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ABSTRACT 

The t h e s i s considers the problem of v e r t i c a l p i l e group response 
to l a t e r a l s t a t i c loads. There are various s o l u t i o n s a v a i l a b l e 
for s i n g l e p i l e response to l a t e r a l loads. These s o l u t i o n s have 
been v e r i f i e d against a large database obtained from f i e l d 
experiments and model experiments. For p i l e groups very few 
t h e o r i e s have been proposed and due to the comparatively smaller 
database a v a i l a b l e i t i s not p o s s i b l e to develop and t e s t a 
sound theory for p r e d i c t i n g the p i l e group response to l a t e r a l 
loads. 

This t h e s i s i s aimed at Obtaining a database for response 
of p i l e groups comprising of two p i l e s subjected to l a t e r a l 
s t a t i c loads. Tests were c a r r i e d out i n the H y d r a u l i c Gradient 
S i m i l i t u d e Device i n order to b r i n g the s t r e s s s t a t e i n the s o i l 
to the f i e l d s t r e s s l e v e l . For t e s t i n g purposes three cases were 
considered, s i n g l e p i l e , s i n g l e p i l e adjacent to a loaded p i l e , 
and a p i l e group of two p i l e s . 

The s i n g l e p i l e t e s t r e s u l t s showed that the t e s t r e s u l t s 
were repeatable and r e l i a b l e . The t e s t s on a s i n g l e p i l e 
adjacent to a loaded p i l e showed that the p o s i t i o n of the p i l e 
w i t h respect to the loaded p i l e has a strong i n f l u e n c e on the 
response of the p i l e . - The unloaded p i l e i n the d i r e c t i o n of the 
loading and i n f r o n t of the loaded p i l e i s most e f f e c t e d . At a 
spacing of 2 diameters bending moment developed i s up to a 
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maximum of 20 percent of bending moment developed i n s i n g l e 
p i l e . This percentage decreases r a p i d l y w i t h i n c r e a s i n g 
spacing. I f the unloaded p i l e i s located behind the loaded p i l e 
or i s at 90° to the loading d i r e c t i o n , i t e s s e n t i a l l y p i c k s up 
very l i t t l e load from the loaded p i l e . The i n s t a l l a t i o n of two 
p i l e s d e n s i t i e s the s o i l i n between. 

In case of p i l e groups, the load sharing among the p i l e s i s 
based on the p i l e l o c a t i o n and the i n t e r a c t i o n e f f e c t i s not 
r e c i p r o c a l . The lead p i l e , i . e . the p i l e i n the d i r e c t i o n of 
load, shares maximum load with t r a i l p i l e sharing smaller load. 
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CHAPTER 1 1 

CHAPTER 1 : INTRODUCTION 

1.1 I N T R O D U C T I O N 

In foundation engineering p r a c t i c e , p i l e s are f r e q u e n t l y 
used to r e s i s t l a r g e h o r i z o n t a l loads from the s u p e r s t r u c t u r e . 
In the past, p i l e foundations were designed and constructed 
based on experience. In recent years, due to research 
conducted i n t h i s area, a better understanding of p i l e response 
to the loads has been achieved. This has l e d to more e f f i c i e n t , 
economical designs and safety. 

Through f i e l d and model studies of p i l e s , sound t h e o r i e s 
have been developed for s i n g l e p i l e s loaded v e r t i c a l l y and 
h o r i z o n t a l l y . In a d d i t i o n , r e l i a b l e s o l u t i o n s have a l s o been 
developed for v e r t i c a l l y loaded p i l e groups. However, there i s 
a l a c k of r e l i a b l e theory and s o l u t i o n to p r e d i c t the response 
of p i l e groups to l a t e r a l loads and t h i s t h e s i s i s d i r e c t e d 
towards t h i s problem. 

To develop a r e l i a b l e theory which can p r e d i c t the response 
of p i l e groups to l a t e r a l loads, a large data base of p i l e group 
response i s required. So f a r , various researchers have proposed 
e m p i r i c a l s o l u t i o n s based on a very l i m i t e d f i e l d database. 
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The database can be generated by conducting e i t h e r f i e l d 
t e s t s or labo r a t o r y model t e s t s . F i e l d t e s t s give the a c t u a l 
performance of the p i l e group, but are very c o s t l y . In model 
t e s t s , the s i z e of the sample and the t e s t p i l e s has a 
considerable e f f e c t on the response of the p i l e group. The 
model p i l e group can give s i m i l a r response as the f i e l d t e s t 
only i f the sample i s at the same s t r e s s l e v e l as the f i e l d 
s o i l . In recent years innovative techniques to conduct small 
model t e s t s at f i e l d s t r e s s l e v e l have been introduced. 

One of the methods to increase the sample s t r e s s l e v e l i s 
the Ce n t r i f u g e model t e s t . In t h i s procedure the r e q u i r e d 
s t r e s s l e v e l i s obtained by r o t a t i n g the sample at a given 
c e n t r i p e t a l a c c e l e r a t i o n to achieve the f i e l d s t r e s s l e v e l i n 
the model. 

Another method used to increase the sample s t r e s s l e v e l i s 
the Hydraulic Gradient method. The technique was f i r s t 
developed by Zelikson(1969) to increase the s t r e s s l e v e l of 
samples before conducting Centrifuge model t e s t , but l a t e r was 
developed i n t o a separate t e s t i n g - method. The H y d r a u l i c 
Gradient S i m i l i t u d e method, as i t i s known, uses a p r i n c i p l e 
s i m i l a r to the Centrifuge Model t e s t , i . e . i t increases the 
s t r e s s l e v e l of the sample by i n c r e a s i n g the body forces on the 
s o i l p a r t i c l e s . The d i f f e r e n c e i s i n the method used to 
increase the body forces. Whereas the Centrifuge model t e s t 
uses a c e n t r i p e t a l a c c e l e r a t i o n to increase the body f o r c e s , the 
Hydr a u l i c Gradient S i m i l i t u d e Method (HGSM) uses h y d r a u l i c 
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gradient to increase the body forces. Using t h i s technique Yan 
and Byrne (1991a) developed a Hydraulic Gradient S i m i l i t u d e 
T e s t i n g Device (HGST). In t h i s t h e s i s , the HGS method i s used 
to study the i n t e r a c t i o n e f f e c t between the l a t e r a l l y loaded 
p i l e s i n a group of v e r t i c a l p i l e s . The HGS model t e s t s were 
conducted to study the response of a p i l e group of two p i l e s 
subjected to l a t e r a l loads. One of the p i l e s was instrumented 
to measure the bending moments along the p i l e l e n g t h . The load 
on the p i l e s and p i l e head d e f l e c t i o n s were measured for each 
p i l e d uring the t e s t . A computer software program was used to 
record and s t o r e the data. The measured r e s u l t s from the t e s t s 
are compared w i t h the p r e d i c t i o n s from analyses. 

1.2 S C O P E O F S T U D Y 

The major concerns for the l a t e r a l l y loaded p i l e are the 
bending moment, shear force and d e f l e c t i o n of the p i l e . In 
recent years, the patterns of the bending moment and shear fo r c e 
developed i n the s i n g l e p i l e and the d e f l e c t i o n s of the s i n g l e 
p i l e have been observed by various researchers. In t h i s t h e s i s 
a study of a p i l e group comprised of two p i l e s subjected to 
l a t e r a l loads i s conducted. The scope of the study of the t h e s i s 
i s as f o l l o w s 

Study the bending moment, shear force and d e f l e c t i o n 
p r o f i l e s of the s i n g l e p i l e subjected to l a t e r a l 
load. 
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Study the e f f e c t of the presence of an adjacent 
unloaded p i l e on the l a t e r a l response of a p i l e . 
Study the bending moment, shear force and d e f l e c t i o n 
p r o f i l e s of p i l e s i n a p i l e group comprised of two 
p i l e s subjected to l a t e r a l loading. 

1.3 ORGANIZATION OF THESIS 

The t h e s i s i s d i v i d e d i n to seven chapters as f o l l o w s 
CHAPTER 1 :- INTRODUCTION. In t h i s chapter, the t h e s i s 
o b j e c t i v e and the t e s t i n g p r i n c i p l e i s given. 
CHAPTER 2 :- LITERATURE REVIEW. In t h i s chapter a 
l i t e r a t u r e review of the s i n g l e p i l e subjected to 
l a t e r a l s t a t i c loads, and p i l e groups subjected to 
l a t e r a l and v e r t i c a l loads i s given. The current 
t h e o r e t i c a l methods and previous f i e l d and model t e s t s 
are c r i t i c a l l y reviewed for t h i s purpose. 
CHAPTER 3 :- HYDRAULIC GRADIENT SIMILITUDE PRINCIPLE. 
The h y d r a u l i c gradient s i m i l i t u d e (HGS) t e s t i n g 
p r i n c i p l e used i n t h i s t h e s i s i s explained i n t h i s 
chapter. 
CHAPTER 4 :- MODEL SOIL AND PILE PROPERTIES. 
P r o p e r t i e s of the s o i l and p i l e used i n the model are 
described i n t h i s chapter. These p r o p e r t i e s can be 
used to p r e d i c t the p i l e response based on the 
e x i s t i n g s o l u t i o n s , e.g. e l a s t i c s o l u t i o n by Poulos 
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(1971) . 
CHAPTER 5 : - HYDRAULIC GRADIENT SIMILITUDE TESTING 
DEVICE. The h y d r a u l i c gradient s i m i l i t u d e t e s t i n g 
device based on the HGS p r i n c i p l e explained i n the 
chapter 3 i s described i n d e t a i l i n t h i s chapter. 
CHAPTER 6 : - HYDRAULIC GRADIENT SIMILITUDE TESTING 
PROCEDURE. The h y d r a u l i c gradient s i m i l i t u d e t e s t i n g 
procedure for t e s t i n g l a t e r a l l y loaded p i l e s i s 
described i n d e t a i l i n t h i s chapter. 
CHAPTER 7 :- TEST RESULTS AND DISCUSSION. The r e s u l t s 
of the l a t e r a l load t e s t s on the s i n g l e p i l e and p i l e 
group are reported i n t h i s chapter. The r e s u l t s are 
discussed as to the e f f e c t of various parameters on 
the behaviour of the p i l e group and the d i f f e r e n c e s i n 
the behaviour of p i l e group and s i n g l e p i l e . 
CHAPTER 8 : - PREDICTION OF RESULTS USING LATPILE 
PROGRAM. The response of s i n g l e p i l e s and p i l e groups 
are p r e d i c t e d using the LATPILE program. The theory 
used for the p i l e group a n a l y s i s i s explained before 
the p r e s e n t a t i o n of the r e s u l t s . 

CHAPTER 9 :- SUMMARY AND CONCLUSIONS. In t h i s chapter, 
the t e s t r e s u l t s and conclusions are summarized. 
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C H A P T E R 2 : L I T E R A T U R E R E V I E W 

2.1 INTRODUCTION 

P i l e supported foundations are used for a l a r g e number of 
s t r u c t u r e s . Although they have been used for a long time, they 
are g e n e r a l l y analyzed and designed using e m p i r i c a l methods. 
With an increase i n the use of p i l e foundations, more and more 
researchers are aiming t h e i r research to f i n d a more r e l i a b l e 
and economical design method. 

Although there are some em p i r i c a l s o l u t i o n s a v a i l a b l e which 
can be used to p r e d i c t s t a t i c response of l a t e r a l l y loaded 
p i l e s , i t i s very d i f f i c u l t to p r e d i c t dynamic response of the 
p i l e foundations due to the complexity of the problem. 
Furthermore, p r e d i c t i o n of p i l e group response i s more d i f f i c u l t 
due to va r i o u s f a c t o r s involved, l i k e s o i l - p i l e i n t e r a c t i o n , 
p i l e - c a p - p i l e i n t e r a c t i o n . In t h i s chapter, the methods used to 
analyze l a t e r a l l y loaded s i n g l e p i l e are reviewed, f o l l o w e d by 
a review of methods used for the a n a l y s i s of p i l e group. The 
review i s l i m i t e d to the response of v e r t i c a l p i l e s subjected to 
l a t e r a l loads. 

2.2 REVIEW OF THE SINGLE PILE RESPONSE TO LATERAL LOADS 

2.2.1 THEORETICAL STUDIES 

When a s i n g l e p i l e i s loaded l a t e r a l l y , the load i s 
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r e s i s t e d by the s o i l surrounding the p i l e as w e l l as by the p i l e 
i t s e l f i n bending and shear. In the case of p i l e groups, load 
t r a n s f e r by p i l e - s o i l - p i l e i n t e r a c t i o n a l s o occurs. The main 
concerns for l a t e r a l l y loaded p i l e s are 

P i l e d e f l e c t i o n 
Maximum Bending moment 
Maximum Shear force 

These can be computed by e i t h e r a f i e l d t e s t , model t e s t or by 
using a v a i l a b l e s o l u t i o n s . The l a t e r a l response of the p i l e 
foundation can be computed using one of the f o l l o w i n g methods 
1. E l a s t i c boundary element approach 
2 . Winkler sp r i n g approach or modulus of subgrade r e a c t i o n 

approach 
3. F i n i t e element approach 

The e l a s t i c boundary element approach uses an e l a s t i c 
continuous s o i l model and e l a s t i c p i l e model, whereas the 
subgrade r e a c t i o n approach considers that the s o i l response can 
be simulated by compliance springs. These springs can be 
modelled as l i n e a r or nonlinear to simulate nonlinear response. 
In the f i n i t e element approach, the s o i l and p i l e are d i v i d e d 
i n t o small elements ( s o i l elements and beam elements) and the 
behaviour of these elements can be l i n e a r or n o n l i n e a r . The 
only disadvantage of the f i n i t e element approach i s that i t i s 
time consuming and c o s t l y . 
These methods are discussed i n d e t a i l i n the f o l l o w i n g 
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paragraphs. 
8 

2.2.1.1 The E l a s t i c Boundary Element Approach 

The s o l u t i o n based on e l a s t i c boundary element approach was 
developed by Poulos (1971) . The e l a s t i c boundary element 
approach i s based on l i n e a r e l a s t i c theory for the s o i l medium 
and uses M i n d l i n ' s s o l u t i o n s for the s o i l displacements due to 
a p o i n t load w i t h i n an e l a s t i c i s o t r o p i c homogeneous h a l f s p a c e . 
The p i l e i s simulated by using a v e r t i c a l column w i t h the 
equ i v a l e n t s t i f f n e s s , EI, of the p i l e . C o m p a t i b i l i t y of s o i l and 
p i l e displacements i s forced at d i s c r e t e p o i n t s along the p i l e 
l e n g t h . The main parameters used for t h i s a n a l y s i s are the 
e l a s t i c parameters for s o i l , the Young's modulus, the Poisson's 
r a t i o , and the s t i f f n e s s of the p i l e given by the term EI. The 
r e s u l t s are a v a i l a b l e i n the form of Design c h a r t s and have been 
widely used by researchers and p r a c t i s i n g engineers. 

The advantage of t h i s method i s that i t considers the s o i l 
as a continuum, which makes i t easy to analyze the p i l e group 
behaviour. But, at the same time, i t should be noted that the 
e l a s t i c continuum s o l u t i o n i s s t r i c t l y a p p l i c a b l e only to small 
s t r a i n l e v e l s . Various other f a c t o r s a f f e c t i n g the l i n e a r 
behaviour of the s o i l , such as s o i l y i e l d i n g , f i n i t e depth of 
s o i l l a y e r , non-homogeneity, etc can be taken i n t o account by 
i n t r o d u c i n g a c o r r e c t i o n f a c t o r to the e l a s t i c s o l u t i o n . 

Since, the p i l e - s o i l behaviour i s n o n - l i n e a r , i t i s 
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d i f f i c u l t to s e l e c t the appropriate Young's modulus and 
Poisson's r a t i o (Poulos 1980,1987; Poulos et a l 1992). 

2.2.1.2 The Modulus Of Subgrade Reaction Approach 

In t h i s approach, the p i l e i s t r e a t e d as a l i n e a r e l a s t i c beam-
column and the surrounding s o i l i s replaced by a bed of 
uncoupled Winkler springs. The model i s i l l u s t r a t e d i n f i g u r e 
2.1 and represents l o a d - d e f l e c t i o n p r o p e r t i e s of s o i l - p i l e 
system under l a t e r a l loadings. The governing equation for t h i s 
type of model i s based on the c l a s s i c a l H e t n e y i 1 s s o l u t i o n for 
a beam column on an e l a s t i c foundation. The r e s u l t i n g governing 
equation i s given as 

d V d2y 

d z 4 d z 2 eq. (2.1) 

Pz = a x i a l load on the p i l e 
y • = l a t e r a l d e f l e c t i o n of the p i l e at depth z along the p i l e 

l e n g t h 
z = depth below the ground surface of the p o i n t under 

c o n s i d e r a t i o n 
P = s o i l r e a c t i o n per u n i t length and 
EI = the f l e x u r a l r i g i d i t y of the p i l e 

In the above model, the Winkler's springs can be e i t h e r 
l i n e a r or no n l i n e a r . Their force d e f l e c t i o n response i s u s u a l l y 
termed as P-y curves and i s s p e c i f i e d at p o i n t s along the p i l e 
l e n g t h . This method provides a v e r s a t i l e a n a l y t i c a l t o o l to 
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i n c o r p o r a t e both the s o i l non-homogeneity and nonlinear 
response. However, t h i s approach does not take i n t o account the 
s o i l c o n t i n u i t y and hence can not be r e a d i l y a p p l i c a b l e to p i l e 
group a n a l y s i s . 

The s o i l r e a c t i o n , P, i n equation 2.1 i s r e l a t e d to the 
l a t e r a l d e f l e c t i o n , y, l i n e a r l y as f o l l o w s , 
P = Kh y eq. (2.2) 
Where Kh i s the h o r i z o n t a l subgrade r e a c t i o n modulus 
The c o e f f i c i e n t of h o r i z o n t a l subgrade r e a c t i o n , k h , used i n s o i l 
mechanics i s defined as 
p = k h y eq. (2.3) 
where p i s the s o i l pressure, 

k h i s r e l a t e d to the h o r i z o n t a l subgrade modulus as 
fo l l o w s 

k h = Kh / D eq. (2.4) 
where D i s the p i l e diameter. 

The c o e f f i c i e n t of h o r i z o n t a l subgrade r e a c t i o n given by 
Terzaghi(1955) v a r i e s l i n e a r l y w i t h depth. In p r a c t i c e , the 
v a r i a t i o n of k h w i t h depth can be non l i n e a r . Various c l o s e d form 
s o l u t i o n s for l i n e a r as w e l l as p a r a b o l i c d i s t r i b u t i o n s are 
a v a i l a b l e (Scott 1981; Poulos 1982; F r a n k l i n and Scott 1979;). 

Various f a c t o r s a f f e c t i n g the c o e f f i c i e n t of h o r i z o n t a l 
subgrade r e a c t i o n have been reported. These f a c t o r s a r i s e 
because the Winkler sp r i n g system i s uncoupled and ignores the 
s o i l c o n t i n u i t y and hence i s not a fundamental approach and 
needs c a l i b r a t i o n w i t h more fundamental a n a l y s i s and f i e l d 
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Ground Level 

P i l e or Winkler's Springs 

F i g . 2.1 Concept Of W i n k l e r ' s S p r i n g s 
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experience. However, i t has the advantage that both non-
homogeneous and nonlinear s o i l e f f e c t s can be simply 
incorporated. 

Various methods to determine the P-y curves have been 
proposed. The method proposed by Reese et a l ( l 9 7 4 ) i s e m p i r i c a l 
and has been adopted by the American Petroleum I n s t i t u t e (API) 
design code. This procedure was based on the back - a n a l y s i s of 
the f u l l s c a l e instrumented p i l e load t e s t s on Mustang I s l a n d , 
Texas (Cox et a l 1974) . The P-y curves are constructed at 
d e s i r e d depths w i t h the i n i t i a l slope of curves d e f i n e d as 
Khi = n h i . z eq. (2.5) 
where z i s the depth of P-y curve, 

Khi i s the subgrade r e a c t i o n modulus, and 
n h i i s the c o e f f i c i e n t of subgrade r e a c t i o n modulus. 
Reese (1974) suggested that the values of n h i to be used 

should be 2.5 to 4 times larger than those suggested by 
Terzaghi(1955). I t should be taken i n t o c o n s i d e r a t i o n that the 
Terzaghi values are at the working load values while the Reese 
et a l values are the i n i t i a l values. Jamolkowski and Garassino 
(1977) suggested the f o l l o w i n g expression for the c o e f f i c i e n t of 
subgrade r e a c t i o n modulus 

n h i = 19 7W . ( Dr ) ]" 1 9 eq. (2.6) 

where yw i s the u n i t weight of water, 

Dr i s the r e l a t i v e density of submerged s o i l s . 
Murchison and 0 ' N e i l l (19 8 3) gave the n h i values for the dry 
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sands i n terms of r e l a t i v e density and f r i c t i o n angle (Figure 
2.2). Yan and Byrne(1991a) have shown that the i n i t i a l slope of 
the P-y curves can be represented by the maximum Young's modulus 
of the s o i l , E m a x, obtained from downhole or crosshole seismic 
t e s t s . 

The u l t i m a t e s o i l r e s i s t a n c e , Pu, i n the Reese et a l P-y 
curve was determined from the l e s s e r of the f o l l o w i n g , 
Pu = yz [ D (Kp - Ka ) + z Kp tan 0 tan S ] eq. (2.7) 
Pu = Y D z [ K

P
3 + 2 K o K

P
2 tan <|> + tan <$> - Ka. ] eq. (2.8) 

where P u i s the u l t i m a t e s o i l r e s i s t a n c e force per u n i t depth, 
z i s the depth, 
Y i s the e f f e c t i v e u n i t weight of s o i l (submerged or 

t o t a l ) , 
Ka, Kp are the Rankine a c t i v e and passive c o e f f i c i e n t s 

r e s p e c t i v e l y , 
K0 i s the at r e s t earth pressure c o e f f i c i e n t , 
0 i s the angle of i n t e r n a l f r i c t i o n , and 
6 = 45° + 4>/2 . eq. (2.9) 

A number of s t u d i e s i n d i c a t e that Pu for cohesionless s o i l i s not 
w e l l d e f i n e d (Kubo, 1966; Yoshida and Yoshinaka 1972; Scott 
1981; Ting et a l 1987). Despite these f i n d i n g s , the concept of 
Pu i s s t i l l used to define the P-y curves. Bogard and Matlock 
(1980) proposed the f o l l o w i n g equations for the u l t i m a t e s o i l 
pressures i n sand 
Pu = ( C, z + C2 D ) Y z eq. (2 . 10) 
Pu = C3 D Y z eq. (2 .11) 
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The parameters C 1 ( C2, C3 are given i n Figure 2.3. 
Murchison and O'Neill(1984) gave the f o l l o w i n g equation for 
determining the s o i l r e s i s t a n c e P at any d e f l e c t i o n value, y, 

P = T ] A P u t a n r [ ( - ^ - ) y] 
Ar\ P eq. (2.12) 

i n which Pu i s taken as lesser value of eqn.s 2.10 and 2.11. 
The e m p i r i c a l f a c t o r A i s given as 
A =0.9 for c y c l i c loading and eq. (2.13) 

= 3 - 0 . 8 z/D > 0.9 for s t a t i c loading eq. (2.14) 
The 1987 API code has adopted t h i s equation to describe the P-y 
curves and n i s a fact o r used to describe p i l e shape e f f e c t . 
During t h e i r t e s t i n g , Yan and Byrne (1990) found that the p i l e 
head response and bending moment are s i g n i f i c a n t l y a f f e c t e d by 
the r e l a t i v e s o i l - p i l e s t i f f n e s s , p i l e diameter, p i l e head 
e c c e n t r i c i t y and p i l e head f i x i t y . I t was a l s o found that the 
P-y curves are not a f f e c t e d by the p i l e diameter, p i l e head 
e c c e n t r i c i t y and p i l e head f i x i t y but s i g n i f i c a n t l y a f f e c t e d by 
the r e l a t i v e s o i l - p i l e s t i f f n e s s due to the s o i l s t r e s s l e v e l s . 
I t was found that for the monotonic loading the s t r e s s l e v e l 
dependency of the P-y curves can be reasonably normalized by the 
Young's moduli of the s o i l s and the p i l e diameter for P-y curves 
at depths below l p i l e diameter, using the hy p e r b o l i c s t r e s s -
s t r a i n r e l a t i o n s h i p for s o i l s . 
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2.2.1.3 FINITE ELEMENT APPROACH 

Various s t u d i e s have been conducted on the behaviour of the 
p i l e s using the f i n i t e element methods. Due to i t s v e r s a t i l i t y 
t h i s method i s most s u i t a b l e for studying e f f e c t s of v a r i o u s 
parameters such as s o i l n o n l i n e a r i t y , s o i l nonhomogeneity, e t c . 
on the p i l e response. Nair et al(1969) conducted a d e t a i l study 
of s i n g l e p i l e s and p i l e groups using f i n i t e element methods. 
B u t t e r f i e l d and Banerjee(1971) used f i n i t e element method to 
study the e f f e c t s of various m a t e r i a l s on the p i l e foundation, 
i . e . concrete, s t e e l and wood. The s o i l - p i l e s e p a r a t i o n i s 
s t r e s s dependent and a f f e c t s the p i l e c a p a c i t y s i g n i f i c a n t l y . 
To model t h i s s t r e s s dependency a d e t a i l e d three dimensional 
f i n i t e element program i s required. 

2.2.2 FIELD TESTING 

In the f i e l d t e s t i n g of s i n g l e p i l e s , a h y d r a u l i c actuator 
and a r e a c t i o n p i l e are used to apply a h o r i z o n t a l force on the 
p i l e . The loading connection can be made as requi r e d . Generally 
a f r e e head connection i s made. In t h i s type of connection the 
p i l e head i s allowed to ro t a t e with the a p p l i c a t i o n of load. The 
p i l e i s instrumented to measure and record the a p p l i e d loads and 
displacements. The bending moment along the p i l e l ength can a l s o 
be computed by a t t a c h i n g s t r a i n gauges at var i o u s depths. Also 
the r o t a t i o n of the p i l e at the p i l e head or ground l e v e l can be 
c a l c u l a t e d or observed. Reese and Cox (1986) have proposed a 
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method to develop the P-y curves along the l e n g t h of the p i l e 
u s ing the p i l e head d e f l e c t i o n s and r o t a t i o n s , along w i t h the 
corresponding loads. 

In p r a c t i c e , f i e l d t e s t s are very c o s t l y . A l a r g e number of 
the case h i s t o r i e s reported have been performed on the p i l e s 
w i t h p i l e response measured only at the p i l e head. Very few 
t e s t s are performed on f u l l y instrumented p i l e s . R e s u l t s of the 
few f u l l y instrumented f u l l s c ale p i l e t e s t s are used along w i t h 
the other t e s t s to evaluate the p i l e - s o i l i n t e r a c t i o n behaviour 
along the p i l e length. 

F u l l y instrumented t e s t p i l e s were used by A l i z a d e h and 
Davisson (197 0) i n the Arkansas River P r o j e c t . In t h i s p r o j e c t , 
the p i l e s were s t e e l H shaped p i l e s i n medium den-se sand 
subjected to l a t e r a l s t a t i c and c y c l i c loads. The loads were 
a p p l i e d h o r i z o n t a l l y at the ground l e v e l . In the a n a l y s i s of the 
c y c l i c behaviour of the p i l e s , the unloading behaviour of the 
p i l e s i s very important. The r e s i d u a l moments l e f t i n the p i l e s 
are a l s o very important. Unfortunately these were not reported. 
The l o a d - d e f l e c t i o n behaviour of the p i l e head and the bending 
moments along the p i l e s at various load l e v e l s were reported. 
Using the Matlock and Reese (1960) method, where the observed 
p i l e head response i s modelled e l a s t i c a l l y , i t was found that 
the p i l e model parameter, n h, depends on the displacement or the 
load l e v e l . The p i l e head d e f l e c t i o n was found to s i g n i f i c a n t l y 
i n c r e a s e w i t h number of c y c l e s under one-way c y c l i c l o a d i n g . 
However, s o i l - p i l e i n t e r a c t i o n i n terms of P-y curves was not 



C H A P T E R 2 18 

evaluated i n these s t u d i e s . 
The major breakthrough i n the a n a l y s i s of s i n g l e p i l e s 

subjected to l a t e r a l loads came i n 1974, when Cox et a l (1974) 
reported t e s t r e s u l t s of the s i n g l e f u l l y instrumented p i l e 
embedded i n sand subjected to l a t e r a l monotonic and c y c l i c 
loads. In these t e s t s , the p i l e head response was measured along 
w i t h the bending moments along the length of the p i l e . This 
a s s i s t e d i n determining the p i l e - s o i l i n t e r a c t i o n not only at 
the ground l e v e l but along the length of the p i l e as w e l l . Based 
on these r e s u l t s Reese et a l (1974)proposed P-y c o n s t r u c t i o n 
method for the v e r t i c a l p i l e s i n cohesionless m a t e r i a l s 
subjected to l a t e r a l loads. 

Brown et a l ( l 9 8 7 ) of the U n i v e r s i t y of Houston conducted 
displacement c o n t r o l l e d two-way c y c l i c loading on s i n g l e p i l e s . 
The p i l e s were embedded i n sand o v e r l y i n g s t i f f c l a y deposits up 
to about 10 p i l e diameters deep. I t was found that response of 
the p i l e s i n sand was not a f f e c t e d s i g n i f i c a n t l y by the number 
of two-way loading c y c l e s . I t was also found that the Reese et 
a l (1974) P-y curve procedure underestimates the f i e l d 
measurements. 

Most of the f i e l d studies were not comprehensive and hence 
do not a l l o w for a fundamental study. I t i s d e s i r a b l e to perform 
f u l l y instrumented f u l l scale l a t e r a l p i l e load t e s t s . However, 
such p i l e t e s t s are expensive and time consuming. 
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2 . 2 . 3 M O D E L S T U D I E S 

19 

Model t e s t s are ofte n used due to the low cost i n v o l v e d and 
the convenience. Previous to the development of the Ce n t r i f u g e 
model t e s t i n g , a l l the model t e s t s were performed i n l g gravity-
c o n d i t i o n and the p i l e responses were e x t r a p o l a t e d to f i e l d 
c o n d i t i o n . But due to the d i f f e r e n t s t r e s s c o n d i t i o n s , the model 
t e s t s had severe l i m i t a t i o n s over the f u l l s c a l e f i e l d t e s t i n g . 

With the development of the Centrifuge t e s t i n g method, the 
number of model t e s t s conducted at the f i e l d s t r e s s l e v e l s i s 
i n c r e a s i n g , but i s s t i l l very small due to the l a r g e costs 
i n v o l v e d . 

Kubo(1963) conducted l g model p i l e t e s t s i n sand. The p i l e 
s e c t i o n was e i t h e r rectangular or c i r c u l a r and the p i l e head 
c o n d i t i o n s used were e i t h e r f i x e d or free head r e s t r a i n t . Based 
on the r e s u l t s of these experiments an equation for the s o i l 
pressure along the p i l e length was proposed as f o l l o w s : 
p = k . z . y°6 eq. (2.15) 
where k i s the f i t t i n g parameter, 

z i s the depth along the p i l e , 
y i s the p i l e d e f l e c t i o n . 
Based on the a n a l y s i s of some l a t e r a l load t e s t s on sandy 

and clayey s o i l s using the subgrade r e a c t i o n method, Yoshida and 
Yoshinaka (1972) i n d i c a t e d that for a c i r c u l a r p l a t e the 
h o r i z o n t a l s o i l r e a c t i o n modulus i s a f u n c t i o n of the diameter 
of the p l a t e . These r e s u l t s c o n t r a d i c t the r e s u l t s reported by 
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Terzaghi (1955), Reese et a l (1974). 
Poulos reported some model t e s t s at l g c o n d i t i o n f o r 

studying the s i n g l e p i l e and p i l e group responses i n c l a y 
(Mattes and Poulos,1971) and sand (Selby and Poulos, 1983) . Using 
these t e s t r e s u l t s Poulos c a l i b r a t e d the e l a s t i c boundary 
element s o l u t i o n f o r use i n p r a c t i c e . Scott (1976) performed a 
s e r i e s of model p i l e t e s t s i n the c e n t r i f u g e . The t e s t i n g 
program was designed to simulate the f u l l s c ale f i e l d t e s t i n g at 
the Mustang Is l a n d performed by Cox et a l (1974). The f u l l s c a l e 
t e s t i n g c o n d i t i o n was simulated i n 100 g with both dry and 
saturated s o i l c o n d i t i o n s . The model t e s t r e s u l t s from these 
t e s t s underestimated the f i e l d p i l e head response. This shows 
the d i f f i c u l t i e s i n the model t e s t i n g even at the f i e l d s t r e s s 
l e v e l s . 

Barton(1982) conducted a more comprehensive study of p i l e s 
subjected to s t a t i c and c y c l i c l a t e r a l loads i n the c e n t r i f u g e 
t e s t i n g machine. The comparison between the experimental P-y 
curves and those proposed by Reese et a l (1974) showed that 
Reese et a l curves underestimate the s o i l r e s i s t a n c e near the 
ground surface and overestimate i t at greater depth. 

Zelikson(1978) f i r s t employed the h y d r a u l i c gradient 
s i m i l i t u d e method to study model p i l e s under i n c l i n e d loads. 
Yan (1991) conducted a thorough study of model p i l e s subjected to 
s t a t i c and c y c l i c l a t e r a l loads using the same p r i n c i p l e . In h i s 
study, the model p i l e c o n s i s t e d of s t e e l pipe p i l e s e i t h e r f i x e d 
or pinned at the top. The experimental P-y curves were compared 
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w i t h the t h e o r e t i c a l P-y curves obtained by using API method. He 
found that the same set of P-y curves can be used r e g a r d l e s s of 
p i l e head e c c e n t r i c i t y and f i x i t y . Based on t e s t r e s u l t s , he 
found that the API method tends to overpr e d i c t the bending 
moment and shear force at la r g e loads and underestimates 
displacement at smaller loads. A lso on the b a s i s of the f i n i t e 
element s t u d i e s , he found out that the h y p e r b o l i c s o i l 
parameters give o v e r a l l better p r e d i c t i o n i n a l l aspects of p i l e 
response for plane s t r a i n a n a l y s i s . 

2 . 3 R E V I E W O F T H E P I L E GROUP R E S P O N S E T O T H E L A T E R A L L O A D S 

Although there i s a good understanding of the s i n g l e p i l e 
response to l a t e r a l loads, the response of the p i l e group and 
the l o ad t r a n s f e r and the p i l e - s o i l - p i l e i n t e r a c t i o n i s s t i l l 
not completely understood. Very few f i e l d p i l e group t e s t s are 
conducted due to la r g e costs i n v o l v e d . Because i t i s very 
d i f f i c u l t to o b t a i n the same s o i l s t r e s s i n the l a b o r a t o r y as i n 
the f i e l d the number of model t e s t s conducted are a l s o very few. 
The t h e o r i e s that have been proposed are based on a small 
database and cannot be v a l i d a t e d c o r r e c t l y due to l a c k of a 
l a r g e database. In the past few decades some research has been 
d i r e c t e d towards t h i s problem and as r e s u l t there i s some 
understanding of the p i l e group response to l a t e r a l loads. The 
f o l l o w i n g paragraphs present a d e t a i l e d review of the t e s t i n g 
and the t h e o r e t i c a l s o l u t i o n s developed during past few years. 
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2 . 3 . 1 F I E L D T E S T I N G 

A l l the l a t e r a l p i l e load t e s t s were conducted by a p p l y i n g 
the load using a r e a c t i o n p i l e at some distance away. The loads 
on the p i l e s i n the p i l e group and the displacement of the p i l e s 
at the top i n the p i l e group were measured. The bending moment 
was obtained at s p e c i f i e d p o i n t s along the p i l e l e n g t h and 
i n t e g r a t e d n u m e r i c a l l y to obta i n the bending moment p r o f i l e . 
This bending moment i s then i n t e g r a t e d to get slopes and 
d e f l e c t i o n s , and d i f f e r e n t i a t e d to get force and s o i l pressures 
on the p i l e . As the i n s t a l l a t i o n of the s t r a i n gages and 
measuring the s t r a i n s produced i s c o s t l y , many researchers s t i l l 
measure only the p i l e head load and d e f l e c t i o n s . 

Schmidt (1981,1985) conducted an extensive f i e l d t e s t i n g 
program on a group of v e r t i c a l p i l e s . He subjected the p i l e 
group to one c y c l e of loading. C y c l i c l o a d i n g was f o l l o w e d by 
lo a d i n g one p i l e i n the p i l e group and measuring the 
displacements of the adjacent p i l e . The r e s u l t s of the 
experiment showed that the induced displacements have no 
r e l a t i o n s h i p w i t h the e f f i c i e n c y of the p i l e group. The 
e f f i c i e n c y of the p i l e group i s defined as, the r a t i o of the 
t o t a l l o ad taken by the p i l e group d i v i d e d by the product of the 
load taken by s i n g l e p i l e for same displacement and the number 
of p i l e s i n the group. I t should be noted here t h a t , during h i s 
t e s t i n g he f i r s t subjected the p i l e to one c y c l e of l o a d i n g and 
then used the same set up to study the e f f e c t of the induced 
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then used the same set up to study the e f f e c t of the induced 
displacement on the p i l e group e f f i c i e n c y . A l so, during the 
experiments he noticed that the depth of the maximum bending 
moment i n the rear p i l e s i n p i l e groups i s more than that i n the 
s i n g l e p i l e . S i m i l a r r e s u l t s were obtained from the t e s t s 
conducted by Sharnouby and Novak ( 1 9 8 5 ) . In t h e i r t e s t i n g they 
used a p i l e group of s i x p i l e s subjected to l a t e r a l load. A p i l e 
group of eight p i l e s was t e s t e d by Holloway(1981). 

Reese et al(1987) conducted l a t e r a l load t e s t s on p i l e 
group. Based on the r e s u l t s of these t e s t s , they suggested that 
the e f f e c t of p i l e group can best be achieved by not i n c r e a s i n g 
y i n the t y p i c a l P-y curves f o r the p i l e - s o i l system but by 
reducing P. Ochoa and O'neil (1989) conducted f u l l scale l a t e r a l 
l o a d p i l e group t e s t i n g i n submerged sand from medium to high 
r e l a t i v e density. Their r e s u l t s show that the i n t e r a c t i o n 
between the p i l e s i n the l a t e r a l l y loaded p i l e group i s very 
much dependent on the p i l e p o s i t i o n s and the load a p p l i e d . This 
suggests i t i s unwise to assume the r e c i p r o c i t y of the 
i n t e r a c t i o n f a c t o r s . 

2.3.2 MODEL TESTING 

Although the f i e l d t e s t i n g i s very c o s t l y , not many 
researchers have conducted model s t u d i e s of groups of p i l e s . One 
of the reason f o r t h i s i s that u n t i l r e c e n t l y model studi e s 
i n v o l v e d only reducing the s i z e of the prototype and t e s t i n g i t 
under low s t r e s s c o n d i t i o n s . Since the behaviour of the s o i l i s 
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s t r e s s dependent the response of the small s o i l sample at low 
s t r e s s l e v e l i s very d i f f e r e n t than the f i e l d response. A second 
reason was that, due to boundary e f f e c t s , there was a l i m i t to 
the s i z e of the model that could reasonably represent the f i e l d 
prototype. 

In 7 0's and 8 0's, w i t h the development of the c e n t r i f u g e 
modelling technique, model t e s t i n g was given an a l t o g e t h e r 
d i f f e r e n t p e r s p e c t i v e . Using t h i s technique, i t became p o s s i b l e 
to conduct t e s t s on small models at s t r e s s l e v e l s e q u i v a l e n t to 
that i n the f i e l d . But the c e n t r i f u g e model t e s t i n g i s very 
c o s t l y . A l s o i t requires h i g h l y s k i l l e d t e c h n i c a l s t a f f to 
maintain and operate the machine. Therefore, many researchers 
s t i l l p r e f e r to conduct the t e s t s i n normal s t r e s s c o n d i t i o n s . 

Meyerhof et a l (1988) reported group t e s t s on model p i l e s 
of v a r i o u s m a t e r i a l s . Davisson and S a l l y (1970) rep o r t the model 
t e s t i n g of a l a r g e group of p i l e s for the Arkansas River 
N a v i g a t i o n P r o j e c t . These t e s t s were conducted under a s t r e s s 
c o n d i t i o n of l g . Aurora (1983) reports c e n t r i f u g e t e s t i n g used 
for the a n a l y s i s of behaviour of group of p i l e s of l a r g e 
diameter. The t e s t s conducted by K u l k a r n i et a l (1985) i n c l u d e d 
groups of p i l e s having two or three p i l e s , and the t e s t s were 
conducted i n the c e n t r i f u g e machine. The p i l e s were f i x e d at the 
top and connected with a p i l e cap. During t h e i r t e s t s they 
n o t i c e d that the n o n - l i n e a r i t y of the s o i l and the p l a s t i c flow 
of the s o i l around the p i l e are very important i n the l a t e r a l l y 
loaded p i l e group a n a l y s i s . Also i t was seen that the f r o n t 
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p i l e s share a much larger load and f l e x u r a l s t r e s s e s . 
The t e s t s conducted by Shibata et a l (1989)on l a t e r a l l y 

loaded p i l e group were under normal s t r e s s c o n d i t i o n s . The 
e f f i c i e n c y of the p i l e group from experiment was compared w i t h 
the t h e o r e t i c a l e f f i c i e n c y . The s o l u t i o n given by Randolph(1981) 
was used for t h i s purpose. A discrepancy of 30% was observed i n 
the r e s u l t s . 

2.3.3 ANALYTICAL STUDY 

A n a l y t i c a l methods for p i l e groups i n c l u d e the t h e o r e t i c a l 
s o l u t i o n s and the s o l u t i o n s based on numerical methods. 
T h e o r e t i c a l s o l u t i o n s of a s i n g l e l a t e r a l l y loaded p i l e have 
been explained i n previous paragraphs. The e l a s t i c approach can 
be r e a d i l y extended to analyze the p i l e groups, while i t i s 
d i f f i c u l t to analyze p i l e groups by the P-y curve approach. In 
case of s i n g l e p i l e s the P-y curve approach i s the most widely 
used method of a n a l y s i s . The current p r a c t i c e for an a l y s i n g the 
p i l e groups i s to use softened P-y curves for the group 
a n a l y s i s . The modulus of subgrade r e a c t i o n approach for s i n g l e 
p i l e s was described above. 

Broms (1964) f i r s t proposed a theory to analyze the group 
of p i l e s loaded l a t e r a l l y . The main concept of h i s theory was 
that the p i l e s can be treated as beams and long p i l e s develop 
p l a s t i c hinges at a c e r t a i n depth below the ground l e v e l . I f 
t h i s depth can be determined and the p i l e response compared wi t h 
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that of the beam, then the beam can be used to p r e d i c t the p i l e 

response. 
Randolph (1981) developed an expression to c a l c u l a t e the 

i n t e r a c t i o n f a c t o r s based on the f i n i t e element a n a l y s i s of p i l e 
groups. He solved the d i f f e r e n t i a l equations using the Four i e r 
technique i n s t e a d of the boundary element method used by 
Poulos (1971) . The expression for a f i x e d head p i l e given by 
Randolph i s as f o l l o w s , 

E 1/7 r, 
- a = 0 J 6 P c ( ^ ) — (1 + c o l l i ; ) 

p F c Gc S eq. (2.16) 
i 

Where a p F i s the i n t e r a c t i o n c o e f f i c i e n t for a p i l e group w i t h 
f i x e d head, 

S i s the p i l e spacing, 
r 0 i s the p i l e r a d i u s , 
\|r i s the angle between p i l e centres and the d i r e c t i o n of 

the load, 
p c f a c t o r to take i n t o account the v a r i a t i o n of s o i l 

s t i f f n e s s w i t h depth, 
0.5 for s t i f f n e s s p r o p o r t i o n a l to the depth, 
1.0 for homogeneous s o i l s , 

Gc the average value of G* over the a c t i v e l e n g t h of the 
p i l e , 

G* = G ( l + 3 u / 4 ) , eq. (2 .17) 

u Poison's r a t i o , 
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G shear modulus of the s o i l , 
I f a p F > 0.5 then a p F = 1 - ( 4 a p P ) 

27 

eq. (2.18) 

S i m i l a r l y for f r e e headed p i l e s the i n t e r a c t i o n f a c t o r i s given 

by 

p G S eq. (2.19) 
c 

I f a p h > 0.5, then a p h = 1 - ( 4 a p h ) 1 eq. (2.20) 
Focht and Koch (1973) proposed a theory, c a l l e d y-modifier 

approach, which i s most widely used i n p r a c t i c e . They suggested 
use of e l a s t i c i n t e r a c t i o n f a c t o r s given by Poulos(1971) for 
i n t e r a c t i o n of p i l e s and use of P-y curve method for o b t a i n i n g 
d e f l e c t i o n of s i n g l e p i l e . According to t h e i r method the 
d e f l e c t i o n of a p i l e group, pk, i s given by 

m 

Where P Unit d e f l e c t i o n at the mudline, 
p.j Displacement of j t h p i l e , 

I n t e r a c t i o n e f f e c t of p i l e k on p i l e j , 
y t D e f l e c t i o n of the s i n g l e p i l e . 

The l i m i t a t i o n s of the theory come from the d i f f e r e n c e s i n 
the assumptions made i n the subgrade modulus theory and the 
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e l a s t i c theory by Poulos. The subgrade modulus theory i s based 
on the assumption that the s o i l response can be modelled by w e l l 
d e f i n e d springs which are not connected to each other whereas 
the e l a s t i c model assumes the s o i l to be an e l a s t i c continuum. 
The y m o d i f i e r approach suggested above softens the P-y curve 
not only at mudline but at a l l depths. Hence the r e s u l t i n g 
moment and d e f l e c t i o n curve overestimate the moments and 
d e f l e c t i o n s . 

The above equation can be r e w r i t t e n as 

Where p k i s the d e f l e c t i o n of the k p i l e , 
pP Unit reference displacement of a s i n g l e p i l e under a 

u n i t h o r i z o n t a l load, from e l a s t i c theory, 
Hj L a t e r a l load on p i l e j , 

a j p k j C o e f f i c i e n t to get i n f l u e n c e of p i l e j on p i l e k, 
R R e l a t i v e s t i f f n e s s f a c t o r , where R i s the r a t i o of 

mudline d e f l e c t i o n of a s i n g l e p i l e from P-y method to 
the mudline d e f l e c t i o n from Poulos 1s method, 

Hk L a t e r a l load on p i l e k, 
m number of p i l e s 

Reese et a l (1984) compared the r e s u l t s from t h i s method 
wit h the r e s u l t s from the f i e l d t e s t s . They a l s o compared the 
r e s u l t s by analysing the p i l e group as a l a r g e diameter 
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imaginary p i l e . They found that the y modifier approach by Focht 
and Koch(l973) i s very s e n s i t i v e to the R value used. 

Sharnouby and Novak (1986) proposed a new method based on 
M i n d l i n ' s displacement f i e l d i n the e l a s t i c h a l f space. The main 
concept i s to view the whole p i l e group w i t h the s o i l as one 
compressible continuum whose c o n d i t i o n s of e q u i l i b r i u m are 
s p e c i f i e d at a number of d i s c r e t e p o i n t s . The s t i f f n e s s of t h i s 
composite continuum i s obtained by combining the p i l e s t i f f n e s s 
w i t h the s o i l s t i f f n e s s . The p i l e s are assumed v e r t i c a l and of 
constant c i r c u l a r cross s e c t i o n . The s t i f f n e s s of s o i l i s 
d e r i v e d using M i n d l i n ' s s o l u t i o n for displacement f i e l d 
generated i n the i n t e r i o r of the e l a s t i c h a l f space by a 
h o r i z o n t a l p o i n t load. The displacements i n the v e r t i c a l 
d i r e c t i o n and the d i r e c t i o n perpendicular to the d i r e c t i o n of 
l o a d i n g are considered to be zero. To get the s t i f f n e s s of the 
continuum, the s t i f f n e s s of the p i l e and s o i l are added 
together. This theory i s b a s i c a l l y a l i n e a r theory, but the non-
l i n e a r i t y i s approximated by a d j u s t i n g the s o i l s t i f f n e s s and 
m a t e r i a l damping to the l e v e l of s t r a i n s expected and by 
i n c o r p o r a t i n g a weakened zone around the p i l e . 

Brown et a l (1988) proposed a concept of P m u l t i p l i e r based 
on the a n a l y s i s of f i e l d experiments. This approach amounts to 
reducing the s o i l pressure for the given displacement rather 
than i n c r e a s i n g the displacements for given s o i l pressures. I t 
i s argued that the e f f e c t of the overlapping shear zones i n 
reducing the s o i l r e s i s t a n c e i s more dominant than the 
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s u p e r p o s i t i o n of s t r a i n s . Thus i f P-y curves for s i n g l e p i l e are 
a v a i l a b l e along w i t h the P - m u l t i p l i e r f a c t o r ( f j then one can 
e a s i l y o b t a i n the P-y curves for the p i l e s i n the p i l e group. 

2 . 3 . 3 . 1 F I N I T E E L E M E N T A N A L Y S I S 

One of the main advantages of the f i n i t e element a n a l y s i s 
i s that i t i s very easy to incorporate a s o i l model that i s more 
appro p r i a t e , i . e . e l a s t i c , incremental e l a s t i c , e l a s t o - p l a s t i c , 
e t c . Other advantage i s that i t i s easier to study the e f f e c t s 
of v a r i o u s f a c t o r s on the p i l e group response. A l s o the 
v a r i a t i o n s and r e s t r i c t i o n s of three and two dimensional 
analyses can be compared. The main drawback of the f i n i t e 
element a n a l y s i s i s that the s o l u t i o n i s vary c o s t l y compared to 
the s o l u t i o n s i n the form of charts and f i g u r e s . 

A number of researchers have c a r r i e d out f i n i t e element 
a n a l y s i s of p i l e groups subjected to l a t e r a l loads. Nair et a l 
(1969) conducted a three dimensional a n a l y s i s to study the p i l e 
group response. They used the concept of equivalent c a n t i l e v e r 
which was a m o d i f i c a t i o n of the model proposed by Broms (1964) . 
In t h i s method each p i l e i s replaced w i t h an e q u i v a l e n t 
c a n t i l e v e r which has 
1. s t r u c t u r a l s e c t i o n i d e n t i c a l to the o r i g i n a l p i l e 
2. equivalent a x i a l length (Lc) for r e s i s t i n g d i r e c t loads 
3. e q u i v a l e n t bending length (Lb) or r e s i s t i n g l a t e r a l loads 
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and moments. 
The b a s i s for determining L c and L b i s that the behaviour of 

the c a n t i l e v e r and the a c t u a l p i l e be equivalent under d i r e c t 
loads . 

The h y p e r b o l i c model developed by Duncan and Chang (197 0) 

was used by Tamura et a l (19 82) and l a t e r by Muqtadir et a l 
(1985) i n t h e i r f i n i t e element a n a l y s i s . In t h e i r a n a l y s i s 
Muqtadir et a l developed a s p e c i a l element c a l l e d t h i n l a y e r 
element to model i n t e r a c t i o n behaviour between the s o i l and the 
p i l e . 

In t h e i r a n a l y s i s , Kay et al(1983) compared the f i n i t e 
element response wi t h the P-y curve approach for s i n g l e p i l e s , 
w h i l e the group e f f e c t was accomplished by a p p l y i n g the f r e e 
f i e l d displacements to the p i l e , i n s t e a d of c a l c u l a t i n g the 
i n t e r a c t i o n f a c t o r s by e l a s t i c method. This approach has 
p r e v i o u s l y been used for p i l e s near slopes and i n o f f s h o r e p i l e s 
i n mud s l i d e areas. The main advantage of the method i s that, 
both the s i n g l e as w e l l as group p i l e behaviour can be obtained 
from one f i n i t e element program. Also, the error that occurs i n 
the Focht-Koch method due to the non c o m p a t i b i l i t y of the two 
methods, P-y curve approach and e l a s t i c continuum approach, used 
i s e l i m i n a t e d . 

Chow et al(1987) used a new approach by which they d i v i d e d 
the p i l e s o i l system i n t o two systems. One system c o n s i s t e d of 
the group p i l e s acted upon by an e x t e r n a l a p p l i e d loads and 
p i l e - s o i l i n t e r a c t i o n forces and second system c o n s i s t e d of a 
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l a y e r e d s o i l continuum acted upon by a system of p i l e - s o i l 
i n t e r a c t i o n forces at the imaginary p o s i t i o n s of the p i l e s . 

N a j j a r and Zaman(1988) incorporated a p l a s t i c i t y model 
developed by Desai and co-workers to model the s o i l non-
l i n e a r i t y i n t h e i r study while p i l e s and p i l e cap were assumed 
l i n e a r e l a s t i c . Trochanis et al(1991) used the method proposed 
by Kay et al(1983) and conducted a three dimensional a n a l y s i s . 
During t h e i r study they changed various v a r i a b l e s l i k e load 
e c c e n t r i c i t y , p i l e spacings,etc. Based on these s t u d i e s they 
developed a simple one dimensional f i n i t e element program and 
c a l i b r a t e d i t with the r e s u l t s of the three dimensional 
a n a l y s i s . In t h i s program the p i l e s were connected w i t h each 
other to take i n t o c o n s i d e r a t i o n the p i l e i n t e r a c t i o n e f f e c t and 
at the same time the s t i f f n e s s of the springs between p i l e s and 
between p i l e and s o i l was adjusted so as to o b t a i n the non-
l i n e a r i t y of system. The schematic r e p r e s e n t a t i o n of the model 
i s shown i n Figure 2.4. 

2.4 SUMMARY 

From the above review i t appears that the n o n - l i n e a r i t y of 
the s o i l , s o i l - p i l e system, and the non-homogeneity of the 
system i s c r i t i c a l i n the a n a l y s i s of the l a t e r a l l y loaded p i l e 
groups. 

At present there i s no c o s t - e f f e c t i v e sound t h e o r e t i c a l 
s o l u t i o n which can be used for analysing p i l e group behaviour 
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under l a t e r a l load. Although some of the s o l u t i o n s discussed 
above are c u r r e n t l y used i n p r a c t i c e they are mostly based on 
experience. At the same time these methods do not take i n t o 
account a l l the f a c t o r s that s i g n i f i c a n t l y i n f l u e n c e the p i l e 
group response. The a n a l y t i c a l method can be developed and 
evaluated by comparing i t wi t h the experimental r e s u l t s . 

The most r e l i a b l e data can be obtained by conducting f i e l d 
t e s t s . Due to the high costs i n v o l v e d very few f i e l d t e s t s are 
done. The c e n t r i f u g e t e s t i n g machine or the h y d r a u l i c gradient 
s i m i l i t u d e t e s t can be e f f e c t i v e l y used to o b t a i n model t e s t 
r e s u l t s that are s i m i l a r to the f i e l d response. The h y d r a u l i c 
gradient s i m i l i t u d e t e s t as used for t h i s t h e s i s i s a cost 
e f f e c t i v e method of conducting a model s c a l e t e s t to represent 
the f i e l d prototype. 
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C H A P T E R 3 : H Y D R A U L I C G R A D I E N T S I M I L I T U D E P R I N C I P L E 

3.1 INTRODUCTION 

In t h i s chapter the t e s t i n g p r i n c i p l e and s c a l i n g laws of 
the h y d r a u l i c gradient s i m i l i t u d e method ( HGST) are described. 
This t e s t i n g p r i n c i p l e was f i r s t introduced by Z e l i k s o n i n 1969. 
Since then i t has been used i n model t e s t s of anchor and p i l e 
problems ( Z e l i k s o n 1978,1988a, Yan 1990, Dau 1991). Z e l i k s o n et 
a l (1982) and Z e l i k s o n and Laguay (1981) have compared HGST w i t h 
c e n t r i f u g e model and good r e s u l t s were observed where comparison 
was p o s s i b l e . This technique was o r i g i n a l l y developed to 
co n s o l i d a t e the s o i l sample before conducting the c e n t r i f u g e 
model t e s t . Later i t was modified to conduct model t e s t i n g of 
foundations on l e v e l surfaces. 

The f i r s t HGST model t e s t i n g equipment i n the North America 
was developed at U n i v e r s i t y of B r i t i s h Columbia by Yan and 
Byrne(1991a). Various t e s t s were conducted i n c l u d i n g the model 
study of shallow f o o t i n g s , s i n g l e p i l e response to s t a t i c and 
dynamic l a t e r a l load, downhole and crosshole seismic t e s t s . 
These t e s t s were used to study the various f a c t o r s a f f e c t i n g the 
t e s t r e s u l t s and the t e s t i n g device was upgraded cont i n u o u s l y . 

For t h i s study the equipment was modified to conduct p i l e 
group t e s t i n g . The p r i n c i p l e used i n HGST i s s i m i l a r to that 
used i n c e n t r i f u g e t e s t i n g . The body forces a c t i n g on the s o i l 
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p a r t i c l e s are increased to simulate the f i e l d s t r e s s c o n d i t i o n s . 
But where the c e n t r i f u g e t e s t uses c e n t r i p e t a l a c c e l e r a t i o n to 
inc r e a s e the body forc e s , the HGST technique i n v o l v e s i n c r e a s i n g 
body fo r c e s by i n c r e a s i n g the seepage force through the porous 
m a t e r i a l . 

3.2 Hydraulic Gradient Similitude P r i n c i p l e 

Figure 3.1 shows a sample of s o i l subjected to a c o n t r o l l e d 
downward h y d r a u l i c gradient, i . The downward h y d r a u l i c gradient 
w i l l i n c rease the body force on a u n i t volume of the sample by 
an amount iv,,- This i s equivalent to i n c r e a s i n g the u n i t weight 
of the m a t e r i a l by iv,,- The e f f e c t i v e u n i t weight of the model 
s o i l Ym c a n £>e given by 

Ym = iYw + Y' eq. (3.1) 

Where i i s the a p p l i e d downward h y d r a u l i c g r a d i e n t , 

Y „ i s the u n i t weight of the water, and 

Y ' i s the submerged u n i t weight of the s o i l 

Thus the sample s o i l or model can be considered to have a u n i t 
weight, ym. I f the s o i l i n the f i e l d (prototype) has an e f f e c t i v e 
u n i t weight, Yp» then the sc a l e f a c t o r , N , i s given by 

N = Ym / Y P 

( i Y „ + Y ' ) / Y P 

I f Y P
 = Y 1 i then 

N = ( i Y w + Y ' ) / Y ' 
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N ~ iYw / Y ' ( Since iy„ >> Y 1 ) 

and s i n c e y w ~ Y 1 / 
N ~ i ( approximately ) eq. (3.2) 
The f a c t o r N i s c a l l e d the Hydraulic gradient s c a l e f a c t o r . 

For a h y d r a u l i c gradient t e s t with gradient N=n, where n i s 
the s c a l e of the model used, the stresses due to the s e l f weight 
i n the model and prototype at the homologous p o i n t s w i l l be 
equal as shown below. 

Model Prototype 
Y M = N . Y P Y P

 = Prototype s o i l d e n s i t y 
Zm = Zp / N Zp = Depth at a point i n prototype 
(ov)m = Y M • Zm and (o v) p = Y p • Zp 

( o v ) m = (N. Y p) • (Zp/N) = Y P • ZP 

where Zm and Zp are the model and prototype depths and ( o v ) m and 
(a v ) p are the e f f e c t i v e v e r t i c a l stresses at the homologous 
p o i n t s of model and prototype s o i l elements, r e s p e c t i v e l y . 

This shows that the scale factor for s t r e s s e s w i l l be 
u n i t y . Thus i f same s o i l i s tested i n the model, as i n 
prototype, and the same s t r e s s path i s followed then the s t r a i n s 
i n the model and the prototype w i l l be same at homologous p o i n t s 
w h i l e the displacement of the prototype w i l l be 1N 1 times that 
of the model. Therefore the Hydraulic gradient s i m i l i t u d e t e s t s 
are expected to f o l l o w the same s c a l i n g laws as the c e n t r i f u g e 
modelling t e s t s . 
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This s c a l i n g laws, f o r the h y d r a u l i c gradient s i m i l i t u d e 
t e s t i n g method, were examined by Yan (1990) and Dou (1991). A 
summary of these laws i s given i n t a b l e 3.1. 

Since i t i s d i f f i c u l t to simulate both the s p e c i f i c 
g e o l o g i c a l s e t t i n g s of the prototype s o i l c o n d i t i o n s and the 
exact s t r e s s path followed i n the prototype loading, d i r e c t 
comparisons between model and prototype i s not always p o s s i b l e . 
Therefore, another experimental technique known as modelling of 
models was used by Yan to v e r i f y the r e s u l t s obtained from the 
HGST. In t h i s method models of d i f f e r e n t scales are t e s t e d at 
various h y d r a u l i c gradients such t h a t they w i l l represent the 
same prototype. The r e s u l t s are then compared to v e r i f y the 
s i m i l i t u d e laws. 

The HGST device used i n t e s t i n g was f i t t e d with three pore 
water pressure transducers and the h y d r a u l i c gradient was 
monitored continuously throughout the t e s t . 

The p i l e s were t e s t e d i n the HGS device under a constant 
h y d r a u l i c gradient. The h y d r a u l i c gradient throughout the sample 
was monitored continuously to maintain the constant gradient. 
The major o b j e c t i v e of using the modelling t e s t s i n t h i s study 
was to generate a data base on P i l e group response to l a t e r a l 
loads from which methods of a n a l y s i s can be t e s t e d . Modelling 
t e s t s can be used to analyze and i n v e s t i g a t e prototype behaviour 
d i r e c t l y . 
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TABLE 3 .1 SCALING RELATIONS FOR CENTRIFUGE AND HYDRAULIC GRADIENT TESTS 

QUANTITY FULL SCALE MODEL AT N g ' S 

LINEAR DIMENSION 1 1/N 

AREA 
1 1/NT2 

VOLUME 
1 1/NT3 

STRESS 1 1 

STRAIN 1 1 

FORCE 1 1/N"2 

ACCELERATION 1 N 

VELOCITY 1 1 

T IME - IN Dynamic TERMS 1 1/N 

TIME - IN DIFFUSION CASES 1 1/N~2 

FREQUENCY IN DYNAMIC PROBLEMS 1 N 
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C H A P T E R 4 : MODEL S O I L AND P I L E P R O P E R T I E S 

4.1 MODEL SOIL 

The sand used i n the t e s t s i s uniform rounded Ottawa sand. 
The mineral composition of t h i s sand i s p r i m a r i l y quartz. I t has 
a s p e c i f i c g r a v i t y of 2.67 and a constant volume f r i c t i o n angle 
c}>cv of 31°. The g r a i n s i z e d i s t r i b u t i o n curve for t h i s sand i s 
shown i n Figure 4.1. Only sand r e t a i n e d on #14 0 s i e v e was used 
for t e s t i n g purpose. Reference minimum and maximum v o i d r a t i o of 
the sand are 0.58 and 0.88 r e s p e c t i v e l y . Figure 4.2 shows the 
v a r i a t i o n of p e r m e a b i l i t y with v o i d r a t i o . The h y p e r b o l i c s t r e s s 
s t r a i n parameters of the sand for r e l a t i v e d e n s i t i e s of 30% and 
75% are given i n the t a b l e 4.1. Using these p r o p e r t i e s and the 
hy p e r b o l i c model proposed by Duncan and Chang (1980) the P-y 
curves for the given p i l e - s o i l system can be developed. For 
f i n i t e element a n a l y s i s the f o l l o w i n g formulae were used to 
c a l c u l a t e the st r e s s e s i n the s o i l sample, the i n i t i a l Young's 
modulus, and the Young's modulus at var i o u s stages of l o a d i n g . 
A constant r e l a t i v e density of 75 was used for a l l the t e s t s . 
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A e l 

where £v i s the volumetric s t r a i n , 
ex i s the major p r i n c i p a l s t r a i n , 

i s the deviator s t r e s s , 
i s the mean normal s t r e s s , 
i s the tangent Young's modulus, 

Bt i s the tangent bulk modulus 

0"m 

E t 

eq. (4.1) 

P _ A CT« eq. (4.2) 
Ac — — 

B. 

E - M I - ^ V E Q ' ( 4 " 3 ) 

a4f 

^3 ^ „ eq. (4.4) 

A 

B =KEPA(2l)~ Cq- ( 4 ' 5 ) 

I E A v p 
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W h e r e E L i s t h e i n i t i a l Y o u n g ' s m o d u l u s , 

P i s t h e a t m o s p h e r i c p r e s s u r e , 

i s t h e u l t i m a t e d e v i a t o r s t r e s s , 

4 . 2 M O D E L P I L E P R O P E R T I E S 

T w o p i l e s w e r e u s e d i n t h e e x p e r i m e n t . B o t h t h e p i l e s w e r e 
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TABLE 4.1 Hyperbol ic Soi l Parameters F r o m Drained Compression Tr iax ia l Tests 

Sands n Kb m R f *1 8<p K 0 

D = 30% 
r 

600 0 . 88 470 0.25 0.95 32 0. 0 31 0.5 

D = 75% r 1600 0. 67 600 0. 05 0.70 39 4.0 31 0.4 

Where 

K E 

n 

Kb 
m 

R f 

6<f> 

K„ 

The Young's Modulus Number 

The Young's Modulus Exponent 

The bulk modulus number 

The bulk modulus number 

The f a i l u r e s t r e s s r a t i o 

The m o b i l i z e d f r i c t i o n angle a t a c o n f i n i n g s t r e s s of 

1 atra. 

The decrease i n the m o b i l i z e d f r i c t i o n angle f o r a 

t e n f o l d i n c r e a s e i n the c o n f i n i n g s t r e s s 

The constant volume f r i c t i o n angle 
The a t - r e s t pressure c o e f f i c i e n t ( 1 - s i n <p ) 
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T A B L E 4.2 Physical Properties O f Mode l Piles 

Outer Diameter, inches 1/4" 

Thic k n e s s , i n c h e s 0.032" 

Length, mm. 424.0 

Weight,gm. 20.3 

m (gm/mm) 0.0479 

EI (N.mm2) 4.03 X 10 6 

NOTE : - Two i d e n t i c a l p i l e s were used f o r the t e s t s . One of 

the p i l e s was instrumented with e i g h t p a i r s of s t r a i n 

gauges while the other was uninstrumented. 
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of diameter 6.75mm. ( 1/4 inch) and 424mm. long. The p i l e s were 
made of 6061-T6 aluminium tubing. One of the p i l e s was 
instrumented w i t h 8 p a i r s of s t r a i n gauges for measurement of 
the bending moment. This arrangement i n p a r t i c u l a r a l lows 
measurement of the bending moment v a r i a t i o n along the p i l e 
l e n g t h and thus gives a d e f l e c t i o n p r o f i l e along the l e n g t h of 
the p i l e . The connections for these s t r a i n gauges were provided 
on the c y l i n d e r l i d . The f l e x u r a l r i g i d i t y of the p i l e was 
measured by f i x i n g one end of the p i l e i n a clamp and a p p l y i n g 
a known load at the free end. From the d e f l e c t i o n and load 
measurements the p i l e f l e x u r a l r i g i d i t y value was determined. 
The value i s given i n TABLE 4.2. Eight p a i r s of 120 Q f o i l type 
s t r a i n gauges mounted on the outside of the p i l e were used. The 
p o s i t i o n of the s t r a i n gauges i s shown i n Figure 4.3. The 
advantage of using a p a i r of s t r a i n gauges mounted on opposite 
s i d e s i s that the e f f e c t of tension and compression, on the 
opposite faces of the p i l e , i s compensated. The p i l e s were 
i n s t a l l e d i n the sample a f t e r the p r e p a r a t i o n of the s o i l 
sample. For t h i s purpose various guiding blocks were designed to 
push the p i l e s i n t o the s o i l . The p i l e guides were made from 
p l e x i g l a s s and designed i n such a way as to provide the r e q u i r e d 
spacing i n between the p i l e s . 
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F i g u r e 4 . 1 G r a i n S i z e D i s t r i b u t i o n of F i n e O t t a w a S a n d 

( Y a n L i , 199 1) 

Void Ralio - e 

F i g u r e 4 . 2 V a r i a t i o n of P e r m e a b i l i t y V s V o i d R a t i o 

( Y a n L i , 199 1) 
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C H A P T E R 5 : H Y D R A U L I C G R A D I E N T S I M I L I T U D E T E S T I N G 
D E V I C E 

5.1 INTRODUCTION 

In t h i s chapter the h y d r a u l i c gradient s i m i l i t u d e t e s t i n g 
device developed at U n i v e r s i t y of B r i t i s h of Columbia i s 
described i n d e t a i l . The design and f a b r i c a t i o n of t h i s device 
was s t a r t e d i n December, 87. The device was designed i n such a 
way that the c o n s t r u c t i o n and the operation of the device i s 
simple and at the same time f a c i l i t a t i n g v e r s a t i l i t y i n 
a p p l i c a t i o n with r e l i a b i l i t y of r e s u l t s . The device has been 
under continuous m o d i f i c a t i o n and improvement to incorporate 

various a p p l i c a t i o n s . 
At present the device i s mainly designed to perform load 

c o n t r o l l e d l a t e r a l load t e s t s on v e r t i c a l p i l e s . I t can also be 
used to conduct displacement c o n t r o l l e d t e s t , a x i a l load t e s t on 
p i l e s or other types of foundations r e s t i n g on l e v e l ground with 
some minor m o d i f i c a t i o n s . In a d d i t i o n to the s t a t i c t e s t i n g the 
dynamic loads or seismic loads can a l s o be a p p l i e d to the p i l e s . 

5.2 H y d r a u l i c Gradient S i m i l i t u d e T e s t i n g Device 

The UBC-HGST device i s shown i n f i g u r e 5.1. The device 

c o n s i s t s of 
1. a large s o i l container and a i r pressure chamber 
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2 . water supply and c i r c u l a t i o n system. 

3. A i r pressure system 
4. Loading system 
5. Data a c q u i s i t i o n and c o n t r o l system. 
During a t e s t , the water i s continuously s u p p l i e d by a high 

power c e n t r i f u g a l water pump. The h y d r a u l i c gradient across the 
s o i l deposit i s obtained by appl y i n g an a i r pressure i n the a i r 
chamber with water drainage provided at the base of the s o i l 
c o n t a i n e r . The water l e v e l i s maintained about one inch above 
the sand surface by balancing the a i r pressure and water flow 
f o r a given h y d r a u l i c gradient. The pore pressure development i n 
the s o i l sample due to the increased h y d r a u l i c gradient i s 
measured by three pore pressure transducers mounted on the w a l l s 
of the s o i l container. The average h y d r a u l i c gradient w i t h i n the 
sand deposit i s obtained from the pore pressure measurements and 
sample height as follows : 

When the bottom drainage valve i s c l o s e d and there i s 

no water flow , i . e . i=0 

When the bottom drainage valve i s open and water i s 
flow i n g under g r a v i t y e f f e c t , i . e . i = 1. 
When the bottom drainage valve i s open and water i s 
flowing with c o n t r o l l e d a i r pressure a p p l i e d at top , 

i - - + 

/-/ 
5 

eq. (4.1) 
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F i g u r e 5.1 H y d r a u l i c G r a d i e n t S im i l i t ude D e v i c e 
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Where Plr P 3 are water pressures at top and base of the s o i l 
sample, r e s p e c t i v e l y , Hs i s the sample height and Hw i s the 
height of water above the sample base. 

5.2.1 SAND CONTAINER AND AIR PRESSURE CHAMBER 

The s o i l container i n which the model p i l e groups are 
t e s t e d i s a rectangular box with 404 x 190mm i n s i d e dimensions 
and a depth of 400mm. The thickness of the w a l l i s 19.05mm. The 
box i s made of t h i c k welded aluminium p l a t e s anodized with hard 
coatings to prevent water c o r r o s i o n . The rectangular shape of 
the box helps i n reducing the boundary e f f e c t s and at the same 
time reducing the box area s i z e and the flow q u a n t i t y . The 
maximum h y d r a u l i c gradient that can be ap p l i e d to the s o i l using 
the e x i s t i n g device i s 100. The corresponding maximum a i r 
pressure r e q u i r e d i s about 350 kPa. 

The s o i l i s r e t a i n e d i n the box with the help of a f i l t e r 
supported on a g r i d of perfor a t e d aluminium s t r i p s . The s t r i p s 
are about 25.4mm. or 1 i n . t h i c k . This f i l t e r helps i n two ways, 
i t prevents the s o i l from being washed away with the water and 
at the same time the space provided below the f i l t e r allows the 
water to flow f r e e l y before d r a i n i n g out of the s o i l container. 
The f i l t e r i s prepared by p u t t i n g a s e r i e s of s t a i n l e s s s t e e l 
sieves i n c l u d i n g #10, #140, #200 mesh sieves r e s t i n g on top of 
a 6.35mm. t h i c k p e r f o r a t e d aluminium p l a t e . As the sand used has 
been r e - s i e v e d and only the p o r t i o n r e t a i n e d on sieve #140 i s 
used i n the t e s t s , the s o i l w i l l be re t a i n e d on the f i l t e r with 
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very l i t t l e head l o s s across i t . The f i l t e r and i t s support 
s t r i p s are designed as a g r i d system under a uniform d i s t r i b u t e d 
load. The spacing of the c e l l u l a r support i s chosen so that the 
vert i c a l ' ' d e f l e c t i o n of the f i l t e r at each c e l l centre would be 
l e s s than 0.1mm. 

The s o i l container l i d i s 19.1mm. t h i c k p l a t e and i s b o l t e d 
on to the container with 14 Hex Head cap s t a i n l e s s s t e e l b o l t s . 
A rubber gasket i s used to s e a l the water pressure between the 
l i d and container w a l l . The side view and plan of the container 
l i d are shown i n Figure 5.2. The l i d has a 5"(127mm.) open hole 
at i t s centre to allow f o r p i l e and s o i l loading and 
instrumentation. An annular block 2.5"(63.5mm.) high i s 
permanently b o l t e d on the l i d to provide v e r t i c a l space f o r 
mounting loading and d e f l e c t i o n measurements u n i t s . 

A p l e x i g l a s s c y l i n d e r s i t t i n g on top of the annular block 
forms the a i r chamber. The cap on top of the c y l i n d e r i s f i t t e d 
with s p e c i a l pressure t i g h t e l e c t r i c a l plugs f o r 
instrumentation. The a i r pressure connection i s also provided i n 
the cap. The p l e x i g l a s s c y l i n d e r allows a v i s u a l observation 
during the t e s t . The connection between the annular block and 
l i d and those at top and bottom of the p l e x i g l a s s c y l i n d e r are 
sealed using O-ring. On the i n s i d e of the l i d a f i l t e r i s 
provided to d i s s i p a t e the flow of the incoming water so as to 
minimise the disturbance to the sample. The l i d i s provided with 
a 1" I.D. hole f o r water i n l e t . 
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5.2.2 WATER SUPPLY AND CIRCULATION SYSTEM 

Figure 5.3 shows the water flow chart i n UBC-HGST device. 
The water pump used i s a c e n t r i f u g a l type with a capacity of 24 
US GPM at a t o t a l pressure head of 100 f t . manufactured by 
Monarch I n d u s t r i e s Ltd. The pump has a 1.5hp b u i l t i n motor and 
1.4" and 1" ID suction and o u t l e t pipes, r e s p e c t i v e l y . The pump 
i s connected to the water tank and the container by p l a s t i c 
hoses. Before r a i n i n g the sand i n t o the container the whole 
system i s connected and saturated. 

The water flow i s c o n t r o l l e d by valves at top and bottom of 
the s o i l container. During the t e s t valve #1 and #3 are opened 
to create a downward gradient and an upward gradient i s created 
by opening valve #2 and c l o s i n g valves #1 and #3. Although there 
i s an air-water i n t e r f a c e above the sand surface considering the 
short d u r a t i o n and dynamic nature of the t e s t the e f f e c t of a i r 
d i f f u s i o n can be neglected. 

5.2.3 PILE HEAD LOADING AND MEASURING SYSTEM 

The loading system included a two way p i s t o n to provide two 
way loads. Both chambers of the p i s t o n were connected to 
regulated a i r supply systems. Load was a p p l i e d by c o n t r o l l i n g 
the a i r pressure i n both the chambers. The load c e l l was 
connected between the p i s t o n and the r i g i d loading ram to 
measure the applied load. 
A low f r i c t i o n loading bushing without O-ring was used to 
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(a). Plan View of Soil Container Lid 

double acting air piston 

dispersive material 
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(b). Side View of Soil Container Lid 

Figure 5.2 Conta iner Lid — P lan and Side View 
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F i g u r e 5.3 W a t e r F l o w S y s t e m in U B C - H G T D e v i c e 
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t r a n s f e r the load to the p i l e head. The two way a i r p i s t o n was 
mounted on the s o i l container l i d . The load c e l l was c a l i b r a t e d 
using known weights f o r both tension as w e l l compression and was 
found to be l i n e a r w i t h i n the p r a c t i c a l range. 

For t e s t i n g the p i l e group i n which both the p i l e s were 
loaded simultaneously a new load c e l l was designed to measure 
the load a p p l i e d to each of the p i l e s . This load c e l l i s shown 
i n Figure 5.4. This load c e l l was used only to measure t e n s i l e 
f o r c e s . A f r i c t i o n l e s s a i r l e a k i n g bearing system i s used f o r 
the LVDT cores. These LVDT's are placed on the s o i l container 
l i d as shown i n Figure 5.5. The LVDT's were so s i t u a t e d that the 
displacements of the p i l e opposite the loading ram were measured 
at the loading point and at a distance above the loading point 
( 20.0mm.). The displacement of the other p i l e was measured by 
a t t a c h i n g an LVDT to the loading ram . 

5.2.4 DATA ACQUISITION SYSTEM 

A micro-computer based data a c q u i s i t i o n system was used i n 
t h i s research. This system comprised of three components: a 
multichannel s i g n a l a m p l i f i e r , multichannel analog to d i g i t a l 
converter DT2801A card, and a IBM-PC computer. A l l transducers 
were e x c i t e d by a common supply of 6 V o l t s . 

T o t a l of 16 channels were monitored during the t e s t i n g . 
Three channels were used f o r monitoring the pore pressures at 
the top, centre and bottom of the s o i l sample to c a l c u l a t e the 
h y d r a u l i c gradient. Eight channels were used to monitor the p i l e 
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BOLT CONNECTIONS 

S i d e V i e w A - A 

F i g u r e 5.4 L o a d C e l l 
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s t r a i n gauges, three channels were used to monitor the LVDT's 
and the remaining two channels were used to monitor the two load 
c e l l s . The transducer s i g n a l s except 2 LVDT's were a l l a m p l i f i e d 
at a gain of 1000 by the a m p l i f i e r . 

The DT2801A A/D converter has 12 b i t s i n i t s accuracy which 
gives 4.88mV accuracy for a +10V b i p o l a r c o n f i g u r a t i o n . The 
noise l e v e l was monitored for each channel and found to be ± 5mV 
at the scanning frequency of 0.5Hz. This gave an accuracy of ± 
0.2kPa for the pore water pressure, ± 0.02mm. for the LVDT's, 
and ± 0.014kg for the load c e l l . 

A program w r i t t e n i n Quick b a s i c was used to monitor the 
h y d r a u l i c gradient during the g r a v i t a t i o n a l process and LABTECH 
NOTEBOOK software was used to monitor channels during the t e s t . 
The data obtained was then processed to o b t a i n v a r i o u s r e s u l t s . 

5.2.5 DATA REDUCTION 

In the t e s t s , the bending moment d i s t r i b u t i o n along the 
p i l e i s obtained from the s t r a i n gage readings. Based on the 
simple beam theory the bending moment can be i n t e g r a t e d or 
d i f f e r e n t i a t e d to obtai n the p i l e i n c l i n a t i o n ^ , d e f l e c t i o n , y, 
or shear f o r c e , Q, or s o i l r e s i s t a n c e , P, as f o l l o w s 

eq. (4.2) 



CHAPTER 5 5 8 

Water Dispersion System 

LVDT Cores 
SIDE VIEW 

F i g u r e 5.5 P i l e H e o d D e f l e c t i o n M e a s u r e m e n t 



C H A P T E R 5 5 9 

Q 
dM 

dz eq. (4.3) 

y= eq. (4.4) 

d2M 
P = 

dz2 eq. (4.5) 

Where EI i s the f l e x u r a l r i g i d i t y of the model p i l e , z i s the 
dis t a n c e along the p i l e . 

Since the bending moment i s only known at some d i s c r e t e 
l o c a t i o n s along the p i l e , a numerical curve f i t t i n g scheme i s 
necessary to o b t a i n the needed s o i l r e s i s t a n c e s and p i l e 
d e f l e c t i o n s along the p i l e length at each l o a d i n g stage. The 
d e s i r e d P-y curve at a given depth can be obtained by re p e a t i n g 
the curve f i t t i n g scheme at various l o a d i n g stages. For 
d e f l e c t i o n s simple numerical i n t e g r a t i o n i s s u f f i c i e n t s i n c e any 
s l i g h t e r r o r i n the bending moment data becomes smoothed i n the 
i n t e g r a t i o n process. However for s o i l r e s i s t a n c e any s l i g h t 
e r r o r s or d e v i a t i o n s i n the bending moment data becomes g r e a t l y 
magnified during double d i f f e r e n t i a t i o n . To a l l e v i a t e t h i s 
problem a cubic s p l i n e f i t t i n g i s used. In t h i s procedure a 
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at each p o i n t . Then the s p l i n e i s d i f f e r e n t i a t e d to give the 
d i s t r i b u t e d shear force and s o i l r e s i s t a n c e along the p i l e and 
i n t e g r a t e d to give the p i l e i n c l i n a t i o n and d e f l e c t i o n . Boundary 
c o n d i t i o n s used are 

1. For free head s i n g l e p i l e the bending moment at the 
loading point i s set t o be zero. 

2. For two p i l e s when only one p i l e i s loaded the bending 
moment above the ground f o r the adjacent p i l e i s 

zero. For the loaded p i l e bending moment i s zero at 
the loading p o i n t . 

3 . For both p i l e s loaded the bending moment at the 
loading point i s zero. 
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C H A P T E R 6 : T E S T P R O C E D U R E 

6.1 Test Procedure 

The t e s t procedure for the h y d r a u l i c gradient s i m i l i t u d e 
t e s t can be d i v i d e d i n t o three steps as 

1. R e c o n s t i t u t i o n of s o i l deposit 
2. P i l e i n s t a l l a t i o n 
3 . S o i l l oading and subsequent p i l e l o a d i n g 

6.2 RECONSTITUTION OF SAND DEPOSIT 

The technique used for the sample p r e p a r a t i o n i n v o l v e s 
upward seepage forces together w i t h sedimentation and 
d e n s i f i c a t i o n processes to reform s o i l d eposits f o r each t e s t as 
descr i b e d below. 

During the sample preparation, the top cap of the c e l l was 
removed and the drainage l i n e s from the c i r c u l a t i o n chamber 
( f i g u r e 5.3) were closed. De-aired water was used to f i l l the 
c e l l and a l l the measurement l i n e s . A f i x e d amount of oven d r i e d 
sand was weighed i n f l a s k s . Water was added to each f l a s k and 
the sand water mixture was b o i l e d . A f t e r c o o l i n g to room 
temperature the b o i l e d sand was t r a n s f e r r e d to the c e l l u s i n g a 
water p l u v i a t i o n technique, f l a s k by f l a s k . To remove the 
l a y e r i n g e f f e c t a c o n t r o l l e d upward seepage gradient was 
ap p l i e d . The s l u r r y formed due to the upward gradient i s then 
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s t i r r e d to o b t a i n a homogeneous s t a t e . 
The upward gradient was then turned o f f and the r e q u i r e d 

s o i l d e n s i t y was achieved by d e n s i f y i n g the s o i l by tapping the 
s i d e and base of the c e l l . A f t e r each t e s t was completed, the 
sand was loosened by an upward gradient and reformed as 
discussed above. 

6 . 3 P I L E I N S T A L L A T I O N 

A f t e r p r e p a r a t i o n of the sand deposit was completed, the 
model p i l e s were i n s t a l l e d by pushing the p i l e s i n t o the sand 
de p o s i t . P i l e d r i v i n g guides for d i f f e r e n t p i l e spacings were 
designed so that p i l e group can be t e s t e d w i t h v a r i o u s spacing 
between the p i l e s . The p i l e s were a l i g n e d w i t h the l o a d i n g ram 
and LVDT measurement cores. A l l the model p i l e s were c l o s e d 
ended at the t i p and a l l were d r i v e n to the bottom of the sand 
deposit and r e s t e d on the base wi t h an embedment le n g t h of 
310mm. Thus the model represents f u l l displacement end bearing 
hollow c i r c u l a r s t e e l p i l e s . 

A study of model p i l e i n s t a l l a t i o n i n sand at the 1 g. 
c o n d i t i o n was conducted by Robinsky and Morrison(1964). The sand 
displacement and compaction around the p i l e s were found to be 
dependent upon the p i l e property, s o i l s t r e s s l e v e l and s o i l 
d e n s i t y . I t was found that the s o i l displacement envelope s t a r t s 
at 4.5 to 5.5 p i l e diameters below the ground l e v e l . For the 
l a t e r a l l y loaded p i l e t e s t s , d e n s i f i c a t i o n e f f e c t s may be l e s s 
s i g n i f i c a n t s i n c e the p i l e behaviour i s dominated by the s o i l 
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r e a c t i o n c l o s e to the s o i l surface where the disturbance i s 
minimum. 

The t e s t s reported by Oldham(1984), C r a i g (1984, 1985) show 
that the e f f e c t s of s t r e s s l e v e l d uring the p i l e i n s t a l l a t i o n 
are important f o r a x i a l l y loaded p i l e s but much l e s s important 
f o r l a t e r a l l y loaded p i l e s . Therefore the procedure of 
i n s t a l l i n g p i l e s at the normal s t r e s s c o n d i t i o n and then 
performing t e s t at a higher s t r e s s l e v e l was employed i n t h i s 
study. 

A f t e r p i l e i n s t a l l a t i o n was completed, the loading system, 
i n c l u d i n g the double a c t i n g p i s t o n and load c e l l was mounted on 
the s o i l container l i d . The appropriate loading connection was 
made depending on the t e s t c o n d i t i o n s . The LVDT cores were 
attached to the p i l e head to measure the corresponding 
d e f l e c t i o n s . The a i r pressure chamber was then i n s t a l l e d and a l l 
the i n s t r u c t i o n wires were connected to the data a c q u i s i t i o n 
systems. 

6 .4 SOIL LOADING AND PILE LOADING 

A f t e r e n c l o s i n g the whole t e s t i n g device, the s o i l loading 
process was begun by applying a i r pressure i n the a i r chamber 
and simultaneously i n c r e a s i n g the water i n f l o w to the sand 
conta i n e r . The pore water pressure was continuously monitored 
and h y d r a u l i c gradient c a l c u l a t e d . The s o i l loading was stopped 
on reaching the required gradient. 
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The a i r pressure i n s i d e the pressure chamber pushes back 

the loading ram i n c r e a s i n g the l a t e r a l p u l l i n g force on the 
p i l e s i f the h o r i z o n t a l force i s not balanced. A s p e c i a l a i r 
pressure c o n t r o l system was designed f o r t h i s purpose. 
The design of the pressure c o n t r o l system has to s a t i s f y the 
f o l l o w i n g requirements 

During the s o i l l o a d i n g process i t should 
a u t o m a t i c a l l y balance the pressure a c t i n g on the 
loading ram so that the p i l e w i l l stay i n the same 
p o s i t i o n . 
A f t e r the s o i l loading i s completed the p i l e s can be 
loaded very e a s i l y . 

To s a t i s f y the f i r s t requirement a double a c t i n g a i r - p i s t o n 
was employed whose p i s t o n area has exact same diameter as the 
loa d i n g ram connecting to the model p i l e . Thus when the a i r 
pressure, pressure supplied to the HGST chamber during the 
g r a v i t a t i o n process, i s connected to the a i r p i s t o n i t balances 
out the force on the loading ram. When the a i r pressure i n the 
chamber has reached the target a i r pressure, the a i r pressure i n 
fr o n t of the double a c t i n g p i s t o n i s reduced. The load i s 
ap p l i e d by i n c r e a s i n g the a i r pressure i n the back chamber of 
the two way p i s t o n . 

6.5 P I L E H E A D L O A D I N G 

The l a t e r a l load w a s a p p l i e d to the model p i l e s . The 
scanning rate of the data w a s 0.5Hz. A l l the t e s t s i n which load 
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was a p p l i e d to s i n g l e p i l e were load c o n t r o l l e d . The t e s t s 
conducted with p i l e groups were displacement c o n t r o l l e d . In the 
p i l e group the displacement of both the p i l e s at the loading 
p o i n t was kept equal. 
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CHAPTER 7 : RESULTS AND DISCUSSION 

7.1 INTRODUCTION 

This chapter contains the t e s t r e s u l t s of the l a t e r a l 
l oading of model p i l e s and p i l e groups under c o n t r o l l e d 
l aboratory environment using the HGST device. This study i s 
aimed at ev a l u a t i n g the fundamentals of p i l e group response t o 
s t a t i c and c y c l i c l a t e r a l l o ad under w e l l c o n t r o l l e d s o i l 
c o n d i t i o n s . 

7.2 T e s t i n g S e r i e s 

The t e s t i n g was conducted i n three s e r i e s of t e s t s . In the 
SERIES I the s i n g l e p i l e was i n s t a l l e d and loaded h o r i z o n t a l l y . 
The load was a p p l i e d i n increments and displacements and bending 
moments were measured. The r e s u l t s of these t e s t s were s t u d i e d 
to confirm the response of the s i n g l e p i l e . They were also used 
i n the a n a l y s i s of the p i l e group. In the SERIES I I the p i l e 
group of two p i l e s was i n s t a l l e d and one p i l e i n the p i l e group 
was loaded. In t h i s s e r i e s there are various cases depending on 
the d i r e c t i o n of loading. In CASE I the p i l e i s pushed towards 
the adjacent p i l e . The distance between two p i l e s i s v a r i e d 
from 2 to 6 diameters. In the CASE I I the p i l e i s p u l l e d away 
from the adjacent p i l e and again distance i s v a r i e d from 2 
diameters to 6 diameters. In CASE I I I the angle of loading i s 
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changed. In t h i s case the load i s a p p l i e d at an angle of 90 to 
the center l i n e of the p i l e s . 

During the SERIES I I I t e s t i n g both the p i l e s i n the p i l e 
group were loaded and the bending moments f o r the t r a i l i n g p i l e 
were recorded. The p i l e spacing used was 2d and 4d. The 
terminology used i n the f i g u r e s i n c l u d e s s e r i e s no., then case 
no. followed by spacing, e.g. S2C2S4 denotes that the f i g u r e i s 
f o r s e r i e s 2 (S2), case I I (C2) and p i l e spacing i s 4 diameters 
(S4). S i m i l a r l y S3C0S4 denotes s e r i e s 3 p i l e spacing of 4 
diameters and since there i s only one case the center p o r t i o n 
denotes CO. 

7.2.1 R e p e a t a b i l i t y o f the t e s t r e s u l t s 

To check the r e p e a t a b i l i t y of the t e s t , three i d e n t i c a l 
t e s t s on the s i n g l e p i l e under s t a t i c l a t e r a l load were 
conducted. The r e s u l t s from these t e s t s are given i n f i g u r e s 
7.1 to 7.3. 

Figure 7.1 shows load-displacement response of the s i n g l e 
p i l e under l a t e r a l load. The f i g u r e shows response at the point 
of load a p p l i c a t i o n and at the ground l e v e l . The h o r i z o n a l load 
i s a c t i n g at a distance of 64.0mm above the ground 
surface ( e c c e n t r i c i t y = 64.0 mm) . The r e s u l t s presented are f o r 
a h y d r a u l i c gradient of 60. I t can be seen that the load-
displacement response of the three t e s t s are quite s i m i l a r 
i n d i c a t i n g r e p e a t a b i l i t y of the t e s t r e s u l t s . 

The P-y curves for these three t e s t s f o r the depth of 2 
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diameters below ground l e v e l are given i n f i g u r e 7.2. The P-y 
curves are developed from the Bending Moment p r o f i l e . The 
method of c a l c u l a t i n g the P-y curves from the bending moment 
p r o f i l e was explained i n CHAPTER 4. The P-y curves show some 
v a r i a t i o n i n the r e s u l t s . This i s because the s o i l pressure i n 
P-y curves i s obtained by d i f f e r e n t i a t i n g the bending moment 
p r o f i l e as opposed to the displacement which i s obtained by 
i n t e g r a t i n g the moment p r o f i l e . 

The bending moment and shear force p r o f i l e f o r two 
d i f f e r e n t load cases i s given i n f i g u r e 7.3. I t may be seen that 
the r e s u l t s from the three t e s t s are i n reasonable agreement. 

In general, the t e s t s on s i n g l e p i l e s show r e s u l t s that are 
g e n e r a l l y r e l i a b l e and repeatable. I t should be noted that the 
accuracy of the t e s t data and the program i s h i g h l y dependent on 
the h y d r a u l i c gradient as w e l l as the e c c e n t r i c i t y of the 
loa d i n g point above the ground surface. The load-displacement 
curves shown i n f i g u r e 7.1 i s the a c t u a l data obtained while the 
P-y curves shown i n f i g u r e 7.2 are developed from the bending 
moment p r o f i l e shown i n f i g u r e 7.3. 

7.2.2 S e r i e s I (SI) 

S i n g l e P i l e t e s t i n g r e s u l t s 

The sand sample was prepared at a r e l a t i v e d ensity of 75% 
and a h y d r a u l i c gradient of 60. The sample preparation technique 
and the p i l e i n s t a l l a t i o n method are described i n the CHAPTER 4. 
A f t e r i n s t a l l a t i o n the s i n g l e p i l e was subjected to the l a t e r a l 
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load, and the bending moment and displacements recorded. 

7 . 2 . 2 . 1 L O A D D I S P L A C E M E N T R E S P O N S E 

The load-displacement curve of the s i n g l e p i l e at the 
Ground l e v e l i s given i n f i g u r e 7.4. The c h a r a c t e r i s t i c load-
displacement curve i s non-linear w i t h i n c r e a s i n g d e f l e c t i o n s 
w i t h the load. As the p i l e i s loaded, w i t h the i n c r e a s i n g 
displacement a gap develops between the p i l e and the s o i l behind 
the p i l e . This gap increases as the load i s increased. In the 
t e s t s conducted, la r g e displacements were observed under a p p l i e d 
load. Due to the la r g e displacements the t e s t was stopped 
before the u l t i m a t e f a i l u r e load was reached. This shows that 
i n the t e s t s conducted large displacements and s o i l f a i l u r e 
occurred before p i l e f a i l u r e , and thus i s a major f a c t o r i n 
d e c i d i n g the p i l e c a p a c i t y . For the s t r u c t u r a l c a p a c i t y of the 
p i l e foundation s o i l f a i l u r e i s not a major f a c t o r . But l a r g e 
displacements play a major r o l e due to accompanying high bending 
moments. 

7 . 2 . 2 . 2 P - ( y - y 0 ) C U R V E 

Figure 7.5 shows the P vs (y-y 0) curve for the l a t e r a l l o a d 
t e s t conducted on a s i n g l e p i l e . The t y p i c a l P vs (y-y 0) curve 
i s a nonlinear curve becoming asymptotic to the (y-y 0) a x i s . The 
P vs (y-y 0) curve i s the c h a r a c t e r i s t i c curve for the given p i l e 
and the given s o i l . The f i g u r e shows P vs (y-y 0) curves at 
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various depths. As seen i n the f i g u r e the i n i t i a l s t i f f n e s s of 
the curves increases with the depth. 

7.2.2.3 BENDING MOMENT AND SHEAR FORCE PROFILE 

Figure 7.6 shows the shear force and bending moment p r o f i l e 
along the length of the p i l e . The general bending moment 
p r o f i l e obtained from the t e s t i s s i m i l a r to the bending moment 
p r o f i l e given by Davis & Poulos(1981) f o r a long f l e x i b l e p i l e 
using the e l a s t i c s o l u t i o n . They suggested that the depth of 
the maximum bending moment developed i s about 0.Id to 0.4d below 
the ground l e v e l f o r p i l e s subjected t o only h o r i z o n t a l load. 
In case of p i l e s subjected to only bending moment, the maximum 
bending moment i s at ground surface. The maximum bending moment 
observed i n t h i s t e s t program was observed at a depth of about 
O.ld. I t should be noted that the p i l e was very long with L/d 
r a t i o of about 50 and the load was a p p l i e d at an e c c e n t r i c i t y of 
about lOd. This higher depth of the maximum bending moment i s 
due to the fa c t that the p i l e i s a c t i n g as a f l e x i b l e p i l e as 
we l l as the load i s ap p l i e d at an e c c e n t r i c i t y . As seen from 
the f i g u r e 7.6, the bottom h a l f p o r t i o n of the p i l e c o n t r i b u t e s 
very l i t t l e towards sharing the load, most of the load i s taken 
by the top h a l f of the p i l e . 

A lso Figure 7.7 shows the s o i l pressure and p i l e d e f l e c t i o n 
p r o f i l e along the depth. As expected i t can be seen that as the 
d e f l e c t i o n s increase the p-y curves near the surface reach the 
ul t i m a t e strength but at l a r g e r depths the p-y curves have yet 
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to reach the ult i m a t e strength. This shows that the l o c a l s o i l 
f a i l u r e has taken place near the surface. I t should be noted 
that d e s p i t e the l o c a l f a i l u r e t a k i n g place near the surface and 
larg e d e f l e c t i o n s , the p i l e has not yet reached i t s u l t i m a t e 
load c a p a c i t y . 

7.2.3 S e r i e s I I (S2) 

P i l e Group Of Two P i l e s ( One P i l e Loaded) 

Three Cases were considered i n t h i s s e r i e s . 
1. When the p i l e i s pushed towards the adjacent p i l e (S2C1). 
2. When the p i l e i s pushed away from the adjacent p i l e ( S 2 C 2 ) . 

3. When the p i l e i s loaded at r i g h t angle to the adjacent 

p i l e (S2C3) . 
In a l l three cases the t e s t s were conducted at a h y d r a u l i c 

gradient of 60 and the sand sample was prepared at a r e l a t i v e 
d e n s i t y of 75%. In a l l cases three spacings were used f o r the 
p i l e group; 2d, 4d, 6d where d i s the p i l e diameter. Only one 
p i l e was loaded i n the p i l e group of two p i l e s and henceforth 
the loaded p i l e w i l l be r e f e r r e d to as PILE 1 and the adjacent 
unloaded p i l e w i l l be r e f e r r e d to as PILE 2. 

7.2.3.1 Load Displacement Response 

Figure 7.8 shows the d e f l e c t i o n of p i l e 2 vs load on p i l e 
1. The d e f l e c t i o n curves f o r p i l e 2 are given f o r d i f f e r e n t 
spacings; 2d, 4d and 6d. As seen i n the f i g u r e the e f f e c t of 
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the load on the adjacent p i l e i s n o n l i n e a r . Furthermore, the 
magnitude of t h i s e f f e c t or i n t e r a c t i o n reduces with i n c r e a s i n g 
spacing as expected. Davisson (1970) s t a t e d that i f the spacing 
between two p i l e s i s more than 8d then the p i l e s w i l l have no 
i n t e r a c t i o n e f f e c t s on each other. As seen from f i g u r e at 
spacing of 6d the i n t e r a c t i o n e f f e c t i s sm a l l . 

Figure 7.9 gives load displacement curves f o r the p i l e 1 at 
spacings 2d, 4d and 6d. I t can be seen that the response of the 
p i l e becomes s t i f f e r as the spacing between the p i l e s i s 
reduced. This i n conjunction with f i g u r e 7.8 shows that part of 
the load a p p l i e d to the p i l e 1 i s shared by p i l e 2. This 
increased s t i f f n e s s a r i s e s f o r two reasons; f i r s t , the s o i l 
adjacent to the loaded p i l e i s s t i f f e r due to d r i v i n g of the 
unloaded p i l e and secondly, the unloaded p i l e i t s e l f has a 
s t i f f e n i n g e f f e c t on the loaded p i l e . As the distance between 
the p i l e s increases the load t r a n s f e r r e d decreases as expected. 

Figure 7.10 gives a comparison between the load 
displacement response of two p i l e s and the response of the 
s i n g l e p i l e . The spacing between the two p i l e s i s 2d. Figures 
7.11 and 7.12 give curves f o r spacings of 4d and 6d, 
r e s p e c t i v e l y . I f we compare the displacement of p i l e 1 with the 
displacement of the s i n g l e p i l e at the same load, as expected 
displacement of the s i n g l e p i l e i s l a r g e r than the displacement 
of p i l e 1. I t can also be seen that the d i f f e r e n c e between the 
two reduces as the spacing between p i l e 1 and p i l e 2 i s 
increased. In fact at spacing 6d at low load l e v e l s the load-
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displacement curves for the s i n g l e p i l e and p i l e 1 are very 
s i m i l a r and only at larg e loads i s there a s l i g h t d i f f e r e n c e 
between the two. I t should a l s o be noted that t h i s d i f f e r e n c e 
i s very small compared to the d i f f e r e n c e at spacings 2d and 4d. 

The comparison of the load-displacement curves for v a r i o u s 
spacings f or PILE 1 i s given i n f i g u r e 7.13. The load-
displacement curve for the s i n g l e p i l e i s a l s o shown. I t can be 
seen that the e f f e c t of adjacent p i l e presence reduces 
c o n s i d e r a b l y at a distance of 4 to 6 diameters. 

The i n t e r a c t i o n f a c t o r s for the p i l e group of two p i l e s 
were c a l c u l a t e d by using the displacements of PILE 1 and PILE 2. 
These i n t e r a c t i o n f a c t o r s were compared w i t h the t h e o r e t i c a l 
i n t e r a c t i o n f a c t o r s obtained from the E l a s t i c theory using 
Poulos's (1971) s o l u t i o n s . A lso the i n t e r a c t i o n f a c t o r s 
c a l c u l a t e d from the s o l u t i o n given by Randolph(1981), Sharnouby 
and Novak (1986) are shown i n the f i g u r e 7.14. I t can be seen 
that the i n t e r a c t i o n f a c t o r s c a l c u l a t e d from Randolph's s o l u t i o n 
give the best approximation of the t e s t data. The i n t e r a c t i o n 
f a c t o r s c a l c u l a t e d by the Sharnouby and Novak method o v e r p r e d i c t 
the observed response as the spacing between the p i l e s i s 
increased. The c a l c u l a t i o n of i n t e r a c t i o n f a c t o r s from the 
theory was explained i n d e t a i l i n Chapter 6. 

7.2.3.2 Bending moment and shear force d i s t r i b u t i o n 

Figure 7.15 shows the experimental bending moment and shear 
fo r c e p r o f i l e s for PILE 2 at a spacing of 2d for d i f f e r e n t load 
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steps. Figure 7.16 shows the p r o f i l e s f o r PILE 2 at a spacing 
of 4d f o r various loading steps while Figure 7.17 shows the 
p r o f i l e s at spacing of 6d f o r various loads. As the a p p l i e d 
h o r i z o n t a l load on PILE 1 increases, the depth of maximum 
bending moment i n PILE 2 also i n c r e a s e s . I f we compare the 
three p r o f i l e s at d i f f e r e n t spacings we can observe that the 
maximum bending moment i n PILE 2 reduces with the i n c r e a s i n g 
d istance and at a distance of 6d i t i s almost non-existent. Also 
the shear force i n PILE 2 at a spacing of 4d i s about 40 per 
cent of that at a spacing of 2d. Thus with the i n c r e a s i n g 
spacing, the e f f e c t of load on adjacent p i l e , i . e . induced 
bending moment and shear force, reduce very s i g n i f i c a n t l y . At a 
spacing of 6d these induced s t r e s s e s are about 10 per cent of 
the s t r e s s e s at a spacing of 2d. 

Figure 7.15 shows that the maximum shear force i n PILE 2 

occurs above the depth of maximum bending moment. I t can be 
seen from f i g u r e 7.15 that at a spacing of 2d the shear force 
generated i n PILE 2 i s almost 20 per cent of the load a p p l i e d on 
PILE 1 whereas at a spacing of 6d the shear fo r c e i n PILE 2 i s 
very small compared to the load a c t i n g on PILE 1 ( l e s s than 1 
perc e n t ) . 

Figure 7.18 shows the bending moment and shear force 
p r o f i l e s f o r PILE 1 at a spacing of 2d. Figure 7.19 and 7.20 
shows bending moment and shear force p r o f i l e s at spacings of 4 
and 6d f o r PILE 1. From f i g u r e 7.18, i t can be seen that as the 
spacing between PILE 1 and PILE 2 i s increased although the 
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maximum bending moment d i d not change, the depth to the maximum 
bending moment reduced considerably. According to Poulos 
(1971), the maximum bending moment f o r the p i l e subjected t o 
moment only i s at the ground l e v e l . Thus as the r a t i o of the 
a p p l i e d force to the a p p l i e d moment decreases the depth t o the 
maximum bending moment w i l l s t a r t reducing. In short, the 
greater the e c c e n t r i c i t y of the a p p l i e d load, the c l o s e r the 
maximum bending moment i s to the ground surface. In the t e s t s 
conducted, as the spacing between the two p i l e s was increased, 
the r e s u l t a n t s t i f f n e s s of l o a d - d e f l e c t i o n response of PILE 1 
was reduced. This i s as expected as the s t i f f e n i n g e f f e c t of 
the adjacent p i l e s a r i s i n g from both d e n s i f i c a t i o n and 
s t r u c t u r a l r i g i d i t y reduces with spacing. The depth of the 
maximum bending moment below ground surface decreased with the 
i n c r e a s i n g spacing. 

The shear force (SF) and bending moment(BM) p r o f i l e s of 
PILE 1 and PILE 2 are compared i n / f i g u r e 7.21. I t can be seen 
that at a distance of 2d the bending moment generated i n PILE 2 
i s about 20 per cent of the bending moment i n PILE 1. As seen 
from the f i g u r e , the value of the bending moment i n PILE 2 i s 
small compared to that i n PILE 1 but the two bending moment 
p r o f i l e s are very d i f f e r e n t . 

Comparison of the p r o f i l e s f o r s i n g l e p i l e and PILE 1 f o r 
spacings 4d and 6d are given i n f i g u r e s 7.22 and 7.23 
r e s p e c t i v e l y . A large amount of reduction can be seen i n the 
PILE 1 than the s i n g l e p i l e . This can be co n t r i b u t e d to the 



CHAPTER 7 86 

Legend 
Pile 1 S = 4 D 

HG = 60 

372 

300 

2 0 0 + 

cn 
CD 

X 
100 

-60 - 4 0 - 2 0 0 20 40 w - 2 0 0 0 - 1 0 0 0 0 
Shear Force, N. Bending Moment, N - m m . 

Figure 7.19 Bending Moment Profile ( S / D = 4) 
Legend 
T o a d 0.5 N. 1.0 N. 2.0 N. 4.0 N. I Pile 1 S2C1S6 ^ D = - 5 § 

-4 - 2 0 2 4 6 - 2 0 0 - 1 5 0 - 100 - 5 0 0 50 
Shear Force, N. Bending Moment, N - m m . 

F i g u r e 7 . 2 0 B e n d i n g M o m e n t P r o f i l e ( S / D = 6) 



CHAPTER 7 

L e g e n d 

_oad 16 N. 2 4 N. 3 2 N. 4 0 N. 
S / D = 2 

HG = 6 0 

372 

300 

200 + 

'CU 
X 100 + 

0 

S 2 C 1S2 

40 -20 0 20 40 60 
S h e a r F o r c e , N. 

372 

300 

200 

"100 

0 

S 2 C 1S2 
-G,-U 

P ILE 1, 
P i l e 1 P i l e 2 

2000 -1000 0 500 
B e n d i n g M o m e n t , N — m m . 

F i g u r e 7 . 2 1 C o m a p r i s o n Of B e n d i n g M o m e n t P r o f i l e s 

L e g e n d , , 
' L o a d ( N ) 

. P i l e 1. 
S i n g l e P i l e 

1 4 ZD 3 Z 
S / D = 4 
HG = 6 0 

372 

300 

200 
cn 

'CD 
X 100 

S 2 C 1 S 4 

P i l e 1 P i l e 2 

372 

300 

E 

200 
CX> 

X 100 

S 2 C 1S4 

P i l e 1 P i l e 2 

O i l 

-60 -40 -20 0 20 40 60 -2000 -1000 0 
S h e a r F o r c e , N. B e n d i n g M o m e n t , N - m m . 

F i g u r e 7 . 2 2 C o m p a r i s o n Of B e n d i n g M o m e n t 



C H A P T E R 7 88 

presence of PILE 2. But as seen before, at a spacing of 6d, the 
PILE 2 i s sharing far l e s s bending moment as compared to a 
spacing of 4d and even i n that case the r e d u c t i o n i n bending 
moment i s s i g n i f i c a n t . The only reason for t h i s r e d u c t i o n i n 
bending moment can be an increase i n the s o i l s t i f f n e s s . This 
increase i n s t i f f n e s s i s due to the d e n s i f i c a t i o n during the 
p i l e i n s t a l l a t i o n . 

Figure 7.24 shows the d e f l e c t i o n and s o i l s t r e s s p r o f i l e s 
for PILE 2 at a spacing of 2d. The induced d e f l e c t i o n p r o f i l e s 
for spacings 4d and 6d are given i n f i g u r e s 7.25 and 7.26 
r e s p e c t i v e l y . Figures 7.24 to 7.26 show that as the spacing 
between the p i l e s i s increased the induced d e f l e c t i o n reduces 
c o n s i d e r a b l y . During the p i l e group t e s t program conducted by 
Schmidt(1981) , he conducted a study of the e f f e c t of the induced 
displacement on p i l e response. He used a two p i l e group 
p r e v i o u s l y subjected to c y c l i c loading and a p p l i e d l oad on one 
p i l e and measured the displacements and moments i n the other 
p i l e . He observed that the induced displacement has no 
r e l a t i o n s h i p w i t h the p i l e head response but as the 
displacements increased the maximum bending moment i n the p i l e 
i n creased. I t was a l s o observed that the induced displacement 
increases w i t h decreasing spacing. Thus c l o s e r the p i l e s are, 
more the induced displacement due to the p i l e group a c t i o n . 

The displacement p r o f i l e s for the P i l e 1 at a spacing of 2d 
are given i n f i g u r e 7.27. Figures 7.28 and 7.29 giv e the 
displacement p r o f i l e s of P i l e 1 at a spacing of 4d and 6d. I f 
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we compare these displacement p r o f i l e s w i t h the displacement 
p r o f i l e s of the s i n g l e p i l e at same load, we confirm that at the 
same load displacement of P i l e 1 i s smaller than that of the 
s i n g l e p i l e . Thus due to the presence of the adjacent p i l e the 
l o a d - d e f l e c t i o n response of the P i l e 1 i s s t i f f e r than that of 
the s i n g l e p i l e . On clo s e r observation, we n o t i c e that the 
displacement at of the p i l e at the loading p o i n t i s reduced i n 
far greater amount than at the ground l e v e l . S i m i l a r l y 
observations can be made i n other cases, although t h i s r e d u c t i o n 
decreases w i t h i n c r e a s i n g spacing. 

7 . 2 . 3 . 3 P-(y-y 0) CURVE 

Figure 7.30 shows P-(y-y 0) curves for PILE 1 at a spacing 
of 2d. The curves are shown for various depths. These curves 
show i n c r e a s i n g s t i f f n e s s w ith i n c r e a s i n g depth s i m i l a r to the 
s i n g l e p i l e response. But comparing the two responses we f i n d 
that at a spacing of 2d the response of PILE 1 i s s o f t e r than 
that of the s i n g l e p i l e . Figure 7.31 gives the P-(y-y 0) curves 
for spacing of 4d while f i g u r e 7.32 gives P-(y-y 0) curves for a 
spacing of 6d. I f we compare these responses w i t h that of the 
s i n g l e p i l e we observe that the response of the PILE 1 at a 
la r g e r spacing i s s t i f f e r than that of a s i n g l e p i l e . 

At a small spacing of 2d, the r e s i s t a n c e to the a p p l i e d 
load i s shared by P i l e 1 , P i l e 2 and s o i l . This f a c t i s a l s o 
shown by the bending moment p r o f i l e s . In the case of a l a r g e r 
spacing, most of the r e s i s t a n c e i s shared by only P i l e 1 and the 
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s o i l . The s t i f f e r P-y curves imply that the s o i l i s d e n s i f i e d 
during p i l e i n s t a l l a t i o n . This leads to the c o n c l u s i o n that at 
the small spacing e f f e c t of d e n s i f i c a t i o n i s small compared to 
the adjacent p i l e s t i f f n e s s while at l a r g e r spacing s i n c e the 
adjacent p i l e s t i f f n e s s i s n e g l i g i b l e the e f f e c t of 
d e n s i f i c a t i o n i s very prominent. 

7 . 2 . 3 . 4 C A S E 2 (p = 9 0 ° ) 

Figure 7.33 compares the load-displacement response of PILE 
1 w i t h that of the s i n g l e p i l e . The PILE 1 response i s for CASE 
2 i n which the angle between the loading d i r e c t i o n and the l i n e 
j o i n i n g the p i l e centres i s 90°. The response of the p i l e i s 
very s i m i l a r to that of the s i n g l e p i l e at smaller loads. At 
higher loads the PILE 1 response i s s t i f f e r due to the 
compaction of the s o i l during the i n s t a l l a t i o n of the two p i l e s . 

Figure 7.34 compares the bending moments i n the two p i l e s 
for two load cases. As seen from the f i g u r e PILE 2 r e g i s t e r e d 
zero bending moment. The spacing of the p i l e s was 2d. At 
spacings 4d and 6d s i m i l a r r e s u l t s were obtained. These shows 
that the presence of adjacent p i l e has no d i r e c t e f f e c t on the 
s i n g l e p i l e response. 

7 . 2 . 3 . 5 C A S E 3 ((3 = 1 8 0 ° ) 

In t h i s case, the load-displacement of PILE 1 was s i m i l a r 
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to that of the s i n g l e p i l e . Furthermore PILE 2 r e g i s t e r e d no 
e f f e c t , n e i t h e r displacements nor bending moments, due to the 
loa d a p p l i e d on PILE 1. The comparison of the bending moment 
p r o f i l e s at two d i f f e r e n t loads i s shown i n f i g u r e 7.35. While 
i n case 1 the s o i l between the two p i l e s was d e n s i f i e d due to 
the p i l e i n s t a l l a t i o n , i n t h i s the s o i l i n f r o n t of the PILE 1 
showed no e f f e c t s due to the i n s t a l l a t i o n of PILE 2 behind PILE 
1. 

7.2.4 SERIES I I I (S3) 

In t h i s s e r i e s both the p i l e s i n the p i l e group are loaded 
simultaneously. The distance between the p i l e s was v a r i e d from 
2d to 4d. The response of the p i l e was compared to both the 
s i n g l e p i l e as w e l l as the s i n g l e p i l e w i t h the adjacent p i l e . 
The two p i l e s i n the p i l e group were i n s t a l l e d simultaneously by 
pushing them i n the same d i r e c t i o n simultaneously. A s p e c i a l 
p i l e guide was developed for t h i s purpose. 

7.2.4.1 Load Displacement 

Figure 7.36 shows the response of a group of two p i l e s at 
a spacing of 2d to h o r i z o n t a l load a p p l i e d at an e c c e n t r i c i t y . 
During the load a p p l i c a t i o n , the displacement of the two p i l e s 
was kept equal by a r i g i d connection between the two p i l e s . The 
response of two p i l e s i s al s o shown separately i n the same 
f i g u r e . The spacing between the two p i l e s i n the p i l e group for 
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t h i s t e s t was 2d. The response of a s i n g l e p i l e subjected to 
l a t e r a l loads i s a l s o shown i n f i g u r e 7.36. As seen from the 
f i g u r e , the response of PILE 1 i s s o f t e r than the response of 
the s i n g l e p i l e . Response of PILE 2 i s much s i m i l a r to that of 
the s i n g l e p i l e . I t should be noted that most of the load 
a p p l i e d to the p i l e group i s taken by the PILE 2 (the lead 
P i l e ) . 

Figure 7.37 shows the response of the p i l e group w i t h 
spacing of 4d. I t a l s o shows the response of the i n d i v i d u a l 
p i l e s . These responses are compared wi t h the response of the 
s i n g l e p i l e . S i m i l a r to the 2d spacing, the PILE 2 c a r r i e s most 
of the load a p p l i e d to the p i l e group, but i n t h i s case the 
percentage of the load c a r r i e d by PILE 1 i s more than the 
previous case. Also the e f f i c i e n c y of the p i l e group i s more 
for a spacing of 4d than the spacing of 2d. The e f f i c i e n c y of 
the p i l e group i s defined as the r a t i o of the maximum load 
c a r r i e d by the p i l e group to the product of number of p i l e s and 
the load c a p a c i t y of s i n g l e p i l e . 

Schmidt (1981) showed that the load c a r r i e d by the f r o n t 
p i l e i s l a r g e r than the rear p i l e i n p i l e group of two p i l e s . 
Reese et a l (19 86) during t h e i r experiments on group of 
l a t e r a l l y loaded p i l e s n o t i c e d that the f r o n t p i l e takes l a r g e r 
loads and the P-y curve for the rear p i l e i s s o f t e r than that of 
the s i n g l e p i l e . They explained the overlapping of the pressure 
zones of the two p i l e s as the cause of t h i s behaviour. 
According to t h e i r hypothesis, the two pressure bulbs from the 
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two p i l e s caused weakening of the s o i l i n between the two p i l e s 
and thus the rear p i l e c a r r i e d l e s s load than the f r o n t p i l e . 

Byrne et a l (1986), Yan and Byrne (1990) suggested that 
casings and platforms can be modelled by c o n s i d e r i n g f r e e f i e l d 
movements. According to t h i s theory, when a p i l e moves the 
adjacent p i l e i s subjected to the f r e e f i e l d movements. These 
movements a f f e c t the behaviour of the adjacent p i l e . P r e v i o u s l y 
i t has been seen that p u l l i n g adjacent p i l e away has no e f f e c t 
on the p i l e i n c o n s i d e r a t i o n . But i n t h i s case since the two 
p i l e s are j o i n e d at the top, thus e n f o r c i n g equal displacements, 
there are two e f f e c t s . One e f f e c t i s that the fre e f i e l d 
movements caused by PILE 1 are a c t i n g on PILE 2 and i n reverse 
movements of PILE 2 are causing a forced free f i e l d movement of 
PILE 1. This concept i s u t i l i z e d i n analysing the p i l e response 
i n CHAPTER 8 . 

7.2.4.2 P-y CURVES 

Figure 7.38 shows the P-y curves f o r PILE 1 i n the p i l e 
group of two p i l e s . The curves are given f o r a spacing of 2d 
and f o r d i f f e r e n t depths. Figure 7.39 shows the P-y curves f o r 
PILE 1 f o r a p i l e group of two p i l e s with a spacing of 4d. 

I f we compare the two f i g u r e s , the response of the PILE 1 
i n both the t e s t s i s s i m i l a r . Comparing the response of PILE 1 
with that of the s i n g l e p i l e we observe that the response of the 
PILE 1 i n the p i l e group i s s o f t e r than that of the s i n g l e p i l e . 

As explained before Reese et a l (1986) suggested that t h i s 
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i s due to the overlapping of the pressure zones form the two 
p i l e s i n the p i l e group. But as seen from CASE 2, the p i l e 
i n s t a l l a t i o n c a u s e s d e n s i f i c a t i o n of the s o i l i n between the two 
p i l e s . Hence t h i s s o f t e n i n g i s due to the f r e e f i e l d 
displacements imposed by the equal displacement c o n d i t i o n s on 
the p i l e s i n the p i l e group. 

7.2.4.3 Bending moment P r o f i l e 

The bending moment p r o f i l e for the t r a i l i n g p i l e (PILE 1) 
i s shown i n f i g u r e 7.40 and f i g u r e 7.41 compares i t w i t h the 
p r o f i l e of s i n g l e p i l e . The f i g u r e shows the bending moment and 
shear fo r c e p r o f i l e s for a t r a i l i n g p i l e when both the p i l e s are 
given same displacements under d i f f e r e n t loads. 

When a p i l e group i s subjected to l a t e r a l l oad the p i l e 
group response i s e f f e c t of 
1. P i l e - s o i l - p i l e i n t e r a c t i o n 
2. P i l e - p i l e c a p - p i l e i n t e r a c t i o n 
3. A x i a l push-pull e f f e c t on the p i l e group due to the 

e c c e n t r i c i t y of the load. 
In the t e s t s conducted the p i l e head connections were f r e e 

connections. In t h i s connection, the p i l e head i s allowed to 
r o t a t e f r e e l y . Due to t h i s s p e c i a l type of connection only 
p i l e - s o i l - p i l e i n t e r a c t i o n was a f f e c t i n g the group response. As 
seen i n the p r o f i l e s for the s i n g l e p i l e s the maximum bending 
moment i s about 3 to 4 diameters below the ground s u r f a c e . In 
f i g u r e 7.41, i t can be seen that the maximum bending moment i n 
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the p i l e remains the same i r r e s p e c t i v e of whether the p i l e was 
used i n the p i l e group or alone. The only d i f f e r e n c e i s that i n 
the p i l e used i n p i l e group there i s downward s h i f t i n the 
maximum bending moment.This s h i f t can be seen i n more 
prominently i n the shear force p r o f i l e s . 

In t h e i r study K u l k a r n i et al(1985) subjected a two p i l e 
group to a l a t e r a l load i n l i n e w i t h the p i l e s . They observed 
that the bending moment i n the rear p i l e i s much l e s s than that 
i n the f r o n t p i l e . Their r e s u l t s show that the bending moment 
i n the rear p i l e i s l e s s than h a l f that of the f r o n t p i l e . 
According to the e l a s t i c s o l u t i o n , both the p i l e s should c a r r y 
equal load and the bending moments developed i n both the p i l e s 
should be equal. Due to the load t r a n s f e r mechanism between two 
p i l e s observed before i n the Seri e s 2, the rear p i l e c a r r i e s 
much l e s s load than the f r o n t p i l e . I f we compare the maximum 
bending moment of the f r o n t p i l e and the rear p i l e at the equal 
load, we can observe that the both the p i l e s develop equal 
bending moment. 

The f i g u r e 7.42 gives the d e f l e c t i o n and s o i l pressure 
p r o f i l e s of the t r a i l i n g p i l e . Again i t can be seen that the 
len g t h of the p i l e model below 150mm i s p r a c t i c a l l y i n e f f e c t i v e 
i n r e s i s t i n g the h o r i z o n t a l load at the top. S i m i l a r l y the 
bending moment, shear force p r o f i l e s for spacing of 4d are given 
i n f i g u r e 7.43. When the t r a i l i n g p i l e response of the p i l e 
group w i t h 4d spacing i s compared wi t h that of the s i n g l e p i l e 
i n f i g u r e 7.44 as expected there i s a smaller s h i f t between the 
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maximum bending moment of the two p i l e s than the p i l e group of 
spacing 2d. I f f i g u r e s 7.41 and 7.44 are compared, i t can be 
seen that the d i f f e r e n c e i n depth of maximum bending moment 
between PILE 1 and s i n g l e p i l e reduces as the spacing i s 
increased. Also the amount of the negative bending moment 
developed i n the mid-section of the p i l e i s much l e s s i n the 
p i l e group than the s i n g l e p i l e . 

The d e f l e c t i o n and s o i l pressure p r o f i l e s f o r the t r a i l i n g 
p i l e i n p i l e group of spacing 4d are given i n the f i g u r e 7.45. 
The f i g u r e 7.4 6 compares the bending moment and shear force 
p r o f i l e s f o r the SERIES 1, 2, and 3 f o r the p i l e group of spacing 
2d. I t can be seen that i n the SERIES 1 and 3 the maximum 
bending moment i s of the same magnitude while i n the SERIES 2 
the bending moment i n the p i l e i s reduced considerably due to 
the presence of the adjacent p i l e . 

This i s due to the f a c t t h a t , since i n SERIES 2 the second 
p i l e i s not loaded, part of the bending moment i s t r a n s f e r r e d to 
the adjacent p i l e and at the same time, d e n s i f i c a t i o n of the 
s o i l a l s o reduces the bending moment i n the p i l e . In SERIES 3, 
although the surrounding s o i l i s d e n s i f i e d , the e f f e c t i s not 
taken i n t o account since the p i l e i n front (PILE 2) i s al s o 
moving the same distance (at ground l e v e l ) i n the same 
d i r e c t i o n . S i m i l a r , observations can be made i n the f i g u r e 7.47 
for a p i l e group of spacing 4d. Figure 7.47 compares the 
bending moment and shear force p r o f i l e s of the P i l e 1 i n a l l the 
three cases . 
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7.3 SUMMARY AND CONCLUSIONS 

110 

This chapter gives the r e s u l t s of the l a t e r a l l o a d t e s t s 
conducted on the s i n g l e p i l e and group of two p i l e s . The t e s t s 
were conducted at a h y d r a u l i c gradient of 60 and s o i l comprised 
of the f i n e Ottawa sand. The t e s t s were conducted i n three 
s e r i e s 

SERIES 1 - Si n g l e p i l e loaded h o r i z o n t a l l y 
SERIES 2 - Si n g l e p i l e loaded h o r i z o n t a l l y w i t h an 
adjacent p i l e present. 
SERIES 3 - P i l e group of two p i l e s loaded h o r i z o n t a l l y 

The r e s u l t s of the t e s t s were compared w i t h the s i n g l e p i l e 
r e s u l t s . In the s e r i e s 2 the p i l e s were t e s t e d at three angles, 
0°,90° and 180°. I t was found that the load i n g i n the 90° or 180° 
has very l i t t l e e f f e c t on the adjacent p i l e . In both these 
cases, both the p i l e s showed no e f f e c t of the presence of the 
adjacent p i l e on e i t h e r the load-displacement response or 
changes i n s t r e s s c o n d i t i o n s . 

In case of the 0° of loading, i t was found out that the 
i n s t a l l a t i o n of adjacent p i l e tends to increase the d e n s i t y of 
the surrounding s o i l . Due to t h i s e f f e c t the response of the 
p i l e i n SERIES 2 was s t i f f e r than the s i n g l e p i l e . Since i n 
SERIES 3 both the p i l e s i n the p i l e group are loaded and the 
displacements of both the p i l e s are made equal i t was important 
to n o t i c e the load sharing of the two p i l e s . I t was seen that, 
the f r o n t p i l e of the two p i l e s shared a l a r g e amount of the 
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load. The response of the f r o n t p i l e was found to be s i m i l a r to 
the response of the s i n g l e p i l e . The d e n s i f i c a t i o n e f f e c t due 
to the i n s t a l l a t i o n of adjacent p i l e was not observed for the 
f r o n t p i l e . 

In case of the rear p i l e , i t was n o t i c e d that the rear p i l e 
shares very l i t t l e amount of the t o t a l load a p p l i e d to the group 
at a small spacing. As the spacing increases, the amount of 
load shared by the rear p i l e a l s o increases. This may be due to 
the f a c t that the two p i l e s were subjected to the same 
displacements. From SERIES 2, i t i s seen that the same rear 
p i l e showed s t i f f e n i n g e f f e c t s , due to the d e n s i f i c a t i o n of sand 
during p i l e group i n s t a l l a t i o n . I r r e s p e c t i v e of t h i s e f f e c t , 
the rear p i l e showed a very response to the p i l e group loads. 
This i s mainly due to the reason that most of the load a p p l i e d 
to the s o i l i s taken by the f r o n t p i l e and as the s o i l i n f r o n t 
of the f r o n t p i l e i s s o f t e r than the s o i l i n between the two 
p i l e s , i t y i e l d s f i r s t . As soon as t h i s y i e l d i n g s t a r t s , the 
f r o n t p i l e s t a r t s moving with the s o i l and the rear p i l e and the 
s o i l mass i n between a l s o s t a r t s moving without a c t u a l l y 
reaching the y i e l d p o i n t . 

I t was observed during the loading of the p i l e group that 
the depth of the maximum bending moment developed i n the p i l e 
i n c r e a s e s w i t h the decreasing spacing. This i s due to the f a c t 
that as the spacing decreases the f r o n t p i l e shares the load 
a p p l i e d on the rear p i l e through the s o i l . Due to t h i s the 
maximum bending moment i n the f r o n t p i l e i n the p i l e group i s 
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greater than the s i n g l e p i l e and at greater depth. 

In the next chapter an attempt i s made to p r e d i c t the 
behaviour of the p i l e i n the p i l e group and to p r e d i c t the 
bending moments and shear forces i n the p i l e c o r r e c t l y using the 
LATPILE program. 
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C H A P T E R 8 : P R E D I C T I O N O F T H E P I L E GROUP R E S P O N S E 

8.1 INTRODUCTION 

In t h i s chapter, the r e s u l t s from the a n a l y s i s of the p i l e 
group of two p i l e s using the program LATPILE are compared with 
the experimental r e s u l t s . The d e t a i l s of the a n a l y s i s are 
explained below. The program LATPILE i s f i r s t used f o r the 
s i n g l e p i l e t e s t data. The LATPILE program uses the P-y curve 
approach to analyze the p i l e . The P-y curves are s p e c i f i e d at 
various depths, the boundary c o n d i t i o n s are given and then the 
appropriate loads are a p p l i e d on the p i l e . The program and the 
concept used i n the a n a l y s i s are discussed b r i e f l y before the 
d i s c u s s i o n of the p r e d i c t i o n r e s u l t s . 

8.2 THE FREE FIELD CONCEPT AND ITS APPLICATION 

The LATPILE program uses the P-y curve approach f o r a n a l y s i n g 
the p i l e foundation. In t h i s approach the s o i l system i s 
replaced by a system of h o r i z o n t a l nonlinear s p r i n g s . The s p r i n g 
i s attached at one end to the p i l e and at the other end to a 
free end instead of f i x e d support. Thus free f i e l d movements 
cause the sp r i n g ends to d e f l e c t r e s u l t i n g i n load and 
d e f l e c t i o n i n the p i l e s . 

The r e l a t i o n s h i p between the force and d e f l e c t i o n of the 

sp r i n g of s t i f f n e s s K i s given by 
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P = K y eq. (8 . 1) 
The displacement of the free f i e l d ends of the springs are 

assumed to be known. Thus the s o i l r e a c t i o n term i s now given 

by 
P = k ( y - y 0 ) eq. ( 8 .2 ) 

Where P i s the S o i l force per u n i t depth of the p i l e , known as 
s o i l r e a c t i o n 

K i s the s o i l s t i f f n e s s c o e f f i c i e n t or the s p r i n g 

s t i f f n e s s 

y i s the d e f l e c t i o n of the p i l e r e l a t i v e to i t s i n i t i a l 

p o s i t i o n . 
y 0 i s the free f i e l d d e f l e c t i o n , assumed to be known 
The governing equation becomes 

El^l+P £ l +k(y-yo)=0 eq. (8.3) 
dx* ' dx2 ° 

where E i s the Young's modulus of the p i l e ; 
I i s the second moment of area of the p i l e about i t s 

n e u t r a l a x i s ; 
P x i s the a x i a l force i n the p i l e and 
x i s v e r t i c a l coordinate. 

This equation can be r e w r i t t e n as f o l l o w s 



CHAPTER 8 116 
This equation represents a c o n d i t i o n when the s p r i n g ends 

are f i x e d and the p i l e i s subjected to a l a t e r a l load k y 0. I f 
the s o i l i s l i n e a r then the s o i l s p r i n g s t i f f n e s s i s constant 
and since y 0 i s known, the response of the p i l e can be obtained 
e a s i l y . 

These d e f l e c t i o n s of the free f i e l d ends of the springs 
may be due t o ground movement or loads from adjacent p i l e s . I f 
t h i s concept i s a p p l i e d to the p i l e group a n a l y s i s then i t can 
be s a i d that the load on one p i l e causes a fre e f i e l d 
displacement i n the adjacent p i l e which i f determined can be 
used as the f r e e f i e l d d e f l e c t i o n of the p i l e . Free f i e l d 
d e f l e c t i o n i s defined as the d e f l e c t i o n at the l o c a t i o n of a 
p i l e that would occur from loading adjacent p i l e s . Thus the 
a n a l y s i s of a p i l e w i t h i n a group now reduces to c a l c u l a t i n g the 
response of the s i n g l e p i l e under i t s a p p l i e d load together with 
i t s response to the free f i e l d d e f l e c t i o n s a r i s i n g from the 
loads on the other p i l e s i n the p i l e group. 

In t h i s chapter an attempt i s made to analyze the p i l e 
group of two p i l e s using the above concept. 

8 . 3 PREDICTION OF PILE RESPONSE 

The P-y curves developed from the s i n g l e p i l e t e s t r e s u l t s 
were used i n the LATPILE program. The a n a l y s i s was c a r r i e d out 
i n three steps as f o l l o w s . 

In the f i r s t step the response of the s i n g l e p i l e under a 
h o r i z o n t a l load was compared with the experimental r e s u l t s and 
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i s given i n Figure 8.1. I t was found that LATPILE p r e d i c t s the 
response of the s i n g l e p i l e very a c c u r a t e l y i f the P-y curves 
obtained from the experiments are used. 

In the second step, p i l e response to loads on adjacent 
p i l e s was analysed. The p i l e displacement, moment and shear 
for c e p r o f i l e s were obtained from SERIES 2. In the LATPILE 
a n a l y s i s , the p i l e was subjected to free f i e l d displacement 
equal to the p i l e displacement observed i n the experiment. The 
d i f f e r e n c e between the input f r e e f i e l d displacement and the 
p i l e displacement was very small. The bending moment and shear 
for c e p r o f i l e s from the a n a l y s i s were compared w i t h the p r o f i l e s 
obtained from the experiments. Figures 8.2 to 8.6 give 
comparisons of various load cases and spacings. I t should be 
noted that although the distance between the p i l e s i s i n c r e a s i n g 
and the bending moment i s reducing considerably, the LATPILE 
p r e d i c t i o n s are very good. 

In the t h i r d step, LATPILE program was used to analyse the 
response of a s i n g l e p i l e i n group. The p i l e was analysed under 
a combination of load and free f i e l d displacement. At t h i s p o i n t 
i t should be remembered that the loads on both the p i l e s are 
d i f f e r e n t . Therefore the free f i e l d displacement w i l l correspond 
to a d i f f e r e n t magnitude of load than the a p p l i e d load. 

8.3.1 COMPARISON OF BENDING MOMENT 

The comparison between the experimental r e s u l t s f or the 
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t r a i l i n g p i l e and s i n g l e p i l e are given i n f i g u r e s 8.7-8.8 w i t h 
the LATPILE p r e d i c t i o n for the t r a i l i n g p i l e . I t i s q u i t e c l e a r 
that although the program i s p r e d i c t i n g the maximum bending 
moment very c l o s e l y the bending moment p r o f i l e along the l e n g t h 
of the p i l e i s q u i t e d i f f e r e n t from that obtained form the 
experiment. During the loading of the p i l e i t i s observed that 
due to the p i l e s o i l gaping the depth of maximum bending moment 
tends to increase along the p i l e length. This may account for 
the small discrepancy i n the a n a l y t i c a l r e s u l t s and the 
experimental r e s u l t s . One more important c o n s i d e r a t i o n i s that 
the adjacent p i l e i n SERIES 2 showed no e f f e c t when the loaded 
p i l e was p u l l e d away for the purposes of a n a l y s i s . In the 
experiment however both the p i l e s were d i s p l a c e d e q u a l l y hence 
for the purposes of a n a l y s i s i t was assumed that the f r e e f i e l d 
e f f e c t i n e i t h e r d i r e c t i o n w i l l be same. 

8.3.2 LOAD DISPLACEMENT RESPONSE 

The load displacement curves were used to c a l c u l a t e the 
i n t e r a c t i o n f a c t o r a which i s then compared w i t h the i n t e r a c t i o n 
f a c t o r from va r i o u s methods. The comparison i s given i n f i g u r e 
7 .14 . 

The i n t e r a c t i o n f a c t o r s are c a l c u l a t e d using methods based 
on the e l a s t i c theory. These methods are discussed i n d e t a i l i n 
CHAPTER 3. The i n t e r a c t i o n f a c t o r s were c a l c u l a t e d for a p i l e 
group of two p i l e s with the load a p p l i e d at an e c c e n t r i c i t y of 
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62mm. The e f f e c t of the boundary was taken i n t o c o n s i d e r a t i o n 
w h i l e c o n s i d e r i n g the i n t e r a c t i o n f a c t o r s . 

8.4 SUMMARY 

In t h i s chapter, the r e s u l t s of the SERIES 2 were used to 
analyze p i l e groups i n SERIES 2 and 3. In SERIES 2, very good 
r e s u l t s were obtained, whereas i n SERIES 3 some d i f f e r e n c e was 
observed although t h i s d i f f e r e n c e was very s m a l l . In both the 
cases, the induced displacements of the p i l e were obtained from 
the SERIES 2 and were used as the fre e f i e l d displacements i n 
LATPILE program. The program c a l c u l a t e d the p i l e displacements 
and bending moments based on the fre e f i e l d as exp l a i n e d 
e a r l i e r . The r e s u l t s were remarkably good for the back a n a l y s i s 
of SERIES 2. The bending moments and the displacement p r o f i l e s 
of the p i l e were e x a c t l y as recorded during the experiment. In 
SERIES 3, the s l i g h t d i f f e r e n c e i n the p r o f i l e s of the LATPILE 
r e s u l t s and the experimental data i s due to the f a c t that i n 
a d d i t i o n to the free f i e l d imposed on the p i l e , the 
d e n s i f i c a t i o n of the s o i l i n fr o n t of the rear p i l e has to be 
taken i n t o account. Since most of the load i s being c a r r i e d by 
the f r o n t p i l e , and the s o i l ahead of the f r o n t p i l e i s not 
a f f e c t e d the r e s u l t s of the LATPILE are f a i r l y c l o s e to the 
experimental data. A more d e t a i l e d study on the a p p l i c a b i l i t y 
of t h i s method to various cases of p i l e groups i s r e q u i r e d . 
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C H A P T E R 9 : SUMMARY AND C O N C L U S I O N 

In t h i s study the p i l e group response to the l a t e r a l load 
i s s t u d i e d i n the laboratory using the H y d r a u l i c Gradient 
S i m i l i t u d e T e s t i n g Device. While conducting model t e s t s , i t i s 
important to conduct the t e s t at f i e l d s t r e s s l e v e l of the s o i l 
sample so as to get r e a l i s t i c r e s u l t s . The HGS method i s a very 
e f f e c t i v e way to conduct a model t e s t at f i e l d s t r e s s l e v e l s . 

The o b j e c t i v e s of the study were to generate a database for 
the p i l e group response under l a t e r a l loads and study the 
i n t e r a c t i o n between two p i l e s as w e l l as p i l e - s o i l i n t e r a c t i o n 
e f f e c t s . I t was found that the h y d r a u l i c gradient t e s t r e s u l t s 
are repeatable and r e l i a b l e . 

The H y d r a u l i c Gradient S i m i l i t u d e Method i s a very simple 
and c o s t - e f f e c t i v e way of conducting model s t u d i e s . The main 
drawback i s that, i t can be used only for s o i l - s t r u c t u r e s 
c o n s i s t i n g of uniform sand with h o r i z o n t a l flow boundaries. But 
even w i t h these r e s t r i c t i o n s a vast number of problems i n c l u d i n g 
the p i l e groups can be studied very e f f e c t i v e l y . Some of the 
a p p l i c a t i o n s of the Hydraulic Gradient S i m i l i t u d e modelling 
technique are as f o l l o w s 

P i l e group response to c y c l i c l o a d i n g as w e l l as 
earthquake loading. 
Response of s i n g l e p i l e and p i l e groups i n l i q u e f i e d 
m a t e r i a l . 
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E f f e c t s of p i l e d r i v i n g on the p i l e c a p a c i t y and the 
energy t r a n s f e r during the p i l e d r i v i n g . 

Tests were conducted on s i n g l e p i l e s , s i n g l e p i l e s i n the 
presence of adjacent p i l e and p i l e group comprised of two p i l e s . 
The r e s u l t s from a l l the t e s t s were discussed i n the chapter 7. 
Tests were conducted w i t h various spacings between the p i l e s and 
wi t h v a r i o u s angles of loading. 

From the t e s t s on the s i n g l e p i l e , bending moment, shear 
f o r c e and d e f l e c t i o n p r o f i l e s were obtained. When the s i n g l e 
p i l e was loaded i n the presence of adjacent p i l e , i t was found 
that the adjacent p i l e increases load r e s i s t a n c e by i t s own 
s t i f f n e s s and by d e n s i f y i n g the s o i l surrounding the p i l e . The 
e f f e c t of the adjacent p i l e depends on i t s p o s i t i o n r e l a t i v e to 
the loaded p i l e . When the adjacent p i l e was at 9 0° to the 
a p p l i e d load or when the adjacent p i l e was away from the 
d i r e c t i o n of the a p p l i e d load i t was observed that the adjacent 
p i l e has no e f f e c t on the p i l e response. 

In the p i l e group t e s t i n g , i t was seen that the t r a i l i n g 
p i l e shared l e s s load than the lea d i n g p i l e . As the p i l e 
spacing increased the percentage of load c a r r i e d by the t r a i l i n g 
p i l e a l s o increased. The maximum bending moment developed i n 
the l e a d i n g p i l e i s at a lower depth than that of the s i n g l e 
p i l e . A l s o the maximum bending moment i n l e a d i n g p i l e i s 
s i m i l a r to that developed i n s i n g l e p i l e . 

Thus whether the p i l e s are loaded simultaneously or not, 
lo a d i n g a t r a i l i n g p i l e w i l l cause d e f l e c t i o n of the l e a d i n g 
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p i l e and bending moment w i l l be developed i n the l e a d i n g p i l e as 
consequence of the load a p p l i e d on t r a i l i n g p i l e . Whereas the 
loa d i n g of le a d i n g p i l e w i l l not a f f e c t t r a i l i n g p i l e except 
through p i l e - c a p - p i l e i n t e r a c t i o n . 

A l l the t e s t r e s u l t s were compared w i t h the r e s u l t s from 
LATPILE a n a l y s i s . In LATPILE a n a l y s i s P-y curves obtained from 
the s i n g l e p i l e t e s t were used. LATPILE a n a l y s i s was used to 
p r e d i c t s i n g l e p i l e response, response of the adjacent p i l e and 
response of the lead i n g p i l e i n the p i l e group. I t was seen that 
LATPILE p r e d i c t i o n s and t e s t r e s u l t s agree q u i t e w e l l for s i n g l e 
p i l e as w e l l as for the adjacent p i l e . In case of the l e a d i n g 
p i l e i n a p i l e group, although the maximum bending moment 
p r e d i c t i o n s were good, the bending moment p r o f i l e i s q u i t e 
d i f f e r e n t than the experimental p r o f i l e . 
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