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Abstract

A failure analysis procedure based on the elastic-plastic finite element analysis of the

higher order beam is presented to predict the mode II and ifi failure of impulsively loaded

ductile clamped beams.

The variational equation of motion of the problem is first obtained by using the principle

of virtual work and the Total Lagrangian Approach together with the kinematics of the

higher order beam theory and the nonlinear strain-displacement relation. The Finite

Element Method is employed to discretize the beam spatially initiating the numerical

solution procedure. The constitutive model considers elastic-plastic isotropic strain

hardening by von Mises yield criterion and associated flow rule and strain rate sensitivity

by Cowper-Symonds relationship. Equations of motion are integrated by central

difference method in the time domain.

Based on the finite element simulation, two failure criteria are proposed. In the

interaction failure criteria, contributions from tensile tearing and transverse shearing to the

damage of the beam are considered by including tensile strain ratio and shear stress ratio in

the criteria. Both linear and quadratic models are investigated. The beam is modelled as

an elastic-plastic beam with a plastic hinge at each support to calculate the total strain at

the support. The shear stress comes either from the wall reaction obtained from

equilibrium or directly from the finite element analysis of the higher order beam theory. In

the sectional plastic work density criterion, the beam is assumed not to fail until the

sectional plastic work density exceeds the critical value. Post failure analysis is also

included to take account of the residual energy of the beam at failure.
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Numerical simulations have been carried out for the experiments of blast loaded beams.

Comparison with the experimental results suggests the quadratic interaction criteria is

suitable for this type of analysis.
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Chapter 1

Introduction

1.1 Background

It is becoming increasingly necessary to examine the influence of impact loading on

structures in the design of various engineering systems. An understanding of the inelastic

response of structures subjected to dynamic loads which cause permanent displacements

or structural damage is required for various branches of engineering. For example, to

avoid the destructive action of earthquakes on buildings, such an understanding can be

used to guide the development of rational design procedures. This knowledge is also

essential to estimate the slamming and wave damage to ships and other marine vehicles.

In addition it is applicable in studying the response of reentry vehicles and military vehicles

subjected to blast.

Examining the influence of impact loading conditions on complete structures is quite

complicated because the influence will depend on the type of structure on which the

impact load is applied. As a simplification, research is restricted to estimating the

influence of impact loading on individual structural components, such as beams and plates.

Refs. [1] through [5] give a detailed review in this area. The present work is concerned

with the inelastic response of beams subjected to impulsive loadings which cause

permanent deformation or damage.
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As noted in Ref. [1], in addition to producing an overall structural response of the beam,

a dynamic load causes stress waves to travel through the thickness of the beam. When the

impact loads are severe enough this transverse propagation of stress waves can cause

failure of the beam in the form of spalling. This type of failure occurs very early (usually

within microseconds of the initial impact) while the overall structural failure lasts longer by

a few orders of magnitude. It is therefore customary to uncouple this early wave

propagation behaviour of the beam from the overall structural response. The present

work focuses on the overall response of the beam by assuming the external dynamic load

is applied to the mid-surface of the beam instantaneously.

Menkes and Opat [6] conducted a series of experiments on the overall inelastic

structural response of filly clamped metal beams with rectangular cross sections which are

subjected to transverse impulsive loadings. From the experiments, three failure modes

were identified as the load is monotonically increased, shown in Fig. 1.1. The failures

were characterized as: mode I, large permanent ductile deformations of the entire beam;

mode II, tensile fracture of the extreme fibre at the supports; or mode ifi, transverse shear

failure at the supports. To date, extensive research has been done on blast loaded beams.

However, most of this work deals just with large inelastic deformation, i.e. mode I failure,

and only limited research has been done on the dynamic rupture of beams, i.e. mode II and

ifi failure.

One of the few researchers who has studied the dynamic rupture of beams is N. Jones

[7,8]. He proposed a simple rigid-plastic method of analysis, which considers the

influence of finite displacements. This analysis, which accounts for the influence of

membrane and bending forces, gave good agreement with the Menkes and Opat’s

experimental data from the beams which suffered mode I failure. To predict the onset of
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(C)

Fig 1.1 Three failure modes associated with the clamped metal beams loaded impulsively

[8j. (a) mode I, large permanent ductile deformations. (b) mode II, tensile tearing at

supports. (c) mode ifi, transverse shear failure at supports.

(a)

(b)
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mode II failure, the beam is modelled with plastic hinges at the supports and mid-span.

After the maximum strain is calculated by using the model of plastic hinge, the threshold

condition for a mode II failure can be obtained by equating the maximum strain to the

static uniaxial rupture strain of the material. A square yield criterion relating the

membrane force and the bending moment is used. To estimate the threshold for mode ifi

failure, the concept of transverse shear slide (which is analogous to the concept of a

plastic bending hinge) is specified as an idealization of rapid changes of slopes across a

short length of the beam. The mode ifi failure is then assumed to occur when the amount

of the transverse shear sliding at the supports reaches the beam thickness. Here, a square

yield condition relating the transverse shear force and bending moment is used. It is stated

that encouraging agreement with the experimental data for the onset of both mode II and

ifi has been obtained. However, Jones neglected elastic deformation and the effect of

transverse shear on deformation. The interaction effect between the tensile and shear

action (which both contribute to mode II and ifi failure) is also not included.

In the rigid-plastic theory, as employed in Refs. [7,8], material elasticity is ignored when

the external dynamic energy is significantly greater than the maximum amount of strain

energy which can be absorbed in a wholly elastic manner. However, according to Ref. [1],

for material elasticity not to exercise a dominant influence, the external dynamic energy

must be at least five times larger than the corresponding strain energy which can be

absorbed in a wholly elastic manner. Moreover, when the durations of external pressure

pulses are comparable to the natural period of elastic vibration, the material elasticity can

also have a significant influence on the response of the beam.

Fagnan [10] predicted the onset of mode II and III failures while accounting for the

effect of finite displacement based on the finite element procedure for the classical Euler

Bernoulli beam proposed by Folz [9]. To predict the mode II failure, Fagnan also used the
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plastic hinge model for calculating the maximum strain at the support, and defines that

mode II failure occurs when the maximum strain reaches the rupture strain in the static

uniaxial tensile test. For the mode ifi failure, it is assumed that rupture of the beam

occurs when the shear stress exceeds the ultimate shear strength. Because analyses based

on the classical Euler-Bernouffi beam cannot estimate shear stress, it is calculated from the

wall reaction force obtained from the equilibrium of the symmetric beam. Yet, this theory

still does not consider the transverse shear effect on the deformation of the beam and the

interaction between the tensile and shear action. Furthermore, the Euler-Bernoulli beam

theory is proved to be fundamentally inadequate for the analysis of impact conditions.

Nonphysical results have been reported that waves of infinitesimal wavelength (which

means discontinuities) propagate with infinite velocity. It can be shown that satisfactory

results are achieved only for lower modes and the shear-stress series for this theory are

non converging [6].

According to Ref. [1], the transverse shear effect is believed to have a more important

influence on the response of beams when loaded dynamically than when loaded statically.

Ref. [14] also points out that the effect of shear flexibility and rotary inertia play an

important role in theories of beam vibration and dynamic behaviour under impulsive

loading and it should not be ignored in the analysis. As to the interaction, no sharp

distinction is found between failure modes II and ifi. Failures involving both of these

modes were observed when the beams were subjected to impulsive loadings in the range

between mode II and ifi thresholds. Therefore, interaction effects of both tensile and

shear actions should be included in the failure conditions.

A more universal energy criterion to predict the inelastic failure modes of beams loaded

impulsively and which includes effects of bending, membrane and shear action, is

suggested by N. Jones and W.Q. Shen [11,12]. The rupture of the beam is assumed to
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occur when the actual plastic work absorbed in a plastic hinge exceeds the critical value.

The length of the plastic hinge is shown to vary with f3, the ratio of the plastic shear work

to the total plastic work dissipated in the plastic hinge, according to an empirical relation.

The mode ifi failure occurs when the ratio 13 reaches the critical value. As before, this

method assumes a rigid-plastic material, which neglects the elastic deformation. An

empirical relationship between the plastic hinge length parameter and the energy ratio 13 is

not confirmed. Further experimental and theoretical studies are required to assess the

accuracy of the failure condition.

The present research overcomes many of the above limitations. As explained later, the

present work is based on elastic-plastic finite element analysis [13]. It considers the non

uniform transverse shear effect by using a higher order beam theory. And, it includes the

interaction effect of tensile and shear actions in the failure conditions.

1.2 Purpose and Scope

As stated in the previous section, the purpose of the present work is to develop a simple

failure criterion to predict the onsets of mode II and ifi failure for impulsively loaded

beams based on the elastic-plastic finite element analysis of the higher order beam [13].

After the failure criterion is incorporated into the finite element analysis, responses

(including failure mode) of beams loaded impulsively in the full range of intensities will be

solved.

Only the overall structural response of the beam is considered, which includes large

inelastic deformation and/or rupture. Within this research scope, initially straight
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rectangular beams, with at least one axis of cross-sectional symmetry, undergo moderately

large planar deflection but small strains.

The finite element formulation using the higher order beam theoiy is presented in

Chapter 2. To account for the non uniform shear distribution across the beam depth,

higher order beam kinematics is used to describe the beam’s geometry. Since the stress

state is two dimensional, von Mises yield condition and associated flow rule as well as

Hooke’s law is used in the elastic-plastic constitutive relation. The Virtual Work Principle

and Total Lagrangian Approach are utilized to obtain the variational equation of motion,

and the finite element method is applied to determine the finite element formulation. The

spatially discretized equations of motion are then solved by integration over the time

domain with central difference. Chapter 3 discusses the modeling of the failure prediction

of the problem. Two kinds of failure criteria are formulated. In the interaction failure

conditions, interaction is exhibited in the way that the failure function is a mathematical

function of both tensile and shear contribution. In the failure criterion using the plastic

work density theory, interaction is considered in that the sectional plastic work density

includes contributions from both tensile and shear stresses. To evaluate the accuracy and

efficiency of the failure modeling, numerical simulations of the experiments conducted by

Menkes and Opat are carried out. Results obtained from the simulations are compared to

the experimental results, and these are presented in Chapter 4. Finally, Chapter 5

summarizes the research work, draws conclusions from the comparisons, and outlines

areas requiring further investigation.
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Chapter 2

Finite Element Formulation and Solution Procedure of the Problem

2.1. Introduction

In order to study the failure of the blast loaded beam, it is necessary to know the

displacement field, stress, and strain state of the beam. This is accomplished by using the

Finite Element Method. The solution algorithm, which is capable of numerically

simulating the transient dynamic response of the higher order beam undergoing geometric

and material non-linear behaviour, is presented in this chapter. First, three different beam

theories are compared and the kinematics of higher order beam is studied in detail. Then,

the Virtual Work Principle and Total Lagrangian Method are used to obtain the equations

of motion. After applying the Finite Element approximation of the displacement field, the

Finite Element formulation of the equation of motion is obtained. The elastic-plastic

material model is also employed, taking account of plasticity by von Mises yield criterion

and associated flow rule. Finally, the transient response of the beam is arrived at by

integrating the equations of motion using the central difference method.

Although a similar formulation can be found in Ref. [9], the higher order beam instead

of the Euler-Bemouffi beam is employed in the present work to specify the beam

kinematics. Also, the stress state here is of two dimensions instead of one, and von Mises’

yield condition and associated flow rule are used to model the multidimensional stress-
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strain relation in the present work. Moreover, the external damping is now taken into

account in the equation of motion.

2.2 Kinematics of Higher Order Beam Theory

The following solution procedure is only relevant to the bending effects of a slender

beam undergoing large deformations. Large deformations are defined having the

maximum lateral deflection experienced by the beam large relative to its height, although

the deflection is small relative to the longitudinal dimension of the beam. The torsion-free

bending of the beam can be realized in the (x-z) plane by placing certain geometric and

loading restrictions i.e. the cross-section of the beam has (x-z) plane as its longitudinal

plane of symmetry and the resultant of transversely applied loads lies in this longitudinal

plane of symmetry. For a rectangular beam of interest here, the x axis is set to coincide

with the centroidal axis of the beam and the z axis is chosen to be the transverse

symmetric axis of the beam cross section. Since the longitudinal dimension of a slender

beam is much larger than its lateral dimensions, it is assumed that the stress components

a a, and can be neglected in comparison with the other stress components i.e.

a=o=t=O (2.1)

There are three theories to describe the beam kinematics. Euler-Bernoulli beam theory

assumes that cross sections normal to the undeformed neutral axis remain plane,

undistorted, and normal to the deformed neutral axis. The shear deformation is therefore

neglected. Following this assumption, as well as those previously made, the displacement

field can be obtained
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ôw(x)
u1(x,y,z)= u(x)— z

u2(x,y,z)=0 (2.2)

u3 (x,y,z) = w(x)

where u(x) and w(x) represent, respectively, the horizontal and transverse mid-surface

displacements of the beam. Shear deformation is accounted for in the Timoshenko beam

theory [19,20], which assumes planes which are normal to the beam axis in the

undeformed state remain plane in the deformed state but no longer normal to the beam’s

deformed neutral axis. The displacement field obtained is

u1 (x,y,z) = u(x) + z(x)
u2(x,y,z)=0 (2.3)

u3(x,y,z)= w(x)

where (x) is the rotation of the cross sectional plane. However, the relaxation of the

classical Euler-Bernoulli assumption in Timoshenko beam theory leads to the

contradiction that the resulting stress field no longer satisfies the shear-free boundary

condition on the surfaces of the beam. A correction factor, the Timoshenko shear

coefficient, is necessary to correct the contradictory shear stress distribution over the cross

section of the beam. To eliminate this deficiency of the Timoshenko theory, Levison [15],

Bickford [16], and Heyliger and Reddy [17] introduced the higher order beam theory.

This is a shear deformation theory for rectangular beams that retains the parabolic

distribution of the transverse shear strain, so there is no need to use the shear correction

coefficients. The higher order beam theory correctly accounts for the stress free boundary

conditions on the upper and lower surfaces of the beam.

As observed from the Timoshenko beam theory, the longitudinal displacement is only a

linear expansion with respect to the thickness coordinate. In the current higher order

beam theory, the displacement field is chosen to be of a more general form including

higher order terms. Refs. [15] and [18] give a detailed description about this theory.
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Because of the condition that the transverse shear stresses vanish on the upper and lower

surfaces of the beam and be non-zero elsewhere, the use of a displacement field in which

the longitudinal displacement is expanded at least as cubic functions of the thickness

coordinates is required. Since the beam is slender, both the Poisson’s ratio effects and

stress components other than longitudinal normal stress and transverse shear stress are

neglected. The transverse deflection of the displacement field can be set constant through

the beam thickness. That is, the displacement field begins with,

u1(x,y,z) = u(x) + zNJ(x)+z2(x)+z34(x)

u2(x,y,z)=O (2.4)

u3(x,y,z)= w(x)

where v is the rotation of a normal to the axis of the beam. The functions (x) and 4(x)

are determined from the shear free condition on the top and bottom surfaces of the beam

i.e.

t(x4)=O (2.5)

This is equivalent to requiring the corresponding shear strain to vanish on these surfaces,

giving
1 &3 2 8W

8=-j---+----=N!+2z+3zP+-- (2.6)

Setting (x4) = o gives

(x)=O and x)=—---(w+) (2.7)

Therefore, the displacement field for the higher order beam theory becomes, if time

dependence is taken into account,
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4z2 8w
u1(x,y,z) = u(x,t) + z[W(x,t) — () (w+
u2(x,y,z)=O (2.8)

u3 (x,y,z) = w(x,t)

This is with the positive transverse displacement of the neutral surface and the positive

rotation of a cross-section of the beam at the neutral surface, shown in Fig. 2.1, and the

definition of positive longitudinal displacement same as for the Euler-Bernoulli beam

theory. Indeed, 4(x), which is

(2.9)

can be called the warping function since it reflects the extent of the deviation of the

deformed beam cross section from an original plane surface. The displacement field

implies that, in the higher order theory, the cross section is not only allowed to rotate

relative to the neutral axis (as in the Timoshenko beam theory) but also to warp into a

non-planar section, which is specified to satisfy the shear free boundary conditions at the

top and bottom of the beam.

Since the beam undergoes finite deformation, Green’s strain tensor is employed to

describe the state of deformation of the beam. With the displacement field established, the

associated Green strain tensor (with reference to a Cartesian coordinate system) can be

obtained by applying

1 ãuj ôu. ôu ôu
(i,j= 12,3) (2.10)

to the higher order beam kinematics. Notice the restrictions imposed by assumptions

discussed previously. Non-zero Green strain tensor components follow as
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0

__

Fig. 2.1. Definitions of positive transverse displacement of the neutral surface and

rotation of a cross section of the beam at the neutral surface. From Ref. [15]

‘(x,t) + -dx

w(x,t)
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= +!()2

(2.11)

£13 =(N’+)[1—4()2]

Eq. (2.11) can also be put into this form:

4z(z’2
6ii=e+zKi+--) 2

1
(2.12)

83 =[1_4()2]q

ÔU laW2
where the axial stram e = - + (-i-) , the first curvature id = -, the second curvature

6w
= —(-k + —j-). and the effective shear stram ( = i41+ -.

This is the non-linear strain-displacement relation for the higher order beam theory. As

observed from the relation, the von Karman strain is included to describe the geometric

non-linearity caused by moderately large deflections of the beam. The effect of von

Karman strain is realized to be important when the transverse deflection is equal to or

larger than one thickness of the beam but still small relative to the length of the beam.

Since the beam undergoes large deformation but small strains, the Green strain measure is

everywhere small, i.e.

(2.13)
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2.3 Variational Equation of Motion

2.3.1 Variational Equation of Motion

With the higher order beam kinematics specified previously, this section will establish

the variational equation of motion. Since the beam undergoes finite deformation and the

Green strain tensor is still small everywhere in the beam, a Total Lagrangian Approach is

adopted. In this approach, the rectangular Cartesian coordinates are fixed in space as the

references of the body before and after deformation, and the coordinates defining points of

the original undeformed body are employed for locating the points of the subsequently

deformed body. For this problem, the x axis of the fixed rectangular Cartesian coordinates

is set to coincide with the centroidal axis of the beam and the z axis is chosen to be the

transverse symmetric axis of the beam cross section in the undeformed configuration, as

discussed in the previous section.

The principle of virtual work is an avenue which leads to equations that govern the

dynamic response of the structure. For the present dynamic problem with finite

deformation the virtual work principle can be written as [21]:

IoV(s8u+°pu5u+°du6u)dv = SOS
TöudS (2.14)

This means that the work of external forces should be equal to the work of internal,

inertial, and viscous forces given any small kinematically admissible motion. In the above

expression, °p,° lcd ,° V,° S represent, respectively, the mass density, the material

damping parameter, the volume, and the surface area (on which the surface traction is

specified) of the beam before deformation. Sjj is the second Piola-Kirchoff stress tensor, u

is the displacement vector, T is the prescribed surface traction vector, 6u is the small
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virtual displacement vector which satisfies both compatibility and essential boundary

conditions, and the corresponding Green strain tensor. Each of the above terms is

specffied with reference to the undeformed configuration so as to be consistent with the

Total Lagrangian Approach concept. Here, the self weight of the beam has been

neglected because the inertia force in a dynamic problem is usually much greater.

Following the previous kinematics discussion, for the higher order beam, the first term in

the virtual work expression (2.14) is

.1 Su6EudV = .1(S11&11 + 2S13&13)dV (2.15)

ov ov

because s 1 and 613 are the only non-vanishing components of the Green strain tensor.

According to Ref. [22], the second Piola-Kirchoff stress tensor is related to the Eulerian

stress tensor Gjj (in which stress resultants are expressed) by the transformation equation

°p ôu• ôuãu.
S, =—[a — (i,j,k= 123) (2.16)

where p is the mass density in the current deformed configuration, and ô is the

Kronnecker delta. For the present problem uj (i1,2,3) is set as for the higher order beam

theory discussed in the previous section (Eq. 2.8). Because the Green strain tensor is

everywhere small i.e. <<1, --- (1,k=1,2,3) is believed to be far less than 1 and

°p p is considered to be valid. Therefore, S11 = a, S13 a3 = t, i.e.

ISejdV= f(a&11 i-’&13)dV (2.17)
ov ov

Introducing stress resultants,
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71= SodA V= ft[1_4()2]dA

?Th =fZ m;= S ()2d4

j2
(2.18)

where 71 is the axial force, ml is the first order moment about the neutral axis, 771) is the

third order moment about the neutral axis, V is the effective shear force, t is the first

order shear force, and t is the second order shear force. Obviously, V = V + t. Here, °A

represents the original cross sectional area of the beam. Inserting the Green strain tensor

components and stress resultants into Eq. (2.17) gives

= + fl-ö(-) +m18()—

+
+ V(NJ+ .)jix

(2.19)

Eq. (2.19) can also be written as follows, using Eq. (2.12)

Ssjoe, = f[noe + m1oic1 + + V&p]dx (2.20)

where °L is the length of the undeformed beam.

The second term on the left side of the virtual work expression Eq. (2.14), after

substituting the higher order beam kinematics (Eq. 2.8), is as follows [16,17]
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J °püöudV
Dy

= f(°puiöui+°pu3u3)dV
Ov

168i’ 8w 18’ 8w
=Jf p Auöu+j p INJ&V—j p I--NI—j p Iwô(--)-Fj p Iö(--)+pAw]dx

°L

(2.21)

where 01 =-1—bh, the moment of inertia of the original beam cross section.

12

A similar expression can be written for the third damping term in Eq. (2.14).

The work done by the external forces is

ITöudS = f[fou + fow]dx (2.22)
Os

where f and f are the distributed axial and transverse loads acting on the beam with units

of force per unit length.

Finally, summarizing the above discussion,

J[no(.) + flö()+m1o() — + + Vö(j, +

68 .. 16 8i 16 .. 8w 1 0’ 8w+° p°Aüöu p°Iöi.j, —j° p°I--ö—-j-° p°Iö(--) +-j° p°I--ö(--)

+° p°A5w
68 . 16 8w 16 . 8w

1d°Aüöu j°1’d °IVöWjj°1Cd IöWj1cd °INJö()

1 8*8w
j1d°Ijö(j)-1-°1d °A*6w

—f8u — fow]dx =0 (2.23)

This is the variational equation of motion for the higher order beam theory. Starting from

this equation, a complete set of governing differential equations of motion, natural
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boundary conditions, and essential boundary conditions can all be derived for the new

beam theory, which is briefly discussed next. However, more important is that from now

on the displacement field can be approximated by the finite element version and the

algebraic equation system for the unknown variables can be derived to solve the problem

numerically. This is significant as the analytical solution is almost impossible for the

present problem, involving both geometric and material non-linearities.

2.3.2 Governing Differential Equations and Boundary Conditions

With the variational form of the equation of motion established, the governing

differential equations will be persued in this section. This will be helpful when applying

boundary conditions to eliminate the rigid body motion in the Finite Element Method.

After integrating the appropriate terms in Eq. (2.23) by parts and collecting the

coefficients of &i, ow, and 5j,, the governing differential equations are:

= PAU+ICdAU

am3 68 .. 16 ãi 68 . 16
—-- — —i- +

V = (—iöPIw+ jI--) + (—-jKdIw+ j’d’)

o Ow O7l3 16 Ofr 1 O 16 0.j, 1
(71 - + V) + f = pAM’ + p1- - p1 —i- + )CdAW +jd’E-

(2.24)

The appropriate boundary conditions are as follows:
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natural essential
boundary boundary

conditions conditions

71 u

‘I’
8w 8?712 16 1 8w 16 . 1 8W

fl————+V--—pI+—pI——-—1cI\+—1cjI— W
ax 105 21 105 21 ax

8w

ãx

Stress resultants are defined as in Eq. (2.18).

As a consequence of generalizing the displacement field beyond the traditional

assumption (i.e. plane sections remain plane), the force resultants in the current higher

order theory are also more generalized. Third order bending moments and second order

shear forces occur which do not exist in the classical beam theory [161.

According to the results of variational principle, since the force boundary condition is

unknown at the clamped boundary, u w = = N’= 0. Bickford [16] did three

combinations of boundary conditions to verify this. The same three combinations of

boundary conditions were checked in the present work: (1) u = w = =0, (2)

u=w=V=0, and (3) u=w===0. Both results confirm that

u = w = = =0 is appropnate for a clamped end. The reason for this is that since u,

8w .

w, and w on the centerline of the beam are used to descnbe the deformation of the

whole beam with the higher order beam kinematics (2.8), specifying uiO across the beam

depth at the clamped boundary makes it equivalent to forcing u = w = = =0 to

satisfy ui=0 at every point on the clamped section.
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For a simple supported boundary, from the variational principle, the essential boundary

condition should be uw=O. This is also confirmed by test calculations with combinations

of different boundary conditions.

Also from the variational principle, the wall reaction force at a clamped boundary for a

static beam will be
8w am3

Rw=fljj+V (2.25)

Actually this is also the transverse reaction force at the end of a static beam of any

boundary condition. If the von Karman effect is neglected

am3
F=—---+V (2.26)

is the appropriate transverse shear reaction force transmitted along the length of the beam

for this theory. This is verified by Bickford [16]. Furthermore, he found the boundary

layer character of the solution. For example, a cantilever beam is loaded with P at tip x=O.

For this case, the boundary layer character of the elastic solution manifests itself in that at

the clamped boundary (x=L) V) approaches to 0 quickly, the higher order resultant m3

increases rapidly to supply the total resistance, and the transverse shear force transmitted

along the length of the beam Fw remains equal to P, as shown in Fig. 2.2.

2.4 Finite Element Formulation of the Equations of Motion

Having obtained the variational equation of motion, to solve the present problem

involving both material and geometric non-linearities the Finite Element Method will be

used to approximate the solution numerically. As usual the finite element approximation

of the displacement field discretize the spatial domain of the beam into a number of
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F

P

IL

Fig. 2.2. Shear force edge effect for a cantilever beam loaded at x0 with a tip load P.

From Ref.[161.
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subdomains, or finite elements. Within each element the approximate displacement field is

assumed in terms ofgeneralized nodal coordinates. According to the variational statement

in Eq. (2.23), the transverse displacement should be at least twice differentiable and C

continuous, and the axial displacement u and rotation w should be at least once

differentiable and C° continuous [17]. Therefore, for a typical element, the displacement

field u is approximated by:

(2.27)
2 2 4

u(q,t) = uj (t)Nj (rU, v(rI,t) = wj (t)N (q), w(1,t) = A, (t)M (TI) (2.28)

Here, 11 is local axial coordinate, uj,j, Aj are nodal variables with A11,

A3=w2 and for a typical element. Nj are the linear Lagrangian interpolation

functions and Mj are the Hermitian cubic interpolation functions.

Ni(rU=1—f N2(ri)=f

= 131:11) +2(f) M2(TI)= 1i[1_2(f)+(f)] (2.29)

= (J — 2(f) M4(fl) =

where 4 is the length of the element. As can be seen, the displacement field u is a function

of both space and time, the shape functions are functions of space only, and nodal

variables are functions of time only. In this way the local separation of variables is

accomplished. In vectorial form, the appropriate set of generalized nodal coordinates for

each element is:

1 ow iT

deUi,NJiWi() ,u2,1V2w21(J ). (2.30)
X1 2
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Since the beam is discretized into elements and the displacement field satisfies the

necessary continuity, the virtual work statement (2.14) for the discretized beams turns

into:

f (s,Jö6,+°pööu+icdüöu)dv= fTdudS (2.36)
e=1 e=1

where NE represents the total number of elements in the beam.

For each element the work done by the internal forces:

=
J[n& + + moic2 + V&p]dii (2.37)

where Ve aiid 6 are, respectively, the volume and the length of the element. With e, K1,

1C2, and 4i defined previously in Eq. (2.34):

I SjEj = 6deTI[flBi + ?mB2 + mB3 + VB + flBde]d (2.38)

fSU&,ödeTrernt (2.39)
Ve

where reul# = J[nB1 + m1B2 + mB3 + VB + flBde]dll (2.40)
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is the internal force vector for a typical element which takes into account the internal

resistance developed within the beam element in response to the external loading

(regardless ofwhether or not the response is material and geometric linear). Its evaluation

involves numerical integration techniques, which will be discussed later. Next is

introduced:

retmL = + 7fl1B2 + m3B3 + VB4)dri re = IrLBdli (2.41)
le

Then

reiW = retmL + (2.42)

where reL is the linear part of the internal force vector of the element and rede is the

non-linear part. The presence of the non-linear part is because of the geometric non

linearity.

The work done by the inertia force in each element

lou TpiicIL?

p°AüOu +-j p°NJONJ
1O5

pOJfr5()

+j
p0IO() + pA17?OwIIx

(2.43)

After substitution of the finite element version of the displacement field, for a typical

element in the finite element:

IouTpudv = Ode Tmd (2.44)
Ve

where me is the element consistent mass matrix. For the higher order beam theory it takes

the form of:
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[mi’] [0] [0]

me = [0] [m2] [m3] (2.45)

[0] [m2] [m3]

where

m1 = IpAN1Ndri m
=

pIN1Ndn

(2.46)
23 C 16 dM• 32 33 fl_i dM1 dM 1

me = J
—

p1
d1

Ndri =m efi me..
=

p
dq dq

+ pAM, M jdii

The work done by the damping forces in each element can be similarly expressed in

general nodal coordinates in the above way, i.e.

IuTKdudv 8dCede (2.47)

Ve

Then the work done by the external force in a typical element can be written as:

fouTfdq
= 6dre (2.48)

le

wheref=jf,fI and

ret = 1[N1Tfdn (2.49)

is the consistent external force vector for the beam element.

Finally, in order to get a global set of generalized coordinates for the discretized beam

from the element generalized coordinates, connectivity transformations in the form of

deCed (2.50)

are employed to illustrate the procedure. In fact, the Direct Stiffness Method is often used

in the practical application of the finite element method. Here d is the global vector of
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generalized coordinates and C, is the connectivity matrix of bulean constants associated

with each individual finite element under study.

Therefore, the virtual work statement, as expressed by Eq. (2.36), turns out to be as

follows when expressed in the global generalized displacements

i3dT(CeTmeCed + CeTCeCe + CeTrt + CeTreCed) = ödT(CeTreet) (2.51)

Since öd is arbitrary and kinematically admissible variations in the components of the

generalized displacement vector, it can be cancelled out from the Eq. (2.51). So the

governing differential equation of motion, as a result of the higher order beam theory and

finite element discretization, is.

md+cd+r =r (2.52)
NE

where m = CeTmeCe is the global consistent mass matrix,
e=1

NE
C = CeTCeCe is the global consistent damping matrix,

e=1
NE

rIt = C’r + CTrJ1/jCd is the global internal force vector, and
e=1
NE

rt = CeTret is the global consistent mass matrix,
e=1

The governing equation (2.52) can be interpreted as external loads are equilibrated by a

combination of inertial, damping, and internal forces. The material does not have to be

elastic since the stress-strain relation is not specified during the deduction.

As observed, although the equations are spatially discretized, they are still a system of

second order ordinary differential equations in time, hence continuous functions of time.

Therefore, they are called a finite element semidiscretization. An explicit direct integration

technique can be employed to discretize the system of equations in the time domain to
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obtain a sequence of simultaneous algebraic equations [21]. This is discussed later in

Section 2.5.

2.5 Modeling the Material Behaviour of the Beam

Before starting the solution procedure for the governing differential equations of motion

presented in the previous section, rmt (the global internal force vector) must be evaluated.

From the previous discussion, rmt can be obtained from remt (the internal force vector for

each element) by the Direct Stiffness Method or connectivity transformation. Eq. (2.40)

can be used to derive rmt by using Gauss integration from stress resultants, i.e.

fl, ?fl, ?fl and V, which again can be evaluated from Eq. (2.18) by using Gauss

integration if the stresses are known. So, to determine r1t, the appropriate constitutive

law for the material must first be derived so that the stresses can be calculated from the

strains.
I

For ductile materials subjected to high intensity transient loading conditions, plasticity

and strain-rate sensitivity will inevitably be a consideration. It is therefore desirable to

incorporate elastic-plastic strain hardening and strain rate sensitive material behaviour into

the material constitutive relation. In the current study a bilinear elastic-plastic strain

hardening material model including the strain rate sensitivity is used for simplicity.

Hooke’s law is used to describe the elastic part of the constitutive relation. Since the

stress state is two dimensional, von Mises yield condition, the associated flow rule, and

isotropic hardening are all employed to account for the plastic material behaviour of the

beam. Ref. [22] gives a detailed discussion on the theory of plasticity, which is very

helpful.
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In plasticity, the following basic assumptions are based on experiments:

1. At any stage of deformation, the strain tensor can be expressed as the sum of the

plastic strain tensor and elastic strain tensor , i.e.

—
(p) (e) 253

where, 4, by its mean g, is related to the stress tensor by Hooke’s law,

= (2.54)

2. The plastic volume change is negligible. This is usually called the plastic

incompressibility, i.e.

=0 (2.55)

To simpIi1r the material behaviour in the present problem, a bilinear elastic-plastic strain

hardening model is used to describe the relation between stress and strain. Although the

stress state in the present problem is no longer uniaxial, the bilinear model can still be

applied to the effective stress and strain. The theory of plasticity is later used to determine

the effective stress and strain. An idealized bilinear model of the material is shown in Fig.

2.3.

As observed from the bilinear model, the stress-strain curve is initially elastic (OA) with

slope E yielding to a plastic strain hardening part (AB) with slope Et. That is, with a

strain increment de, the stress increment is:

da = Eds for a<ay

da = Ede or da = or da = Hde(1’) for a>ay (2.56)

where ,as discussed before, is = + and de is the total strain increment, c1e is

the elastic component of the strain increment and is recoverable, de’ is the plastic

component and non-recoverable, and °y is the yield stress in uniaxial tests. The effect of
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Fig. 2.3. An idealized bilinear model of the elastic-plastic material
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strain rate on 0y will be addressed later. Also

H= (2.57)

E

is the plastic modulus. If Et is set to zero, H will be zero, resulting in an elastic-perfectly

plastic case. Upon unloading after yielding, the strain is reduced along an elastic path

(BC), which is parallel to the elastic line OA; reloading retraces the unloading path, and

further plastic deformation is produced when the maximum previously applied stress is

exceeded.

In addition to the bilinear elastic-plastic behaviour, the yield stress may now change in

the current problem. This is because the material is now subjected to high intensity

dynamic loading, which causes high strain rates in the material. And it is shown

experimentally that, as the strain rate increases, the instantaneous yield stress of many

materials increases from the quasi-static value. For some materials, this increase may be

very significant when the strain rate is high. To account for this effect, the Cowper

Symonds relation is used.

=

4i
+

(2.58)

where °dy and Gy are, respectively, the dynamic and static yield stresses. D and p are

experimentally determined material strain rate parameters.

Summarizing, the modeling of material behaviour is based on the ideal bilinear elastic-

plastic linear strain hardening material models incorporated with strain rate sensitivity, as

shown in the Fig. 2.4.



Fig. 2.4. Idealization of elasticplastic linear strain hardening material behavior with

strain-rate sensitivity From Ref [23J
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To specify the constitutive relation, the yield condition must be known. Since the state

of stress is multiaxial in the present problem, a yield fi.inction has to be used to identify

different stages of material behaviour. Generally, the yield function depends on the state

of stress and strain and on the history of loading, i.e.

41 (P)
,K

where ic, the work hardening parameter, is a function of the plastic strain tensor 41. Von

Mises yield condition is to be used in the current work. Introducing the equivalent or

effective stress as

(2.60)

with s representing the deviatoric stress tensor. In similar fashion, the equivalent or

effective plastic strain increment is

cI = j2%d$d4 (2.61)

The plastic work increment is dW = Since the material under study is isotropic

with strain hardening, the yield function can be written as

f =f(o,H*()) (2.62)

where H* ((P)) is the plastic stress-strain relation between & and Because von

Mises yield condition incorporated with isotropic strain hardening is employed, f may be

written as

f =_H*()) (2.63)

After yield, the way plastic deformation further proceeds is governed by the associated

flow rule, which states that the plastic strain increment must be proportional to the

gradient of the yield function with respect to stress, i.e.
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(2.64)
Ii ôG,j

where ? is the proportional coefficient. The hardening rule governs the way the yield

surface (the f=O surface in the stress space) changes in size and shape as the plastic

deformation proceeds. For convenience, isotropic hardening (which assumes a uniform

expansion of the initial yield surface) is used in the current analysis, although it has little

experimental support. The hardening rule for the present material model is

H*(1)
= b’ (2.65)

which is specified by the bilinear model.

As stated above, the yield thnction can be used to identifS’ different stages of material

behaviour. With the yield condition well defined, the constitutive relation is ready to be

defined.

For a state of stress corresponding tof(O, i.e. o< H, the material is elastic and there is

no change in plastic deformation. The material stress-strain relationship is specified by

Hooke’s law which is, in vectorial form for the current two dimensional stress state, as

follows

dcr= [D]de (2.66)

where [D] is the elastic constitutive matrix. This is applicable when the material is in the

initial elastic stage, it is unloaded, or is reloaded below the previous applied stress state.

For a stress state with frO, i.e. i= H, the material yields and a change in plastic

deformation occurs. This is the case when the material is loaded beyond the yield state or

when the yielded material, after unloading, is reloaded beyond the previously applied

stress state. Under these circumstances the stress-strain relationship is related to the
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associated flow rule. Deduced from the theory of plasticity [23], the flow rule associated

with von Mises yield condition in the form given in Eq. (2.63) is

j8..C”) =(P)-i— (2.67)ii
aGU

In vectorial form, the current two dimensional plastic strain state is:

= (P) (2.68)

where the effective plastic strain increment is

[D]de
= ãuj = (2.69)

H+A

A = 1—T {Df1—T (2.70)
lôuJ

Thus, whenf=O, de(P) and de(e) can be obtained from de with Eqs. (2.68), (2.69), and

(2.70). By using Hooke’s law, the corresponding state of stress can be found. The

incremental stress-strain relationship may be briefly put as

do= [D]d6

[D]tU [D]
ID 1 = [D]— °1 (2.71)
I H+A

where [D,, j is the elastic-plastic constitutive matrix for the total elastic-plastic strain

increment.

The state of stress wheref0, i.e. > H, has no meaning and is thus inadmissible. To

summarize, Eq. (2.66) for yield functions less than 0 and Eq. (2.71) for yield functions

equal to 0 comprise the elastic-plastic constitutive relation.
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Since the calculation of the equation of motion is carried out step by step (which is

discussed later) sometimes after one time step of calculation f is greater than zero.

Therefore, scaling is needed sincef>O is inadmissible. By scaling, stresses in the first state

have to be scaled to the yield state of stress, and the pure elastic portion of the strain has

to be subtracted, i.e.

to=o2—a1 scal=—=
to

do- = —
ds = 82—81 (2.72)

= (oi) +scal*du (de) = (1— seal) *(d8)

where (•)i and ()2 refer, respectively, to the given quantity associated to the first or the

second state. After scaling, 01 is the stress state at yielding (which is a point on the yield

surface) and de1 is the corresponding total strain increment (which is composed of both

elastic and plastic parts). Stresses can then be easily found using the plastic analysis for

f=OinEq. (2.71).

Having established the constitutive relationship, the state of stress at any point of the

beam may be determined given the strain. Attention now turns to solving for stress

resultants i.e., 71, m1, m, V1. and V2 along the beam axis, which leads to the evaluation of

the internal force vector. Because of the complicated distribution of these stress resultants

in elastic-plastic analysis, the integral expressions in which they are specified are best

integrated numerically. Among the numerical integration schemes, Gauss quadrature is

employed in the current analysis because it is efficient, accurate, and suitable for the

rectangular beam cross section. When written with respect to the natural coordinate,

= , the integration expressions for the stress resultants are as follows:
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m1 = -Jc*i = (2.73)

where b and h are the width and height of the beam respectively. Using Gaussian

quadrature [241:

‘=
= 1T7f() (2.74)

we have for the stress resultants:

2 m 2

= =
i=1 1=1

= 17t(j)
= 1

= V1 + t (2.75)

which are enabled by the stress-strain relation presented before. Here, W1 is the weight

associated with the i-th depth-wise Gaussian evaluation point, and m=4. Four depth-wise

Gauss points are sufficient to represent the non-linear stress distribution accurately as the

material plastification extends through the beam cross section [9].

After the stress resultants are obtained from the stress by Gauss quadrature, the element

internal force vector can be easily evaluated from the integration equation (2.40) and also

via Gauss integration. Written with respect to local coordinates , = — 1

ret” = J(nB1+ + mB3+ + flBde)dC (2.76)

using Gauss quadrature, gives:
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reim = - wj[n(C)B1(C)+ ml(CJ)B2(Cf) + m(CJ)B3(Cf) + V(Cf)B4(Cf) + fl(Cj)B(Cj)de]

(2.77)

where W is the weight factor associated with the jth spanwise Gaussian integration point.

According to the definition of matrices, lBde requires the most number of Gauss points.

Since the resultant axial force is going to approach a constant value under static load as

the finite element mesh is refined, three spanwise Gauss points are at least required within

an element in order to accurately represent flBde and hence relm. Therefore n=3 [9]. With

remt known, r” can easily be assembled by using the Direct Stiffness method.

With all entries in the semidiscretized equation (2.52) known, the 2nd differential

equation system in the time domain may be solved, and this is discussed in the next

section.

2.6 Solution Procedure Over the Time Domain

To solve the dynamic differential equations over the time domain there are two types of

methods: Modal Superposition and Direct Integration. For a blast loaded and non-linear

problem, the Direct Integration method is favoured. Among the Direct Integration

methods, explicit time integration techniques are well suited to treat the material non

linearities. This method can be implemented easily and can handle very large problems

with only modest computer storage requirements. The only disadvantage is that the

required time step to ensure computation stability is small [21]. However, in the present

blast loaded beam problem, the development of displacements and stresses are of interest

and a small At is necessary for accuracy. Hence the explicit time integration is used in the

analysis. According to Ref. [9], the central difference is the most efficient method of time
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integration when applied to problems involving impact or blast loading. Therefore, central

difference is chosen to integrate the dynamic differential system of equations.

In the Finite Element Method, the spatial domain is discretized into finite elements. As a

result, the finite element semidiscretization is:

[mjfi}+[c]{á}+{rmt} = frt}

By using central difference, the temporal domain of the problem is discretized into equal

time intervals of duration At. At each time interval a central difference approximation is

used to replace the displacement time derivatives by differences of displacement {d):

f} = — fd}_1) fJ} = ._--({d}÷1— 2fd} + {d}_1) (2.78)

With the central difference method, the recurrence relationship [211 is

m +
—-c][d}÷ = {rt } — frmt} + ._!j..[m](2fd}

— {d}_1)+

(2.79)

whereby the unknown displacements at t+At are given in terms of known quantities at

time t. Since this is a two step method, a special starting procedure is required. The

starting conditions are as follows:

= fd}0 — &{a}0+.-fi}0
= [m]_1({relt}o — {rh1t}

— [c]fii}0) (2.80)

As observed from the recurrence formulations, central difference clearly is

computationally simple, since the unknown displacement vector occurring at any time step
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is directly obtainable by performing simple arithmetic operations on matrices of known

value.

If [m] and [c] are diagonal, then the equation system is uncoupled and the displacement

vector can be obtained without solving simultaneous equations, thus making the

computation even simpler. Actually, according to Ref. [21], explicit integration is usually

more accurate with lumped mass matrices than consistent mass matrices. Therefore, with

central difference used here for economy and accuracy, a lumped mass matrix is preferred.

In the present study, the element lumped mass matrix is as follows:

PA1y’

io 0

pAle3/
r i_ /24LmeJ_ pAle/

/2
34

0
105

PAl/

pAle3/
/24

(2.81)

For the damping matrix, the extended Rayleigh damping matrix is used:

[c]=a[m] (2.82)

Therefore, both mass and damping are matrix diagonals, improving the economy and

accuracy of the computation.

It is to be noted that central difference is conditionally stable and requires At such that:
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AtAtcr (2.83)

even when the structure is restricted to being linear. Here, Atcr is the critical time step to

ensure computational stability according to Courant’s criterion

Atcr

= 2
(2.84)

0max

If At is exceeded in time integration, the computations will be unstable resulting in

erroneous time-histories as they grow unbounded. is the highest natural frequency

occurring in the discretized linear or non-linear system. When the system is non-linear,

because the geometric nonlinearity makes the system stiffer while the material nonlinearity

does the opposite, an estimate of the critical time step is usually obtained by reducing the

corresponding linear result by 10-20% [9]. The present analysis can be further simplified

because omax for the assembled finite element model is bounded by the maximum natural

frequency of the smallest constituent unassembled and unsupported element, and this

frequency can usually be computed easily [21]. For an Euler-Bernouffi beam, the critical

time steps are as follows:

for consistent mass matrix:

Atcr = le/(q5cL) if le 1oq’Yr

&cr = l/(10JJcLrG) otherwise

for diagonal mass matrix

Atcrle/CL if le4.5rG

Itcr = l/(4...JcLrG) otherwise (2.85)

where CL = is the speed at which longitudinal waves propagate along the beam axis
VP

rT. . .

and rG
=

is the radius of gyration of the beam cross section. In the higher order beam

theory, shear deformation is taken into account and the beam is not as stiff as an Euler

Bernouffi beam, which means the highest natural frequency occurring in the higher order



43

beam will be lower. Therefore using the stability bound for Euler-Bernoulli beam element

is conservative, which is desirable.

As observed from the above stability analysis, lumped mass matrix clearly provides for

larger stable time steps in addition to providing uncoupled equations and generally more

accurate results than the consistent mass matrix in the central difference method. It is also

to be noted that the critical time step in time integration is governed by the size of the

smallest element in the mesh, and the refining finite element mesh will require a more

restrictive critical time step. Therefore, extreme mesh refinement in any part of the

domain is undesirable.

According to Ref. [21], the stability requirement is governing for the explicit time

integration method. For systems of finite element equations, excellent accuracy can be

arrived at by using a time step just under the stability limit. So in the present central

difference method, a time step that satisfies stability criteria can usually guarantee

accuracy satisfactorily.

With the discussion about the integration scheme completed, the finite element

semidiscretization may be turned into a system of uncoupled algebraic equations to solve

for the displacement vector. Moreover, by using the central difference, the solution in the

time domain may be used to obtain the dynamic transient response of the structure.

2.7 Summary

This chapter presented the formulation of the numerical scheme to simulate the blast

loaded beam problem. Emphasis has been laid on the kinematics and the governing
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equation of motion of the higher order beam theory, and elastic-plastic modeling of the

material with strain rate sensitivity.

With the whole formulation complete, the elastic-plastic transient response (including

the non uniform shear effect) of the blast loaded beam may be numerically simulated. This

provides the basic data for the failure analysis later.
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Chapter 3

Failure Analysis of the Problem

3.1 Introduction

Using the formulation discussed in the previous chapter, the transient response of a

slender ductile beam with geometric and material non-linearities under blast loading

conditions may be numerically simulated. With the displacement, stress and strain fields of

the beam available, only the failure criteria is needed to predict failure when the beam is

subjected to the fill range of load intensities. This is to be discussed next.

In this chapter, several failure conditions are formulated. First, based on the previous

research work by Fagnan [10], several versions of interaction failure criterion are

developed. Then, the failure condition using the theory of plastic work density is also

formulated. Finally, the important post-failure behaviour of the beam is considered.

All of the failure conditions are incorporated into the numerical simulation [13]

discussed in the previous chapter. The results are presented in the next chapter for

discussion.
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3.2 Interaction Failure Criterion

Menkes and Opat [6] conducted a series of experiments on the dynamic plastic response

and failure of fi.illy damped metal beams which were subjected to explosive loading

conditions. At low impulsive loading conditions, large permanent ductile deformations of

the beam were observed. At intermediate loading intensities tearing rupture was

encountered, which was caused mainly by excessive tensile strains developed at the

supports of an axially restrained beam. At still higher loading intensities, a more localized

failure occurs owing primarily to the influence of large transverse shear forces. Between

the threshold values for the two failure modes, the beams failed with a mixed tensile-

tearing and transverse-shear mode. This indicates that it is possible that both the tensile-

tearing part and transverse-shear part contribute to the failure of blast loaded ductile

beams. This is the idea behind the interaction failure criteria. In this criterion, the

contribution of the tensile-tearing part is specified by a tensile strain ratio and the extent of

the influence of the transverse shearing part is taken care of by a shear stress ratio. Both

parts are then included in the failure conditions to predict the failure of the beam.

3.2.1 Calculation of Influence of Tensile Tearing

In the interaction failure model, a tensile strain ratio is used to describe the contribution

of the tensile-tearing behaviour of the beam to the failure of beam. Since the tearing

action of an axially restrained beam is most severe at the support, the maximum strain of

the beam at the support is needed in the tensile strain ratio expression.
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The elastic-plastic finite element analysis F.ENTAB version 2 [13,25], which is

programmed according to the procedure presented in Chapter 2, is able to give the

displacement, strain, and stress field of the present beam problem. A typical deformed

profile, obtained by FENTAB, of a clamped beam subjected to a uniform lateral load is

shown in Fig. 3.1. However, as seen from the figure, the program is not able to accurately

model a plastic hinge at the support of the beam. A modified approximate shape of the

beam which accounts for the plastic hinge is therefore needed to predict the maximum

tensile strain at the support.

As mentioned in Ref. [26], Onat and Shield suggested that there exists a triangular

plastic region at the support of the beam under impact conditions. This suggestion is

encouraged by the appearance of deformed aluminum specimens in experiments [27].

Thus, while using rigid plastic theory, Jones [7,8] modelled the clamped beam under

impulsive loading as two rigid parts joined by a plastic hinge at mid-span and two plastic

hinges at the supports. Based on this approach, Fagnan [10,27] derived a model

consisting of plastic hinges only at the supports and the rest of the beam as modelled by

the Finite Element Analysis. This approximate shape of the beam is adopted in the present

work when calculating the tensile strain at the support. In the elastic-plastic analysis,

elastic-plastic deformation develops all along the beam. At the plastic hinge area at the

support, it is assumed that the elastic response is negligible compared to the plastic

deformation.

With the modified deflected shape of the beam established, the maximum total strain at

the supports can be developed from the beam shape model. In the present problem of a

fully clamped beam, the maximum total strain 6tot at the supports can be expressed as

follows

6tot 8bend +8ial (3.1)
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Fig.3. 1 Typical deflection profile as determined by FENTAB. From Ref.[1O]
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where ej is the axial strain at the neutral axis at the support and 8nd is the bending

strain at the support.

Here, for a slender beam, the bending strain may be expressed as

Kh
8bend = (3.2)

where h is the depth of the beam and K is the curvature of the plastic hinge. For a plastic

hinge, the curvature K 15 defined as

(3.3)
‘ph

where 1’h is the length of the plastic hinge and 0 is the rotation of the plastic hinge.

Because of the inability of the finite element analysis FENTAB version 2 to model a

plastic hinge, approximation is made for the plastic hinge length 1ph A slip line field

analysis [26] can be used to obtain the shape of the plastic hinge across the depth of the

beam. It reveals that a plastic hinge in a beam has the shape shown in Fig. 3.2(a) when the

beam experiences pure bending behaviour and has infinitesimal transverse displacements.

As the mid-span displacement increases, the membrane force increases and the axial

stretching of the plastic hinge occurs until it takes the form in Fig. 3.2(b) with the onset of

a membrane response (when the mid-span transverse displacement equals the beam

thickness h for rigid plastic analysis on a fully clamped beam). As observed from the

figure, it is evident that the length of the plastic zone on the upper surface of a fhlly

clamped beam (iph) changes from beam depth h (when the beam is purely bending) to 2h

(when the beam is at the onset of membrane state). Therefore it can be established that an

approximation for the hinge length “ph is

lph”th (3.4)
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Fig. 3.2 Plastic hinge in a fblly clamped beam: (a) pure bending state; (b) onset of

membrane state. From Ref.[12]

(b)
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where a is the plastic hinge parameter whose value is chosen by the user. According to

the study done by Nonaka on the hinge length [26], for rigid plastic beams of rectangular

cross section, 1 a 2 for maximum transverse displacement between 0 and h. After that

the beam is regarded as being in the membrane state, the plastic deformation is assumed to

develop all over the beam, and the plastic hinge length is assumed to be: ‘ph = where

L is the half length of the clamped beam. Jones [11,121 suggested that the plastic hinge

parameter change with the impulse according to an empirical formula. In the present

elastic-plastic analysis, a is chosen to be 2 based on Fagnan’s research work [10].

For the rotation of the plastic hinge, again an approximation has to be made because the

finite element procedure is not able to model a plastic hinge at the support. The

assumption is made that the rotation of the plastic hinge is equal to the maximum rotation

occurring in the beam, which is usually a short distance from the clamped support as seen

from Fig. 3.1. To determine the maximum rotation of the beam, first the generalized

nodal coordinates, as given by Eq. (2.30)

I &w1 8w21r
de

at all the finite element nodes can be examined, and the maximum nodal rotation value
ox

can be easily selected. Second, to be more accurate, interpolation of the nodal value can

be made along the length of each element using the shape functions to predict the

maximum rotation. From Eq. (2.28) in Chapter 2.4 it is known that, within each element,

the lateral displacement w has the relation to the element generalized nodal coordinates as

wfO,0,Mi,M2,0,0,M3,M4}de (3.5)

whereM1,M2,M3,M4are cubic Hermitian polynomials as specified in Section 2.4. The

rotation of the beam can then be expressed by the first derivative of w with respect to x,
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that is with respect to 11 (local element coordinate) within each element

—10 0
8M1 8M2

0 0
8M3 8M4

‘d 3 6

Setting —i- = 0 and back substituting, the location and magnitude of the maximum

rotation within each element can be determined. When written with respect to the local

normalized coordinate c 2’ —1, they are as follows.

1(ãw1 ‘2
—

_________________

Cmax —

6(w1_w2)+3le(-1+-)

()max

=
— 1)W1 +(3C2 —2C— i) L+(i_c2)2+.4(3C2 +2C—

(3.7)

The interpolation procedure can be carried out for each element so that the maximum

rotation for the whole beam, assumed to be 0, can be determined by comparison.

Substituting the parameters discussed above into the bending strain formula (3.2) gives:

0
Ebend (3.8)

2ci

Attention now turns to the evaluation of the axial strain along the neutral axis at the

support of the beam. This axial stretch can be obtained by directly integrating the

deformed profile as determined by finite element analysis of the beam element closest to

the support. Before deformation, the length of the element closest to the boundary is 10.

During deformation, the arc length of the deformed element is then:
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10 I

1=
0

ldx)

After Taylor expression gives

1 l0(f12 (3.10)llo +•J

from which the axial strain is obtained

1
(3.11)8axial =

2l

This is the formula that is used to calculate axial strain at the boundary. Noticing the finite

element approximation of the displacement field (3.5) within each element, for the first

element:

w=fO,0,M1,M2,o,0,M3,M4}d1 (3.12)

where d1 is the displacement vector associated with the first element closest to the

boundary. Then in the first element is the same as
ax

100 8M1 8M2
00

ôM3
(3.13)

Next

110
T

Eial_JdlT0,0
8M2 oM41 8M2

0
2l ( ‘o’aq’’’aq’aqJ

(3.14)

recognizing

B — {o 0
8M1 8M2

0
aM3 aM4 1 T

1 0
ôM1 8M2

0 0
8M3 ?jM4 1

—

Expressed with respect to the local nondimensionalized coordinate
, C = —1, the

IC

axial strain at the support is

_!‘6ax,al
—

J•diBdidc (3.15)
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Choosing three spanwise Gauss points, which is required by the exact evaluation of B, the

integration by Gauss Quadrature is evaluated. In this way, the axial strain at the boundary

is determined.

The total maximum strain at the support is now available by summing the bending and

axial components, as expressed in Eq. (3.1).

Finally, the influence of the tensile tearing is measured by the ratio

(3.16)

where s is the nominal rupture strain of the material. This ratio can also be explained as

the contribution of the tensile tearing behaviour to the damage of the beam.

3.2.2 Measure of the Influence of Transverse Shear

Measuring the influence of the transverse shear is accomplished by using a shear stress

ratio. According to the experiments, this influence is most significant at the support, and

metal beams are sheared off at the support during mode ifi failure. Therefore, to

completely consider the influence of transverse shear, the shear stress at the support has to

be evaluated. In the present finite element analysis the higher order beam theory (which

considers non uniform shear distribution across the beam depth) is employed, allowing

analysis of the shear force and shear stress of the beam. As observed from the shear force

distribution of the beam, however, the shear stress and resultants are more accurate in the

middle of the element than elsewhere. Shown in Fig. 3.3, the shear stress distribution

fluctuates in the wave length of about one element size. This is probably because of the

approximate nature of the finite element method. To overcome this detriment of finite
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Fig. 3.3. Shear force distribution along the length of the half beam obtained from FENTAB v.2.
The beam is 0.375 in. by 1 in. by 8 in. Impulse is 17.8 ktaps.
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element analysis, two options are available. One is to obtain the shear stress by evaluating

the reaction force at the support. The other is to use the shear stress at the middle of the

boundary element to approximate the shear stress at the support. The first method shall

be discussed here. The alternative method will be dealt with later in Section 3.2.4.

To get the shear stress from the shear reaction at the wall, the shear end reaction is

required. This can be accomplished by applying the equilibrium in the vertical direction.

Considering the beam as a free body, the vertical forces applied to the beam (including the

external forces, inertia force, damping force, and end reactions) should be in equilibrium.

Because of the symmetry of the beam, only half of the beam is considered, and the

equilibrium can give the end reaction in this situation. The above discussion can be put

into the following expression.

L L L
R + jq(x)dx—Jm(x)dx—Jc(x)i4’dx= 0 (3.17)

0 0 0

where R is the wall reaction in the vertical direction, q(x) is the vertical component of the

external distributed load, m(x) is the sectional mass density of the beam with a unit of

mass per unit length, c(x) is the sectional damping constant of the beam, and ‘ and *

represent, respectively, the vertical acceleration and velocity of any point along the neutral

axis of the beam.

As a result of applying the finite element method, the continuous beam is discretized into

an equivalent multi-degree of freedom system with the degrees of freedom {d}, associated

mass [ml, damping [c], and applied load {rt). Since lumped mass and damping are

used, the equivalent multi-degree system reduces to a lumped mass system with mass and

damping associated to its own degree of freedom at each mode. Therefore, the

equilibrium equation turns into:
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R + q. — m131 — c13*1 =0 (3.18)
nodes nodes nodes

where qj is the effective external force on each node, mj3 and c13 are the mass and

damping associated with vertical degree of freedom at each node, respectively, and and

w1 are the vertical acceleration and velocity at each node, respectively, which can be

obtained from the transient finite element analysis. In this way, R can be found at each

time step.

With the shear reaction at the wall known, the shear stress is easily derived. For a

rectangular beam at an elastic stage, the maximum shear stress is at the centroid of the

beam section with a value of = 1.5Rw/
, where A is the area of the cross section.

However, as the central fibers of the beam yields, the shear stress distribution across the

depth of the beam will become more uniform. In addition, it is assumed that the shear

dominant failure will not occur until all the fibers in the beam cross section reach the

ultimate shear strength. Therefore, the shear stress in the present analysis is treated as

being distributed uniformly across the beam depth at rupture of the beam, and can be

obtained from the wall reaction as

(3.19)

Finally, to measure the influence of the transverse shear force, the normalized ratio

(3.20)
tult

is employed, where tult is the ultimate shear strength of the beam when the beam is in the

pure shear state. As with the tensile strain ratio, the transverse shear ratio reflects the

amount of shear damage.
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3.2.3 Interaction Failure Criterion

The previous two sections discussed how to evaluate the influence of tensile tearing and

transverse shear on the failure of the beam. As stated ahead, a tensile strain ratio and a

shear stress ratio are employed to measure the influences. These two ratios are also

reflections of the damage extent caused by, respectively, tearing and shearing.

With the measure of the two factors causing failure defined, the failure conditions may

be specified. The failure of the structure is related to tearing and shearing actions of the

beam. Therefore the failure condition must be a function of the two ratios, i.e.,

(3.21)
Ef tuft)

Since both ratios represent the extent of damage to some degree, I ‘‘ can be
jEj t)

comprehended to be a general equivalent degree of the structure damage. As it is

expected failure will occur when the extent of damage is 100%, i.e. 1, it is then reasonable

to assume that failure of the beam occurs when

(3.22)
Ef tft)

For the failure thnctionf two functions are assumed:

1)
tmax = + tmax

I Ej t,jt ) Sf tuft

(3.23)
‘‘

2,

2)
Sf taft) 8.1) taft
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which are the linear interaction failure criterion (LIC) and the quadratic interaction failure

criterion (QIC).

3.2.4 Another Two Interaction Failure Criterion

As mentioned is Section 3.2.2, the shear stress is obtainable from the finite element

analysis because the shear effect is included in the analysis procedure. However, the shear

stress is not accurate at the support because of the approximate nature of the finite

element method. Since sufficiently accurate shear stresses at the mid point of the element

are obtainable, it is possible to approximate the shear stress at the support using the shear

stress at the middle of the boundary element. In this way, as the finite element mesh near

the support is refined, the value of shear stress at the wall is approached.

The shear stress distribution across the beam depth is more uniform when the center

fibers in the section yield. It is also assumed the shear dominant failure does not occur

until all the fibers in the section reach the ultimate shear strength. In addition, there might

be possible fluctuations in shear distribution across the beam depth in the results of finite

element analysis. Thus the average stress is used

JtcL4

tavg (3.24)

where V
=

ftdA, the first order shear resultant force.
A

Substituting tavg for in the two failure conditions (3.23) in the previous section,

another two interaction failure criteria are derived
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1) f1L, tayg = +

1 Cf tuft) 6f tjjf

(3.25)
I 2,.. 2

2)
+‘‘

j Cf
taft) I 8f) taft

3.3 Failure Criterion Using Plastic Work Density Theory

The work density caused by the stresses at each point of a structure consists of two

parts: density of strain energy, stored in the structure itself and density of plastic work,

dissipated in the form of heat, etc. It is assumed in Ref. [11] that when the density of

plastic work reaches a critical value, a crack will initiate at that point. That is when

(3.26)

where & is the density of plastic work including the contributions from all the stress

components, and cr is the critical value of plastic work density. It can be taken as

4?)
= f Od(C,6)dC’ (3.27)

where ad(C,é) is the dynamic engineering stress, which is obtained from a dynamic

uniaxial tensile test for a given é, and where s is the plastic strain at rupture. Since

elastic strain is far less than plastic strain at failure, plastic strain at failure is taken to be

equal to the rupture strain, i.e.

4?)
=

(3.28)

where e is the engineering rupture strain. Actually ad and both could depend on the

magnitude of the strain rate, in general. However, Cf is assumed to be independent of ê in

the present analysis. The Cowper-Symonds relation is used to take strain rate sensitivity
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into account in a (E,). Since a bilinear material is assumed for the elastic-plastic strain

hardening material, 0cr can be expressed as follows:

cr dyef +--Es1. (3.29)

where Et is the tangent modulus of the material and aê can be obtained from the Cowper

Symonds relation discussed in Chapter 2

(flY
a,=a 1+1—

‘ D

As to the density of plastic work, S can be similarly expressed as

E(p)

= fajcic”” (3.30)

where ad and e(P) are true dynamic stress and plastic strain, respectively, in an uniaxial

case. In an actual structure, they are assumed to be equal to the equivalent stress and

strain. In the present finite element analysis the stress and strain state at Gauss points are

available at each time step. Thus, 0d and zSE can be obtained at each time step. S, the

density ofplastic work at a point, can therefore be evaluated by trapezoidal integration.

8(p)

= (3.31)

where aj1 and a1 are the stresses at i-1-th and i-th time step, respectively, and zSz is the

plastic strain increment at i-th time step.

When the density of plastic work is greater than the critical value, a crack is initiated at

that point. However, after a crack is initiated but before severance occurs, the structural
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member might continue to support loads. The beam is therefore assumed not to fail until

the whole section fails, that is, until the plastic work density in the whole section reaches

the critical value.

cl=.clcr (3.32)

where 2 is the sectional plastic work density, whose unit is work per length. cr is the

critical value.

Because the plastic work density at each Gauss point is known, the sectional plastic

work density can be calculated. The sectional plastic work density is the plastic work

density in the whole section, i.e.
c=JJ&L4 (3.33)

A

For a rectangular beam with width b and height h,

f1=b8dz (3.34)

Expressed in terms of local nondimensionalized coordinates,

bh 1
(3.35)

where = . Then the sectional plastic work density can be evaluated by uss

quadrature. Four Gauss points are used in the Gauss integration. Therefore,

bh ‘

(3.36)
2 i1

where 9. is the plastic work density at i-th Gauss point. W() is the weight factor

associated with i-th Gauss point.
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Similarly, the critical value for the sectional plastic work density can be written as

cr =JJcr’4 (3.37)
A

When expressed in terms of local nondimensional coordinates,

bh 1

cr=fcr’1 (3.38)
2 1

Because at each point of the section the strain rate might be different, the dynamic yield

stress at each point might be different and so is the critical plastic work density. Therefore

to evaluate ncr’ Gauss integration is employed. Applying Gauss quadrature,

bh ‘

2cr (3.39)
2

where is critical value for plastic work density at i-th Gauss point.

Finally, with both sectional plastic work density 2 and the critical value cr established,

the failure criterion using the sectional plastic work density can be stated as the beam will

fail when, at one section,

(3.40)

This comparison between 2 and cr can be carried out at each spanwise Gauss point

along the beam to decide whether the beam fails or not.
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3.4 Post Failure Analysis

With the finite element procedure established in Chapter 2, and the failure conditions

discussed in the present chapter, the transient response and failure of the blast loaded

beam can be simulated. However, it should be noted that the transverse displacement of

the beam at the instant of rupture is usually different from the permanent transverse

displacement obtained from the experiments. This is because the beam has a residual

energy at severance when all of the initial energy input has not been absorbed in plastic

deformations completely before failure, which is usually the case. The residual energy at

rupture is often significant. With so much energy at failure, the beam is bound to deform

until a stable state of the beam is reached. As the beam continues to deform after

severance, part of the residual energy is absorbed in fhrther plastic flow until it reaches the

steady state where no more plastic deformation occurs. At the steady state, the beam

moves with associated rigid body kinetic energy and vibrates with relatively small amounts

of energy exchange between elastic energy and kinetic energy, simultaneously. The mid-

span transverse deformation at the steady state, which is the average of the maximum and

minimum value during the vibration, can be obtained from the post failure analysis.

The idea of the post failure analysis involves treating the broken beam as a free-free

beam with initial motion. After severance of the beam at failure, the beam is blown off

and becomes a free flying beam. To numerically simulate this, the boundary which was

clamped before is now set free. Further temporal progression of finite element analysis for

a free-free beam can give information on the motion.

After incorporating the post failure analysis into the program, it is now possible to

simulate the whole process of the motion of a beam subjected to blast loading conditions,

from deformation to rupture to motion of a free beam. The comparison with experimental
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data obtained by Menkes and Opat[6] and the discussion of the numerical model are

presented in Chapter 4.

3.5 Summary

Failure conditions are developed in this chapter. The interaction failure criteria and the

failure criterion using plastic work density theory both consider all contributions from

tensile and shear action of the beam.

In addition, to fully simulate the response of a blast loaded beam, and to check with the

experimental results properly, post failure analysis is discussed.

This concludes the theoretical modelling of the problem. With the theoretical base

presented in Chapters 2 and 3, the whole response process of the beam may now be

simulated numerically.
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Chapter 4

Numerical Example & Discussions

4.1 Introduction

With the finite element procedure discussed in Chapter 2, and failure conditions and post

failure analysis established in Chapter 3, it is possible to obtain the transient response of

the blast loaded beam, to predict the failure, and to obtain the mid-span transverse

deformation in the steady state. However, the efficiency and accuracy of the prediction is

still unknown.

Menkes and Opat [6] conducted a series of experiments on 606 1-T6 clamped aluminum

beams subjected to a surface explosive charge. These experiments are used as the basis

for comparison. To check the efficiency and accuracy of the numerical model, finite

element numerical simulations of these experiments are carried out. Calculation results are

then compared to the experimental data, giving encouraging correlations. Furthermore,

some insights into the response of blast loaded beams are obtained through the finite

element analysis.
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4.2 Experiments

Menices and Opat [6] conducted a series of experiments on clamped aluminum beams

subjected to blast loads in which the uniformly distributed impulsive load is provided by

sheet explosives. The experimental configuration is shown in Fig. 4.1. As shown in the

configuration, the sheet explosive is cemented to a neoprene buffer which is bonded to the

top surface of the beams. Although single-ended detonation was used in the experiments,

no significant evidence of deformation asymmetry is present in the experiment results, and

uniformly distributed impulse loads can be assumed. The intensity of the impulse was

varied by using different combinations of sheet explosive of different thickness. The beam

specimens are all of 6061-T6 aluminum. Three thicknesses (0.187, 0.25, and 0.375 in.)

and two lengths (4.0 and 8.0 in.) were used. All beams were 1.0 in. wide.

For the beams examined, as the load is monotonically increased, three distinctly different

damage modes can be identified for the beams with rectangular cross sections, as shown in

Fig 1.1:

I Large inelastic deformation of the entire beam,

II Tearing (tensile failure) of the beam material at the extreme fibers at the

supports, and

ifi Transverse shear failure of the beam material at the supports.

Within the load range of mode I, the beams responded in a ductile manner and acquired

excessive permanent transverse displacements without any material failure. The damage

severity can be measured by the residual central deflection. At mode II the beams failed

due to dominantly tearing of the beam material at the supports. The threshold is taken as

the impulse intensity which first causes tearing of the beam material at the support.

During mode II failure as the impulse increases the permanent deformation of the severed

central section decreases (which can only be measured from photographs) until mode ifi is
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reached. This is shown in Fig. 4.2. In mode ifi, failure of the beam occurs because the

influence of the transverse shear forces dominates the response and causes failure of the

material at the support. The threshold is taken as the impulse intensity which first causes

no significant deformation in the severed central section. Plastic deformation of the beam

becomes localized near the supports and no appreciable plastic deformation is present over

most of the beam at this stage. The permanent deformation of the severed central section

remains almost constant. When the beam is subjected to loads which lie between the

mode II and mode ifi thresholds, failures which involve both the tearing and shearing

modes are observed.

4.3 Modelling of the Problem

The modified finite element analysis FENTAB is used to numerically simulate the blast

loaded beam experiments conducted by Menkes and Opat . For simplicity, the actual

explosive loading condition can be modelled as a rectangular pressure pulse, with a

constant peak value Po for a short duration t, distributed over the entire span of the beam.

The impulse of the pressure pulse should be the same as the experimental value. The

validity of this simplification is because when Po’Pc is very large and the impulse is high,

where Pc is the static plastic collapse load per unit length, the maximum transverse

displacement is insensitive to this dynamic pressure ratio. This suggests that the details of

the pressure pulse are not important [1,81. According to Fagnan [10], the duration of the

rectangular pressure pulse is chosen to be 60 sec.

Since the load and the clamped beam are symmetric, only a half span of the beam is

studied. To represent the half span in the calculation, several finite element meshes have

been used. Ten elements of equal lengths are used most often. When a finer grid is



70

KIAPS

10.9

17.8

25.6

28.7

35.1

39.6

42.9

46.0

50.7

52.9

6 .6

Fig.4.2. Experiment results for series of 6061-T6 beams (0.25x1x8-in. beam) From [6]



71

needed, four different meshes were used: (i) sixteen elements of same size, (ii) twenty

elements of equal length, (iii) twelve elements with the first two elements of the ten equal

element mesh subdivided into four equal length elements, and (iv) fourteen elements with

the first two elements of the twelve element mesh fi.irther subdivided into four equal length

elements.

The material of the beam is modelled as elastic perfectly plastic, i.e. Et=0. The reason

for the modelling is that (according to Jones [11]) during the dynamic response of the

beam the strain rate will decrease with time, resulting in a stress-strain curve which

approaches perfect plasticity. Other properties of the 6061 T6 aluminum as quoted by

Fagnan [101 are p=2.56x10 lbs2/in4,0o41,600 psi, and E=10.5x106psi. Since 6061

T6 aluminum is essentially strain rate insensitive at the strain rates encountered in the

experiments, i.e.
=

o,. In the current study, damping is set to zero because the most

severe condition of deformation is desirable for the analysis.

To predict the failure of the beam, the ultimate data of the material is needed. The

maximum allowable strain is chosen to be 0.17, which is the percentage elongation at

fracture of a static uniaxial tensile specimen made of 6061 T6 aluminum. Menkes and

Opat [6] observed from the experiments that the dynamic shear strength appears to be

much higher than the static one. After considering the von Mises yield criterion and

ultimate tensile strength of the material [10], the ultimate shear strength is chosen to be

30,000 psi.

With the experimental conditions modelled, results can be obtained from the numerical

simulation, which are discussed in the next section.
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4.4 Numerical Results and Discussion

4.4.1 Numerical Simulation of the Response Process

After modelling the problem of a blast loaded beam as described in Section 4.3, using

the finite element procedure which is presented in Chapter 2, incorporated with failure

conditions discussed in Chapter 3, it is now possible to numerically simulate the whole

response process of the beam subjected to blast loading conditions. An example of this is

discussed below.

Fig. 4.3 shows a series of proffles of one half of a blast loaded beam. The beam is 0.375

in. high, 1 in. wide, and 8 in. long. The impulse is 52.9 kLaps (1 ktap = 0.014 lbf-s/in2 or

1 ktap = 100 N-s/rn2). As observed from Fig. 4.3, the part of the beam close to the

boundary undergoes severe deformation while the middle part of the beam experiences

little deflection in the early response. As time progresses, the deformation gradually

extends to the middle of the beam. When certain failure conditions are satisfied, the beam

breaks away from the supports, becoming a free beam. While flying away from the

supports, the beam experiences further plastic deformation, resulting in more energy being

absorbed by the plastic deformation. Finally, the beam reaches a steady state of motion,

and the beam moves with a rigid body motion superimposed by a vibration mode.

The time history of the central deformation Aw of the same beam is shown in Fig. 4.4.

The central deformation Aw is the mid-span deflection before rupture of the beam, and is

the difference of the displacement of the mid-span node and the boundary node after

rupture. This time history shows the whole response process from a different perspective.

At rupture, the central deformation Aw is only 0.2 12 in. After the beam reaches the

highest peak, more energy is absorbed by plastic work, and then the beam reaches the
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steady state. The permanent deflection, which is taken to be the average of the maximum

and minimum central deformation Aw in the steady state, is 1.474 in. Obviously, after

rupture, the beam experiences further severe deformation because of residual energy at the

rupture of the beam, which cannot be neglected. In this case, because of rupture of the

beam, the permanent deflection is less than the deflection when the beam is considered to

have indefinite tensile strain.

Further study on the steady state of motion reveals that the period of the free beam

broken away from the supports, as obtained from numerical results, is 820 .tsec. For a

uniform Bernouffi-Euler beam with both ends free, the circular frequency of first non rigid

body mode is [28]:

____

CD2 = (4.73 1)2.Vi- (4.1)

which turns out to be 820 .tsec. Since the mid-span deflection time history of the beam

without rupture obtained from the higher order analysis is almost the same as from the

Bernoulli-Euler beam analysis, as shown in Fig. 4.5, there should be no significant

difference between the natural periods of the two beams. The natural frequency of a

higher order beam with both ends free should be around 820 p.sec, which agrees with the

result from the numerical simulation.

Compared to analysis without considering the shear effect, the time history of mid-span

deformation before rupture is almost the same, with one of the time histories shown in Fig.

4.6. However, there are some differences between the profiles of the beams in the early

stage of response. Shown in Fig. 4.7 are some proffles during the early stage of response

of one half of a 0.3 75 in. x 1 in. x 8 in. beam subjected to an impulse of 42.9 ktaps. Since

the shear effect is taken into account, the higher order beam is more flexible and therefore

(as observed from the profiles) the part of the beam close to the boundary deforms more
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severely in the early response. After the different responses in the early time, the

difference of the profiles close to the boundary between the two analyses decreases as time

progresses. Finally, if the beam can sustain the impulsive load, the difference will be very

small.

4.4.2 Discussion of Failure Conditions

From the above discussion, the response processes of a beam subjected to different

loading conditions are now available. However, different failure conditions give different

predictions of time of failure, or even different predictions ofwhether the beam can sustain

the impulse or not. That is, different failure criteria predicts different processes of

response. Therefore the accuracy of different failure conditions in predicting the failure

needs to be addressed. This is discussed in this section.

1. Interaction Failure Criteria

After analyzing the 0.375 in. x 1 in. x 8 in. beam subjected to different impulsive loads

by using the interaction failure criteria, the mid-span permanent deformations (which are

the differences between the displacements of the mid-span and the supports) are plotted

against the impulses in Fig. 4.8. Experimental results of mid-span permanent deformation

is available from Ref. [6] for the beams which did not fail. Results for the broken beams

are digitized from the figure in Shen and Jones [11], which they obtained from measuring

the photographs in Menkes and Opat’s experimental report. For comparison, these results

are also included in the figure.

As observed from Fig. 4.8, the trend of the curve of mid-span permanent deformation,

predicted by linear interaction failure criteria is correct. First, the mid-span permanent

deformation increases as the impulse increases. Then, after a certain impulse value, the



2.5

1

0
0

Fig. 4.8. Midspan permanent deformations vs. impulses obtained from a 0.375 in. by I in. by 8
in. beam using the quadratic interaction failure criterion (QIC) and the linear interaction failure
criterion (LIC).

81

C
0

(U

10 20 30 40 50 60 70
Impulse (ktaps)

QIC (10 elements)

QIC (20 elements)

± Mode I Exp. Results

LIC (10 elements)

QIC (16 elements)

x Shen & Jones’ (Mode II Results)



82

mid-span permanent deformation starts to decrease until the beam reaches mode ifi

failure, where the deformation is almost constant. However, this criterion predicts mode

II tensile rupture of the beam far too early at 21.8 ktaps, as opposed to 46 ktaps reported

by Menkes and Opat. It also underestimates the mid-span permanent deformation of the

broken beams. Therefore, the linear interaction failure criterion cannot predict the

response of the blast loaded beam as accurately.

Using the quadratic interaction failure condition, results of failure analyses employing

three different finite element meshes (10, 16 and 20 equal elements) are presented in the

figure. The curves also predict the trend of mid-span deformation correctly. It fits the

experimental data very well and is on the conservative side. A detailed look at the failure

of the beams reveals that the first rupture of the beam occurs at 289 IJ.sec. According to

Menkes and Opat, confirmed by analyses of the beams which sustained the impulsive load,

the maximum values of central deflection are reached at about 300 sec for the 8 in. beam.

Hence, the failure analysis predicts the time of first rupture very reasonably. However, the

quadratic interaction failure criteria still gives a fairly early mode II rupture. Experimental

data ofMenkes and Opat shows that the mode II tensile rupture occurs at 46 ktaps for the

0.3 75 in. x 1 in. x 8 in. beam, while the quadratic interaction failure criteria predicts the

mode II threshold to be 28.7 ktaps.

To predict the mode ifi failure, the tensile strain ratios and the shear stress

ratios are plotted versus impulses. The results of three quadratic interaction failure

analyses employing different grids are presented in Fig. 4.9. As seen from the figure, the

tensile strain ratios are greater than the shear stress ratios and they are almost constant

during the mode II failure. Then, at a certain impulse, significant increases or decreases

appear in the curves of tensile strain ratio or the shear stress ratios. The ratios of shear
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stress exceed the ratios of tensile strain and start to be the controlling factor in the failure

of the blast loaded beam. The impulse immediately after the big increase or decrease is

specified to be the threshold of mode III. For the 0.375 in x 1 in x 8 in. beam, it is 50.7

ktaps, while the threshold for mode ifi failure is reported to be 64 ktaps. This

discrepancy is probably because of different definitions of mode ifi threshold. The mode

ifi threshold in the present analysis means a starting point where the shear stress ratio

starts to dominate, while the mode ifi threshold in Menkes and Opat’s experiment is taken

as the impulse intensity which first causes pure shear failure with no significant

deformation of the severed central section. The strain and stress ratio chart for analysis

using absolute failure criterion is shown in Fig. 4.10, and 39.6 ktaps is given as the mode

ifi threshold, which is far too early.

Using a 10 equal element model of the beam, the pull-ins and times of failure of the blast

loaded beam obtained from the two analyses incorporating different interaction failure

criteria are plotted versus the impulses in Figs. 4.11 and 4.12, respectively. As shown in

Fig. 4.11, the pull-in versus impulse curves exhibit similarities to the curves of mid-span

permanent deformation versus impulse. This is intuitive because the beam will be pulled in

more as the beam deforms more severely laterally, provided the beam is inextensible or has

limited extensibility. In Fig. 4.12 the first predicted time of failure for both curves occurs

around 300 sec, which is reasonable as explained previously. During mode ifi failure,

the predicted times of failure are very early in both curves (less than 60 p5cc, which is the

duration of the pressure pulse). This also agrees very well with the experimental

observation that mode ifi failures occur early. However, it is clear that the times of failure

predicted by the linear interaction criterion are far earlier than the ones predicted by the

quadratic interaction failure criterion.
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The same failure analysis procedure incorporated with two different interaction failure

criteria has also been carried out for a 0.25 in. x 1 in. x 8 in. beam subjected to different

impulse loads. The mid-span permanent deformation predicted by the two analyses using

a 10 equal element mesh are compared with the experimental data in Figs. 4.13 and 4.14.

As observed from the figure, both curves predict the trend of mid-span permanent

deformation very well. However, the linear interaction failure criterion gives the mode II

threshold as early as 17.8 ktaps (from Fig. 4.13) and mode ifi threshold as early as 28.7

ktaps (from Fig. 4.14). According to the experimental data, 28.7 ktaps is reported to be

the mode II threshold and 46 ktaps the mode ifi threshold. Comparatively, the quadratic

interaction failure criterion gives a better prediction with mode II threshold as 21.8 ktaps

(though this is still early) and the mode ifi threshold as 35.1 ktaps, as determined from the

tensile strain ratio and shear stress ratio shown in Fig. 4.15.

To check the mesh effect on the failure condition, different grids are used in calculating

the response for the case of a 0.375 in. x 1 in. x 8 in. beam subjected to an impulse of 17.8

ktaps, which (from the experiments) is supposed to cause mode I failure. The time

histories of the maximum total strain at the support and wall reactions are shown in Figs.

4.16 and 4.17.

In Fig. 4.16, the time histories of the maximum strain at the support obtained by four

different meshes, i.e. 8, 10, 16, and 20 equal element grids, are presented. The four time

histories are observed to be very similar, and the differences between the curves decreases

as the mesh becomes denser. That is, the maximum strain at the support is independent of

the mesh and converges as the mesh is refined. Therefore, the tensile influence portion of

the failure condition, which is described by tensile strain ratio will converge with

refining of the mesh.
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Comparisons of wall reactions calculated from different finite element meshes are

presented in Fig. 4.17. The same four meshes as used above are employed. During most

of the time history, the four curves are almost the same. At the very early stage of the

response (0 - 75 sec) there is a small difference, but as the mesh is refined the results

converge. The results from the 16 element grid are very close to the results calculated

from the 20 element grid. When the stable response starts (500 j.i.sec) there is a small shift

between the responses calculated from the different meshes. This is probably because the

principal frequencies of the different finite element lumped mass models of the beam are

slightly different. Yet, as shown in the figure, the time history of the wall reaction

obtained from 16 element mesh is almost exactly the same as the one from the 20 element

mesh. That is, with refining of the mesh, the results converge. From the point of view of

the failure criterion, it is the wall reaction force in the early state of response which plays

an important role. As previously discussed, the results of wall reaction force are

independent of the element size and converge when the mesh is refined. Therefore, the

shear stress ratio is independent of mesh size, as is the shear portion of the
/ tuli

failure criterion.

Summarizing the above discussion, both tensile and shear parts of the failure criterion

are independent of the mesh and converge as the mesh becomes denser, and therefore the

prediction obtained from the interaction criteria are independent of meshes and converge.

The above detailed study at maximum strain at the support and the wall reaction force

help to explain Fig. 4.9. This figure, during the second failure mode, shows the tensile

strain ratio and shear stress ratio as almost the same regardless of the mesh. This is

because the maximum strain at the support, which is dominant, is independent of element

size and the wall reaction force is almost the same for different meshes between 75 - 500
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sec. When the beam starts to fail in mode Ill, the ratio curves start to be different. This

is because although the wall reaction force (the controffing factor in mode ifi failure) is

also mesh independent, there are differences in results calculated from different meshes in

the early time history (0 - 75 i.tsec), which is when the mode ifi failures occur. From Fig.

4.17, it is known that the wail reaction force converges as the mesh density increases.

Therefore, as Fig. 4.9 shows, the curves of the tensile strain ratio and shear stress ratio

converge as the mesh is refined during the mode ifi failure part.

2. Another Two Interaction Failure Criteria

As discussed in Chapter 2, from variational principle, the relation between the resultant

forces and wall reaction force is obtained.

6W ã?73 16 .. 1 6W 16 . 1 6W
= 71—— + V

-

—pI’iJ + —pI—-—lCdIW (4.2)

Thus, in a case when the wail reaction force is not available from the equilibrium (such as

an asymmetrically supported beam) it can still be calculated from the resultant forces.

This relation is checked for in the case of the 0.375 in. x 1 in. x 8 in. beam subjected to an

impulse of 17.8 ktaps. In this case, as stress related results are more accurate in middle of

the element, the resultant forces at the middle of the boundary element are used to

calculate F, the transverse shear resultant force transmitted along the length of the beam,

to approximate the wall reaction R.

(4.3)
6x ax

Because the midpoint of the boundary element is quite close to the boundary, the

acceleration and velocity related terms are neglected in the calculation. As the element

mesh is denser, the F should be able to approach the wail reaction. Comparisons ofF

(the transverse shear force) and the wall reaction force are presented in Fig. 4.18 for an 8

element mesh and Fig. 4.19 for a 20 element mesh. As observed from the graphs, for both
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meshes the Fs at the mid point of the first element are very close to the wall reaction

forces. For a denser mesh (e.g. 20 element mesh) the approximation is slightly better. As

previously discussed, the wall reaction will converge as the mesh is refined. Hence the

resultant force, including the shear stress, will converge as the refining element mesh.

Shown in Fig. 4.20 is the distribution of shear forces in the middle of each element along

the beam at seven different times. The beam and the loading condition are the same as

mentioned above. A 20 element mesh is used to model the beam. It can be clearly

observed how the shear forces develop during the loading. When the loading stops at 60

p.sec, the shear force at the boundary reaches its maximum.

Using the interaction failure criterion with the shear stress calculated from the finite

element analysis, analyzing the 0.3 75 in. x 1 in. x 8 in. beam subjected to the whole range

of impulsive loads results in the mid-span permanent deformation versus impulse figure as

shown in Fig. 4.21. As before, the linear interaction failure criteria predicts the mode II

threshold earlier than the quadratic interaction one, and underestimates the mid-span

permanent deformation during mode II failure. For the quadratic interaction failure

criterion, results from three meshes are compared in the graph. All three curves fit the

data well and predict the increasing-decreasing-constant trend of mid-span permanent

deformation. The mid-span permanent deformation improves when the mesh is refined to

12 elements from 10 elements. This is because stresses obtained from the program are

used in the analysis and a finer mesh is needed to give accurate enough results, as opposed

to an analysis based on displacement related quantities. The mode II threshold predicted

by this quadratic interaction failure criterion is 33.4 ktaps, compared with 46 ktaps

according to the experiments. Mode ifi threshold can be specified from the comparison of

the tensile strain ratio and the shear stress ratio, which is shown in Fig. 4.22. As seen

from the figure, after a large increase in the shear ratios, they remain quite constant past
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61.6 ktaps. Then this is specified as the mode ifi threshold, which is very close to the

experimental result of 64 ktaps.

The mesh is then further refined to 14 elements, with the first element in the 10 equal

element mesh subdivided into 4 equal length elements and the second element halved. The

results in the mid-span permanent deformation are almost the same as from the 12 element

mesh. However, a large difference is observed from the comparison of tensile strain ratio

and shear stress ratio (Fig. 4.22) because of the boundary layer effect (discussed in

Chapter 2). The distribution of the first order shear force at the midpoint of each element

along the beam at 60 Lsec, which is the duration of the load, is shown in Fig. 4.23. As is

evident from this figure, the shear force at the midpoint of the first element is smaller than

that in the middle of the second element. This is because the midpoint of the first element

is inside the boundary layer, within which the shear force erroneously decreases from the

maximum to zero at the very beginning boundary of the beam. To avoid this, an element

greater than is preferred, to be conservative.

Analyses have also been done for the case of a 0.25 in. x 1 in. x 8 in. beam subjected to

various impulses, using the same interaction failure criteria. Results are shown in Figs.

4.24 and 4.25. In this example, the mode II and ifi thresholds are predicted to be 21.8

and 39.6 ktaps, which compares well with the 28.7 and 46 ktaps reported from

experiments.

3. Failure Criterion Using Theory ofPlastic Work Density

To assess the accuracy of the failure criterion using sectional plastic work density in

modelling the failure of the blast loaded beam, a series of finite element failure analyses

incorporating this failure condition have been done for a 0.375 in. x 1 in. x 8 in. beam

subjected to different impulsive loading conditions. The mid-span permanent
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deformations obtained from the analyses are plotted versus impulses applied on the beam.

Two different meshes have been employed to represent one half ofthe beam: 10 elements

of equal length, and 12 elements with eight of equal length close to the mid-span and four

of half size near the support. Results are presented in Fig. 4.26, along with the

experimental data. As seen from the graph, neither curve predicts the trend of mid-span

permanent deformation well. Furthermore, there is quite a large difference between the

curves obtained from the two different meshes. Analysis based on the 10 element mesh

predicts the mode II failure at 25.6 ktaps, while the 12 element mesh analysis predicts 21.8

ktaps. This suggests that analysis using the failure condition of sectional plastic work

density is mesh dependent. This is probably because the sectional plastic work density is

calculated at each spanwise Gauss point. The coarser the mesh, the fewer the Gauss

points, and thus there are fewer sections to be considered in the failure condition, and the

more unlikely the beam will fail. To overcome this constraint, the failure criterion is

changed into comparing the plastic work done in the first element (which is checked to be

always the highest) to the critical value. The results from the analysis using the changed

failure condition employing a 10 element mesh are also shown in Fig. 4.26. The results

are still unsatisfactory as the trend of the mid-span permanent deformation is not

accurately portrayed and the mode II threshold is predicted as early as 25.6 ktaps. This

amendment did not improve the prediction probably because the stress state at the

boundary of the beam undergoing large plastic deformation is three dimensional, and the

one dimensional beam theory cannot accurately describe the beam behaviour near the

boundary. The plastic work density calculated near the boundary cannot represent the real

value exactly, making it difficult to use the failure condition based on plastic work density

theory to predict the rupture of the beam.

Although the failure criterion based on plastic work density does not predict the failure

of the beam satisfactorily, a detailed investigation of the distribution of sectional plastic
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work along the beam will help in understanding the distribution of plasticity in the beam

when subjected to different impulses. Shown in Fig. 4.27 are a series of spanwise

distribution of sectional plastic work density for a 0.3 75 in. x 1 in. x 8 in. beam subjected

to an impulse of 17.8 ktaps, which caused mode I failure in the experiments. The sectional

plastic work density shown is evaluated at the midpoint of each element. The same

distributions for the same beam subjected to 42.9 ktaps and 64 ktaps (which caused modes

II and ifi failure experimentally) are presented in Figs. 4.28 and 4.29. In the figures, 107

and 46 sec are the times of mode II failure predicted by the quadratic interaction failure

criterion for the two cases, respectively, while 120 and 66 J.Lsec are the times of mode II

failure predicted by failure condition based on sectional plastic work density, respectively.

From these figures it is obvious that the plastic work done in the first element is the

highest. The development with time of the plastic work in the halfbeam for mode I failure

can be clearly observed from Fig. 4.27. The plasticity first occurs close to the boundary,

then develops about the middle of the half beam, and finally appears in the middle area of

the (whole) beam. In mode II, rupture of the beam occurs before much plasticity develops

in the middle of the beam (shown in Fig. 4.28). In mode ifi the beam fails even earlier and

the length of the beam where there exists significant plasticity is far shorter (refer to Fig.

4.29). That is, as the load increases, the failure of the beam moves to mode II and then

ifi, and the plasticity in the beam becomes more localized. This agrees with experimental

observations.

Another detailed study of the time histories at different energies gives some idea about

the different energetic characters of different failure modes. The time histories of external

work, kinetic energy, and plastic work done in the half beam for a 0.375 in. x 1 in. x 8 in.

beam subjected to three typical loading cases (17.8, 42.9, and 64 ktaps) which correspond

to modes I, II, and ifi failure of the beam, are presented in Figs. 4.30 (a), (b) and (c)
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respectively. As seen from Fig. 4.30 (a), during the mode I failure the majority of the

external work is absorbed into the plastic work in the beam; this corresponds to the

plasticity fully developing in the whole beam as discussed above. In mode II (Fig. 4.30

(b)) the beam still acquires quite an amount of kinetic energy after the plastic work

absorbs the majority of the external worlç this corresponds to the plasticity developed in

the beam decreasing. Finally, in mode ifi failure (Fig. 4.30 (c)) most of the external work

is turned into kinetic energy of the beam. The plastic work in the beam is relatively very

small; this corresponds to the beam failing at an early time and plasticity in the beam is

localized.

The residual kinetic energy is further plotted vs. impulse for half a broken beam of 0.3 75

in. by 1 in. by 8 in., as shown in Fig. 4.31. The highest velocity of the flying broken beam

is 8636 in./s (220 m/s). Similar results are obtained for the 0.25 in. by 1 in. by 8 in. beam,

which are shown in Fig. 4.32. In this case, the velocity of the flying broken beam can be

as high as 13975 in./s (355 mIs), which is faster than the sound speed. Research on the

blast loaded circular plates [29] also shows the same trend in the residual kinetic energy

vs. impulse relation.

4.4.3 Convergence and Energy Conservation

Having discussed the accuracy of the failure conditions in modelling the actual failure,

the accuracy of the finite element calculation and the time integration is still of interest.

This is to be discussed next.

To check the effect of the time step on the accuracy of the time integration, three time

steps, 1, 0.5, and 0.1 sec, have been used in analyzing the beam of 0.375 in. x 1 in. x 8
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in. subjected to an impulse of 17.8 ktaps. A 10 equal element mesh is used. The mid-span

permanent deformations obtained are listed as follows for comparison:

Table 4.1 Convergence of mid-span permanent deformations with time step.

Time step max Aw mm Aw Aw
(.isec) m m m

1 0.64495 0.566235 0.60235
0.5 0.64244 0.55977 0.60108
0.1 0.64034 0.55758 0.59896

The difference between results from calculations using 1 and 0.1 sec as time steps is

only about 0.56%. The answer obtained using 1 j.sec can be considered accurate enough.

To check the effect of element mesh on the accuracy of the finite element calculation,

three element meshes have been used: 8, 10, and 16 equal elements representing the half

beam, for the case of 0.375 in. x 1 in. x 8 in. beam applied with an impulse of 17.8 ktaps.

The mid-span permanent deformations Aw are shown below:

Table 4.2 Convergence ofmid-span permanent deformations with mesh.

No. of elements max Aw mm Aw
in. m m

8 0.63716 0.55488 0.59602
10 0.64495 0.56235 0.60365
16 0.64772 0.56528 0.6065

From the table it can be observed that the results are converging well.
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For the energy conservation check, two cases of a 0.375 in. x 1 in. x 8 in. beam

subjected to 17.8 ktaps and 52.9 ktaps are analyzed using different time steps. The results

are presented in Figs. 4.33 and 4.34 respectively. In these figures the time histories of the

energy difference ratio is shown. Energy difference ratio rE is defined as

Et -Ek pl
rE

= E
(4.4)

ext

where Ee,, Ek, and E1 correspond to external energy, kinetic energy, and plastic work

done in the half beam. Since the Eext should be greater than the summation ofEk and

with the difference being strain energy of the beam, rE should always be greater than 0.

However, when a larger time step is used, the numerical error can cause negative rEs. As

observed from the figure, when rE is less than 0, it is always greater than -1.5%, which is

still acceptable. With the decrease in the time step, the rE is positive, so the results

converge to the correct value. Therefore, the energy is conserved when a small enough

time step is used.

4.5 Summary

In this Chapter, after the series of experiments conducted by Menkes and Opat are

introduced, the numerical simulation of the experiments by using finite element analysis

incorporated with the failure conditions are presented. The results obtained by employing

different failure criteria are compared to the data from experiments in the discussion. The

convergence is also presented and, as shown, the results are converging as the time step

and mesh are refined.
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Fig. 4.34. Time histories of energy difference ratio using different time steps for a 0.375 in. by 1
in. by 8 in. beam subjected to an impulse of 52.9 ktaps. The rupture of the beam is predicted by
the quadratic interaction criterion with shear stress from the FE analysis.
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According to the comparison, the quadratic interaction failure criteria using shear stress

from the finite element analysis provided the closest answer, but at the cost of using a

denser mesh. However an extremely dense mesh should be avoided because of the

boundary layer effect of the higher order beam theory solution. The quadratic interaction

failure condition using wall reaction force provides a good prediction as well while

allowing a comparatively coarse mesh to be used to obtain accurate results; thus this

technique is more practical for engineering applications.

From the discussion, the effect of interaction cannot be neglected, particularly in the

mode ifi failure. The membrane effect still plays an important role in the shear dominant

failure of the beam.

Additionally, the ruptures of the beam predicted from the analysis are earlier than the

experimental results, which is desirable for engineering practice. This conservatism is

probably because the beam ends in the experiments may not be fi.illy restrained according

to the configuration of the experiment and the length of plastic hinge cdi might be smaller

than in reality.



121

CHAPTER 5

CONCLUSION

5.1 Summary

A failure analysis procedure to predict the rupture of the impulsively loaded ductile

clamped beams which exhibit geometric and material non-linearities has been presented in

this study.

A detailed look into the finite element formulation of the problem is first presented.

With the kinematics of the higher order beam theory and the non-linear strain displacement

relation by using the principle of virtual work and Total Lagrangian Approach, the

governing variational equation of motion is obtained. It is yet to be noted that the beam

kinematics is restricted to the range of small strains and moderately large displacements.

After the finite element spanwise discretization is applied, the variational governing

equation of motion reduces to a system of equations of motion which are differential

equations with respect to time. The constitutive model which the system of equations of

motion are based on considers elastic-plastic isotropic strain hardening material behaviour

by von Mises yield criterion and associate flow rule and strain rate sensitivity by Cowper

Symonds relationship. Then the differential equations are integrated over the time domain

by the central difference method. Lumped mass matrix is used to improve the accuracy

and efficiency. A conservative critical time step is determined for stability. The governing
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differential equations of motion now further reduce to a system of algebraic equations

which can be solved easily.

Based on finite element method calculations interaction failure criteria and the failure

condition using plastic work density theory are proposed.

The premise behind the interaction failure criteria is to consider the contribution of both

tensile tearing and transverse shearing effects to the failure of the beam. Thus it can

explain the overlap of mode II and ifi failures between the thresholds. The beam is

modelled as an elastic-plastic beam with a plastic hinge at the supports. The plastic hinge

assumption is employed in calculating the tensile strain. The shear stress can be obtained

either from wall reaction forces (from equilibrium) or first order shear force (from the

finite element analysis). Tensile strain ratio and shear stress ratio are used to calibrate the

influence of the tearing and shearing effect, respectively. Two interaction functions have

been investigated, namely quadratic interaction and linear interaction.

The concept on which the failure criterion using the plastic work density is based is that

a crack initiates at a point where the density of plastic work reaches a critical value. It is

assumed that the beam does not fail until the whole section fails since the rupture always

occurs in a section. Therefore the failure conditions can be put that the beam will not fail

until the sectional plastic work density reaches a critical value.

Because when the rupture occurs there still remains quite a lot of residual energy, the

post failure analysis on a blown off free beam is presented. In this way, the mid-span

permanent deformation from the analysis is comparable to the experimental results.
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To assess the accuracy of the failure conditions, analysis using different filure

conditions have been carried out to simulate the experiments conducted by Menices and

Opat. Results obtained from these analyses have been compared to the experimental data.

For the quadratic interaction filure conditions, encouraging results have been obtained. It

is to be noted that Menkes and Opat admitted in their paper that the specification of mode

II and ifi thresholds are highly subjective. Therefore, the conservative results obtained

from the analysis are desirable in the engineering sense.

As stated in the introduction, the objective of the present study is to determine a simple

failure model to be incorporated into the finite element analysis so that the onset of the

mode II and ifi failures of impulsively loaded beam can be predicted. This has been

satisfactorily accomplished. Furthermore, some insight into the characteristics of the

different failure modes is obtained from the discussion about the numerical results.

5.2 Areas Requiring Further Investigation

In the course of the present work, several assumptions are made without confirmation;

therefore they might be potential sources of error. Some of these are listed as follows for

further investigation.

During the formulation of the finite element analysis of the problem, it is assumed that

the strain is everywhere small. However, when the rupture of the beam occurs due to

excessive strain, the strain becomes significant. This might have some effect on the

validity of simplification in the formulation.
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In the present work, the rupture strain of the beam is chosen to be equal to the static

uniaxial rupture strain. The ultimate shear strength is determined based on the von Mises

yield criterion and the ultimate tensile strength of the material. That the dynamic shear

strength appears to be much higher than the static one is taken into account by using a

“conservative” number. It can be noted that the determination of these parameters is

based on several assumptions which are not confirmed. An investigation is therefore

needed to check the sensitivity of the results to these two parameters.

During the modelling of the impulsive loading condition, a rectangular pressure pulse is

used and an assumption was made as to the duration of the load. Since the assumptions

on which the load modelling is based are not well confirmed, this introduces the possibility

that the modelling of the load shape and duration might have some influence on the failure

of the beam. A parameter study is needed to confirm or improve the modelling of the

blast loading condition in the future.

While calculating the bending strain at the support, the length of the plastic hinge is

defined as l=ah, where cx, the plastic hinge parameter, is chosen to be two. However, as

the beam goes into the membrane stage, the length of the plastic hinge will be greater, thus

decreasing the bending strain and delaying the onset of the mode II failure of the beam,

which is closer to the experimental data. With the increase in the impulsive loading, the

length of the plastic hinge will decrease, as indicated in the figure on distribution of plastic

work along the beam. This will have an effect on the time of rupture of the beam and thus

the mid-span permanent deformation. As discussed above, the specification of the length

of the plastic hinge, hence the plastic hinge parameter a, will have an effect on the

accuracy of the interaction failure model; possibly refinements are necessary.
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