has perhaps been the longest sustained interest

in practical applications of nonlinear optimization in chemical engineering. The following

four test problems are taken from the chemical engineering literature. These particular

problems have been included here for the challenge they present to NLP methods and

because in recent years they have been used as test problems by some authors. In one

case GAMS, which uses MINOS was used to find the optimal solution. This provided a

good opportunity to test LSP against a current optimization package. The statements

of the problem formulation are taken directly from the sources cited.

4.3.8 Alkylation process [Problem 10-1-7-0]

Source:

1. Rein Luus and T. H. I. Jaakola, “Optimization by direct search and systematic

reduction of the size of search region”, AIChE Vol 19, NO. 4, pp 760-766, 1973.

2. T. F. Edgar and D. M. Himmelblau. “Optimization of chemical process”. McGraw

Hill 1988.

3. Moran, Manfred and Grossmann, lgnacio E., “Chemical engineering optimization

models with GAMS”, CACHE Process design case studies, Vol 6, 1991.

Methods of optimization used in the source literature: Luus and Jaakola used a direct



Chapter 4. TEST PROBLEMS 129

search optimization method with sequential search domain reduction. Edgar and Him

melblau nsed sequential quadratic programming while GAMS was used in the third source

cited.

Problem formulation:

The optimization problem is to determine the optimal operating conditions for the

simplified alkylation process shown in Figure 4.11. The variables involved in the problem

formulation, along with their upper and lower bounds, are given in Table 4.16. The

objective function was defined in terms of alkylate product, or output valne minus feed

and recycle costs; operating costs were not reflected in the fnnction. The profit per day

to be maximized is:

f (x) =01x4x7— C2x1 — 03x2 — C4x3 — 05x5

where

C1 = alkylate product value ($ 0.063 per octane-barrel)

02 = olefin feed cost (85.04 per barrel)

03 = isobutane recycle costs ($0.035 per barrel)

C4 = acid addition cost ($10.00 per thousand pounds)

= isobntane make-up cost ($3.36 per barrel)

It was stated in the literature that a regression analysis was first carried out to

form the process model. The alkylate yield, x4, was a function of the olefin feed, x1,

and the external isobntane-to-olefin ratio, x8. The relationship determined by nonlinear

regression, holding the reactor temperatures between 80 to 90°F and the reactor acid

strength by weight percent at 85 to 93, was

= xi(1.12 + 0.13167x8— 0.00667x).
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sobutan. r.cycf.

4

Spent acid

re 4.11: Alkylation process.

The isobutane make-up, x5, was determined by a volumetric reactor balance. The

alkylate yield, x4, equals the olefin feed, x1, plus the isobutane make-up, x5, less shrink

age. The volumetric shrinkage can be expressed as 0.22 volume per volume of alkylate

yield so that

= 1.22x4 — x.

The acid strength by weight percent, x6, could be derived from an equation that

expressed the acid addition rate, x3, as a function of the alkylate yield, x4, the acid

dilution factor, x9, and the acid strength weight percent, x6 (the addition acid was

assumed to have acid strength .f 98%).

— 98000x3
x6 —

x4x9 + 1000x3

The external isobutane-to-olefin ratio, x8, was equal to the sum of the isobutane

recycle, x2, and the isobutane make-up, x5, divided by the olefin feed, x1

x2 + x5
x8 =

x1

leobutan. make-up

Olefin feed

I
Reactor

Hydrocarbon Product

.

Fresh acid

Fractfonator

Alkylate product
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Lower Upper
Variable Description bound bound

x1 Olefin feed (barrels per day) 0 2000
x2 Isobutane recycle (barrels per day) 0 16000
x3 Acid addition rate (100 lb per day) 0 120
x4 Alkylate yield (barrels per day) 0 5000
x5 Isobutane make-up (barrels per day) 0 2000
x6 Acid strength (weight percent) 85 93
x7 Motor octane number 90 95
x5 External isobutane-to-olefin ratio 3 12
x9 Acid dilution factor 1.2 4
x10 F-4 performance number 145 162

Table 4.16: Bounds for the variables involved in the alkylation process

The motor octane number, x7, was a function of the external isobutane-to-olefin ratio,

x5, and the acid strength by weight percent, x6 (for the same reactor temperatures and

acid strengths as for the alkylate yield , xj)

= 86.35 + l.098x8— 0.038x + 0.325(xe — 89).

The acid dilution factor, x9, could be expressed as a linear function of the F-4 per

formance number, x10

= 35.82 — 0.222x10.

The last dependant variable is the F-4 performance number, x10, which was expressed as

a linear function of the motor octane number, x7

= —133 + 3x-.

Observations:

Edgar and Himmelblau solved a modified version of this problem in which some of the

constraints were relaxed. The optimal solution for the modified case is not reported here
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but it was observed that two of the constraints were slightly violated. The constraint

violation is so small that it might have arisen from round off error.

The optimal solution cited in [Luus & Jaakola, 1973) was reported to be close to

earlier works by other authors. In CACHE, the CAMS package, which makes use of

MINOS 5.3, was used to solve the same problem. The results with this approach showed

inferior results compared to the earlier published works. The result found with LSP is

similar to the one reported by Luus and Jaakola, and is an improvement over the CAMS’s

results. It took 4,789 LSP function evaluations to obtain the optimal result. The optimal

solutions found with the three methods are given in Table 4.17.

Optimal solution
Literature

Variable CACHE Luus et al. LSP
x1 1734.410 1728.40 1728.40
x2 16000.000 16000.00 16000.00
x3 98.405 98.40 98.40
x4 3060.992 3056.00 3056.00
x5 2000.000 2000.0 2000.00
x6 90.592 90.60 90.60
x7 94.170 94.20 94.20
x8 10.378 10.41 10.41
x9 2.629 2.61 2.61
x10 149.509 149.60 149.60

f(x*) 1,154.4 1,162.009 1,162.017

4.3.9 Heat exchanger network configuration

Source:

[Problem 16-1-15-0]

1. C. A. Floudas and A. R. Ciric, “Strategies for overcoming uncertainties in heat

exchanger network synthesis”, Computers and Chemical Engineering, 13(10), pp

1133-1152, 1989.

Table 4.17: Optimal solution for the Alkylation process
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2. C. A. Floudas and P. M. Pardalos, “A collection of test problems for constrained

global optimization algorithms”, Lecture Notes in Computer Science, NO. 455,

Springer-Verlag, 1990.

3. Moran, Manfred and Grossmann, Ignacio E., “Chemical Engineering Optimization

Models with GAMS”, CACHE Process design case studies, Vol 6, 1991.

Methods of optimization used in the source literature: GAMS was used in CACHE.

Floudas and Ciric used a method where the variable set and the constraint set are de

composed into two sets leading to two subproblems so that each subproblem contains

only linear constraints. This decomposition of the original problem induced a special

structure in the resulting subproblems.

Problem formulation:

The problem involves determination of the optimal heat exchanger network configura

tion for a system of two hot streams and one cold stream. A minimum utility consumption

analysis has shown that no stream of cooling water is required. The inlet temperatures,

outlet temperatures, and heat capacity flow rates for the hot streams and cold streams

are given in Table 4.18. The heat duties and overall heat transfer coefficients for the

matches that will take place in this network are given in Table 4.19. The objective of

the problem is to obtain the optimal configuration of the cold stream so as to minimize

the heat exchanger investment cost.

The problem formulation for this 16 variable problem is given as follows:

Minimize Cost = 1300[oo5[2(TTj°5°°+1(AT+T)j]
.6

I io 600 1.6m ov
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Stream T in (K) T out (K) FC(ç)
Hi 500 250 4
H2 350 200 4
Ci 150 310 10

Tmin iO°K

Table 4.18: Stream data

Match Q(kW) U() A(m2)
Hi Ci 1000 0.05 207.357
H2 Ci 600 0.05 137.230
Cost of heat exchangers =i300Ab]

Table 4.19: Match data

Subject to:

• Mass balances at the splitting and mixing points

ff+f= 10

fI4B
Ji J12 — Ji —

cI çB çE_
J2 + J21 — J2

O B E_0
Ji +J21J1 —

O rB E0
J2 +J12J2 —

• Energy balances at mixing points and over the exchangers

150’ tOiB jIcE_0
J1 + 2 J12 1J1 —

incI OB 414LE_
iJUJ2 + G1 J21 — 2J2

fjE(t
— tf) = 1000

E(tO t — 0J2 2 — 2 —

• Temperature approach calculations for the heat exchangers

/T11 =500—t?
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zT12=250—tf

ZT21 =350—t

z.T22 =200—ti

• Minimum temperature approach constraints

T11,T12,/T21,/T22 10

• Bounds of the flow rates and temperatures

< ci I B B O jO <‘-‘—Jl,J2,Jl2,J2lJl,J2 —

2.941 fE 10

3.158 fE 10

150 tf 240

250 t 490

150 t 190

210 t 340

where

f1 = flow rate flowing from the splitter at the beginning of the network to the mixer.
fE

= flow rate flowing through the exchanger

fE
= flow rate flowing from the splitter following the match to the mixer preceding

the exchanger

f° = flow rate flowing from the splitter following the exchanger to the mixer at

the end of the network

= inlet temperature

= outlet temperature
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= temperature approach.

Observations:

The decomposition procedure adopted by [Floudas & Ciric, 1989] was not necessary

in the LSP solution of the problem.

The solution cited in both sources and the one found with LSP showed similar results.

The optimal solution is given in Table 4.20. It took 182,905 function evaluations to get

the optimal solution with LSP.

Variable Optimum value
4’I
J1

f21 10
flo 10
;O
J2
f1E 10
fE 10
tf 210
t 150
t 310
t 210
zT11 190
zT12 40
T21 140
zT22 50
B
J 12
çB
J21

Objective 56825

Table 4.20: Optimal solution to the heat exchanger configuration

4.3.10 Power generation using fuel oil [Problem 4-11-0-5]

Source: Moran, Manfred and Grossmann, Ignacio E., “Chemical Engineering Optimiza

tion Models with GAMS”, CACHE Process design case studies, Vol 6, 1991.
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Method of optimization used in the source literature: GAMS

Problem formulation:

The two-boiler turbine-generator combination shown in Figure 4.12 is used to produce

a power output of 50 MW. It can use any combination of fuel oil and blast furnace gas

(BFG). However only 10.0 fuel units per hour of BFG is available. Since this supply of

BFG may not be sufficient for the required power generation, fuel oil must be purchased

and used. It is desired that we use the minimum total amount of fuel oil in the two

generators. For this purpose, fuel requirements for the two generators are expressed as a

quadratic function of the MW produced by using nonlinear curve-fitting. Thus if x (in

MW) is the power produced and f (in ton/h for fuel oil and in fuel unit/h for BFG) is

the amount of fuel used, then f = a0 + a1x +a2x2. The constants a (i = 0, 1,2) depend

on the generator and type of fuel used.

Fuels Power output

Figure 4.12: Two-boiler Turbine-Generator combination.

Assume that when a combination of fuel oil and BFG is used, the total power gener

ated is given by the sum of the powers generated by each fuel. The ranges of operation



Chapter 4. TEST PROBLEMS 138

Generator Fuel type a0 a1 a2
1 Fuel Oil 1.4609 0.15186 0.001450
1 BFG 1.5742 0.16310 0.001358
2 Fuel Oil 0.8008 0.20310 0.000916
2 BFG 0.7266 0.22560 0.000778

Table 4.21: Constants in fuel consumption equations

of the two generators are [18, 30] MW and [14, 25] MW respectively. It is required to

formulate an optimization problem which minimizes the amount of fuel oil purchased and

determine the amounts used by each generator.

For operating the generators, define fj as the amount of fuel type j used by generator

i, and x the corresponding MW generated. From the curve-fitting data

f = ao + +a24 i = 1,2 j = 1,2

where the ajj (k = 0, 1, 2) are the constants for generator i and fuel type j (1 = fuel oil,

2 = BFG). The values of the constants are given in Table 4.21.

The power P generated by generator i will be given by

= x1 + x2; i = 1, 2 where

F1 + F2 50. Define zj as the total amount of fuel j purchased, then

>
= 2

a0 + +a24; j = 1,2

Z2 10

xii 0

Minimize z1

Observations:

In the source literature, the optimal power outputs for generator 1 and 2 are 30 MW

and 20 MW respectively, and 4.68 1 ton/h of fuel oil is purchased. BFG generates a power

of 36.325 MW and the fuel oil is used to generate 13.675 MW. The optimum objective
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function value found with LSP is 4.683 ton/h, which is very similar to the solution cited

iii the literature. One of the important results found with LSP is that the global optimum

is accompanied with multiple near optimal solutions. Details of solutions cited in the

literature and found with LSP are given in Tables 4.22 and 4.23 respectively. The total

number of function evaluations expended to meet LSP’s termination criterion was 33,556,

which took 50 seconds on a 80386-33Mhz computer.

Generator Fuel oil BFG Power
1 10.114 19.886 30
2 3.561 16.439 20

Total 13.675 36.325 50

Table 4.22: Optimal power generation cited in the literature

Generator Fuel oil BFG Power
1 10.479 19.504 29.983
2 3.254 16.768 20.022

Total 13.733 36.272 50.005

Table 4.23: Optimal power generation found with LSP

4.3.11 Chemical equilibrium [Problem 10-1-3-0]

Source: Moran, Manfred and Grossmann, Ignacio E., “Chemical Engineering Optimiza

tion Models with CAMS”, CACHE Process design case studies, Vol 6, 1991.

iViethod of optimization used in the source literature: GAMS

Problem formulation:

From the thermodynamics of chemical reaction equilibrium, the equilibrium state of

a closed system at constant temperature, T, and pressure, F, is the state at which its

total Gibbs free energy is a minimum. This criterion is used to obtain the equilibrium
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composition of a given mixture by minimizing its free energy with respect to its compo

sition. An ideal gas mixture of ten chemical species is maintained at T = 298 K and

P = 750 Hg. The species are made up of three atomic elements (e.g. H, 0 and C). If we

denote the three elements as A, B and C, then the species formulas in terms of A, B and

C are A, A2,A2C, B, B2,AB, BC, C, C2 and AC respectively for .s = 1, 2, ..., 10. Being an

ideal gas, the Gibbs free energy per mole of species .s is given by C3 = C03 + RT ln(Fy3),

where y3 is the mole fraction of species s in the mixture. The C05 are given in terms of

in3 = C03/RT in Table 4.24. The mixture contains 2 mole A, I mole B and 1 mole C.

5 inS 5 in3

1 -10.021 6 -18.918
2 -21.096 7 -28.032
3 -37.986 8 -14.640
4 - 9.846 9 -30.594
5 -28.653 10 -26.111

Table 4.24: Free energy constants (in3)

Define x3 as the moles of species .s and F as the total moles of all species in the

mixture, that is

F=x1+x2+x3+...+x10.

Since the mixture is ideal, C is the sum of the free energies of the species in the mixture,

where

= x1C1 + x2C2 + x3C3 + ... +x10C10.

Substituting in3 in(Fy3) for C3, dividing C by RT, and expressing the mole fractions

Ys = x3/F then,

C = = YZx3[w3 + ln(Px3/F)]

Let a3 denote the moles of element i in one mole of species .s. The values of a13 are

easily obtained from the species formulas. For instance a11 = 1, since species A(s = 1)
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has only one atomic element A(i = 1), a21 = 0, a13 = 2, etc.. The total number of moles

of element i in the mixture, X0, is given by,

= a1x1 +a2x2 + a3x3 + ... +a1ox10; i = 1,2,3.

The optimization problem is to minimize the total Gibbs free energy, G, with respect

to the mixture composition. But since the mixture T is maintained constant, minimizing

G is equivalent to minimizing G. Then the optimization formulation is

Minimize G

The solutions for this 10 variable problem cited in the literature and found with LSP

are given in Table 4.25.

Observations:

The LSP results confirm the results cited in the literature. LSP found the solution in

3 minutes and 20 seconds on a 80386-33Mhz microcomputer, which took 83,588 function

evaluations to meet the convergence criterion VM j 1 * iO.

xs
s Literature LSP
1 0.007 0.0061
2 0.068 0.0709
3 0.907 0.9038
4 0.0004 0.0005
5 0.491 0.4902
6 0.0005 0.0008
7 0.018 0.0183
8 0.003 0.0034
9 0.015 0.0154

10 0.042 0.0436
G -43.495 -43.4942

Table 4.25: Optimal solution to the Chemical equilibrium problem
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4.4 Model fitting

Regression analysis is used to fix the parameters of a model from a set of experimental

data. The experimental data will have a set of observed points with known values for

the independent variables and the corresponding values of the dependent variable. The

relationship between the dependent and independent variables can be expressed in a

variety of ways. For example, as a simple linear model

= /3o + /31x;

or as a multiple linear model

or as a polynomial model

+ + + ... +

or as a general nonlinear model

U = o + thx1 +52x1x2+ 3x +

In all the above forms the regression analysis determines the values of the parame

ters, i.e. the fi vector, in the model. The methods used to estimate these parameters

are known as simple, multiple linear and nonlinear regression analysis depending upon

the formulation of the model. The equations used to define a certain model normally

reflect the physical processes involved and models dealing with the physical world are

predominantly nonlinear in their formulation. On the other hand estimating parameters

for linear models is easier than for nonlinear models and therefore the equations of non

linear models are often linearized so that linear regression methods can be used. Such

transformations may not be possible with highly nonlinear models.
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Three best fit criteria used in the estimation of parameters of a linear model are: min

imization of the sum of the squares of deviation between observed and model generated

values; minimization of sum of absolute deviations; and minimization of the maximum

absolute deviation [Narula, 1982]

Suppose a set of data is collected and the parameters for the linear model y = j3x3

are to be estimated. To fit a model from m experimental points using the least squares,

or the absolute deviations, as the model criterion, the objective function can be expressed

as

Minimize L I — /3x2 (4.2)

Subject to typical constraints with as many constraints as there are data values as

j=1,...,m

rhere

y represents the experimental value of the dependent variable at point j.
x is the coordinate of the independent variable vector at point j.

j3 is the vector of model parameters.

If p takes a value of 2, the objective would be to minimize the sum of squares of the

deviations. When p takes a value of 1, then the objective would be to minimize the sum

of absolute deviations.

LSP can be used to optimize the function given in Equation 4.2 where the constant p

takes the value of 1, 2 or any real value. LSP finds a solution to such problems without

the need for linearization of any of the functions. It also provides designers with more

freedom when deciding on the severity of the criterion for model fitting. In addition, LSP

can easily estimate parameters for both linear and nonlinear regression models and, in

fact, provides new perspectives on the parameter values found.
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The type of sensitivity information on the model parameters, provided by LSP, is

unique and has considerable potential value to an engineer seeking a representative model.

The sensitivity information is provided by LSP in the form of the acceptance sets as

the optimal solution is approached. This information is provided without any extra

computational overhead and is also easily understood. More discussion on sensitivity

analysis with LSP in connection with model fitting is discussed in Chapter 8.

Examples of regression models were taken from the literature and solved using LSP. In

almost all the cases LSP confirmed the results in the literature. Test problems [Problem

3-17-0-0 and Problem 4-11-0-0, Appendix A] are representative of some of the nonhnear

regression models solved with LSP. A 4% improvement over the solution cited in the

literature was found with LSP’s solution to [Problem 3-17-0-0, Appendix A]. While it

took 19,842 function evaluations to meet the convergence criterion of l%- 1 * 10,

this still took only 3 minutes with an 80386-33Mhz personal computer and this time is

of httle practical significance. Only 2,128 function evaluations were expended to meet a

similar convergence criterion for the four variable problem [Problem 4-11-0-0, Appendix

AL



Chapter 5

EXPERIENCE WITH LSP

Considerable experience was gained with LSP when the many test problems, both math

ematical and engineering in nature, were solved during the course of this research. This

experience showed that the output obtainable from LSP as the search progresses can give

important information concerning the effectiveness of the search, possible adjustments to

the search strategy when difficulties are experienced, as well as insights into the topology

of the problem being solved. It has also helped to give a clearer in dication of the influence

of certain LSP parameters, such as the number of points in a level set on the number of

function evaluations required for solution, on the reliability and efficiency of the overall

search.

While the basic LSP algorithm with the recommended default parameter values is an

effective global optimizer, it is natural to seek further improvement in performance. This

chapter describes a variety of enhancements and adjustments which have been beneficial

in solving some of the test problems and would be implemented under the direct control

of the user.

5.1 Intermediate output, its presentation, and interpretation

One of the important contributions of this research in implementing LSP is the informa

tion which is displayed graphically on the computer monitor after every iteration. This

feature was not anticipated but, as its potential value became apparent, it was explored

and exploited in this research. Three principal types of output displays were investigated;

145
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scatter diagrams of points in an acceptance set on two variable planes; plots of level set

value-c against iterations; and the cumulative number of function evaluations against

iterations. These can all be generated rapidly with little computational overhead and

were provided without difficulty by the LSP software developed. These plots and their

significance are described in detail in the next three sections. AU of the diagrams used

in this chapter are either derived from these displays or represent actual screen dumps

of the displays.

5.1.1 Plots of rj, x3 pairs

A set of two dimensional x rSi x plots of the confirmed points in the current acceptance

set are displayed on the computer monitor at each iteration. When the axes of these

plots span the initial variable bounds, the cluster formed by these points indicate the

size and location of the current acceptance set in the decision domain. The approximate

acceptance set boundaries can be visually inferred from the cluster of points displayed.

The existence of multiple local optima is suggested in these x xj plots when the

displayed points form distinct clusters with open spaces in between. It is quite common

to observe that, after a few more iterations and an accompanying improvement of the level

set value-c, the displayed points form a smaller single cluster. The existence of distinct

clusters at some stage of the search and their disappearance at a later stage is indicative

of local optima and LSP’s ability to reject them. If there is some special reason to explore

a particular local optimum, LSP can be rerun within a new initial cuboid enveloping the

cluster of points of interest. Clusters may however exist in n dimensional space but not

necessarily be evident in many or even all of the x1 “.‘ xj plots due to overlapping and

the limited perspective of each of the two dimensional views. Thus while visual detection

of clusters is sufficient to confirm their existence it is not necessarily the case that they

will be detectable in this way. In section 5.1.2 other graphical evidence of the existence
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of multiple clusters is described.

Two plots derived from a single LSP run, but at different iterations, are shown in

Figure 5.1 for a two variable problem and indicate the existence of multiple optima.

The points form two distinct clusters, which indicates that there are at least two local

optima. At this stage there is nothing to suggest whether the two clusters will lead to

a single global optimum or to two or more equal global optima. After a few additional

iterations the points around the upper left corner of Figure 5.1 (a) completely disappear

and all points in the acceptance set cluster around a single point, as shown in Figure

5.1(b). The disappearance of those points which had formed a distinct cluster at an

earlier iteration implies the existence of a local minimum in that vicinity. As the LSP

search progresses the displayed points coalesce about the solution and ultimately occupy

only a single pixel in the graphical display.

Similar scatter diagrams plotted with axes which span the sides of the current cuboid,

that is where the full length of the axes correspond with the current cuboid side, can also

be displayed at any stage of the search. Such a plot gives a closer look at the pattern

of points in the current acceptance set. These patterns may reveal useful information

concerning, for example, the distribution in the decision space of near optimal solutions

and the mutual relationships of each pair of the variable set. The significance of such

indications will be discussed un4er the subject of sensitivity in Chapter 8.

5.1.2 Plots of cumulative function evaluations-Nf against iteration number-I

Many different schemes for counting the number of function evaluations incurred in non

linear optimization appear in the literature. The count adopted in this research reflects

both objective function and constraint function evaluations. When a point is gener

ated in LSP it is first checked for feasibility against the set of constraints including the

bounds on each variable. If the point is feasible then it is retained, or if infeasible, it
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Figure 5.1: Local optima suggested by the disappearance of a point cluster.

is rejected. In either case this is counted as one function evaluation. At every feasible

point the objective function value is calculated and this is also counted as a function

evaluation. Consequently every confirmed point in an acceptance set will count as two

function evaluations.

A variety of shapes of the N1 I curve can be observed. From experience with the

test problems these curves have been categorized into three types: linear, exponential-like

and sigmoidal curves. The implication of each type of curve is explained next.

Linear curve

The number of function evaluations at the first iteration gives an indication of the

ratio of the feasible region volume and the initial cuboid volume. The number of function

evaluations at the first iteration for an unconstrained but bounded problem should be

equal to that is equal to the number of points which are to be confirmed in the

acceptance set.

For the ideal of an unconstrained, but bounded, problem with convex objective, the

N1 —‘ I plot has been confirmed through the test problems to be almost a straight line.
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The slope of this line, the number of function evaluations per iteration, is only slightly

larger than Njceep/2, which is shown in Figure 5.2(a). The reason is simply that, in this

rather ideal case, only about half of the points in a level set are lost with the lowering of

the level set value-c to M(f, c) at each iteration. These lost points must be replaced by

new ones at every iteration and each new point needs one function evaluation.

Exponential-like curve

When a problem has constraints in addition to the variable bounds then the number

of function evaluations at the first iteration will be greater than as a result of the

diminished feasible space within the initial cuboid. For constrained problems, using the

uniform random trial point generation scheme described in Chapter 2, Section 2.3.2, the

number of function evaluations increases as the ratio of the feasible region volume to the

cuboid volume gets smaller. A progressive plot of the cumulative number of function

evaluations against iteration number, NJ I, indicates the effectiveness of the search at

each iteration and any change in this efficiency as the search progresses.

For constrained problems the NJ rsI plot usually deviates from a straight line, and for

a typical “well behaved” LSP problem, progressively steepens reflecting that generating

new acceptable points gets more difficult with the number of iterations. Figure 5.2(b) is

a plot for a typical constrained problem.

The inefficiency of acceptable point generation is indicated by the degree of deviation

of the NJ r. J plot from the straight line of slope Nk€, each point requiring one function

evaluation for feasibility; and one function evaluation foi’ eligibility in the level set. This

can occur when the problem has widely spaced multiple optimal points which produce a

disjoint acceptance set or when the geometry of a connected acceptance set produces a

large cuboid volume with small acceptance set volume, for example when the acceptance

set is distributed around a cuboid diagonal.
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Sigmoidal curve

For some problems the Nf r’. plot may be linear for the initial iterations, then

adopt an exponentially increasing shape for a few more iterations, and finally decline

and continue as a straight line, as shown in Figure 5.2(c). Such a plot shows that

generating points in the acceptance set was efficient at the earlier stages of the search,

then lower efficiency was experienced for a while, but that the efficiency was restored in

the later stages when approaching the final convergence of c on C.

A common explanation for such a curve is that, at the early stage of the search,

the level set requirement is easily met and feasibility dominates acceptance set point

generation. At this stage all points in the acceptance set constitute a single cluster,

indicating that feasible region is not disjoint. Therefore the Nf ‘-. I plot is close to a

straight line with slope approximately equal to Nkeep. At the intermediate stages the

acceptance set becomes fragmented, the points forming distinct separate clusters each

surrounding a local optimum. Since acceptance set point generation is inefficient with

multiple optima, their existence is reflected in the Nf I curve by a steepened slope.

But in the later stages the local optima are discarded and the search is performed on

a single connected acceptance set. Such a curve shape is most pronounced when the

objective function values at widely dispersed local optima are close to the global optimum

objective function value. If the objective function value differences at all local and the

global optimum are large, the influence of the local optima on the N I curve is small.

The sigmoidal curve can be demonstrated with an LSP solution of the Rastrigin

function, [Problem 2-16-0-0, Appendix A], a two variable problem with 50 local optima

but only one global optimum. This problem’s formulation is

Minimize f(x) = x + 4 — co.s18x1 — cosl8x2

Subject to:
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—1 x1 1

1 2 1.

Figure 5.3 shows the screen display at convergence obtained from the LSP solution.

Figure 5.3: R.astrigin function-Implied local optima by N1 I plot. (Actual screen
dump).

A second possible reason for observing the characteristic sigmoidal N1 .s curve arises

when a fissure exists in the objective function surface in the feasible region at the global

optimum. For a problem with more than one local optimum, points in the acceptance set

can form clusters around the individual local optimal points but not necessarily include

a point in the fissure. The ratio of the acceptance set and cuboid volumes may be small

under these conditions and the search inefficient. Provided the cuboid at this stage

includes the fissure region, then there is still a possibility of generating points at or near



S

Chapter 5. EXPERIENCE WITH LSP 153

the global optimum. Once a single point is generated in the fissure, the search tends to

converge rapidly on the global optimum as more and more points are generated within

the fissure, so that the efficiency of the search is restored. The Road Runner function

test problem [Problem 2-22-0-0, Appendix Al screen display is shown in Figure 5.4, and

is an example where the N1 I plot exhibits the sigmoidal shape due to the presence of

a fissure.
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Figure 5.4: Screen display for the Road Runner function, two dimensional case. (Actual
screen dump).

5.1.3 Plots of level set value-c against the iteration number-I

The progressive plot of level set value against the number of iterations, c e-’ J, gives

feedback on the strength of the convergence on c*. In this research a pre-specified value

of the modified variance was adopted as a convergence criterion. This value is compared
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with the modified variance after each iteration. Ideally the modified variance should

reach zero at the global optimum, but a small value is used as a tolerance for practical

implementation purposes.

Because the modified variance is not dimensionless and is also sensitive to the absolute

value of the objective function, a strong convergence criterion value for one case may be

weak for another case. It can therefore be difficult to specify a convergence criterion in

advance of obtaining a solution of the problem. The convergence question can be judged

from the evolving c I curve and based on the difference of level set value between

consecutive iterations, as was discussed in Chapter 2, section 2.3.5.

Ideally c “-‘ I would be a smooth and monotone decreasing curve, and strongly asymp

totic to the global minimum. The advancement of c on c’ resembles a binary search in

some respects and therefore often shares siniilar convergence characteristics. As the curve

becomes nearly horizontal it indicates that the difference between the level set values at

consecutive iterations is very small, and that further iterations would probably bring even

smaller improvement to the objective function per iteration, see Figure 5.5(a). But if the

search stops before the horizontal part of the curve is well developed, it may suggest that

the convergence criterion adopted is too large and has lead to a premature termination,

as in Figure 5.5(b).

In less ideal cases the level set value versus iterations plot might show some disconti

nuity as in Figure 5.5(c). The causes for the discontinuity can be either a discontinuity

in the objective function surface, or that the global optimum lles in a small fissure and

a first point has been generated in that fissure just prior to the discontinuity. When a

low point is generated in the fissure it focuses the search around the new point and a

major correction occurs in the level set boundary estimates. As more points are then

generated in the fissure the level set value drops rapidly compared to previous iterations,

hence an abrupt change in shape is introduced into the c I curve. An example of the
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Figure 5.5: Level set value-c versus iteration-I.

above is given in Figure 5.6, where the Road Runner Function is used to demonstrate a

discontinuity in the c I-s I plot. In this instance the number of points maintained

in the level set, was reduced to half of its recommended value. The curve exhibits the

initial tendency to converge on a non optimal point, as discussed above, and then the

abrupt slope change leads to the final convergence on the global optimum.

5.1.4 Further generalization of the N1 - I and c ‘-‘ I plot interpretations

The N —‘ I and c - I plots are considered to be an important by-product of the

LSP search and their interpretation is unique to LSP. Experience with these plots when

solving problems has revealed some distinct and frequently observed patterns. These

patterns have been linked to the known features of the many test problem solved and

has lead to the following generalizations. While these are explained with the aid of a

one dimensional problem, their key features can easily be extended to the multidimen

sional equivalent cases. It should be stressed that, regardless of the dimensionality of

the problem being solved, the c I and N1 I plots will remain two dimensional.

Interestingly, the characteristic plots shown in the following pages were clearly observed

in many multidimensional problems. This suggests that the types of features reflected in
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Figure 5.6: Low Nke search for the Road Runner function. Demonstrates discontinuity
in c I plot. (Actual screen dump).

the two dimensional examples are often also dominant in more complex problems.

The top two shaded diagrams in Figure 5.7 show plots of the objective function against

the variable x for two single dimensional problems. The user would not have knowledge

of these curves, but their general nature is revealed by the LSP screen displays of the

c I and N1 I plots shown in the lower sections of Figure 5.7.

The plots of the level set value-c versus iterations are both simple monotone de

creasing. This suggests for example that no fissure like feature in the objective function

surfaces have been detected during LSP search.

In the unimodal objective function case of Figure 5.7, the N1 I plot, shows a linear

relationship between N1 and I. The slope of the curve is close to Nkeep, which is indicative

of good search efficiency. This curve, together with the smooth monotone decreasing
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c I curve, leads to the conclusiou that the optimization problem being solved has only

one global optimum and an objective function surface which is essentially unimodal.

In the multimodal case of Figure 5.7 the Nj n-i J plot increases exponentially. This

decline in efficiency is indicative of a progressive decrease in the volume ratio of the level

set to the current cuboid which often arises when the problem being solved has multiple

global, or near global, optima.

Figure 5.8 shows three sets of more complex c ‘‘-‘ I and Nj n-i J plots reflecting more

complex objective functions. The first set, Figure 5.8(a), shows a smooth monotone

decreasing c n-i J curve and an almost constant slope of the N n.? I curve except for a

slightly higher slope at the initial stage of the search. These two curves are characteristic

of problems with a set of local optima, and a single global optimum lying in a relatively

broad depression in the objective function surface. Moreover the objective function value

at the local points is significantly inferior to the value at the global optimum. If the

objective values of the local optimal points are extremely inferior to the value at the

global optimum, then the influence of the local optimal points on the Nf n-’ I curve is 50

weak that the higher slope around the initial stages may not be distinct. The objective

function of Figure 5.8(a) is representative of this situation.

Figure 5.8(b) shows a smooth monotone decreasing c n.i curve but the N n-’ J

plot has a characteristic sigmoidal shape. The likely indication from these two curves is

that the problem has multiple local optima, but only one is a global optimum, and the

difference between the values of the objective function at the local and global optima is

quite small. This kind of objective function is depicted in the top figure of 5.8(b).

Figure 5.8(c) shows a pronounced discontinuity in the c n-’ I curve and the charac

teristic three part sigmoidal N n-i curve. Such curves are generally obtained with

problems which have a fissure in the objective function surface. The fissure is contained

within the cuboids throughout the search but no point is sampled inside the fissure at
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the earlier stages of the search. The type of objective function manifesting these plots is

depicted at the top of Figure 5.8(c) for a single variable case.

5.2 Adjusting LSP parameters

With LSP there are a number of parameters which control key aspects of the search.

These can remain fixed at recommended default values, be initialized at other values, or

be adjusted as the search progresses in the light of the outputs discussed in section 5.1.

The default parameter values recommended in sections 5.2.1 to 5.2.5 have proven to be

effective in many cases, but when search difficulties are indicated by the c n’ J and Nf I

curves, adjustments to these values may be warranted. Each of the parameters impacts

directly on quantities in the domain of the engineer’s real world problem as opposed to

being mathematically abstract.

The important LSP parameters are: the number of confirmed points in the acceptance

set Niveep; the value of the criterion for convergence VM; the value of the clustering

criterion for partitioning the problem into subregions; the criterion for initiating skewness

and the adjustment parameters; the change of the penalty parameters per iteration; and

the tightening of any relaxed constraints per iteration. These parameter values and their

adjustment, which were investigated and exploited throughout the test problems, are

discussed in the next sections.

5.2.1 Number of confirmed points in the acceptance set-Nke

The required number of confirmed points in an acceptance set depends primarily on the

number of variables involved in the problem formulation. Generally, increasing Nkeep

improves reliability but reduces the search efficiency. The ideal relationship between

Njeep and the number of variables in the problem is not necessarily linear, though a
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Figure 5.7: Interpretation of simple c ‘ I and N1 I curves, unimodal and multimodal
objective functions.
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linear relationship appears to work well for lower dimension problems.

From the experience gained dnring this research, Nkeep = (loxnumber of variables)

was found to be adequate for most problems up to 6 variables. With larger dimension

problems substantially less than the l0xnumber of variables was often satisfactory. For

example, the maximum value of 11keep utilized was 160 for Templeman’s problem, dis

cussed in Chapter 4, section 4.3.4, involving 38 variables and yet the solution found with

LSP improved (very sllghtly) on the published results for the same problem as well as

finding multiple optima in a single run.

5.2.2 Termination criterion-VM

Since the convergence criterion used in LSP is based on the variance of the objective

function values in the acceptance set, it is expressed in the same units as the objective

function and is prone to scaling problems. Therefore a specific value of the convergence

criteria performs best for a specific range of objective function values. A similar scal

ing problem is common with gradient optimization convergence criteria. One gradient

method, GRG2, recommends that the objective function and constraint functions be

scaled to have absolute values greater than 10”’ and less than 100 for successful oper

ation of its convergence criterion [Lasdon, 1982]. Convergence criterion values ranging

between 1 * i0 to 1 * 108 were adopted with LSP. The higher values were used for

problems with high absolute values of the objective function at their global optimum.

The modified variance of the objective function values in the level set is reported

at every iteration. Its value can also be assessed in the light of the information on the

progress of the search provided by the c ‘—‘ I and Nf I curves as discussed in Chapter

2, section 2.3.4 and earlier in this chapter.
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5.2.3 Cluster criterion

Subdividing the cuboid into a set of smaller cuboids when multiple optima are indicated

by the formation of multiple point clusters can be an important strategy in achieving a

computationally efficient and successful solution with LSP. A simple clustering analysis

routine is adequate to identify the clusters and hence their boundaries. Any overesti

mation and even overlap of cluster boundary estimates does not threaten the success of

the search. Once the bounds of each cluster and hence their cuboids are established, the

search proceeds independently within each of these individual new cuboids.

The standard cluster analysis routine adopted in this research involves the construc

tion of a dendrogram. At some distance from the branch ends, the dendrogram is cut by

a line perpendicular to the branches so that the initial dendrogram tree is divided into a

set of smaller trees. Points corresponding to each of the smaller trees are considered to

form individual sets and are identified as clusters if the necessary clustering criterion is

met. •The clustering criterion was specified in Chapter 3, section 3.1.3 as the ratio of the

minimum distance between two clusters and the maximum distance between two points

within a cluster. When this ratio is above a certain predefined value, the region occupied

by the acceptance set is subdivided into smaller subregions. Based on the test problems,

experience showed that the useful range of the clustering criterion is between 2 and 8.

Even though clustering analysis methods can be used for any n dimensional problems,

their application in this research was confined to problems involving up to 4 variables.

This was largely because of the difficulties which occur in cluster investigation in larger

dimensional problems. Furthermore, there are dangers in over generalizing the experience

obtained with a limited number of test problems to high dimensional problems that might

be encountered in engineering.
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5.2.4 Cuboid stretching parameters

At every iteration the cuboid defined by the confirmed points in the acceptance set is

stretched on each side by - of its total length, where n is the nnmber of points from

the previous iteration remaining in the acceptance set after points which do not fuffil the

current f(x) c condition have been discarded. Details of the stretching parameters are

given in Chapter 3, section 3.4.

The stretching of cuboids obviously increases the cuboid volume, but the efficiency

of the search is not noticeably reduced by this extra volume when the stretch is small.

Experience with the test problems showed that no significant difference in the total

number of function evaluations exists for cases with and without cuboids being stretched.

But the increased reliability benefits from cuboid stretching were significant, especially

when optimal points were close to the cuboid boundaries.

5.2.5 Skewness adjustment parameters

The LSP parameters used for skewness adjustment have already been discussed in Chap

ter 3, section 3.5. The choice of value for each parameter is made so as to balance the

increased speed of convergence against the increased risk of missing the global optimum.

The parameters help reduce the risk of missing optimal points located at the boundaries,

and in particular the corners, of the cuboid.

From the experience gained in this research, the best values for the three skew pa

rameters range from 0.3 to 0.4 for 6, 0.10 to 0.25 for 6 and 0.05 to 0.15 for 62.

When skewness adjustments were used, the default values 6o = 0.4, 6 = 0.1 and

62 = 0.05, were adopted. For a one variable problem with a unit length of cuboid, these

figures give a maximum elongation (stretch) of 5% when 6 = 1 and a minimum elongation

of 2% when 6 = 6. For cases where 6J 6 there is no adjustment. With the default
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parameter values adopted, the shift of the cuboid would be a maximum of 10% when

6 = 1 and a minimum of 4% when 6 = 6o Therefore for a cuboid of unit length the

stretch introduced due to skewness adjustment will be in the range [0.02, 0.05] and the

consequent shift will be in the interval [0.04,0.10].

The above mentioned default parameter values produced satisfactory results through

out the test problems. As a test of response to a highly skewed feasible region, the initial

bounds for the Rosenbrock function, where the solution is at x1 = 1 and x2 = 1, were set

at 0 x1, x2 20. Two sets of runs were conducted, one without, and the other with,

skewness adjustment. In the first case, out of the 10 different LSP runs without skewness

adjustment, only 3 runs converged on the true optimum point. But, in the second case,

where skewness adjustment was used, all the 10 different runs converged on the global

optimum point. These examples, as well as a number of the other test problems, demon

strated that the skewness adjustment significantly improves the reliability of convergence

on the true optimum point with only a small addition in computational effort.

5.2.6 Penalty and constraint relaxation and tightening parameters

Details of penalty parameter modification are given in Chapter 3, section 3.2.1. Exper

imental work showed good results for the penalty coefficient reduction within a range

of 0.7 to 0.9 at every iteration. A minimum value of 100 was found to be satisfactory

for problems whose absolute value of objective function evaluated at the optimal point

is less than 100. Reductions outside this range encountered difficulties which commonly

involved convergence on a non optimal point. This is also discussed in Chapter 3, section

3.2.1.

The relaxation parameter value was usually determined by trial and error while run

ning LSP. In some instances, with heavily constrained problems, very little progress

towards establishing the initial set of Nheep points occurred even after the expenditure of
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considerable computational effort. The constraints were then relaxed before completion

of the first iteration. But, if possible, it is suggested that at least one iteration is com

pleted so that an indication of N, the number of function evaluations needed to establish

Nk€6 confirmed points, is obtained. If N) 20 x one might think of relaxing the

constraints. Generally the value of the relaxation parameter is related to the complexity

of the constraint functions. The merits of relaxing constraints are discussed in Chapter

3, section 3.3.

The six variable problem [Problem 6-1-0-2, Appendix A] demonstrates the advantage

of constraint relaxation. Without relaxing the constraints it took over 100,000 function

evaluations to generate a single acceptable point. But with constraint relaxation, it was

possible to find the optimal solution with 272,225 function evaluations.

From experience with the test problems, values between 0.5 and 0.85 were found to

be reasonable for tightening relaxed constraints. A lower value can be used for problems

where the search efficiency indicated by Nf after the first iteration is high indicating that

the feasible region volume is close to the current cuboid volume.

5.3 Use of a rhombohedron shaped search domain

A rhombohedron can be used as a more compact search domain in place of a cuboid. The

efficiency of LSP then increases in proportion to the volume ratio of the minimal cuboid

to the minimal rhombohedron enclosing the same acceptance set. This is discussed in

Chapter 3, section 3.6. This efficiency improvement increases with increasing linearity in

the relationship between pairs of variables. The greatest efficiency gain occurs when the

correlation coefficient approaches +1 or —1.

As the search becomes confined to a very small region of the decision domain, rela

tionships which are highly nonlinear will often approximate locally to a linear relationship
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so that the rhombohedron can be exploited frequently. However, it is important to note

that LSP does not impose an actual linear relationship on the variable pair so that no

approximation or distortion is being introduced into the problem being solved.

The rhombohedron was used for a number of test problems which had shown distinct

evidence of linearity between some of the variables in the x xj plots at some stage in the

search. The three variable flywheel design problem [Problem 3-15-0-2, Appendix A], and

the fonr variable power generation problem [Problem 4-11-0-5, Chapter 4], were used to

investigate the rednction in the nnmber of function evalnations when the rhombohedron

was nsed. Each of these test problems was solved in two ways. In the first case, a cuboid

was used throughout the search while in the second case shifts were made between cuboid

and rhombohedron as the need arose. The shift to the rhombohedron was made only

when the absolute value of the correlation coefficient between any two variables was

greater than or equal to 0.9. Both test problems were run three times for each case and

the average number of function evaluations required for convergence is given in Table

5.1. The same termination criterion and Nj’6ep values were adopted in all of the cases.

‘ I

In multidimensional problems more than one pair of variables can exhibit high linear

correlation. In such cases the rhombohedron defined might have more than one non-

rectangular face. Even though it is technically possible to make further modifications to

the cuboid in response to multiple high correlation coefficients, only a single variable pair

was accommodated at any one time in this research. When more than one pair of variables

had correlation coefficients greater than 0.9 the cuhoid was replaced with a rhomboid

Problem
3-15-0-2
4-11-0-5

Table 5.1: Function

Number of function evaluations
Cuboid Rhombohedron

7,432,678 507,558
1,431,317 L 84,653

evaluations using cuboid and rhombohedron
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only in the plane of the variable pair with the highest correlation. At this present

stage of implementing the nse of rhombohedron both conceptualization and visualization

difficulties preclude the use of a rhomboid for more than one variable pair.

The rhombohedron also provides benefits in other situations. When a problem has

multiple global optima, the number of function evaluations can be very large before the

convergence criterion is met, as discussed in section 5.1.4. If there are only two global

optimal points, or there are more than two optimal points lying approximately on a

straight line in the decision space, adopting a rhombohedron can dramatically improve

the search efficiency. Therefore in some cases, the use of the rhombohedron can be a

substitute for cluster analysis. For example, a rhombohedron search domain was used to

solve the two variable, two global optima problem discussed in Chapter 3, section 3.1.3,

using Njeep = 20 and VM 0.001. The convergence criterion was met and both optimal

points identified after 234,866 function evaluations. Comparison of the result with the

8,018,142 function evaluations cited in Table 3.1 in Chapter 3 indicates that the efficiency

gain is substantial.

5.4 Relationship between initial cuboid volume and its location, and Nf

When optimization problems are bounded but bound estimates are not known, the de

signer has to guess the possible upper and lower limits for each variable in order to

define the initial cuboid. A generous guess is preferred since precision on the bounds is

not required and it is important that the global optimum not be excluded. The size of

the initial cuboid was found not to have a significant influence on the total number of

function evaluations required to solve the problem.

A two variable unconstrained problem, [Problem 2-24-0-0, Appendix A], demonstrates

the influence of the initial cuboid can have on the total number of function evaluations.
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This problem was run with two different sized initial cuboids. In the first case the bounds

of the variables used were 0 x1 $ 4 and 0 x2 $ 4, which gives a volume of 16 units.

In the second case, where the bounds used were 0 x1 20 and 0 x2 20, the volume

of the initial cuboid was increased to 400 units, i.e. 25 times that of the volume in first

case. Ten separate runs for each of these cases were conducted and the average value

of number of function evaluations was found to be 2,369 for the first case and 2,725 for

the second, larger initial volume, case. These numbers suggest that there is only a weak

relationship between initial cuboid volume and the total number of function evaluations

required for solution.

Inappropriately skewed initial estimates of bounds relative to the global optimal

point(s) can result in a high number of function evaluations for solution. The skew

ness adjustment generally modifies the location of the cuboids so that clusters of points

in the vicinity of a cuboid boundary are not on the boundaries of subsequent cuboids.

Even if the skew adjustment is high at the earlier stage of the search, it can take many

iterations to shift the cuboid until the global optimum is included in the current cuboid.

Such extra iterations introduce computational inefficiency. Of course the inefficiency can

be reduced with a different set of skewness parameter values, but adjusting these param

eters for each particular problem is not a feasible option as there will rarely be any a

priori information on which to base the adjustment.

5.5 Some specific difficulties encountered while implementing LSP

Computational inefficiency and convergence difficulties were encountered by LSP in just

four of the 200 published mathematical test problems attempted. LSP can fail to find the

true solution to a problem when a cuboid at any stage of the search erroneously excludes

a portion of the level set containing the global optimum and this is not subsequently
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recovered through cuboid stretching or skewness adjustment. Evidence of this difficulty

was provided by a test problem taken from Subrahmanyam, [Problem 2-12-0-4, Appendix

A). This two variable, four constraint problem is shown in Figure 5.9. Its key features are

a narrow crescent shaped feasible region formed by two parabolas and an almost parallel

objective function surface to one of the variable axis. The formulation is

Minimize f(x) = (xi — i0) -I- (x2 — 20)

Subject to:

—x1 + 13 0

—(x1 — 5)2
— (x — 5)2 + 100 0

(x1 — 6)2 + (x2 — 5)2
— 82.81 0

x2 0

Subrahmanyam, [Subrahmanyam, 1989], solved this problem using the “Extended

simplex method applied to constrained nonlinear optimization”. He states that conver

gence was achieved at 833 function evaluations, though it is not clear if this number

includes the evaluation of constraints or is only the number of objective function evalu

ations.

Attempts to solve the above problem with LSP, using the default parameter values,

always converged on non optimal points. Since the global optimum lies at an acute

corner of the feasible region, the cuboids at successive iterations excluded the global

point for the reason discussed in Chapter 3, section 3.5. Using skewness values within

the range recommended in this thesis, the skewness adjustment could not shift the cuboid

far enough to include the optimum point before the convergence criterion was met. The

skewness parameter values were easily tailored to solve this particular problem, values

of 6 = 0.25, b = 0.22 and 62 = 0.15 produced the correct global optimum. Such values

would not be appropriate for general LSP use because of the severe reduction in efficiency

that would result with most types of problems.
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Figure 5.9: The crescent shaped feasible region of Subrahmanyam’s problem [Problem

2-12-0-4, Appendix A].

Subrahmanyam’s problem suggests an even simpler test problem. As the only critical

ingredient is the crescent shaped feasible region, the objective function can be replaced by

a simple linear function with a mild gradient. It appears that, with its elegant simplicity,

this modified version of Subrahmanyam’s problem might play a similar role for level set

methods in general as that played by Rosenbrock’s valley problem for gradient search

methods. A sample objective function for a modified Subrahmanyam’s problem can be

stated as

xl
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f(x) = 245x1 + 4292x2.

Another particular difficulty arises with LSP when the shape of an active constraint

surface is similar to the shape defined by the objective function surface in the vicinity of

the global optimum value. An elementary example of this occurs in linear programming

when the objective function is parallel to an active constraint. There, all points on

the line joining the two neighbouring optimal vertices constitute a set of global optima.

When solving nonlinear problems having this characteristic, the cuboid volume reduction

between consecutive iterations can, from a practical point of view, cease. But the volume

of the level set inevitably decreases at every iteration, even though the magnitude of this

decrease may be small. Thus the ratio of the acceptance set volume to the cuboid

volume gets progressively smaller with each iteration. As this ratio declines, the chances

of generating acceptable points decreases, and the search becomes increasingly inefficient.

Another situation where a progressive reduction of the acceptance set volume occurs

while the volume of the cuboid remains almost constant is shown in Figure 5.10 for an

unconstrained problem. The figure shows that the cuboid volume, which corresponds to

area in this two dimensional example, remains nearly the same at iterations k and k + 1,

while the volume of the acceptance set is substantially reduced. In this case the efficiency

of generating acceptable points at the k + 1 iteration declines proportionally with the

acceptance set volume. Such a situation can, however, often be detected visually in the

xj displays and remedied by partitioning.

Efficiency problems also arise with LSP when a problem has multiple global optima,

and the global optimal points are approximately distributed along an elongated path.

An example is provided by the problem shown in Chapter 3, Figure 3.5 when solved as

a maximization problem, so that the problem becomes
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(a) acceptance set at Iteration k (b) acceptance set at Iteration k+1

Figure 5.10: Acceptance set volume change after an iteration while cuboid remains con
stant.

Maximize f(x) = 100 — (xi + x2 — 10)2

Subject to:

0 x1 10

0 x2 10

The solution is f(x*) = 100, and all points on the line connecting (0,10) and (10,0)

on the x1-x2 plane are members of the solution set. The final cuboid enveloping these

points is the same as the original cuboid.

Under normal circumstances the on-screen plot of number of iterations versus the level

set value, c I, shows a monotone decreasing curve, but in some cases discontinuities

in the curve are observed. This indicates that there is an abrupt change in the rate of

improvement of the level set value. This phenomenon may arise from the fact that there

is a fissure in the objective function surface in the feasible region which gives lower values

of the objective function and no point was sampled in the fissure in any iteration prior to
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the discontinuity. There could of course be more than one fissure in the objective surface

and consequently any discontinuity in the c n. J curve should signal caution about the

validity of any presumed global solution.

5.6 Observations and recommendations

Prior information about a nonlinear optimization problem, such as the nature of the

objective function surface or the shape of the feasible region, can be of help in the

search for the global optimum. Realistically though, such a priori information is seldom

available, even with engineering problems of modest complexity.

The information provided by LSP as the search progresses, as discussed earlier in

this chapter, is simple in nature but gives important clues to the likely nature of the

difficulties being encountered. As a result, possible remedies to overcome the difficulty,

like relaxation of constraints or adjustments of other LSP parameters, can be suggested

as the search progresses and before unnecessary computational effort is expended or the

search abandoned.

In most of the test problems, the volume of the cuboid reduces and the density of

points (i.e. points per unit volume in the decision space) in the acceptance set increases

from one iteration to the next. In order to maintain a more or less constant density of

points, the number of confirmed points in the acceptance set can be reduced at every it

eration without impairing the convergence properties of LSP. A recommended refinement

is that, unless the computational effort for a single function evaluation is very large, a

higher initial Nkeep value be used than that suggested in section 5.2.1. Initially, Nk66

can be raised by about 30% of the recommended value and then be gradually reduced,

by one or two, at every iteration, the reduction to stop when Nkeep reaches about two

thirds of the recommended (loxnumber of variables) value. When no other difficulties
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are experienced, the total number of function evaluations per iteration is proportional to

the number of points in the acceptance set so that, while this strategy improves reliability

the overall computational effort expended is unchanged.

The other heuristic adjustments discussed are modification of the penalty parameter

and tightening of constraints following relaxation. These systematic adjustments are

intended to increase the efficiency of generating acceptable points within a cuboid. There

were instances where problems with feasible regions which were too small relative to the

initial cuhoid to successfully generate any acceptable points could only be solved using

these approaches. Examples are [Problem 3-7-0-2, Appendix A] and the ten member

truss problem in Chapter 4, section 4.3.3.

In LSP the number of function evaluations expended at each iteration are displayed

in the N1 I graph and used to interpret certain phenomena. In general the N1 -‘ I

plot serves as an indication of search efficiency as the search progresses. High numbers

of function evaluations at the initial iteration indicates difficulty in generating points in

the feasible region. Continuing the search under those circumstances, without modifying

the LSP parameters, may result in an overall inefficient search or even an unsuccessful

search. Therefore it is recommended that, in response to a high N1 value in the first

or early iterations, the search be halted and the technique of constraint relaxation and

tightening actuated in the LSP program. The fact that the need for such modification

is usually indicated quite clearly by the output from the first iteration is of significant

practical value as it limits wasteful expenditure of computational effort.

When the plot of the level set value versus iterations, c n- J, shows a discontinuity at

some stage of the search, the reasons for the discontinuity can usually be attributed to

the detection of a narrow and deep fissure in the objective surface in the region containing

the global optimum point. No point has been sampled in the fissure prior to the c I

curve discontinuity but the acceptance set (so also the cuboid) still includes the global
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optimum. The subsequent generation of a single point in the fissure, with substantially

lower objective function value, triggers the discontinuity in the rate of reduction in c

over the current and following iterations. When such a phenomenon is observed, Nk

might be raised, say by about 50%, and LSP rerun so that the chances of generating

points in any similar fissures, if they exist, is increased. The increase in Nkeep will help

to increase the chance of converging on the global optimum, but at the expense of extra

computational effort.

In some cases, and especially with low dimension problems, the x n. x scatter

diagrams of points in the acceptance set clearly indicate the existence of more than one

cluster of points. In that case LSP can be halted and separate LSP searches initiated

within cuboids bounding the individual subregions indicated by the clusters. The bounds

of the subregions can be estimated visually from the scatter diagrams. Some additional

graphical identification techniques are discussed in Chapter 7, section 7.5.2.

Finally it should be emphasized that, for all of the parameter adjustments discussed,

much of the triggering information concerns just c, 1/f and I. The magnitude of c

is related directly to the problem being solved while N1 and I are easily understood

quantities related to the search. The influence of these quantities on the search strategy

is therefore not likely to be difficult for an engineer practitioner, as opposed to the

numerical analysis specialist, to understand. The combined influence of a complicated

set of constraints and a complicated objective function surface on the LSP search, even

when a high number of dimensions are involved, can be interpreted from the set of

two dimensional screen plots discussed in sections 5.1.1 to 5.1.3 far more easily than

one might expect. In addition, the two dimensional x1 xj scatter diagrams have the

potential to provide an engineering practitioner with useful new knowledge concerning

the topology of his design problem. The convergence criterion can be judged and adjusted

in the context of the specific problem being solved and in light of the progress indicated
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in these plots. The plots also provide important clues concerning the modification of

certaiu LSP parameters which can enhance computational efficiency and reliability while

the search is in progress.



Chapter 6

EVALUATION OF NLP PERFORMANCE

During the course of this research into the implementation of a level set optimization

scheme it became evident that it was evolving into an optimization tool with many fea

tures which might be considered attractive. At the same time it was recognized that,

with the large number of solution points needed to be generated at each iteration, LSP

might be considered to be computationally extravagant when compared with most gradi

ent methods as well as certain direct search methods. Some kind of objective evaluation

of LSP’s overall performance and characteristics seemed desirable and the literature was

searched for a suitable evaluation procedure.

There are a growing number of nonlinear optimization methods and many have been

developed within very specialized fields of application. Diverse testing procedures and

evaluation criteria have been presented but the problem remains of determining which

test problems and evaluation criteria are relevant to an individual user needs. While

some users are concerned primarily with speed and accuracy of convergence, others are

more interested in reliably obtaining the true global solution.

No established universal criteria set for evaluating nonlinear optimization methods

was found. As well, most of the test problems which appear in the literature, and

have been used for evaluating performance, were developed to demonstrate the special

strengths of one specific NLP method.

The performance criteria which have been offered in the literature are geared almost

177
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entirely to evaluating local optimization methods. The reason being that local optimiza

tion methods are by far the most prevalent. Since very few NLP methods have been

developed for global optimization, evaluation criteria for global optimization methods

are rare. Unfortunately, the criteria sets which have been proposed for local NLP meth

ods do not consider some of the important featnres of global optimization techniques and

the pitfalls of global optimization problems.

In this chapter some of the existing criteria for assessing global optimization methods

are reviewed and a revised set proposed which, in particular, attempt to address the

current needs of engineering practitioners. An assessment of LSP’s performance under

the recommended performance criteria set is also demonstrated in the last section of this

chapter.

6.1 Existing evaluation criteria

Most of the existing performance indicators or performance criteria focus on the following

factors: efficiency, expressed as the CPU time required to obtain a solution; the number

of function evaluations for solution; and the numerical accuracy of the final results. The

ability of a particular method to solve a wide variety of optimization problems is seldom

considered and quantitatively measured since in the past efficiency has been the dominant

consideration [Reklaitis et al., 1983]. Sandgren set as a criterion the ability to solve a

large number of problems in a reasonable amount of time [Sandgren, 1980]. He ranked

the algorithms on the basis of the number of problems solved within a specified CPU time

limits. The limits were based on a fraction of the average CPU time for all algorithms

to solve each of a set of problems.

Most of the criteria sets to date have been tailored to a specific algorithm. Regardless

of the type of test problems used, the following performance indicators have consistently
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appeared in the literature and are therefore considered to be the most general.

• Efficiency (CPU time). A measure of the central processor time for termination of

a successful search for a specific problem with a specified degree of precision. This

indicator is highly dependant on the type of computer used and the coding of an

algorithm.

• Robustness. The ability to solve a large variety of problems in a reasonable time

with a specified precision.

• Number of function evaluations. A count of how many times the objective function

and/or constraint functions are called during execution. There is not even consis

tent agreement as to how the number of fnnction evaluations required to find a

solution should be counted so the numbers quoted are often not comparable. This

is an alternative measure of efficiency, which is independent of the type of computer

used in the test.

• Number of Iterations. The nnmber of iterations to reach convergence for iterative

algorithms. This indicator is not influenced by the computer used, but it is not

necessarily comparable between different algorithms.

• Basic operation count. How many basic computer numerical operations (or flops)

are performed. Will be influenced by the code and may even depend on the type

of computer used.

• Numerical accuracy. The deviation of the attainable solutions from the “true” or

analytical solution. With dimensionally large and complex test problems the true

solution may not be known.
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• User friendliness. Simplicity, convenience of input format, ease of understanding

of the output both during the search and at termination. A crucial component

for practitioners, usually overlooked, is the time required by an occasional user to

familiarize himself with the theoretical basis of the methodology and (re)acquire

implementation skills.

• Reliability. The ratio of the number of successful solutions found to the total

number of problems attempted. Wrong solutions involve either convergence on a

non-optimal point, violating constraints, failure to meet the convergence criterion

due to excessive computation time, or search termination because of computational

fatal errors or numerical overflow.

• Problem dimensional capability. Expressed as the maximum number of variables

and equality and inequality constraints which can be handled without substan

tially reducing the performance indicators, while the computational effort required

remains within acceptable or feasible bounds.

• Complexity. The ability to handle ill conditioned, indefinite and degenerate prob

lems.

• Sensitivity to starting point. Effect of choice of starting point on the success of the

search.

Most attempts to combine the above criteria have been purely qualitative. Schit

tkowski produced one of the rare attempts to give a quantitative interpretation to the

relative weight of each criterion [Schittkowski, 1980]. He adopted nine criteria and as

signed the three sets of weighting factors given in Table 6.1 below. The choice of the

criteria set depended on the relative importance of the various criteria to three distinct

types of users. The actual nature of these types of users was not described but the



Chapter 6. EVALUATION OF NLP PERFORMANCE 181

emphasis on ease of use for type II users suggests that this is most applicable to the

non-specialist.

Alternate_Weight
Performance criteria I II III
Efficiency (speed) .32 .18 .14
Reliability .23 .18 .36
Global Convergence .08 .08 .20
Ability to solve degenerate problems .05 .03 .03
Ability to solve ill conditioned problems .05 .06 .03
Ability to solve indefinite problems .03 .03 .03
Sensitivity to slight problem variation .03 .03 .06
Sensitivity to position of the starting point .07 .06 .06
Ease for use .14 .35 .09

Table 6.1: Schittkowski’s NLP performance criteria

6.2 Limitations of Schittkowski’s performance criteria

A principal shortcoming of Schittkowski’s performance criteria is that they do not address

some of the currently important issues which impact upon the appeal and practicability

of nonlinear optimization to the practising engineer, while considering others which are of

little relevance. Limitations also arise from the fact that the criteria sets were designed to

evaluate local optimization methods with continuous functions only. Therefore these sets

of criteria and weights need to be extended and the weighting of each criterion needs to

be adjusted to reflect contemporary needs and economic realities. Schittkowski’s criteria

weights were proposed when mainframe computers were the only computing resource

and the cost of computation, which was directly proportional to CPU time, was the

dominant expense. The development of microcomputers has substantially lowered the

cost of computation. Furthermore, the marginal cost of computing on microcomputers

can approach zero on machines which primarily serve other purposes and are severely
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under utilized over a 24 hour day. Thus the weighting of efficiency should be considerably

lower today.

6.3 Recommended set of evaluation criteria

The purpose of a criteria set should be to serve as an aid to identifying the best optimiza

tion method for a particular class of user. Therefore, as many of the relevant practical

considerations as possible should be addressed by the criteria set. The factors considered

important in this thesis for NLP performance evaluation are as follows.

Reliability:

One of the most important qualities of an optimization method is its ability to reach

a successful solution. A solution is successful when the final solntion is achieved without

numerical failure and without any violation of the constraints. Reliability is defined as

the ratio of the number of successful solutions obtained to the total number of problems

attempted. High reliability makes a method applicable, with confidence, to the widest

possible range of problems, hence a high weight is given to reliability in the set of criteria.

Global convergence:

Many civil engineering optimization problems are nonlinear in their formulation which

can lead to multiple local optima. Since the difference between local and global optimal

solutions can be considerable, there is always the need to identify the global optimum.

Therefore, a considerable weight is assigned for the capacity to guarantee finding the true

global solution.

Multiple global solutions:

A practitioner would definitely be interested in identifying all possible global optimal

points or at least being given some indication of their possible existence. These points
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may give designers and decision makers the flexibility to choose from significantly differing

alternate optimal decisions. Consequently, the ability to identify mnltiple global optima

is desirable and should have high weight amongst the performance criteria.

Near optimal solutions:

In many cases nonlinear problems have an undnlating objective function surface which

results in multiple local optima. All of the local optima may not necessarily be of great

interest to a designer but those local points which produce objective function values close

to the global optimum can, from a practical standpoint, be of equal interest to the global

optimum. Therefore, a considerable weight should be assigned to near optimal solution

identification.

Discrete variables:

Many civil engineering problems involve discrete variables as well as mixtures of

discrete and continuous variables, so that the capacity to handle integer variables should

be given some weight.

Ease of use:

Ease of use and interpretation of the output are major factors for choosing and using

an optimization method. The general NLP user cannot be expected to know the meaning

of all of the terminology used in numerical analysis. Terms like Kuhn Tucker conditions

and Hessian matrix are often alien to him and there is a natural reluctance to adopt a

method if the important features of the output data are not immediately understood. A

friendly input-output format in a language the designer can understand is appealing. In

practice, ease of use is related to expenditures of an engineer’s time and hence to cost

of implementation. This includes the time an engineer needs to learn and familiarize

himself with the theory and implementation of the method and in the interpretation of

the results. In this thesis, the highest weight in the performance criteria set is dedicated
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to user friendliness.

Speed of convergence:

As discussed in section 6.1, speed of convergence should no longer be considered as

a major factor. It used to be important when the cost of computation was dominated

by CPU time on a mainframe computer. The fact that some NLP methods can be run

on personal computers has changed the relationship between cost and computation time.

Microcomputers, which are often under utilized, can be left to run for the whole day and

the computational cost is not far from the electrical power used. Moreover the speed

of computing has continued to increase. This phenomenon has further diminished the

importance of speed or efficiency as an indicator of NLP method performance. However,

the number of function evaluations, which does not depend on the type of machine used,

can serve as a relative indication of speed of convergence.

After considering the above factors, a new proposal for an NLP performance evalua

tion criteria set along similar lines to those originally proposed by Schittkowski is given

in Table 6.2. This table is an extended version of Table 6.1. The criteria set and weights

recommended are based on personal experience gained in using a variety of NLP tech

niques in this research. Each figure in the last column indicates the author’s view of

the relative importance of the various criteria for the present day needs of a practitioner

engineer doing only occasional optimization.

6.4 Evaluation example: LSP versus GRG2

The performance of LSP under the proposed criteria set was not investigated in any

systematic or formal way over the more than 200 test problems investigated in this

research. Only a limited example of performance evaluation is given here, comparing
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Mainframe PC.
1980 1993

Alternate Weight
Performance criteria I II III
Efficiency (speed) .32 .18 .14 .03
Reliability .23 .18 .36 .21
Global Convergence .08 .08 .20 .15
Ability to solve degenerate problems .05 .03 .03 ft
Ability to solve ill conditioned problems .05 .06 .03 negligible

Ability to solve indefinite problems .03 .03 .03 importance

Sensitivity to slight problem variation .03 .03 .06 1).
Sensitivity to position of the starting point .07 .06 .06 .03
Ease for nse .14 .35 .09 .25
Integer handling — .12
Near optimal solution identification — .08
Multiple optima identification — .13

Table 6.2: Recommended NLP performance criteria

the performance of LSP against a leading gradient method GRG2 using the proposed

criteria set. A single test problem, [Problem 4-12-1-5, Appendix A], is used in this

example. This test problem was used by Schittkowski to evaluate the performance of a

variety of NLP methods including GRG2 [Schittkowski, 1980]. In Schittkowski’s work,

the performance under each of his criteria was evaluated on the basis of 10 different runs.

The same problem was run ten times using LSP. The results showed that all of the LSP

runs converged at a single global optimum. The performances and scores of the two

methods derived from the test problem are given in Table 6.3. The performance for each

criterion is assigned values between 0.0 and 1.0, and scores are calculated as (weight x

performance). The weights adopted here are those cited in Table 6.2, section 6.3. The

total score, which can take a value between 0.0 and 1.0, is a comparative indicator of the

overall performances of the two methods.

In Table 6.3, a performance value of 0.0 is assigned for efficiency to LSP and a value

of 1.0 to GRG2. This is because the number of function evaluations to reach search
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termination with LSP is quite high compared to that reported for GRG2. On the other

hand, it is assumed that the time an engineer needs to acquire a working knowledge of

the gradient method and interpret its output is about four times the time required with

LSP. Therefore, the performance values for ease of use are 1.0 and 0.25 for LSP and

GRG2 respectively. The performance values for reliability and global convergence for

GRG2 are from [Schittkowski, 1980].

Performance Score
Performance criteria Weight GRG2 LSP GRG2 LSP
Efficiency (speed) 0.03 1.00 0.00 0.03 0.00
Reliability 0.21 0.867 1.00 0.182 0.21
Global Convergence 0.15 0.654 1.00 0.098 0.15
Sensitivity to position of the starting point 0.03 0.00 1.00 0.00 0.03
Ease for use 0.25 0.25 1.00 0.065 0.25
Integer handling 0.12 — 1.00 — 0.12
Near optimal solution identification 0.08 — 1.00 0.08
Multiple optima identification 0.13 — 1.00 — 0.13
Total score 0.435 0.97

Table 6.3: Comparison of GRG2 and LSP using proposed criteria set

In general, with the proposed criteria set and weighting scheme, LSP showed superior

performance over GRG2. The main factors for LSP’s high performance rating are as

follows.

• It is particularly easy to understand the output from LSP as it is expressed almost

entirely in terms of the problem variables and their values (see Chapter 7 on LSP

computer implementation).

• Almost all attempted problems were solved to a reasonable accuracy with LSP but

GRG2 failed to find solutions in about 13.3% of the cases.

• Multiple optima are clearly identified by LSP while GRG2 identifies only a single

solution at each run.
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• A set of near optimal points always accompanies the global optimum solution with

LSP but only one local optimum is provided by GRG2 at the end of each search.

Because efficiency still dominates many people’s view of the value of an NLP method,

and even though LSP was given a zero score in this category in the above evaluation, the

number of function evaluations with LSP for most of the cases, were of the same order

of magnitude as those solved using CR02. Only a short time was required to solve these

small sized problems. For example, with LSP, the time taken to solve the two variable

Rosenbrock function is about 2.86 seconds [Problem 2-7-0-0, Appendix A], a 3 variable

fuel allocation problem [Problem 3-14-0-1, Appendix A] took about 17.53 seconds, and

about 90 minutes was taken to solve a 15 variable problem with 29 constraints [Problem

15-1-0-29, Appendix A]. These times were on an 80386-33Mhz microcomputer. The times

were averaged over five different runs.

Because of the difficulties in finding representative test problems and finding universal

performance measures, a single quantitative assessment of the performance of an NLP

method does not appear to be possible. In addition, ease of use, which is an important

factor in determining if an NLP package is ever to be adopted by non-speciallst users, is

necessarily a subjective issue.

This chapter has provided a reassessment of Schittkowski’s set of qualitative perfor

mance criteria to reflect the present day computing environment and the needs of an

engineer practitioner. Although no systematic and complete evaluation of a number of

NLP packages was attempted in this research it is evident that LSP has characteristics

which make it worthy of serious consideration as a tool for nonlinear optimization.
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LSP COMPUTER IMPLEMENTATION

LSP was written in Quick Basic. This language was adopted for convenience in the

early stages of the research with the assumption that a more powerful language would

be adopted when the need arose. It transpired that LSP does not place any special

programming or computational demands so that, for developmental purposes, there was

no incentive to change from Quick Basic. While it eventually became apparent that

the graphical interface could be a unique and attractive factor of LSP it also presented

minimal demands on the graphics capabilities of Quick Basic. The only justification

for reprogramming would simply be to maximize computational speed and refine the

appearance of the graphics displays.

LSP executes the optimization process iteratively, giving results at the end of every

iteration. This intermediate output is available as numerical data and also in the form of

graphical displays. When the convergence criterion is satisfied, the program terminates

and gives the points in the acceptance set and their corresponding objective function

values. All of the intermediate and the final results can also be saved in a file.

Normally LSP does not require any adjustment to its parameters, it performs the

whole search automatically and outputs the intermediate and the final results. Modifica

tion of penalty terms, tightening of relaxed constraints and adjustments to the number of

points in the acceptance set are usually done without user interference. The predominant

user interaction is in the form of requests for specific information during the search, such

as displaying particular types of plots or sending information to a printer or to a file, or

188
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when the search experiences difficulties.

7.1 Subroutines

The LSP package subroutines are categorized into three main groups. The first group

consists of the problem definition routines, which contain the objective and constraint

function code and the LSP search parameter values, and also process user instructions for

any LSP parameter changes. The second group consists of the routines which perform

the optimization. The third group consists of the output routines which generate the

graphics displays and numerical solutions at various stages of the search.

LSP lends itself to programming as a set of short subroutines. The purposes of each

subroutine are discussed in more detail below. A schematic representation of the general

functions and operations of each set of the subroutines is also given in Table 7.1.

Problem definition subroutines:

The user is required to furnish information concerning the problem being solved. The

subroutines where this information is coded or entered are:

CONSTANTS: All LSP parameters and constants describing the problem size are stored

in this subroutine. These include the number of points in an acceptance set, the

value of the termination criterion, the value of the clustering criterion, values of

the skewness adjustment parameters, and the number of variables in the problem

formulation.

INITBOIJNDS: The minimum and maximum possible values for each variable are coded

into this subroutine and on execution these values are passed to the main program

to define the initial cuboid.
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PROBLEM DEFINITION

• formulate objective function
• formulate set of constraints
• specify variable bounds

OPTIMIZATION

Initialization
• generate feasible points
• evaluate moments
• specify level set value

Algorithm
• check for termination
• revise level set value
• discard bad points
• define current cuboid
• generate new feasible points

OUTPUT

• Display:
- points in the current cuboid
- current level set value
- current cuboid boundaries
- computational effort expended
- scatter plots

(in both initial and current cuboid)
- efficiency and search progress curves

• send information to a printer and/or a file

Table 7.1: LSP’s problem definition and operations
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CONSTRAINTS: All constraints are coded in this snbroutine. It receives the x vector

for a point and retnrns a binary value indicating feasible or infeasible. Constraint

evaluation at a point is terminated when the first violated constraint is detected so

that generally, on average, only half the constraints will need to be checked before

rejection occurs.

OBJECTIVE: The objective function is coded in this subroutine. It receives the x vector

and returns the value of the objective function.

Optimization subroutines:

This set of subroutines perform the actual optimization task.

INITKEEP: In this subroutine trial points are generated, points are checked for feasibility

by calling the CONSTRAINTS subroutine and the objective function is evaluated

by calling the OBJECTIVE subroutine. The number of confirmed points generated

is controlled by the value set for Nkeep.

UPDATEMSD: The mean and variances of the objective function values at the points

in an acceptance set are evaluated. A new level set value-c is assigned for the next

iteration.

SWAPSKEW: Points with objective function value greater than the new level set value-c

are discarded. A new cuboid, which contains those points fulfilling the level set

condition, is defined. Modifications of the new cuboid, in the form of stretching

and skewness adjustments are done when the necessary criteria are met.

FILLKEEP: More points are generated in the new cuboid to replace those points dis

carded at the new level set value-c. The generated points are checked for feasibility

and against the new level set value-c before they are accepted.
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Output subroutines:

Some of the subroutines give the intermediate and final results as an output. The

output is given in the form of numerical values and/or in the form of graphical displays.

The user has the option to supply the format required for the output.

REVIEWKEEP: This subroutine prints intermediate and final numerical results on the

screen. The current level set value-c, the best point x vector found so far and its

objective function value, the total number of function evaluations and the modified

variance of the points in the acceptance set are displayed after every iteration.

KEEPOTIT: This subroutine prints the decision variable values and objective function

values of the confirmed points in the acceptance set on the screen at any time

requested. This subroutine is activated at any time, while the search is in progress,

by pressing a function key.

DATA: This subroutine sends the decision variable values and the objective function

values of points in the current acceptance set, the bounds of the current cuboid,

the number of function evaluations expended so far and the current level set value-c

to a file whenever requested. Data transfer is activated by pressing a function key.

PLOTS: Generates the various types of screen plots discussed in this thesis. Some of

them are prompted by pressing a specific function key, and others are displayed

automatically after each iteration. The Nf ‘-. I and the c I plots are always

displayed after every iteration.

SCRGRAB: This subroutine sends graphical information into a specified file by saving

the currently displayed screen. It can be invoked either by pressing a function key

or automatically after every iteration.
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CLUSTER: The clustering analysis subroutines calculate the dendrogram using the con

firmed points and displays the distance coefficients on the screen. The user is asked

to specify the number of clusters extracted on the basis of the dendrogram. Once

the clusters are identified the confirmed points are reclassified into the different

clusters and the cuboid bounds for each cluster calculated.

The LSP program framework can readily incorporate auxiliary subroutines which

solve major tasks that are associated with a specific type of problem. For example,

the cluster analysis routine, the Hardy Cross relaxation routine for solving pipe flow

problems, and frame and structural truss analysis routines have all been incorporated

into the LSP program in the form of subroutines when solving test problems.

7.2 Confirmed point generation strategy

A point has to be both feasible and produce an objective function value less than or

equal to the level set value-c to enter the acceptance set. Guaranteeing the feasibility of

a point before evaluating the objective function or guaranteeing the level set condition

before checking feasibility leads to two different strategies of confirmed point generation.

These different strategies can affect the efficiency of the search depending upon the nature

of the optimization problem being solved. Even though it is not necessary to check point

feasibility for unconstrained problems it is relevant, in the following discussion, to consider

both constrained and unconstrained problems. Constrained problems can yield effectively

unconstrained interior solutions as the search progresses. At some stage of the search the

current cuboid might remain entirely within the feasible regiou, consequently from the

LSP perspective, the problem has become unconstrained. Confirmed point generation

in such a situation is discussed below under the title ‘Interior solutions with multiple
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optima’. Two distinct situations and their recommended point confirmation strategies

are discussed here.

• Interior solutions with multiple optima:

How often trial points generated in the current cuboid violate the level set condition

is inversely proportional to the volume ratio of the acceptance set to the current

cuboid. In the common situation of global solutions lying at interior stationary

points, the rejection of trial points due to violation of the level set condition in

creases as the search approaches the optimum value. The reason being that the

volume of the cuboid remains close to constant while the acceptance set volume

reduces to small regions surrounding the optimal points. This situation lowers the

efficiency of the search.

The efficiency is therefore often related to closeness of the level set value-c to the

optimum value, but is also affected by the dispersion of the optimal points in the

decision space. For example, for a two variable problem with three global optimal

points, the efficiency is low if these three points are on a straight line and the line

is parallel to one of the variable axes. The efficiency decreases further when the

line joining the three points sits on a diagonal of the cuboid.

As an experiment, a problem was chosen with the acceptance set volume at the kEhi

iteration occupying 10% of the current cuboid volume. This meant that, on the

average, 10 trial points were being generated to get a single confirmed point. The

number of function evaluations necessary to generate 10 confirmed points was then

investigated.

The two strategies were examined. In the first case, generating a feasible point and

then calculating the objective function. In the second case, the steps were reversed

and a point which fulfils the level set condition was first generated and then its



Chapter 7. LSP COMPUTER IMPLEMENTATION 195

feasibility checked. The same experiment was done again after few more iterations

where the volume of the acceptance set had been reduced to only 1% of the current

cuboid. The number of function evaluations for the two strategies at these two

iterations are given in Table 7.2.

a. When acceptance set is 10% of the cuboid volume
Function Function

Strategy evaluations Strategy evaluations

Check Evaluate
Feasibility 10 x 10 Obj. function 10 < 10

JL .j.
J JL

Evaluate j Check
Obj. function 10 x 10 Feasibility 10

Sum 200 110

b. When acceptance set is 1% of the cuboid volume
Function Function

Strategy evaluations Strategy evaluations

Check Evaluate
Feasibility io x 100 Obj. function io x 100

.iL Jj.

Evaluate Check
Obj. function 10 x 100 Feasibility 10

Sum 2000 1010

Table 7.2: Comparison of Nf for two different point confirmation strategies

The above examples support the general experience with the test problems that, if

feasibility is checked before the level set condition, the number of function evalu

ations required for search termination is about twice the number required for the

reverse strategy. This advantage may not necessarily be enjoyed for all problems
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solved with LSP but appears to be the best default strategy.

• Constrained problems - general case:

Inefficiency arises when the acceptance set volume to the cuboid volume ratio is

low. The acceptance set for a constrained problem is governed by both the set of

constraints and the level set condition. Which of the two factors, that is either the

feasibility or the level set condition, is the most likely to cause rejection of a trial

point depends upon the nature of the objective function and the complexity of the

feasible region in a specific problem.

In general, the minimum total number of function evaluations is always achieved

by checking the dominant rejecting factor first. In practice this means checking

feasibility first in the case of highly (tightly) constrained problems, and evaluating

the objective function first for problems whose objective function surface is very

irregular. Unfortunately, identifying the dominant factor at any stage of an LSP

search is not always an easy task.

Consider an example, where at some stage of the search, the feasible region and the

level set occupy 30% and 80% of the current cuboid volume respectively. Assume

that the acceptance set, the intersection of the two regions, is 20% of the current

cuboid. Table 7.3 shows the number of function evaluations needed, in this example,

to generate 10 confirmed points using the two different strategies. The strategy

which generates feasible points before evaluating the objective function required

less function evaluations since the feasible region volume is smaller than the level

set volume.

Checking the feasibility of a single point might consume significant CPU time if

the constraints are many and compilcated. For example, a 4 variable problem with 3
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Function Function
Strategy evaluations Strategy evaluations

Check Evaluate
Feasibility 5 x 10 Ohj. function 5 x 10

Jyl. it
I). LI

Evaluate Check
Obj. functionj 1.5 >< Feasibility 4 >< 10

Sum 65 90

Table 7.3: Comparison of Nf for different strategies for a constrained problem

inequality constraint functions [Problem 4-1-0-3, Appendix A] was used to assess the

typical time spent for checking feasibility and for evaluating the objective function. The

average time taken to calculate the constraint functions at a feasible point was about

2.64 times the time required to evaluate the objective function. However, no matter how

long the computation takes, it is simply counted as a single function evaluation in this

research (a rationale for this was discussed in Chapter 5, section 5.1.2). Therefore the

relationship between CPU time and number of function evaluations is not always linear.

The same test problem was used to compare the total number of function evaluations

to meet the convergence criterion with both strategies, i.e. with checking feasibility

before evaluating objective function or with the reverse strategy. The problem was run

10 times for each case. The results showed that the strategy which evaluated objective

function prior to checking feasibility required 30.7% extra function evaluations than the

strategy which generated feasible points before evaluating objective function.

In the discussion above, the superiority of one strategy over the other is based purely

on the total number of function evaluations. From the experience gained with the test

problems, it was generally found better to check feasibility before evaluating the objective

function. This was basically due to the computational effort required to evaluate a set
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of constraint functions for most of the test problems. It is possible to switch from one

strategy to the other without difficulty so that a choice can be made after appraising the

relative computational complexity of the various functions involved in a specific problem.

7.3 Intermediate results presentation

After each iteration, the new and improved level set value-c, the best point observed so

far, and the bounds of a new cuboid are all displayed on the screen. The results at any

iteration will always show some improvement over the previous iteration. Even if the

program is interrupted at the middle of the search, the effort expended is not wasted

as the intermediate solution can be used to provide initial cuboid data for a subsequent

reviewed attempt to find the solution.

There may be justification to modify the values of some LSP parameters on the basis

of the display indicating search performance trends. If it is necessary to make any changes

the search can be paused, the necessary changes made and the search then resumed.

All points in the acceptance set, the objective function value at each confirmed point,

the level set value-c and the number of function evaluations at every iteration are stored in

the computer memory. At any stage of the search the results provided at every iteration,

from the beginning of the search up to the current stage, can be displayed and reviewed

without stopping the search.

A variety of information is given out by the plots at every iteration. The set of

scatter diagrams of points on a two variable plane are displayed by pressing a function

key. The scatter diagrams are plotted with a choice of axis lengths, either the initial

variable bounds or, alternatively, the current cuboid lengths. The c r-’ and Nf I

plots, are automatically displayed after every iteration.

If the intermediate results, including the plots, give an indication that there are
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multiple optima and efficiency is low, it is better to stop the search and divide the current

cuboid into subregions so that the search can be carried out in each subregion separately.

Such user intervention increases the overall efficiency. LSP could be programmed to

automatically make the necessary changes without the need for sophisticated detection

routines. It must be stressed that the need for such adjustments can be recognized by

only a moderately experienced user.

7.4 Final output

The final output from LSP gives the global optimal point(s) and their corresponding ob

jective function values and a set of alternate near-optimal points whose objective function

values do not exceed the final level set value-c. This information is available both numer

ically and graphically. Certain performance indicators, like the total number of function

evaluations and the number of iterations, are given as a supplementary information.

7.5 Alternative presentation of scatter plots

The most informative graphical representation of intermediate and final results is in

the form of the scatter plots of confirmed points in the x x planes. When dealing

with problems involving more than two variables, a set of scatter plots are required to

represent the points in every plane of the variables. Various ways of presenting these

plots have been assessed during the course of this research. Two methods of scatter plot

presentations on a computer screen are discussed in the next subsections under static and

dynamic plots. One of the methods utilizes the static plot where no logical connection

between points is displayed. The alternative dynamic method allows removal of some

of the points from the display, a change to the scale of a plot or labelling points having

something in common (for example, a point identified in one plot showing up in the same
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colour in all other displayed plots).

7.5.1 Static plots

For a problem involving n variables there will be n(n—1) scatter plots, each showing one

n-i x plane. These plots are ideally juxtaposed in a single screen frame. A maximum

of 14 plots have been displayed at any one time on a standard 14” VGA display. For

higher dimensional problems requiring more than 14 plots the user is either expected to

choose a subset of the planes of interest or use a higher resolution display. A page display

feature could easily be implemented if necessary.

In some cases there may be a practical, problem related, need for identifying a specific

confirmed point, or a subset of confirmed points, in one of the scatter plots and tracing

them in the other plots. One example arises when one is interested in tracking solution

points which lie within a preferred area of the search domain. A second need, which

might arise when the level set value-c has fallen to an acceptably low value, is to track

points which were once confirmed in the acceptance set and were subsequently discarded

in the search process when they did not fuffil the current level set condition.

Tracking a single point with some particular numerical property which can be detected

within the computer program was implemented. An example of this was tracking of the

current best point in the acceptance set. A special display symbol (+) was assigned to

the current best point and this can be seen in Figure 8.3, Chapter 8, for a six variable

problem where it is discussed in connection with sensitivity analysis. Experience with

this feature and the many test problems showed that, at any stage of the search, the

current best point rarely lies close to the centre of the cluster in any of the x1 n-i x plots.

The greatest insights to the problem being solved can be provided by the scatter

plots of confirmed points at any stage of the LSP search. For example, when dealing

with problems involving more than two variables, the user might have preference for
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solution points within a certain range for one or two of the key variables. His interest

will then be to identify the corresponding points in the other planes.

The implementation of point identification schemes becomes more complicated when

there is an interest in identifying groups of points at the same time. Some multiple

point detection schemes were implemented to investigate the kinds of information which

could be inferred from visually identifying points which had been discarded at previous

iterations. Points discarded in each of the last 5 iterations, identified by iteration, and

those surviving in the current acceptance set were displayed on the same plot. Points

discarded at each iteration were thus considered as members of a single group.

Several techniques were tried to visually distinguish between points in each group.

The first attempt used different colours for different point groups, and the second used

different symbols for points in different groups. Both attempts did not give meaningful

results after the first few iterations. In the latter stages of LSP search, points from

different groups overlap so that their differences become indistinct.

A slightly modified approach to the above methods where only the points discarded

at one iteration are displayed at any time was also implemented. The set of plots for

a single group were displayed in a single frame. Each frame remained on the screen for

only a short time (about a second) and the display cycled through all the frames. This

animated approach did not appear to have any particular value.

To overcome the difficulties mentioned above, and to exploit the benefits of scatter

plots, it is better to use dynamic graphs instead of static graphs. In dynamic graphics,

a viewer can see changes which have occurred over time. This improved approach to

presenting scatter plots is explained in the next section.



Chapter 7. LSP COMPUTER IMPLEMENTATION 202

7.5.2 Dynamic plots - Alternagraphics

Alternagraphics [Becker et al., 1987] is a technique which allows the viewer to interac

tively select some points from a set of scatter points and then view the selected point

displayed in any number of corresponding two dimensional displays. Another feature

is that the displays can be modified rapidly as the user explores the data set so that

primitive animation effects are achieved. The purpose of alternagraphics is to convey

information which is not easily perceived in static displays. It is, in effect, just another

rather specialized form of computer graphical user interface. Because LSP generates a

large set of solution points at every iteration as well as in the final solution, alteruagraph

ics is far more exploitable with LSP than with any of the more conventional nonlinear

optimization techniques. Alternagraphics can be implemented in three different ways

provided that the points plotted on the screen may be categorized into various groups

depending on their importance to the viewer or other numerically identifiable character

istics.

The first approach displays points belonging to successive acceptance sets for only a

short time, automatically cycling through the most recent sequence of iterations. The

second approach displays all data points on the screen simultaneously in a number of

two dimensional plots, but highlights the points belonging to a particular set. Points in

a series of sets are then highlighted one after the other. The third approach provides the

user with the capability of turning any set ON or OFF rapidly. When a set is turned

ON, either its points are highlighted and other points remain unchanged, or only those

points turned ON are shown and all the other points are erased from the screen. The

ON or OFF procedure can be initiated from a displayed menu, pressing a function key

or clicking a button on the mouse to activate the changes.

The third approach mentioned above, where the user has the freedom to interactively
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choose point sets, appears to offer the greatest benefits in engineering practice. For

example, in solving engineering problems with LSP, the engineer might be interested in

design solutions which can be achieved within a specific value range of one of the design

variables. Using the scatter plot of points in any of the two dimensional displays including

the variable of interest, the points which lie in that specific range can be selected and

turned ON. The display of the corresponding (i.e. same) points in all the other planes will

then be highlighted automatically. This helps the engineer to visualize the distribution

of the selected solution points in the other design variable domains.

Some of the main features of dynamic graphics discussed extensively in [Becker et al,

1987] are reviewed here to further elaborate on their use and implementation with LSP.

Deletion:

When a single point distorts the scale of a scatter plot, the outlier can be deleted

from the plot by simply clicking the mouse cursor at that particular point. Once the

outlier is removed, the plot is instantaneously re-scaled and the points appear on the

screen with the new axes ranges. Points which had been crammed in a small region

are now well dispersed, improving the resolution of the plot. Figure 7.1 demonstrates

the improvement of plot resolution by removing the outlier at the upper right corner of

Figure 7.1(a).

Linking:

Suppose there are n(n+1) scatter plots of points representing the N168 points in an

acceptance set of an n variable problem, each plot in an x n. x3 plane. Linking visually

connects the corresponding points in the different scatter plots. Certain points are chosen

in one of the scatter plots by clicking the mouse on each point and the linking procedure

then highlights them on all the other plots. Consider, for example, in a 4 variable
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Outliec point

• 1• Xl

a

(a) Points crammed in one area (b) Improved resolution

Figure 7.1: Deletion of a point in dynamic graphics.

problem, the two scatter plots in the planes of x1 x2 and x3 - x4. Suppose we want

to identify the same points in these two scatter plots. Some points are first chosen in

the x1 - x2 plane, the same points are then automatically identified in the x3

plane by highlighting or similar labelling technique. Therefore joining points means

visually linking the point (x1,X2)C on the first plot to (x3,X4)IC on the second plot, where

k indicates the point number. Linking of points is illustrated in Figure 7.2, where the

highlighted points in Figure 7.2(a) and (b) represent the same four points in two different

planes. Intermediate results of an LSP run for a 4 variable problem, [Problem 4-1-0-3,

Appendix A], were used to draw the points in Figure 7.2. In this instance the highlighted

points correspond to the current 4 best points which had been selected automatically by

the LSP software.

Linking is also a feature of static graphics display and was described in section 7.5.1.
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Figure 7.2: Linking of points for a 4 variable problem [Problem 4-1-0-3].

Brushing:

This is a dynamic method in which the user moves a small adjustable rectangle around

the screen, with a mouse, in order to identify points within the rectangle. The rectangle

is called a brush and each two dimensional plot is called a panel. This technique is used

for high dimensional problems which need more than one panel to show points in all

planes of the feasible region.

There are two ways of displaying points which lie inside the brush. As the brush

moves around the active panel, points within the brush are highlighted in all of the other

panels. The second method is performed with all data points plotted on the active panel,

but only points in the brush are shown in the other panels. Figure 7.3 is adopted from

Becker to demonstrate the second approach of brushing, where only points in the brush

are displayed in all the panels other than the active panel [Becker et al, 1987]. In this

figure, ozone, radiation, temperature and wind speed designate 4 different variables.

The brushing technique can also be used to delete points by pressing one of the
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Brush

Active
panel

Figure 7.3: Points in the brush highlighted in all the panels [Becker, 1987].

mouse’s buttons. Points inside the brush on the active panel are deleted, temporarily,

along with corresponding points on the other panels.

The shape and size of the brush can be changed to meet the requirements of the user.

When there is a need to examine the effect of only one variable on the others, the brush

can be adjusted to produce a long and narrow rectangle. Such a slender brush can also

be used to give information on the nonlinear dependence of one variable on the others.

Alternagraphics enhances understanding of the nature of the problem being solved.

Implementation of this information in engineering has yet to be fully investigated but, in
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conjunction with LSP, it appears to have considerable potential for supporting practical

engineering applications of nonlinear optimization.



Chapter 8

SENSITIVITY ANALYSIS

Sensitivity analysis is dependant upon numerical information which can be derived di

rectly from the optimal solution and obtained with minimal compntational effort. For

the established optimization methods this means that the sensitivity output is primarily

associated with changes in the optimal solution due to variation in the numerical value

of coefficients in the problem formulation, both in the objective function and the right

hand side constant coefficients. This information can be important when the coefficients

in a problem formulation are poorly defined or can in fact be adjusted.

In LSP, useful sensitivity information which is obtained without any additional anal

ysis is different from that discussed above. It utilizes the acceptance sets with level set

values close to the global optimal value to indicate how near optimal solution points are

distributed in the search domain. Here the emphasis is not on the coefficients but on the

values of the decision variables and the value of the objective function. Therefore the

sensitivity information indicates how much one can deviate from the optimal point(s)

without the objective function excluding its global optimal value by some prescribed

amount. Revealing the distribution of multiple global optima in the decision domain

might also be considered as a part of this kind of sensitivity analysis.

LSP sensitivity information is undoubtedly of practical value as it focuses on the

influence of those decision, design, or activity variables over which the engineer exercises

actual control and can therefore adjust their value. Furthermore, in some important

applications of nonlinear optimization, conventional sensitivity analysis results which

208



Chapter 8. SENSITIVITY ANALYSIS 209

focus on variation of coefficient values are of no practical value. For example, in model

fitting the decision variables are the parameters of the model and the coefficients are the

experimental data.

There are a number of options for a model fitting criterion. Consider the case of a

simple linear model where the optimization problem is to minimize the sum of the squares

of deviations between observed and model generated estimates of a dependent variable

z. There are two independent variables .x and y and m sets of observations of x, y and z.

Each observation is identified by its subscript i. The problem is expressed as follows

Minimize — z)2

where the model generated data set E is expressed as

= a * x + b *

and the constraints are

a * x1 + b * Yi =

a * x2 + b * Y2 =

a * x3 + b * =

a * Xm + b * Yin = z.

The two model parameters, a and b, must be established on the basis of m observations

of the independent and dependent variables.

In this problem x, y and z represent the already realized experimental data but

also serve as coefficients in the constraint set, whereas a and b are the decision variables,

i.e. the unknown model parameters whose values are being established. Because the
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coefficients in the optimization formulation are observed data sets a sensitivity analysis

which is concerned with changing the coefficients has little meaning. In contrast, an

indication of the sensitivity of the objective function value to the value of a and b in the

region of their optimal values could provide some useful insight as to the robustness of

the estimates of a and b. Sensitivity information of this type is readily provided by LSP.

The remainder of this chapter attempts to describe the generally interpretive nature of

LSP sensitivity analysis which is derived almost entirely from the graphical outputs. The

interpretation of the graphical output is influenced by the finite nature of the point sam

pling and by topological characteristics of the various functions involved in the problem

being solved. The sensitivity conclusions discussed below may therefore not necessarily

be the most appropriate for all cases.

8.1 Sensitivity with LSP

Once the LSP convergence criterion is met then all points in the final acceptance set

are global optima or provide near optimal solutions. In cases where these points form

a distinct single cluster and the difference between any two points is approaching the

numerical precision of the computer, then the final acceptance set can be considered

to represent a single global optimum point. The size of the final acceptance set is,

however, normally determined by the convergence criterion, VM so that in many cases,

the confirmed points in the final cuboid may be scattered over a larger region. Then

the difference between any two confirmed points is not simply governed by numerical

precision but reflects a considerable difference between solutions yielding optimal or very

near optimal solutions. Large distances between points suggests that the problem has

either multiple optima or a very flat objective function surface in the region of the

acceptance set.
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In spite of the interpretations suggested above, and in the remainder of this chapter,

one should exercise caution when associating the cuboid size and the distribution of

points in the acceptance set with the number of distinct global optima. Even though the

final cuboid is assumed to contain all globally optimal points, all confirmed points in the

final acceptance set may not produce the global optimum value and, with the discrete

sampling involved, some globally optima points may not have been sampled.

The x ‘-S- x scatter plots can be viewed with axes lengths determined by either

the variable bounds established prior to running LSP (the initial cuboid) or within the

cuboids at the later or final stages of the search.

8.1.1 Sensitivity interpretation of the confirmed points at convergence plot

ted in the initial cuboid

The plots of the confirmed points at convergence in the initial cuboid provide another

sensitivity perspective on the LSP solution. Usually the scale of these plots, and the dis

play resolution, will obscure the details. They do, however, reveal certain characteristics

of the optimum solution from the perspective of the engineer and his problem. Because

of resolution limitations at this scale, points which are close together will coalesce to a

single point in the display so that the visible points can be assumed to be global opti

mal points. Problems which have multiple optima often produce distinct scatter plots

which can be meaningfully interpreted in various ways. Figures 8.1(a) to (e) are used

to demonstrate the interpretation of some typical final scatter plots, within the initial

cuboid, for some two variable problems.

Figure 8.1(a): Suggests that there is only a single optimum in the region of interest

and the optimum point lies around the centre of the search domain.

Figure 8.1(b): Suggests that there is a single optimum point but two of the variable

bounds are probably acting as active constraints. From a practical point of view this
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Figure 8.1: Plots of confirmed points after convergence criterion is met.

suggests that, if it is possible, a relaxation of bounds might produce a better result.

Figure 8.1(c): The plot clearly suggests the existence of two distinct global optimal

points.

Figure 8.1(d): The plot suggests the possible existence of multiple optima, but one

of the variables (x1 in this case) has the same, i.e. constant, value at all of the optimal

points.

Figure 8.1(e): Indicates that in a specific region of the search domain, the confirmed

points can be approximated by a diagonal line, which implies a linear relationship between

the two variables in the region of near optimality.

An actual screen dump for a six variable problem [Problem 6-2-0-6, Appendix A] is

given in Figure 8.2 to demonstrate the kind of variability that can occur in the appearance

of the 14 individual x x plots. The plot was generated with a relatively high value of

the convergence criterion to make the plots more distinctive. It shows, for example, that

fixing the values for variables x1 and x2 might be justifiable to simplify the optimization

problem as this may not change the optimal solution significantly.

xl
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Figure 8.2: Plots of confirmed points at convergence within the initial cuboid for a 6
variable problem (Actual screen dump)

8.1.2 Response of acceptance set to changes in the level set value-c

Once LSP is run and an optimal solution found, there may be a value in investigating the

sensitivity of the decision variables with respect to the value of the objective function.

More specifically determining to what extent an objective function value which is inferior

to the global optimum value permits a wider range of decision variable values. This is

done by storing the acceptance sets at all iterations. Figure 8.3 shows the kind of effect

which might be observed when c is raised above c* when the acceptance sets are plotted

in the initial cuboid.

Actual screen dumps of plots for the test problem [Problem 4-6-1-2, Appendix A] are
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Figure 8.3: Plots of confirmed points within the initial cuboid for different c values

given in Figure 8.4 and represent outputs at two level set values. Figure 8.4(b) shows

points in the acceptance set for a level set value of 29.68, which is the global minimum.

Figure 8.4(a) shows points in the acceptance set for the same problem but with the level

set value-c raised by 1% to 29.96 which coincides with c at iteration 8. As a result many

new points are introduced into the acceptance set. Most of the new points are located

far from the global optimum point, as shown in Figure 8.4(a). The small increase in the

objective function value has permitted a wide range of possible solution points some of

which may offer benefits not measured by the objective function and therefore preferred

as practical solutions to the problem.

8.2 Other approaches to obtaining sensitivity information

Information similar to that obtained for coefficient values in conventional sensitivity anal

ysis can also be obtained with LSP, though at some additional computational expense.

When the sensitivity can be expressed in the form of a gradient at the optimal solu

tion (e.g. Lagrange multipliers) then only a slight perturbation of a coefficient value is

x

xl

.
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necessary to estimate the gradient by finite difference. A small change would almost guar

antee that the acceptance set already obtained just a few iterations before convergence

would provide an appropriate starting point for solving the revised problem. Thus only

a small additional computational effort would be involved for solving for each perturbed

coefficient.
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(a)

(b)

Figure 8.4: Points in the level set, for c = c and c = 1.01 * c - [Problem 4-6-1-2] (Actual
screen dump)



Chapter 9

CONCLUSION

9.1 Introduction

A global search scheme for nonlinear optimization problems based exclusively on level

sets, was first presented in “Integral global optimization” by [Chew & Zheng, 1988]. It was

this work that provided the starting point for the research in this thesis. The following

surmnary of its shortcomings is not intended to question the value of Chew & Zheng’s

contribution in any way but to provide a clearer perspective on the contribution of this

thesis. As was suggested by the title, they placed considerable emphasis on the theoretical

properties of integral expressions for the higher moments of the objective function values

associated with solution points in level sets. Much of this theory was found to have little

or no bearing on the implementation of a level set based optimization scheme. Although

the capability of identifying multiple optima was mentioned, the authors focused on a

method for solving problems with a single global optimum only. Thus the potential

of the methodology to solve multiple global optima problems as well as identify near

optimal solutions was overlooked. A systematic performance assessment over a variety

of challenging test problems was not included. The importance of the interpretation of

intermediate and final output from a level set search and the potential for a graphical

interface were not recognized.

Level sets have been used to augment some global optimization schemes. But the

view of some of the authorities in that field has been that the use of level sets as the

217
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principal search tool is impractical. The level set method was labelled as being only a

“theoretical” iterative scheme in [Horst & Hoang, 1990], and as being “not designed for

solving practical problems” in [Torn & Zilinskas, 1988]. A level set based search falls

into the class of iterative direct search methods of optimization. Some anthors clearly

feel that direct search methods are applicable for only low dimensional problems. Edgar

& Himmelblan [Edgar & Himmelblau, 1988] suggest that “direct methods ... are not as

efficient and robust as many of the modern indirect methods, but for simple two variable

problems, they are satisfactory”. Also surprising in the light of experience in this thesis is

the view that optimization methods based on random sampling are suitable only for low

dimensional problems or as devices for generating starting points for more sophisticated

methods [Reklaitis et al., 1983].

Computational efficiency has dominated the development of nonlinear optimization

methods over the past 30 years. The negative views which have been expressed about

direct search methods in general, and level set methods specifically, arise from compu

tational efficiency concerns. As was discussed in Chapter 6 on performance assessment,

ease of use is more likely to be the dominant criterion in the future and computational

efficiency only of secondary importance.

The research reported in this thesis set out to investigate the use of level sets in

practical nonlinear optimization. As the investigation proceeded many new, previously

unexploited aspects of level set optimization were revealed and incorporated into the

evolving implementation scheme. This implementation was eventually given the name

Level Set Programming (LSP) as it appears to have the necessary characteristics, in

cluding a theoretically sound global convergence criterion, to qualify as a mathematical

programming tool. It uses estimates of only the first two moments of the objective func

tion values at the (discrete) points in the level sets to redefine the search domain at each
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iteration and to measure convergence on the optimum solution. LSP utilizes approxima

tions of the true level set (or acceptance set in constrained problems) boundaries in the

form of cuboids for efficiently generating points in the level sets. The combined effect

of the progressively improving level set and the contraction of the search domain makes

LSP an efficient and reliable global search procedure.

LSP can handle, without modification, both equality and inequality constraints, and

also has the provisions to incorporate existing techniques of optimization, such as the

penalty functions. It also makes use of established clustering analysis techniques to

improve the search efficiency for problems involving widely separated multiple global

optima.

Unlike many other optimization methods, the intermediate results generated during

an LSP search provide a global view of the problem being solved. This is in contrast with

the single path view provided by say gradient methods. Because a much larger number

of point solutions are established at each iteration than is the case with other practical

direct search methods, LSP’s view of the problem is far more complete than with the

established direct search methods.

9.2 Evaluating LSP performance using test problems

A large set of published mathematical and engineering test problems, already solved

by a variety of NLP methods, were solved with LSP to evaluate its performance. The

test set included unconstrained and constrained problems, continuous and discontinuous

functions, and continuous and discrete variables. The dimensions of the problems varied

from 1 to 38 variables. The results showed that solutions found with LSP were generally

in agreement with the published results, with some iniprovement in about 5% of the cases.

The only aspect of performance to other methods cited in the literature, which shows
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some superiority over LSP, is in the shorter computational time expended to solve test

problems. Even though similar machines are not used for all the cases, the computational

time taken to meet the termination criterion reported in the literature was generally lower

than with LSP. Still, the time spent with LSP was found to be well within a tolerable

time frame from a practical engineering design optimization point of view. The additional

computational time can be justified easily when it is weighed against the reliability of

LSP as a global optimizer and the extra information it provides during the search.

The nonlinear optimization test problems in the literature have many shortcomings

and there are virtually no test problems capable of testing global optimization schemes

in any systematic way. To more adequately test the strengths and limitations of LSP, a

new mathematical test problem named ‘The Road Runner Function’ was developed. It

has a single global optimum and several local optima for any dimension n. The function

is parametrically adjustable and can be easily extended to any number of dimensions

while retaining its key features. It is a challenge to all existing NLP and direct search

methods unless an ideal starting point is chosen.

One problem discovered in the literature, that by Subrahmanyam [Subrahmanyam,

1989], was found to have many desirable attributes for a test problem. The formula

tion and the geometry of its feasible region and objective function surface are simple.

It presents convergence difficulties for direct search methods even though the dimen

sionality of the problem is low. LSP was only able to solve this problem by significant

readjustments to its search parameters.

9.3 LSP performance improvements

As a result of the experience gained with the test problems both the reliability and effi

ciency of LSP were substantially improved over the course of this research. This entailed
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the refinement of some of the techniques suggested in [Chew & Zheng, 1988], develop

ment of some new techniques, the introduction of parameters to control these techniques,

and the development of diagnostics to assess progress and guide the modification of these

parameters.

One heuristic method investigated involved subdividing the cuboid into a set of

smaller subcuboids and then performing searches within each subcuboid. This technique

is applied when the intermediate results displayed in the graphical output or cluster anal

ysis indicate the possible existence of a partitioned level set. The division of the search

domain avoids inefficient searches in-between the connected regions of the level set, so

that the search then concentrates on smaller subregions each of which is fully connected.

The sum of the function evaluations to meet the termination criterion for each subregion

was found to be considerably lower than the number of function evaluations for the single

region with a partitioned level set.

When the feasible region formed by the set of constraints occupies only a very small

region of the initial cuboid, feasible point generation can be difficult and result in an

inefficient or suspended LSP search. An indication that this difficulty has arisen is pro

vided by the number of function evaluations required at the first LSP iteration. This

early feedback permits corrective action to be taken before a large amount of compu

tational effort is wasted. Constraint relaxation was found to improve the efficiency of

sample point generation by temporarily increasing the volume of the feasible region. To

discourage the existence of infeasible points in the solution set, penalty terms were also

added to the objective function. The progressive tightening of the relaxed portion of the

constraints in conjunction with the penalty terms on the objective function assures the

best continuity between successive acceptance sets and that solutions are found within

the feasible region of the original problem.

Due to the random generation of sample points, a global optimum point may be missed
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if it lies at a boundary of the feasible region. To increase the capability of generating

boundary points the technique of skewness adjustment was implemented. This technique

modifies the location and boundaries of the current cuboid to ensure that no potentially

important regions are excluded from the current cuboid. In addition to this skewness

adjustment, reduced bias estimates of cuboid bounds are calculated at every iteration.

Both of these adjustments further increase the volume of the cuhoid and maximize the

probability that the true acceptance set is included within the modified cuboid.

Two other alternatives to the cuboid approach, replacing the cuboid with a rhombohe

dron and exploiting a linear relationships between a variable pair, were also investigated.

These were found to provide significant efficiency improvements under specific but com

monly occurring conditions which are detectable from LSP’s output.

As with all NLP schemes, equality constraints present significant difficulties. In an

ideal case, equality constraints can be used to reduce the number of variables involved,

otherwise they must be accommodated using a penalty technique. The approach used

with LSP is similar to the classical penalty approach, but the penalty parameter value

is reduced at every iteration. This progressive modification of penalty terms throughout

the search process was found to significantly improve the chances of reaching the global

optimum in the presence of equality constraints.

9.4 Graphical output

The intermediate graphical displays provided by LSP and their interpretation open up

a new dimension in engineering optimization. These plots provide entirely new ways to

judge the progress of the search as well as insights into the topology of the particular

problem being solved.

The first set of plots, the x, x scatter plots, could of course, be obtained with
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any NLP method, but are far more meaningful with a technique such as LSP which

provides a large number of confirmed solution points at each stage of the search. These

plots facilitate visualizing the acceptance set boundary shapes and will often reveal the

presence of distinctly separate global optima or near optima. The plots can also give

indications of dependencies between the variables which can be used to speed up the

search. The second type of plots are the progressive plots of level set value-c versus

iterations-I which can be used as an indication of the strength of convergence. Most

importantly the c n.’ I curve can also suggest the possible existence of fissure like features

on the objective function surface. A third type of plot, the plot of number of function

evaluations-Nf versus iteration-I, reveals the efficiency of the search as it progresses. Its

interpretation can give an indication of the existence of multiple global optima, or the

existence of multiple local optima with only one global optimum.

One of the most interesting aspect of the plots discussed is that much of the triggering

information for LSP parameter adjustment or problem modification concerns just c, Nf

and I. It is also significant from a users point of view that the magnitude of c is related

directly to the real world problem being solved while Nj and I are easily understood

quantities related to the search. The influence of these quantities on the search strategy

is therefore easy for practitioners to understand.

9.5 Civil engineering design problems and LSP

The mathematical equations used in civil engineering design are predominantly nonlin

ear. In many instances the mathematical formulation of the associated design problems

do not meet the ideals, from a nonlinear optimization point of view, of providing a convex

objective function and a convex feasible region. It is also not uncommon for the decision

variables to refer to discrete choices of pipe diameter, structural member size, etc. so
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that discrete decision variables mnst be accommodated. Most civil engineering design

optimization problems therefore require the use of nonlinear programming techniques

which can accommodate mixed variables for their solution. Furthermore, in engineering

design, there are instances where the design which produces the optimum objective func

tion value may not be the best practical option. Alternative solutions which produce

slightly inferior values to the mathematical global optimum solution may be preferred

because of factors which could not be captured in the formulation. Therefore, a feature

of an optimization method which might appeal to civil engineers is one which can identify

near optimum solutions. Simplicity of use of an optimization method also translates to

economy of use in a commercial engineering office and this alone may be the major factor

determining the practical use of optimization.

Currently, there are several NLP packages being offered commercially but most well

developed packages use gradient methods and require the differentiability of the objective

and constraint functions. These do not fully satisfy the needs of civil engineers for several

reasons. Gradient methods basically find local optima and can not guarantee finding a

global optimum except under very ideal conditions. Unfortunately, they do not give

any indication of the local or the global nature of the solution found. When problems

have multiple optima, either local or global, a single gradient search can only identify a

single solution. The solution found depends entirely on the starting point of the search.

No systematic way of selecting starting points to ensure finding the global optimum is

available and the responsibility for the overall global search strategy and its success is

left entirely to the user.

Most NLP packages which have the ability to handle practical sizes of problems have,

until very recently, been available only on mainframe computers. There are only a few

nonlinear optimization packages which can address practical engineering problems using

personal computers and these use almost without exception, the same gradient methods
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which have dominated mainframe optimization for the past 30 years.

The feedback provided by the gradient search methods are in the form of matrices

of first and second partial derivatives, matrix condition, Lagrange multipliers, etc.. This

kind of information rarely has any direct relevance to an engineer’s view of his engineering

design problem. Additionally, this information can be particularly difficult to interpret

when search failures occur or when the global nature of the solution is in question. If

a gradient NLP method fails to confirm even a local optimum, the user is left with no

suggestion for his next move.

In summary, in spite of the recognized need for optimization in civil engineering,

existing NLP packages do not appear to satisfy the needs of practitioners. It is entirely

possible that it is the available methods, and not just their computer implementation,

that have insufficient appeal to convince engineers that their time should be invested in

that direction.

LSP is a global search method and the chance of converging on the global solution

is much higher than with any of the gradient based methods such as GRG and MINUS,

even when a number of different starting points are used. One of the important aspects of

LSP is its capability to identify multiple optima and near optimal solutions. If multiple

local optima exist, LSP either identifies all of them or gives indications of their existence

in the process of identifying the global optimum.

LSP overcomes many of the limitations of the existing gradient methods but does

not radically reduce the computational effort involved for those problems which could

be solved using a gradient method. Perhaps the most significant features of LSP from

a practical engineering standpoint are that: the method is conceptually simple, and can

therefore be easily understood by engineers who are generally not experts in numerical

analysis techniques; virtually all of the computations and numerical results generated

during the search are meaningful in the context of the engineering problem; the program
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can be run on personal computers; and an elementary, and therefore fast, graphical

interface can display all of the useful information at any stage of the search. Flexibility,

simplicity and meaningful intermediate results during the search lower the engineers’

time requirements for familiarization and therefore make LSP economical to implement

even when its use is only occasional.

The success of global optimization is highly dependent on the complexity of the ob

jective function surface and the boundaries of the feasible region, in other words their

general topology A better appreciation of the topological nature of the global optimiza

tion problem can only help to greater understanding and possibly refinement of global

optimization methods. Yet topological interpretations have not been widely nsed in op

timization, the theoretical basis for level set optimization presented in [Chew & Zheng,

1988] being a rare example. Topology is an established and mature subtopic of mathe

matics with a considerable body of theory, research in this topic may therefore provide

new perspectives on level sets and provide the basis for further refinements in LSP type

methods.

Subdividing the search domain into smaller regions was found to increase the search

efficiency considerably for multiple optima problems. It was also observed that determin

ing the number of clusters and allocating points into different clusters becomes difficult

with the number of variables in a problem. Consequently, high dimensionality cluster

analysis methods should be further explored with LSP’s particular requirements of low

precision cluster analysis, as discussed in Chapter 3, section 3.1.3, in mind.

Graphical interpretation of both intermediate and final optimization results opens up

a new perspective in the field of optimization. The fact that LSP produces and stores

a large set of intermediate results in the form of solution points makes the graphical

interface far more attractive than with almost all other optimization schemes. This
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is especially true with high dimensional problems when the information provided in the

dynamic graphs is high. Therefore, alternagraphics and similar display techniques should

be further researched to fully exploit the inherent ability of LSP to support graphical

outputs.
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Appendix A

MATHEMATICAL TEST PROBLEMS

Problem 1-1-0-0. Goldstein function Source: [2]

f(x) = — 15x + 27x2 + 250
Subjected to NO constraint.
Initial bounds:

—10 <x <10
Solution in literature:

f(x*) = 7 atx’ = +3
and f(x) = 250 atx = 0

Solution using LSP:
f(x*) = 7.000 atx* = +3

LSP Convergence criterion:
VM1E-3

LSP computational effort:
= 592 Nkeep = 10

Problem 1-2-0-0. Source: [63]

f(x) = sin x + .sin(lOx/3) + in x — 0.84x
Subjected to NO constraint.
Initial bounds:

2.7 <x <7.5
Solution in literature:

f(x*) = —1.6013075 atx* = 5.1997784
There is an error, f(x*) should be -.6O13O75 for the given x.
Computational effort using six different algorithms (33, 29, 45, 462, 25, 120)
Solution using LSP:

f(x*) = —4.6013074 atx = 5.1995869
LSP Convergence criterion:

VM1E-3
LSP computational effort:

Nf = 110 Nkeep = 10

Problem 1-3-0-0. Source: [63]

f(x) = sin x + sin(2x/3)
Subjected to NO constraint.
Initial bounds:

3.1 x <20.4

233
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Solution in literature:
f(x*) = —1.9059611 atx* = 17.0391986

Computational effort using six different algorithms = (37, 38, 442, 448, 45, 158)
Solution using LSP:

f(x*) = —1.9059612 atx* = 17.0390205
LSP Convergence criterion:

VM1E-3
LSP computational effort:

Nf104 iVkeep=lO

Problem 1-4-0-0. Source: [63] Solution Improved

1(x) = -Zsin((i + 1)x + i)

Subjected to NO constraint.
Initial bounds:

—10 5 x 10
Solution in literature:

f(x*) = —12.0312494 atx* = —6.7745760,—0.4913908or5.7917947
There is an error, f(x) should be -3.2649353 for the given points.
Computational effort using six different algorithms = (125, 165, 150, 3817, 161, 816)
Solution using LSP:

f(x*) = —3.3728776 at x = —6.7187829, —0.4363553 or 5.8455772
LSP Convergence criterion:

VM1E-3
LSP computational effort:

IN/f = 2920 1keep = 10

Problem 1-5-0-0. Source: [63]

f(x) = (x + sin x)e
Subjected to NO constraint.
Initial bounds:

—10 x < 10
Solution in literature:

f(x*) = —0.6795797 atx* = —0.8242384
The optimum point and its value are written interchanged
Computational effort using six different algorithms = (35, 34, 98, 376, 229, 83)
Solution using LSP:

f(x*) = —0.824239319999 atx* = —0.6793407
LSP Convergence criterion:

VM1E-3
LSP computational effort:

Nf 92 Nkeep = 10

Problem 1-6-0-0. Source: [26]
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fix) = x6 — fijx5 + 1x4 + 7.1x3 — jx2 — x + .1
Subject to:

—2 < x < 11
Initial bounds: As given in the constraint
Solution in literature:

f(x*) = —29763.233 atx* = 10
but f(x) = 803570.1 at x = 10

Solution using LSP:
f(x*) = —7.487312 atx* = —1.19108

LSP Convergence criterion:
VM<1E—3

LSP computational effort:
iV1 = 132 j\Tk = 10
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Problem 2-1-0-2. Source: [36]

f(x) = sin(xi + x2) + (xi
— x2)2 — 1.5x1 + 2.5x2 + 1

Subject to:
—1.5 x 4
—3 < x2 3

Solution in literature:
f(x*) = —1 .913223 at x = (—.54772, —1 .5472)

and f(x) = 1.2283700 at x = (2.5944, 1.5944)
Solution using LSP:

f(x*) = —1.9131677
= (—.54154, —1.54837)

LSP initial bounds:
—1.5 x1 4
—3 < x2 3

Convergence criterion:
VM lB-S

LSP computational effort:
Nf = 374 = 20

Problem 2-2-1-1. Source: [58]

f(x) = (xi — 2)2 + (x2 — 1)2
Subject to:

— .25x? — x + 1 0
— 2x2 + 1 = 0

Solution in literature:
f(xj = 1.39346

= (.82288, .9 114)
Computational effort cited in literature ( ORGA, FMIN): 108, 838
Solution using LSP:

f(x*) = 1.39352
= (.82285, .91143)

LSP initial bounds:
—2 < x1 2
—1 x2 1

Convergence criterion:
VMS lB-S

LSP computational effort:
Nf = 303 Nkeep = 20

Problem 2-3-1-0. Source: [58]

f(x)=(1_xi)2
Subject to:

10(x2 — x?) = 0
Solution in literature:

f(xj=0
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x =(1,1)
Computational effort cited in literature ( GRGA, FMIN): 33, 546
Solution using LSP:

f(x*) = 4K — 7
= (1.0004,1.0008)

LSP initial bounds:
—40 x1 $ 40
0 j X2 1600

Convergence criterion:
VM<1E-5

LSP computational effort:
= 188 “keep = 20

Problem 2-4-1-0. Source: [58]

f(x) =ln(1+xfl—x2
Subject to:

(1 + xfl2 + x — 4 = 0
Solution in literature:

f(x*) = —1 .73205
= (0, 1.73205)

Computational effort cited in literature ( GRGA, FMIN): 204, 260
Solution using LSP:

f(x*) = —1.73204
= (0.00194, 1.73205)

initial bounds:
—l x1 1
—2 5; 2

Convergence criterion:
1K-S

LSP computational effort:
Nf = 156 Nkeep = 20

Problem 2-5-0-1. Source: [58]

f(x) = 100(x2 — xfl2 + (1 —

Subject to:
1.5 5; x2

Solution in literature:
f(xj = 0.0504261879

= (1.224, 1.5)
Computational effort cited in literature ( GRGA, FMIN): 115, 444
Solution using LSP:

f(x*) = 0.05044
= (1.22449, 1.50000)

LSP initial bounds:
05; x1 5; 5
1.5 5; x2 5; 5
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Convergence criterion:
VM1E-5

LSP computational effort:
N1 = 2088 Nkeep = 20

Problem 2-6-0-3. Source: [58]

f(x) = 100fr2 — xfl2 + (1 —

Subject to:
x2x1 — 1 0
x1 + x 0

0.5
Solution in literature:

f(x*) = 306.5
= (0.5,2)

Computational effort cited in literature ( GROA, FMIN): 508, 2464
Solution using LSP:

f(x*) = 306.71
= (0.50000, 2.00059)

LSP initial bounds:
0 j x1 .5
2 x2 5

Convergence criterion:
Yw 1E—3

LSP computational effort:
N1 = 1002 “keep = 20

Problem 2-7-0-0. Rosenbrock function Source: [20], [58]

f(x) = lOO(x2 — xfl2 + (1 —

Subject to NO constraint.
Solution in literature:

f(x*) = 0
x = (1,1)

Computational effort cited in literature (ORGA, FMIN): 596, 638
Solution using LSP:

f(x*) = 1E — 7
= (1.0001, 1.0002)

LSP initial bounds:
—5 xl $ 5
—5 x2 5

Convergence criterion:
T4w<1E—12

LSP computational effort:
Nf = 3206 Nkeep = 20

Problem 2-8-0-5. Source: [23]
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30.

Solution using LSP:

Xi + X2 1
xi — 2x2 < 1
2x1 — 5
3x1 + 5x2 27
—6x1 + lOx2 < 30

f(x* 4999
f(x* = 4973

and f(x*) = —4.990
A single run could not easily detect

LSP initial bounds:
0 xi 9
0 x2 6

Convergence criterion:
VM<1E-3

LSP computational effort:
Nf = 24253

atx*= 0,1)
at x = 0,2.987)
at x* = (0.995, 0.005)

all global points unless Nkeep was raised above

Problem 2-9-0-0. Source: [34]

f(x) = (x + 12x2 — 1)2 + (49x + 49x + 84x1 + 2324x2 — 681)2
Subject to NO constraint.
Solution in literature:

f(x) = 5.9225
and f(x) = 0.0000

Solution using LSP:

Subject to NO constraint.
Solution in literature:

f(x*) = 2E — 7
x = (—21.0267, —36.7600)

—25 1 5
—40 x2 5

Subject to:
f(x) = -(xi - 2)2

-
(x - 2)2

Solution in literature:
f(x*) = 5
x’ = (0,1),(4,3),(0,3) or (1,0)

Nkeep 30

LSP initial bounds:

at x = (0.28581,0.27936)
at x = (—21.026653, —36.760090)

Convergence criterion:
1E—12

LSP computational effort:
Nf = 110032 Nkeep = 50

The global optimum was missed with Nkeep values below 0.

Problem 2-10-0-0. Source: [34]

f(x) = —[e() * (2x + 3x)]
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f(x*) = —1.1036
xK = (0,1) or x’ = (0,—i)

Solution using LSP:

LSP initial bounds:

Convergence criterion:
VM<1E-8

LSP computational effort:
Nf = 5848 Nkeep = 20

Problem 2-11-0-0. Source: [34]. [54]

f(x) = (x + x2 — 11)2 + (x1 + x — 7)2

Subject to NO constraint.
Solution in literature:

f(x*)=0
x = (3.58443, —1.84813)

Only two points are mentioned in [SJ.
Solution using LSP:

—5 < x1 5
—5 x2 5

Convergence criterion:
Yw<iE3

LSP computational effort:
Nf = 2853 Nkeep = 30

f(x) = (x1 — 10) + (x2 — 20)

—x1 + 13 < 0
—(x1 — 5)2

— (x2 — )2 + 100 < 0
(x1 — 6)2 ( — 5)2

— 82.81 0
0

Solution in literature:
f(x*) = —6961.8106875
x = (14.0950013, 0.8429636)

Computational effort cited in the literature = 833
Solution using LSP:

f(x*) = —6961.795410
x* = (14.0950079,0.8429772)

f(x*) = —1.1036
x = (—0.0018, —0.9999) or x = (0.0007, 0.9976)

—3 <3

f x = 0.00000
f x = 0.00009
f x = 0.00088
f x = 0.00058

LSP initial bounds:

at x
at x
at x
at x

or x = (3,2)

= (—3.779, —3.283)
= ‘—2.806, 3.133)
= 2.999, 1.998)
= 3.586, —1.847)

Problem 2-12-0-4. Source: [61]

Subject to:
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LSP initial bounds:
13 x1 16
0 15

Convergence criterion:
VM1E-2

LSP computational effort:
Nf 8469 Nkeep = 20

This problem was initially found to be a challenge to LSP and is discussed in Chapter
.5, section 5.5.

Problem 2-13-0-0. Gear train of minimum inertia, (Fenton and Eason’s Function)
Source: [54], [20]

f(x) = [12 + x -I- (1 + x)/x + (xx + 100)/(xix2)4]/10
Subject to:

1 <x1,x2 <3
Solution in literature:

f(x*) = 1.74
x’ = (1.7435,2.0297)

Solution using LSP:
f(x*) = 1.7442

= (1.7333,2.0449)
LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM1E-7
LSP computational effort:

A’f = 200 Akeep 20

Problem 2-14-0-0. Branin Equation Source: [63]

f(x) = (x2— + xi — 6)2 + 10(1 — —)cosxi + 10
Subject to:

—5 x1 10
0 2 < 15

Solution in literature:
f(x*) = 0.398
x = (—3.142, 12.275), (3.142, 2.275), or (9.425,2.425)

Computational effort cited in literature: 134-11910
Solution using LSP:

f(x) = 0.39901,0.39791and0.39852
x = (3.135, 2.310), (9.427, 2.475), and (—3.152, 12.290)

LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM1E-5
LSP computational effort:

N1 = 11895 Nk = 30
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Problem 2-15-0-0. Goldstein-2 Equation Source: [63]

f(x) = (1 + (xi + x2 + 1)2(19
— 14x1 + 3x — 14x2 + 6x1x2+ xfl*

(30 + (2x1 — 3x2)2(18 — 32x1 + 124 + 48x2 — 36x1x2+ 27x))
Subject to:

—2 x1,x2 2
Solution in literature:

f(x)=3
x = (0, —1)

Computational effort cited in literature: 139 up to 4042
Solution using LSP:

f(x*) = 3.0000
x = (—0.0002, —1.0003)

LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM1E-5
LSP computational effort:

Nf = 522 “‘keep = 20

Problem 2-16-0-0. Rastrigin Function Source: [63]

f (x) = 4 + x — cosl8x1 — cosl8x2
Subject to:

—1 Xi,2 1
Solution in literature:
There are about 50 local minima arranged in a lattice configuration, of which the

following is the global minimum.
f(x*) = —2

= (0,0)
Solution using LSP:

f(x*) = —1 .9999
= (—0.0007, —.0001)

LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM1E-5
LSP computational effort:

Nf = 2510 ‘‘Tkeep = 20

Problem 2-17-0-0. Source: [44], [63]

f(x)=44—2.14+4/3--J-xix2—4x+4a4
Subject to:

—55; x1,x2 5 5
Solution in literature:

f(x*) = —1.0316285
= (—0.08983, 0.7126) or (0.08983, —0.7126)

Computational effort cited in literature: 40.8 [44]
Solution using LSP:



Appendix A. MATHEMATICAL TEST PROBLEMS 243

f(x*) = —1.031570,—l.031559
xx = (—0.090677, 0.710088) and (0.093965, —0.713538)

LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM1E-5
LSP computational effort:

Nf = 8620 = 20

Problem 2-18-0-2. Source: [53]

f(x) = (xi — 2)2 + (x2 — 1)2
Subject to:

— X2 0
X1 + X2 —2 0

Solution in literature:
f(x*)= 1
x = (1,1)

Computational effort cited in literature: (252-390)
Solution using LSP:

f(x*) = 1.0033
xK = (0.9984,0.9969)

LSP initial bounds:
—1.414 x1 1.414
0 X2 2

Convergence criterion:
VM1E-5

LSP computational effort:
Nc = 560 ‘keep 40

The global optimum was not reliably found with Nkeep substantially less than 40.

Problem 2-19-0-1. Source: [20]

f(x) = (.44xx2+ lOxT1 + 0.592x143)/10
Subject to:

1
— 8.62xT1a$ 0

0 xi,x2 5 5
Solution in literature:

f(x*) = 1.6206
= (1.2867,0.53047)

Solution using LSP:
f(x*) = 1.6189
xK = (1.2862,0.5308)

LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM1E-8
LSP computational effort:

Nf = 3580 Nkeep = 20
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Problem 2-20-0-0. Penalized Shubert Function Source:[2], [44] Solution Improved

f(x) = {Z i cos[(i + 1)xi + i]}{ i cos[i + l)x2 + i]}

+.5[(xi -I- 1.42513)2 + (x2 + 0.080032)2]

Subject to:
—10 x1,x2 10

Solution in literature:
The problem has 760 local minima of which the following is the single global minimum.

f(x*) = —186.73091
= (—1.42513, —0.80032)

Computational effort = 7711 [44], 8755, 76894 [2]
Solution using LSP:

f(xj = —186.7075
= (—1.4229,—0.7980) or (—0.7984,—1.4217)

LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM1E-6
LSP computational effort:

Nf = 5516 = 20

Problem 2-21-0-3. Source: [12], [28]

f(x)= _[9_(x1_3)2]33

Subject to:

0
0X2<

0 x1
--

i/(x2) 5; 6
The problem has a different type of constraint in which the current limit for one of

the variables (x2) depends on the current value of another variable (x1).
Solution in literature:

f(x*)=_1

x =

Solution using LSP:
f(x*) = —0.99999
x* = (3.000, 1.732)

Computational effort:
Nf = 159[12] and 642[28]

LSP initial bounds:
0 5; x1 5; 6
0 5; 5; 4

Convergence criterion:
VM5;1E-6

LSP computational effort:
= 481 ll4Tk = 20
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Problem 2-22-0-0. Source: None

f(x) = 100 — (x1 + x2 — 10)2

Subject to:
0 x1,x2 10

True solution:
f(x*)=0

= (0,0) or (10,10)
Solution using LSP:

f(x*) = 0.00013
x’ = (0.0000, 0.0000) or (10.0000, 10.0000)

LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM1E-7
LSP computational effort:

iVr = 6354 P/keep = 40
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Problem 3-1-1-0. Source: [58]

f(x) = (xi + x2)2 + @2 + x3)2
Subject to:

x1 + 2x2 + 3x3 — 1 = 0
Solution in literature:

f(x*)=0
x” = (0.5, —0.5, 0.5)

Computational effort, Nf, cited in literature (GRGA, FMIN): 177, 46
Solution using LSP:

f(x*) = 7E — 5
x = (0.49493,—0.48871,0.49417)

LSP initial bounds:
—5 xi,x2,x3 $ 5

convergence criterion:
VM 1E—3

LSP computational effort:
N1 = 578 Nkeep = 30

Problem 3-2-1-0. Source: [58]

f(x) = 0.0l(xi — 1)2 + (x2 — xfl2
Subject to:

x1 + 4 + 1 = 0
Solution in literature:

f(x*) = 0.04
= (—1,1,0)

Computational effort, N1, cited in literature (ORGA, FMIN): 962, 346
Solution using LSP:

f(x*) = .040084
= (—1.0012,1.0084,0.0342)

LSP initial bounds:
—10 ; Z1 —1
—5 x2,x3 5

Convergence criterion:
VM1E-5

LSP computational effort:
N1 = 696 = 30

Problem 3-3-0-2. Source: [20], [59]

f (x) = —x1x2x3
Subject to:

x1 + 2x2 + 2x3 0
72 — x1 — 2x2 — 2x3 0
0 x1 20
0 2 5; 11
05; x3 5; 42

Solution in literature:
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f(x*) = —3300
= (20, 11,15)

Computational effort, N1, cited in literature (NLPQL): 25 [59]
Solution using LSP:

f(x*) = —3299.946
x = (20.0000, 10.9993, 15.0007)

LSP initial bounds: As given in the set of constraint
Convergence criterion:

VM1E-5
LSP computational effort:

N1 = 8886 Nkeep 30

Problem 3-4-2-0. Source: [52]

f(x) —1 * (3x + 2x — x3)
Subject to:

x + x = 25
9x1 — x + x3 = 27

Solution in literature:
f(x*) = —66

= (4,3,0)
Solution using LSP:

f(x’) = —66
= (4,3,0)

LSP initial bounds:
0x5 fori=1,3

Convergence criterion:
VM 1E-3

LSP computational effort:
= 877 Nkeep = 30

Problem 3-5-2-0. Source: [59]

f(x) = Iog(x3)—

Subject to:
x + 4 —4 = 0

—1— = 0
Solution in literature:

f(x*) = —1 .73205
x = (0, 1.732,1)

Computational effort, N1, cited in literature (NLPQL): 54
Solution using LSP:

f(x*) = —1.732
x* = (—.0225, 1.73176,1.00050)

LSP initial bounds:
—1 5; x1 5; 1
—2 5; x2 5; 2
1 x3 5; 2
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Convergence criterion:
VM1E-3

LSP computational effort:
Nf = 88 Niveep = 20

Problem 3-6-0-1. Source: [59]

f(x) = 0.2/(xix2x3)+ 4/x1 + 3/x3
Subject to:

10 — 2x1x3 — x1x2 0
Solution in literature:

f(x*) = 3.36168
xK = (2.380, 0.3162, 1.943)

Computational effort, P’Jf, cited in literature (NLPQL): 41
Solution using LSP:

= 3.3628
x =‘(2.3699, 0.3162, 1.9505)

LSP initial bounds:
0 i,2,X3 10

Convergence criterion:
VM1E-3

LSP computational effort:
Nf = 2804 = 20

Problem 3-7-0-2. Source: [58]

f(x) = 0.2x3 — 0.8x1
Snbject to:

— exp(xi 0
— exp(x2 0

05; X1,X2 5; 100
05; X3 < 10

Solution in literature:
f(x*) = 0.5181632741

= (0.1841264879, 1.202167873, 3.327322322)
Computational effort, Nf, cited in literature (GRGA, EMIN): 208, 1917
Solution using LSP:

f(x*) = 0.51858
x’ = (0.1777,1.1945,3.3038)

LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM5;1E-7
LSP computational effort:

Nf = 65973 Nkeep = 40

Problem 3-8-1-1. Source: [58]

f(x) = (.x + 3x2 + x3)2 + 4(xi —
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Subject to:
6x2+4x3—x—30
1 — x1 — x2 — = 0

0 xj for i = 1,3
Solution in literature:

f(x*) =1
x = (0,0,1)

Computational effort, Nf, cited in literature (ORGA, FMIN): 138, 3202
Solution using LSP:

f(x*) = 1.0006
xK = (0.0111,0.0000,0.9889)

LSP initial bounds:
0 x1,x2,x3 1

Convergence criterion:
VM1E-6

LSP computational effort:
= 661 ‘1keep 30

Problem 3-9-0-0. Source: [58]

f(x) =

= —0.Oli + exp(—1/xi(u1—

it1 = 25 + (—50ln(0.01i))2/
Subject to:

0.1 Xi 100
0 x2 25.6
0 X3 5

Solution in literature:
f(x*)=0
x’ = (50,25, 1.5)

Computational effort, N1, cited in literature (GRGA, FMIN): 506, 873
Solution using LSP:

f(xj = 0.26E — 5
x = (52.993, 24.924, 1.519)

The problem is very insensitive to x1.
LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM1E—6
LSP computational effort:

N1 = 6000 PViceep = 40

Problem 3-10-0-0. Hartman Family; Source: [19] Solution Improved
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a(x — pjj)2]

Table A.1. Subject to:

±JL__ Pu
1 3.0 10 30 1.0 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3.0 10 30 3.0 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.03815 0.5743 0.8828

TableA.1: Dataformz4andn=3

Solution in literature:
f(x*) = —3.8626
x = (0.1310,0.5556,0.8526)

0.113,0.868,0.561
= 0.700, 0.555, 0.857
= 0.095, 0.555, 0.849
= 0.108, 0.552, 0.853

Problem 3-11-0-2. Source: [14]

f(x) = 314.16x1x2+ 408.41x + 100x3
Subject to:

1592.36xr2x1+ 0.125xr2x’x3< 1
xx2 + 4xx 1
x 0 for i = 1,3

Solution in literature:
f(x*) = 91246.018
x (8.648, 2 1.339, 27.468)

Solution using LSP:
f(x*) = 91260.79
xK = (8.6241,21.4560,27.5314)

LSP initial bounds:
0 x1,x2,x3 40

f(x)
=

Values of c, and Pij are given in
0 1 forj = 1,n

Solution using LSP:
f x = —3.08796 at x*
f x’ = —3.68868 at x*
f x = —3.86131 at x
f xK = —3.86023 at x

LSP initial bounds:
0 x1,x2,x3 1

Convergence criterion:
VM < 0.01

LSP computational effort:
Nf = 1496 Nkeep = 35

Convergence criterion:
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- VM1E-2
LSP computational effort:

= 304113 “Tkeep = 30

Problem 3-12-0-2. Source: [14]

f(x) = 4004 + 4.183xL’242+ lOxr5x24
Subject to:

x1 + x2 1
0.1975xT5xE5+ 0.1975xr5xr5x’ 1xj 0 for i = 1,3

Solution in literature:
f(x*) = 280.623

= (0.238,0.413,1.704)
Solution using LSP:

f(x*) = 280.674
x = (0.240, 0.410, 1.696)

LSP initial bounds:
0 x1 5
0 2 5; 1
1 5; x3 5; 5

Convergence criterion:
VM1E-3

LSP computational effort:
Nf = 2556 Nk8 = 30

Problem 3-13-2-0. Source: [46]

fl’ \ 2 2 2
J ,x) — —x1 — — x3

Subject to:
x1 + 2x2 + 3x3 = 1
x+4+4=4

The constraints form ellipses.

Solution in literature:
f(x) = —9.995 and other local optima values —9.051, —4.430, —4.049

Four optimal values are given though the corresponding points are not specified.
x = (not given)

Solution using LSP:
f(x*) = —9.9946
x = (—0.16401, —2.43407, 2.201072)

LSP initial bounds:
—2 5; x1 5; 2
—2.828 5; 5; 2.828
—4 5; .x3 <4

Convergence criterion:
11w 5; 1E — 4

LSP computational effort:
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N1 = 387287 Niveep = 30

Problem 3-14-0-1. Fuel allocation problem. Source: [46], [54]

= 1.4609 -1- O.15186x1+ 0.00145x
W2 = 1.5742 + 1.631x1 + 0.001358x

= 0.8008 + 0.2031(50 — x1) + 0.000916(50 —

= 0.7266 + 0.2256(50 — x1) + 0.000778(50 —

f(x) = x2W1 + z3}’
Subject to:

(1 — x2)W2 + (1 — x3)Y2 10
Solution in literature (53):

f(x*) = 3.05
= (30, 0.00, 0.58)

Solution using LSP:
Number of functional evaluation cited in Reklaitis = 8600, AIChE = 2989

f(x) = 3.0557
= (29.6843,0.0018,0.5736)

Convergence criterion:
VM1E-5

LSP computational effort:
Nf = 62275 Niveep = 30

Problem 3-15-0-2. Flywheel design Source: [20]

f(x) = —0.0201xx24/107
Subject to:

675 — xx2 0
0.419 — (xix3)2/107 0
0 x1 5 36
0 x2 5
0 x3 5 125

Solution in literature:
f(x*) = —5.684802

= (not given)
Solution using LSP:

f(xj = —5.6830
x* = (18.802, 1.909, 108.871)

LSP initial bounds: As given in the set of constraints
Convergence criterion:

VM<1E-5
LSP computational effort:

N1 = 114824 Niceep = 30
The slow convergence is discussed in Chapter 5, section 5.3.

Problem 3-16-0-2. Source: [67]
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Subject to:
4(x1 — .5)2 + 2(x2 — .2)2 + 4 + .1x1x2+ .2x2x3 16
2x + 4 — 24 2
—2.3 x1,x2,x3 2.7

Solution in literature:
The problem has four local optima, of which the global value is

f(x*) = —11.67664
= (0.988, 2.674, —1.884)

Solution using LSP:
f(x*) = —11.676620

= (0.9853,2.6752,—1.8839)
LSP initial bounds: As given in the set of constraints
Convergence criterion:

Yw<1E—8
LSP computational effort:

Nf = 1032281 Nkeep = 30

Problem 3-17-0-0. Nonlinear regression model fitting. Source: [18]

Problem formulation:
The following formulation is directly taken from the source literature.
An article in Lubrication Engineering (“Accelerated Testing of Solid Film Lubri

cants”, 1972, pp 365-372) reported on an investigation of wear life for solid film lubricant.
Three sets of journal bearing tests were run on a Mil-L-8937 type film at each combina
tion of three loads(3000, 6000 and 10000 psi) and three speeds (20, 60 and 100 rpm) and
the wear life (hours) was recorded for each run. It is also known that a three parameter
nonlinear model can fit the experimental data. The model is written as

w = c * * lb

where
w is the wear life (hours)
s is the speed (rpm)
1 is the load (psi)
a, b and c are the model parameters.

It is required to determine the parameters for the multiple nonlinear regression model
using the experimental data given in Table A.2. The model is expected to produce the
minimum sum of squares between the recorded and simulated wear life.

Method used in the literature:
The data was linearized by transforming to logarithmic values so that a multiple

linear model could be used. The linear model was then solved using the least squares
method.

LSP solution:
The nonlinear model was solved using LSP without any linearization. The solutions

cited in the literature and those found with LSP are given in Table A.3. The solutions
found with LSP showed about 4% improvement over the solution cited in the literature.
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—:- i w______ I w
20 3000 300.20 60 6000 65.90
20 3000 310.80 60 10000 10.70
20 3000 333.00 60 10000 34.10
20 6000 99.60 60 10000 39.10
20 6000 136.20 100 3000 26.50
20 6000 142.40 100 3000 22.30
20 10000 20.20 100 3000 34.80
20 10000 28.20 100 6000 32.80
20 10000 102.70 100 6000 25.60
60 3000 67.30 100 6000 32.70
60 3000 77.90 100 10000 2.30
60 3000 93.90 100 10000 4.40
60 6000 43.00 100 10000 5.80
60 6000 44.50

Table A.2: Experimental data used to fit the nonlinear regression model

It took 198 function evaluations to meet the convergence criterion of VM 1E — 5,
and this was achieved in 3 minutes on an 80386 machine.

Parameter Literature LSP
a -1.20603 -1.2319
b -1.39876 -1.3371
c 8.3*108 5.6*108

Z(w—J5)2 10748.95 10312.1
Improvement 4.06%

Table A.3: Optimal solution for the regression model
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Problem 4-1-0-3. Source: [59]

f(x) = 4 + 4 + 24 + 4 — 5x1 — 5x2 — 21x3 + 7x4
Subject to:

—4 — 4 — 4 — 4 — x1 + x2 + x3 + x4 + 8 0
—4 — 24

— 4 — 24 + x1 + x4 + 9 0
—24 — 4 — 4 — 2x1 + x2 + x4 + 5 0

Solution in literature:
f(x*) = 44
x = (0,1,2,—i)

Computational effort, Nf, cited in literature (NLPQL): 95
Solution using LSP:

f(x*) = —44.097
x = (0.01337, 0.84628, 1.99776, —1.11141)

LSP initial bounds:
—5x5 fori=1,4

Convergence criterion:
VM1E-3

LSP computational effort:
= 16701 Nk€62 = 40

Problem 4-2-0-6. Source: [58]

f (x) = — — — x1x3 + x1x4 + x2x3 — x2x4
Subject to:

8 — — 2x2 0
12 — 4x1 — x2 0
12 — 3x1 — 4x2 0
8 — 2x3 — x4 0
8 — — 2x4 0
5— 3:3 — x4 0
0x fori=1,4

Solution in literature:
f(x*) = _15
x = (0,3,0,4)

Computational effort, Nf, cited in literature (GRGA, FMIN): 203, 8547
Solution using LSP:

f(x*) = —14.988
xK = (0.0004, 2.9995, 0.004, 3.9976)

There is a local optima at x = (3,0,4, 0) with f(x) = 13
LSP initial bounds:

0 3
0 3:3,3:4 4

Convergence criterion:
VM 1E-4

LSP computational effort:
Nf = 5000 keep = 40
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Problem 4-3-2-0. Source: [52]

f(x)=x-b4x
Subject to:

x1 + 2x2 — = 1
—x1 + x2 + x4 = 0

Solution in literature:
f(xj = 0.5
x = (0.5, 0.25, 0, 0.25)

Solution using LSP:
f(x*) = 0.5001
x = (0.5023, 0.2489,0.0001, 0.2535)

LSP initial bounds:
0x1 fori=l,4

Convergence criterion:
VM1E-6

LSP computational effort:
Nj = 4696 Nkeep 40

Problem 4-4-1-1. Source: [58]

f (x) = xix4(x1+ x2 + x3) + x3
Subject to:

x1x2x3x4— 25 0
x + x + 4 + 4 — 40 = 0
1x5 fori=1,4

Solution in literature:
f(x*) = 17.0140173
Xx = (1,4.7429994, 3.8211503, 1.3794082)

Computational effort, Nf, cited in literature (GRGA, FMIN): 411, 6175
Solution using LSP:

f(x*) = 17.015
= (1.0002,4.7565,3.8034, 1.3817)

LSP initial bounds:
1x5 fori=1,4

Convergence criterion:
VM1E-5

LSP computational effort:
Nj = 15186 Nkeep = 40

Problem 4-5-0-0. Wood’s function Source: [20], [34], [54]

f(X) = 100(x2 — 4) + (1 — x1)2 + 90(x4 — 4) + (1 —

+10.1((x2— 1)2 + (x4 — 1)2) + 19.8(x2 — 1)(x4 — 1)
Subject to:

—10x10 fori=1,4
Solution in literature:

f(X*)=0
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x = (1,1,1,1)
Solution using LSP:

f(x*) = 0.00062
x = (1.011,1.023,0.988,0.978)

LSP initial bounds:
—10x10 fori=1,4

Convergence criterion:
VM1E-3

LSP computational effort:
Nf = 50824 Nkeep = 40

Problem 4-6-1-2. Source: [58]

f(x) = 24.55x1 + 26.75x2+ 39x3 + 40.50x4
Subject to:

x1 + x2 + x3 + x4 —1 = 0
2.3x1 + 5x2 + 11.1x3 + 1.3x4 — 5 0
12x1 + 11.9x2 + 41.8x3 + 52.1x4 — 21
—1.645(0.284 + 0.194 + 20.54 + 0.624)1/2 0
0x fori=1,4

Solution in literature:
f(x*) = 29.894378
x = (0.355216,—.12E — 11,0.3127019,0.05177655)

Constraints are violated.
Computational effort, Nf, cited in literature (GRGA, FMIN): 394, 4620
Solution using LSP:

f(x*) = 29.8947
x = (0.6351, 0.0004,0.3126, 0.0518)

LSP initial bounds:
0x1 fori=1,4

Convergence criterion:
VM1E-3

LSP computational effort:
Nf = 13924 Nkeep = 40

Problem 4-7-2-0. Source: [59]

f(x) = [1 — exp(—10xexp(—x2))]

Subject to:
x1 + x2 —1 = 0
2;3 + x4 —1 = 0
0x1 fori=1,4

Solution in literature:
f(x*) = 0.974747

= (1,0,1,0)
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Computational effort, Nf, cited in literature (NLPQL): 12
Solution using LSP:

f(x*) 0.9749
x = (1.0000, 0.0000, 0.9995, 0.0005)

LSP initial bounds:
0x1 fori=1,4

Convergence criterion:
VM1E-3

LSP computational effort:
Nf = 800 Niceep = 40

Problem 4-8-0-3. Source: [14] Solution Improved

f(x) =x1x1x4+ 2x1 -1- x1x4 + x1
Subject to:

x’x2 + xj’ 1
x1x’ 1
X1X3 1
x0 fori=1,4

Solution in literature:
f(x*) = 11.946

= (1.267,0.267,0.789,1.267)
f(x*) = 9.919 when the given x value is used.

Solution using LSP:
f(x*) = 9.8089

= (1 .3216, 0.3216, 0.7566, 1.3219)
LSP initial bounds:

0x2 fori=1,4
Convergence criterion:

VM1E-5
LSP computational effort:

Nf = 178145 Nkeep = 40

Problem 4-9-0-0. Shekel’s family. Source: [19]

m n
f(x) = — [((x — ajj)2) + ej]’

i1 j=1

Values of and c3 are given in Table A.4.
Subject to:

0 <x3 < 10 for j = 1,n

Solution in literature:
f(x*) = —10.1532

= (4,4,4,4)
Solution using LSP:
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i q
1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4

Table A.4: Data for m = 5 and n = 4

f(xj = —10.1528
= (4.002,4.000,3.999,4.001)

LSP initial bounds:
0x10 fori=1,4

Convergence criterion:
VM1E-3

LSP computational effort:
N1 = 14008 Nkeep = 80

Problem 4-10-1-2. Source: [26] Solution Improved

f(x) = 4 + 24 + 2x3 — 2x2 —

Subject to:
— 3x1 — 3 = 0

x1 + 2x3 4
x2 + x4 4
x1 3
X4 2
xj0 fori=1,4

Solution in literature:
f(x*) —2.07
x = (4/3,4, 0, 0)

Solution using LSP:
f(x*) = —3.1325

= (0.0000, 3.0000, 0.0001, 0.9995)
LSP initial bounds:

0 x1 3
0 x2 4
0 x3 2
0 x4 2

Convergence criterion:
VM1E-7

LSP computational effort:
Nf = 5035 Nkeep = 40

Problem 4-11-0-0. Source: [68]
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Problem formulation:
The following formulation is directly taken from the source literature.
An electronic products manufacturer undertook the production of a new product in

two locations (location A: coded x = 1, location B: coded x = 0). Location B has more
modern facilities and hence was expected to be more efficient than location A, even after
the initial learning period. An industrial engineer calculated the expected unit production
cost for a modern facility after learning has occurred. Weekly unit production costs for
each location were then expressed as a fraction of this expected cost. The reciprocal
of this fraction is a measure of relative efficiency, and this measure was utilized as the
efficiency measure in this study.

The model used was

= 7° + 7iXj +73exp(72wj) + ej

Here yo is the upper asymptote for location B as w gets large, and 70+71 is the upper
asymptote for location A. The parameters 72 and reflect the speed of learning, which
was expected to be the same in the two locations.

The data on location, time and relative efficiency are presented in Table A.5. Note
that the relative efficiency in location B toward the end of the 90 week period even
exceeded 1.0, i.e. the actual unit costs then were lower than the industrial engineer’s
expected unit cost.

Location Week Rel. eff. Location Week Rel. eff.
xi x

1 1 0.483 0 1 0.517
1 2 0.539 0 2 0.598
1 3 0.618 0 3 0.635
1 5 0.707 0 5 0.75
1 7 0.762 0 7 0.811
1 10 0.815 0 10 0.848
1 15 0.881 0 15 0.943
1 20 0.919 0 20 0.971
1 30 0.964 0 30 1.012
1 40 0.959 0 40 1.015
1 50 0.968 0 50 1.007
1 60 0.971 0 60 1.022
1 70 0.96 0 70 1.028
1 80 0.967 0 80 1.017
1 90 0.975 0 90 1.023

Table A.5: Experimental data used to fit the nonlinear regression model

Method used in the literature:
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A direct search computer program was used to estimate the four parameters in the
model. A reasonable starting point was used as input to run the computer package. The
resulting least squares regression function was

Y = 1.0156 — 0.04727x — (0.5524)exp(—0.1348w)

and the error sum of squares was SSE = 0.00329.

LSP solution:
Output from LSP confirmed the results given in the source reference. It took 2128

function evaluations to meet a termination criterion of VM 1E — 5.

Problem 4-12-1-5. Source: [57]

f(x) = .so(x) + xTHx + qTx + a
H is (n x n) matrix, q R, a R and T designates the transpose of a matrix.
Subject to:

si x) + 40.99 = 0
2 x) + 3.98 0
93X +4.610
s4x +32.060
.s5x —2.710
6 x + 2.27 0
1x4 fori=1,2,3,4

where
so(x) = .32x82x’6— .88x86+ .81x°7x48x4+ .66x56 — .83x3x40x27
s1(x) = .96 — 1.12x3x+ 3.13x’x1x1x+ 3.3x — 4.84xj1x3

= 5.39 + 1.98x2xx’ — 4.14x2 — 1.88x1x4
s3(x) = .99 — 4.64x3x’ — .57x4
s4(x) = —3.23 — 1.89x — 1.18x — 2.01xx’ — 1.99x1
s5(x) = 3.45 — 2.98x1x2— .96xx — 2.90x’x1+ 3.39x
s6(x) = —.51 — 2.89xx3 — 6.24x + 2.15xx4

171.49 200.07 156.82 —3.12

200.07 78.48 86.63 —12.85
H=

156.82 86.63 51.75 —20.46

—3.12 —12.85 —20.46 —5.07

q = (—908.19, —546.53, —407.35, 64.17)T

a = 1499.97
Solution in the literature:

x = (1.35, 2.17, 2.80, 3.71)
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Objective function calculated at optimal point = -0.2298
Solution using LSP:

f(x*) = —0.2716
x = (1.341152, 2.190871, 2.787508, 3.715618)

LSP initial bounds: As given in the set of constraints.
Convergence criterion:

V 1E—4
LSP computational effort:

Nf = 602, 075 Nkeep 40
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Problem 5-1-3-0. Source: [36], [58]

f (x) = (xi — x2)2 + (x2 — x3)2 + (x3 — x4)4 + (x4 —

Subject to:
x1 + 4 + 4 —3 = 0

— 4 + x4 —1 = 0
x1x5 — 1 = 0

Solution in literature:
f(x*) = 0
x = (1,1, 1, 1, 1)

Computational effort, Nf, cited in literature (ORGA, FMIN): = 623, 472 [58]
Solution using LSP:

f(x) = 8.8 * 10—6
= (1.0006, 1.0008,0.9978, 0.9949,0.9994)

LSP initial bounds:
0x13 fori=zl,5

convergence criterion:
a1E—6

LSP computational effort:
Nf = 1008 Nkeep = 50

Problem 5-2-0-2. Source: [14]

f(x) = 10xE25x2x’xE5-1- 20xj1x34x5+ 15xx’xE1x5
Subject to:

.01x1x2+ .02x2x4x5 1

.04x1x3+ .02x2x3+ .02x4x3+ .06xE’x2x.5xt 1
x0 fori=1,5

Solution in literature:
f(x*) = 37.216

= (11.425,8.747,0.787,2.401,1.179)
Solution using LSP:

f(x*) = 37.226
The problem has many global optimal points, of which one is

= (4.6472, 16.3588, 9.3017, 1.7066, 12.5463)
LSP initial bounds:

0x20 fori=1,5
Convergence criterion:

Vw<1E—3
LSP computational effort:

Nf = 40887 = 50

Problem 5-3-0-6. Source: [34], [28]

f(x) = 5.35785474 + 0.8356891x1x5+ 37.293239x1— 40792.141
Subject to:

0 85.334407 + 0.0056858x2x5+ 0.0006262x1x4— 0.0022053x3x5 92
90 80.51249 + 0.0071317x2x5+ 0.0029955x1x2+ 0.00218134 110
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20 < 9.300961 + 0.0047026x3x5+ 0.0012547x1x3+ 0.0019085x3x4 25
78 x1 102
33 x2 45
27 x3,x4, x5 45

Solution in literature:
f(x*) = —30665.5

= (78, 33, 29.995, 45, 36.776)
Solution using LSP:

f(x*) = —30633.80
xc = (78.00016,33.04861, 30.1344,44.99984, ,36.57489)

LSP initial bounds: As given in the set of constraints
Convergence criterion:

VM1E-3
LSP computational effort:

Nj = 5876 Niceep = 50

Problem 5-4-3-0. Source: [58]

f(x) = fri — x2) + (x2 + x3 — 2)2 + (x4
—

1)2 + (x5
—

1)2
Subject to:

x1 + 3x2 = 0
x3 + x4 — 2x5 0

— :r5 = 0
—10x<10 fori=1,5

Computational effort, N, cited in literature (GRGA, FMIN): = 82, 2172
Solution in literature:

f(x) = 176/43
= (—33,11,27,—5,11)/43

Solution using LSP:
f(xj = 4.0973
x = (—0.7911,0.2637,0.5934, —0.0660,0.2637)

LSP initial bounds:
—10x10 fori=1,5

Convergence criterion:
VM<1E-3

LSP computational effort:
N = 619 Niceep = 50
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Problem 6-1-0-2. Transformer Design Source: [5], [56], [58]

f(x) = 0.0204x1x4(xi+ x2 + x3) + 0.0187x2x3(xi+ 1.57x2 + x4)
+0.0607xix4x(xi + x2 + x3) + 0.0437x2x3x(xi + 1.57x2 + x4)

Subject to:
0.001x1x2x3x4x5x6— 2.07 0

1 — 0.00062x1x4x(x1+ x2 + x3) — 0.00058x2x3x(x1+ 1.57a2 + x4) 0
0x fori=1,6
5.27 xi 5.81
4.29 4.71
10.14 < x3 10.56
11.89 x4 12.31
0.73 x5 1.27
Bounds are taken from [56].

Solution in literature:
f(x*) = 135.075961
x = (5.332666,4.651744, 10.43299, 12.08230, 0.7526074, 0.87865084)

Computational effort, Nf, cited in literature:
(GRGA, FMIN): =. 2577, 3419 [58] and 4360355 [56]

Solution using LSP:
The problem has different near optimal points, of which one is

f(x*) = 135.08276
= (5.28766,4.68762, 10.40192, 12.15321, 0.75406, 0.87688)

LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM 1E4
LSP computational effort:

N1 272225 Nkeep = 60

Problem 6-2-0-6. Hesse’s Function Source: [66]

f(x) = —25(xi — 2)2
— (x2 — 2)2

— (x3 — 1)2
— (x — 4)2

—(x5 — 1)2
— (x6 — 4)2

Subject to:
x1 + x2 2
x1 + x2 <6
—x1 + x2 2

— 3x2 < 2
(x — 3)2 x4 4
(x5 — 3)2 + x6 4
x1,x2 0
1 <X3 5
0 <X4 6
1 <x5 5
0 x6 10

Solution in literature:
f(x) = —310

The problem has 18 local optima one of which is global.
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= (5,1,5,0,5,10)
Solution using LSP:

f(x*) = —309.997
x = (5.00000, 1.00000, 4.99999,0.00030, 4.99996, 9.99997)

LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM1E-5
LSP computational effort:

N1 = 14064 Nkeep = 60

Problem 6-3-6-2. Source: [58]

f(x) = x1 + 2x2 + 4x5 + exp(xix4)
Subject to:

x1 + 2x2 + 5x5 — 6 = 0
x1 + x2 + x3 —3 = 0
x4 + x5 + x6 —2 = 0
x1 + z4 —1 = 0
x2 + x5 —2 = 0
x3 + x6 — 2 = 0
0x1 fori=1,6

1
Solution in literature:

f(x*) = 19/3
xK = (0,4/3, 5/3, 1, 2/3, 1/3)

Computational effort, N1, cited in literature (FMIN): = 4767
Solution using LSP:

f(x*) = 6.335
xx = (.001, 1.334, 1.665, 0.999, 0.666, 0.335)

LSP initial bounds:
0 i,X4 1
0 X2,X3,Xs,X6 2

Convergence criterion:
VM1E-3

LSP computational effort:
N1 = 4966 Nkeep = 60

Problem 6-4-4-0. Source: [34], [58]

f(x) = fi(xi) + f2(x2))

I 30x1 0<x1<300

31x1 300 x1 <400
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28x2 0<x2<100

f2(x2) 29x2 100 x2 <200

30x2 200 < x2 < 1000

Subject to:

= 300—1,8co.s(1.48577 — x6) + O.9O798r (1 47588)

= 13L078c08(1.48577 + x6) + OO798X (1 47588)

=—1,3sin(1.48577+ x6) +017sin(1.47588)

200—13x478sin(1.48577
— x6) -I- O.9O798Xi(1 47588) = 0

0 400
0 < X2 1000
340 < x3 <420
340 x4 420
—1000 X5 1000
0 x6 0.5236

Solution in literature:
Results differ in the precision of the x vector as a discontinuity

in the constraint derivatives forces jump changes in f(x) and x.
High precision: f(x*) = 8927.5888 [34], [58]

x = (107.81, 196.32, 373.83,420.00, 21.31, 0.153)
Moderate precision: f(x*) = 8853.44 or 8953.40 [34]

x = (201.78, 100.00, 383.07, 420.00, —10.907, 0.07314)
Computational effort, Nf, cited in literature (, GRGA, FMIN): = 1428, 4630 [58]
Solution using LSP:

f(x*) = 8889.881
x = (202.996, 100.000, 383.071,419.999, —10.914,0.073)

LSP initia’ bounds:
As given in the set of constraints

Convergence criterion:
VMlE-4

LSP computational effort:
Nf = 3924 Nkeep 60

Problem 6-5-3-12. Source: [26] Solution Improved

f(x) = x6 + x + x + 2x4 + 5x5 — 4x3 — x6 Subject to:
— 3x1 — 3x4 = 0
—

2x2 — 2x5 = 0
4x4

—
= 0

x1 + 2x4 <4
+ x5 4



Appendix A. MATHEMATICAL TEST PROBLEMS 268

X3 + x6 6
3
4
2

x0 fori=1,6
Solution in literature:

f(x*) = —11.96
x = (0.67,2,4,0,0,0)

Solution using LSP:
f(x*) = —13.402
x = (0.1667, 2.0000,4.0000, 0.5000, 0.0000, 2.0000)

LSP initial bounds:
0 3
0 <x2 4
0 x3 4
0 <X4 2
0 <X5 2
0 x6 6

Convergence criterion:
VM1E—7

LSP computational effort: Nf = 25927 Nkeep = 60

Problem 6-6-0-4. Source: [8]

f(x) = 10.5x1 — 3.95x2 + 3x3 + 5x4 --
1.5x5 — 1.5x6

—1.5x — — — 2x — — 2.5x
Subject to:
X1H-x2+x3+x4+xs+x6<500
x1 + 3x2 + 6x3 + 2x4 50
3x5 + 4x6 50
x3 + 2x4 -I- 3x5 + x6 < 350
0x99 fori=1,2,...,6

Solution in literature:
f(x*) = —70262.05
x = (99, 99, 53, 99, 0, 99)

Solution using MIJ\TOS 5.], as reported in the literature
f(x*) = —69181.04
x’ = (99, 99, 99, 76, 0, 99)

Solution using LSP:
f(x*) = —70261.953

= (98.99994, 98.99965, 52.99992, 98.99999, 0.00002, 99.00000)
LSP initial bounds: As given in the set of constraints.
Convergence criterion:

VM 1E—2
LSP computational effort:

Nf = 46986 Nkeep 60
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Problem 7-1-0-24. Source: [13]

f(x) = .7854xix(3.3333x -f- 14.9334x3— 43.0934) — 1.5080xi(x + x)
+7.4770(x + 4) + 0.7854(x4x+ x54)

Subject to:
x1zx3 > 27

> 397.5
x2x3x/x 1.93

a1 = ((745 *x4/x2/x3) + 16.91 * 106).5
a2 = ((745 *x5/x2/x3)2+ 157.5 * 106).5

= 0.1 *

b2 = 0.1 * 4
a1/b1 < 1100
a2/b2 < 850
x2x3 40
x1/x2 5

12
1.5x6 + 1.9 < X4

1.1x7 + 1.9 < x5
3 4
.6 x2 .8
17 x3 <20
6.6 r4 8.3
7.3 < x5 8.3
2.9 < x6 < 3.9
5 X7 5.5

Solution in literature:
f(x*) = 2994.47
x’ = (3.5, 0.7, 17, 7.3, 7.71, 3.35,5.287)

Solution using LSP:
f(x*) = 2994.5
x’ = (3.50, 0.70, 17.00,7.30, 7.716, 3.351, 5.287)

LSP initial bounds: As given in the set of constraints.
convergence criterion:

V,1<1E-3
LSP Number of functional evaluation:

Nf = 82826 = 70

Problem 7-2-2-3. Source: [59]

f(x) = —5x1
—

5x2 — 4x3 — x1x3 — 6x4 — (5x5)/(1 + x5)
—(8x6)/(1 + x6) — 10(1 — 2exp(—xr) + exp(—2x7))

Subject to:
10

—

x 0
5 — x1 0
5—x1—x3—x5—xg—40
2x4+x5+0.8x6+xr—5=0
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4 + 4 + 4 + 4 —5 = 0
Solution in literature:

f(x*) = —37.4130
= (1.47,1.98,0.35,1.2,0.57,0.78,1.41)

Computational effort, N1, cited in literature (NLPQL): = 437
Solution using LSP:

f(x*) = —37.352
x = (1.271, 1.972, 0.536, 1.220, 0.498, 0.758, 1.455)

LSP initial bounds:
0 x2,x3,x5,x6,x7 <2.3
0 5; x1,x4 5; 5

Convergence criterion:
VM1E-3

LSP Number of functional evaluation:
N1 =6973724 IN’keep = 50

Problem 7-3-0-4. Source: [61]

f(x) =(xi—10)2+5(x2—12)2-I-(4+3(x4—11)2+10*$+74+4—4x6x7—10x6—8x7)
Subject to:

24 -I- 34 + x3 + 44 -1- 5x5 — 127 <0
7x1 + 3x2 + 104 + x4 — — 282 5; 0
23x1 + 4 + 64 — 8x7 — 196 5; 0
44 + X2 — 3x1x2 + 245x6 — 11X 5; 0

Solution in literature:
f(x*) = 680.63005743

= (2.330517, 1.9513717, —0.47759196,4.365728, —0.6245119, 1.0381598, 1.5942702)
Computational effort, N1, cited in literature: = 4368
Solution using LSP:

f(x*) = 680.6488
= (2.33976,1.94295, —0.44145,4.38498, —0.63151,1.04464,1.60214)

LSP initial bounds:
—5<x1<5 fori=1,7

Convergence criterion:
VM1E-3

LSP Number of functional evaluation:
N1 = 68027 = 70



Appendix A. MATHEMATICAL TEST PROBLEMS 271

Problem 8-1-0-10. Source: [39]

f(x) = —1 * [0.034x1x5+ 0.1225x3x7
— 0.280125x2x6

—0.191625x4x8+ 50x7 + 145.6875x6+ 145.6875x8
+50x5 — 47.52x5 — 47.52x6 — 44.3625x7— 44.3625x8]

Subjected to:
x1x5 + x2x6 > 2000 + 80x5 + 80x6
X3X7 + X4X3 7000 + 65x7 + 65x8
X1X5 + x3x7 < 10000 + 89.286(x5+ x7)
X2X6 + X4X8 3000 + 166.66(x7+ x8)
4x5 + 4x6 1000
5x7+5x8<700
x5 H- x6 <233
X7 + x8 150

H- .X7 200
X6 + X8 100
48 5 120
48 200
42 x3 120
42 x4 200

Solution in literature:
f(x*) = —16592.55
x” = (120,53.51,120,108.87,122.89,110.1,77.1,62.89)
The first two constraints are slightly violated

Solution using LSP:
f(x*) = —16563.059
x = (120,57.41, 119.98, 110.28, 116.06, 116.95, 83.95, 56.06)

LSP Initial bounds:
48 120
48 $ 200
42 120
42 x4 200
0 233
0 x 233
0 140
0 <x8 140

convergence criterion:
V11E—3

Computational effort:
N1 = 1426144 Nkeep = 80

Problem 8-2-0-6. Source: [58]

f(x) = .4xf7x67 + .4$7x67+ 10 —

—

Subject to:
1 — .0588x5x7

— .1x1 0
1 — 0.0588x6x8

—
.1x1

—
.1x2 > 0

1 — 4x3x1— 2x71x’ — 0.0588x13x7— 1 0
1 — 4x4x1— 2x71x1— 0.0588x’3x8— 1 0
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1f(x)4.2
0.1x110 fori=1,8

Solution in literature:
f(x*) 3.9511634396

= (6.465114,2.232709, 0.6673975, 0.5957564
5.932676, 5.527235, 1.013322, 0.4006682)

Computational effort, iVf, cited in literature (GRGA, FMIN): = 5929, 9544
Solution using LSP:

f(x*) = 3.960746
x = (6.092, 2.550, 0.706, 0.611, 6.016,5.546, 1.105, 0.416)

LSP Initial bounds:
0.1x110 fori=1,8

convergence criterion:
VM 1E-6

LSP Computational effort:
Nf = 192453 Nkeep 80

Problem 8-3-0-7. Source: [14]

f(x) = 19.4xT147 + 16.8x166 + 91.5x3+ 19.4xZ’47
+86x138 + 152x27 + 16.8x1°6+ 27.4x63

Subjected to:
0.537x1x2x3+ 4.47x4x5x6+ 0.386x7x8 1
.65xT’ 1
.15xT1x’x’ 1
.65x’ 1
.15x1x’ 1
.60x’ 1
.20x’x’ 1
x0 fori=1,8

Solution in literature:
f(x*) = 550.642
x’ = (0.937, 0.901,0.676,0.671,0.331,0.467, 1.096, 0.554)

Solution using LSP:
f(x*) = 551.1217

= (0.940, 0.954, 0.656, 0.693, 0.326, 0.487, 1.090, 0.581)
LSP Initial bounds:

0x3 fori=1,8
LSP convergence criterion:

VM1E—3
LSP Computational effort:

JVj = 5485 Nkeep = 80
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Problem 9-1-0-13. Source: [58]

f (x) = —.5 * (x1x4 — x2x3 + x3x9 — x5x9 + x5x5 — x6xy)
Subject to:

1— — x 0
1— — x 0
1 — (xi — — (x2 — x6)2 0
1 — (x1 — x7)2 — (x2 — x8)2 0
1 — (x3 — x5)2 — (x4 — xg)2 0
1 — (x3 — — (x4 — xs)2 0
1 2 1

—

x3x9 0
X5X8 — X6X7 0
1— 4 0
1 — — (x2 — x9)2 0
Xi4 — X2X3 0
x5x9 0

Solution in literature:
f(x*) = —0.8660254038

x = (.884129, .4672425, .03742076, .9992996, .884129, .467242, .03742076, .99929996, 0)
Computational effort, A/f, cited in literature (ORGA, FMIN):= 16857, 16724

GRGA did not find the global solution
Solution using LSP:

f(x*) = —0.8657007
x = (.96099, .29952, .23727, .917137, .95973, .28040, .24091, .99339, .02330)

LSP initial bounds:
0 x 1 fori= ito 9

convergence criterion:
Yw1E—7

LSP computational effort:
Nf = 60500 iVkeep 80

Problem 9-2-6-0. Source: [59]

f(x)=Ex

Subject to:
x1 + x2 *6(—5r3) + x4 — 127 = 0
r1 + x2 * e(3Ta) + x5 — 151 = 0
x1 + x2 * + x6 — 379 = 0
x1 + x2 * e(xs) + x7 — 421 = 0
x1 + x2 * e(3T3) + x8 — 460 = 0
xi + X2 * e() + x9 — 426 = 0

Solution in literature:
f(x*) = 13390.1
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x’ = (523.31, —156.95, —0.2, 29.61, —86.62,47.33, 26.47, 22.92, —39.47)
Computational effort, iif, cited in literature (NLPQL):= 2443
The constraints are slightly violated, possibly due to round off.
Solution using LSP:

f(x*) = 13390.102
x’ = (523.45996094, —157.13957214, —0.19949156, 29.60516357, —86.56939697,

47.37318420, 26.26046944,22.91170883, —39.50439453)
LSP initial bounds:

400 5; x < 600
—200 5; 5; —100
—10 5; X3 5; 0
0 5; 5; 600000
—10000 ioooo
0 5; 5; 800
—10 5; x7 5; 400
—10 5; 5; 400
—600 5; x9 5; 10

Convergence criterion:
VM1E-3

LSP computational effort (number of functional evaluation):
Nf 16601 Nkeep 90
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Problem 15-1-0-29. Source: [58]

f(x) = E(2.3x3k+I + 0.00014+ + l.7X3k+2 + 0.00014+2 +2.2X3k+3 + 0.OOO1543)

Subject to:
O — x33_2 + 7 13
0 — x3_1 + 7 14
0 x33 — x3 + 7 13

forj 1,4
xi+x2+x3—600
x4 + x5 + x6 —50 0
x7+xs+x9—700
x10 + x11 + x12 — 85 0
x13 -I- x14 + xiS — 100 0
8< x1 21
43 57
3 x3 16
0 X3k+1 90
0 X3k+2 120
0 X3k+3 60

for k = 1,4
Solution in literature:

f(x*) = 664.8204500
= (8,49,3,1,56,0,1,63,6,3,70,12,5,77,18)

Computational effort, Nf, cited in literature (GRGA): = 3857
Solution using LSP:

f(xj = 668.921
x = (8.113,48.861,3.031, 2.081,48,934,0.070,8.067, 55.933,

6.002, 13.793, 62.804, 8.405, 16.043, 69.665, 14.305)
LSP initial bounds: As given in the set of constraints.
convergence criterion:

VM1E-3
LSP computational effort:

Nf = 3805238 Niveep = 120
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Problem 20-1-1-0. Source: [59] Solution improved

f(x) = i(x + x)

Subject to:

1x=l

Solution in literature:
f(x*) = 1.91667
x = (0.91287, 0.408286, —0.00017, —0.0000054, 0.0000, —0.0000089,)

0.0000082, —0.000014, 0.000022, —0.0, 0.0000135, —0.000004,
—0.000011, —0.000013, 0.0, 0.00002, 0.00000546, —0.000009, —0.00001,0.0)

Computational effort, N, cited in literature (NLPQL): = 198
Solution using LSP:

f(x*) = 1.91836
x = (—0.9112, —0.4116, —0.0101, —0.0087,0.0077, 0.0021, —0.0050,

—0.0016,0.0051,0.0008, —0.0013,0.0047, —0.0034,0.0010,
0.0013. 0.0004, —0.0041, —0.0024, —0.0036, 0.0005)

LSP initial bounds:
—1<x1 fori=1,20

Convergence criterion:
VM1E-6

LSP computational effort:
Nf 767986 Nkeep 120

The LSP solution is inferior by 0.088% and different from the one given in the
literature, but multiple local optima were observed using LSP. All ordinates
with negative and positive sign give optimal solution. There are 220 possible
solution points if the initial bounds are —1 < < 1 for i = 1,20.



Appendix B

DIRECT SEARCH METHODS

To give a wider perspective of direct search methods some of the most common meth

ods which appear in the literature are described below. The descriptions are presented

verbatim from the primary sources cited.

Blind search [Leon, 1966]: The most elementary type of sampling procedure is one in

which trial points are generated randomly within the feasible region. This search

method simply selects a starting feasible point x0, evaluates f(x) at x0 and then

randomly selects another feasible point x1, and evaluates f(x) at x’. In effect, both

the search direction and the step length are chosen simultaneously. The current

point has to provide a better value of the objective function to be retained, otherwise

it is discarded. Such a process continues until a specified number of points have

been tested or a specified computational effort expended.

A slightly more efficient approach is to divide the sampling range into a set of

subareas known as blocks. Initially the search is carried out in each block separately.

The block providing the best values is used to initiate the next phase of the search

which is executed within progressively smaller blocks.

Grid search : A series of points are evaluated about a reference point selected according

to some type of design. Then move to that point which improves the objective

function the most, and repeat. If each length of the search domain is divided into b

277
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sections, there will be b1t grid points for an n dimensional problem. Therefore, this

method function evaluations at 19’ — 1 points in addition to the reference point.

For ii = 10, we must examine 310
— 1 = 59, 048 values of f(x) if a three-level

factorial design is to be used, which is a prohibitive number of function evaluations

[Edgar & Himmelblau, 1988] for an equivalent Nk6 = 3 and a single iteration.

Univariate search [Edgar & Himmelblau, 1988]: Select ii fixed search directions (usu

ally the coordinate axes) for an objective function of ii variables. Then f(x) is

minimized in each direction sequentially using a one dimensional search. While

this method is effective for a quadratic function of the form

f(x)
=

cjx

because the search direction lines up with the principal axes, it does not perform

satisfactorily for the more general quadratic objective function of the form

f(x) = EZdjjzxj
i:=1 j=1

where c and are coefficients.

Conjugate direction methods [Edgar & Himmelhlau, 1988]: Conjugate direction meth

ods are presented as methods for optimizing strictly convex quadratic functions.

Experience has shown that conjugate directions are more effective as search direc

tions than arbitrarily chosen search directions or even orthogonal search directions.

Two directions S1 and 5 are said to be conjugate (or conjugated) with respect to

each other if

(5i)TQ(5i)
= 0
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where, the matrix Q is the Hessian matrix of the objective function, H.

In general, at a set of ii linearly independent directions of search 50, 51 5n—1 are

said to be conjugate with respect to a positive definite square matrix Q if

(S1)TQ(Si)
= 0; 0 0 i n —‘

The conjugate directions exist only for a quadratic approximation of the function

at a single stage Ic. Once the objective function is modeled by a new approximation

at stage (Ic + 1), the directions on stage Ic are unlikely to be conjugate to any of

the directions selected on stage (Ic + 1).

Powell’s conjugate direction methods [Reklaitis et al., 1983]: This algorithm uses

the history of the iterations to build up directions for acceleration and at the same

time avoids degenerating to a sequence of coordinate searches. It is based upon the

model of a quadratic function.

The motivation for the algorithm stems from the observation that if a quadratic

function in n variables can be transformed so that it is just the sum of perfect

squares, then the optimum can be found after exactly n single variable searches,

one with each of the transformed variables.

Simplex method [Edgar & Himmelblau, 1988]: It uses a rectangular geometric figure

(a simplex) to select points at the vertices of the simplex at which to evaluate f(x).

The simplex search method is based upon the observation that the first-order ex

perimental design requiring the smallest number of points is the regular simplex.

In it dimensions, a regular simplex is a polyhedron composed of it + 1 equidistant

points, which form its vertices.
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The method begins by setting up a regular simplex in the space of the independent

variables as

= bfr+e1(bY—bf)

where j is a random deviate nniformly distribnted over the interval [0, 1], bf and

are the lower and npper bonnds respectively for each variable i.

The objective fnnction is evaluated at each vertex. The vertex with highest function

value (for a minimization problem) is located and labelled as the “worst” vertex.

Before throwing away the “worst” vertex, it is reflected through the centroid to

generate a new trial point, which is used to complete the next simplex. As long as

the objective function decreases smoothly, the iterations move along crabwise until

either the minimum is straddled or the iterations begin to cycle between two or

more simplexes. Then, the simplex sides are reduced to advance the search until a

prescribed side length is maintained or until the standard deviation of the function

values at the vertices gets smaller than a prescribed value.

Complex method [Box, 1965]: The constrained simplex (Complex) method searches

for the minimum value of a function f(x) subject to in constraints.

The simplex direct search is based on the generation and maintenance of a pattern

of search points and the use of projections of undesirable points through the centroid

of the remaining points as the means of finding new trial points. In the presence

of inequality constraints, it is evident that if the new point is infeasible, then it is

a simple matter to retract it toward the centroid until it becomes feasible.

It is assumed that an initial point x0, which satisfies all constraints is available. It

is assumed that the feasible region is convex.
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For an n variable problem, Ic n + 1 points are used, of which one is the given

point. The further (Ic — 1) points required to set up the initial configuration are

obtained one at a time by the nse of random numbers and ranges for each of the

independent variables.

The function is evaluated at each vertex, and the vertex of highest function value
(for a minimization problem) is replaced by a point a 1 times as far from the
centroid of the remaining points as the reflection of the worst point in the centroid,

the new point being collinear with the rejected point and the centroid of the retained
vertices. If the trail point is also the worst, it is moved halfway towards the centroid

of the remaining points to give a new trial point.

Typical values of Ic and a are 2 * n and 1.3 respectively.

If a trial vertex does not satisfy some constraint on some independent variable x,

that variable is reset to a value 0.000001 inside the appropriate limit.

Different runs are required to identify the global solution. Therefore, this method
too is a local search.

The Hooke-Jeeves pattern search [Reklaitis et al., 1983]: This method is a combi
nation of “exploratory” moves of the one variable at a time kind with “pattern” or
acceleration moves regulated by some heuristic rules [Reklaitis et al., 1983]. The
exploratory moves examine the local behaviour of the function and seek to locate
the direction of any sloping valleys that might be present. The pattern moves uti
lize the information generated in the exploration to step rapidly along the valleys.
A pattern move consists of a single step from the present base point along the line
from the previous to the current base point. Thus, a new pattern point, x, is
calculated as
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= x + (x — x(k_1))

where

is the current base point

x(c_l) is the previous base point

4+1) is the pattern move point

x1) is the next (new) base point

Recognizing that this move may not result in an improvement, the point 4+1)

is accepted only temporarily. It becomes the temporary base point for a new

exploratory move. If the result of this exploratory move is a better point than the

previous base point x(k), then this point is accepted as the new base point x1).

On the other hand, if the exploratory move does not produce improvement, then

the pattern move is discarded and the search returns to xV’), where an exploratory

search is undertaken to find a new pattern.

Because of its reliance on coordinate steps, the algorithm can, however, terminate

prematurely, and in the presence of severe non-linearities will generate to a sequence

of exploratory moves without benefit of pattern acceleration.

Simulated annealing [Corana et al., 1987]: Simulated annealing means simulating the

annealing process by a Monte Carlo method (random changes in the state of the

system,), where the global minimum of the objective function represents the low

energy configuration [Torn & Zilinskas, 1988]. The method discriminates between

“gross behaviour” of the objective function and finer “wrinkles”, where the gross
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behaviour directs the search to the region where the global optimum should be

present. Then a finer local search is performed within the neighbourhood of the

presumed global optimum. In any case this method does not guarantee finding

the global optimum. For this reason, it is referred to as a suitably perturbed local

search procedure [Kan et al., 1989].

The method proceeds iteratively starting from a given point and generating new

candidates around the current point applying random moves along each coordinate

direction, one after the other. A candidate point is accepted if it produces an objec

tive function value less than that of the previous point, or if greater accepted with

probability F. This probability is given by F = exp(—Af/T) and is a function of

the ratio of the increase in objective function /.f = f(xk+l) — f(xk) and the tem

perature T. The temperature T starts with a large value and reduces progressively

until no more useful objective function improvement is expected. An important

characteristic of this random procedure is that the next point accepted may have

higher objective value than the previous one [Torn & Zilinskas, 1988].

Experimental results on test problems showed that a large number of function

evaluations is required to obtain solutions with the simulated annealing method

[Aluffi-Pentini et al., 1985]. The method has also been found very inefficient when

compared with the simplex method. On the average simulated annealing takes

500-1000 times more function evaluations than the simplex method.




