ECONOMIC RISK QUANTIFICATION OF TOLL HIGHWAY PROJECTS

BY
TOSHIAKI HATAKAMA
B.Eng., Hokkaido University, Japan, 1983
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF APPLIED SCIENCE
in
THE FACULTY OF GRADUATE STUDIES
DEPARTMENT OF CIVIL ENGINEERING
We accept this thesis as conforming to the required standard

UYIVERSITY OF BRITISH COLUMBIA July 1994

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

(Signature)

Department of Civil Eng;ineering
The University of British Columbia Vancouver, Canada

Date July 27,1994

Abstract

The objectives of this thesis are to model economic and financial performance of user-pay highway facilities, to explore the sensitivity of project performance to changes in primary variables, to measure the uncertainty surrounding user-pay highway facilities, and to explore ways of reducing the uncertainty. Special attention is given to the revenue phase.

The model consists of three levels: work package/revenue stream level; project performance level; and project decision level. The model calculates work package duration, work package cost, and revenue stream for the work package/revenue stream level; project duration, project cost, and project revenue for the project performance level; and project's net present value (NPV) for the project decision level. They are described by their expected value, standard deviation, skewness, and kurtosis.

This model is applied to a numerical example patterned after a Japanese project to carry out a sensitivity and risk analysis, and highly sensitive primary variables are
identified. The case study may be viewed as a comparison of current Japanese deterministic feasibility analysis with a probabilistic one, using the same underlying project model. Risk management strategies are presented, and their impacts on overall project risks are measured.

Results from applying the model to a sample project show that it is very difficult for a highway operator alone to reduce risks. It is suggested that it is very important that risk sharing be negotiated with the government and some guarantee of support be received.

Table of Content

Abstract ii
List of Tables viii
List of Figures xvii
Acknowledgement xxi

1. Introduction 1
1.1 General 1
1.2 Background of the Research 2
1.2.1 Toll Highway Concept 2
1.2.2 Analytical Method for Quantification of Economic Risks 6
1.3 Objectives of the Research 10
1.4 Structure of the Research 11
2. Analytical Model 13
2.1 General 13
2.2 Cash Flows 22
2.3 Structure of the Economic Analysis 23
2.3.1 Work Package/Revenue Stream Level 24
2.3.2 Project Performance Level 29
2.3.3 Project Decision Level 31
2.4 Work Package 32
2.5 Toll Revenue 33
2.5.1 General 33
2.5.2 General Input Data 37
2.5.3 Traffic Volume 38
2.5.4 Toll Rate 40
2.5.5 General Form of Toll Revenue 44
2.6 Maintenance and Operation Cost Model 48
2.6.1 Maintenance Costs 49
2.6.2 Operation Costs 56
2.6.4 General Form of Maintenance and Operation Costs 61
3. Application 62
3.1 General 62
3.2 Sample Project 63
3.2.1 Sample Project General Information 63
3.2.2 Work Packages 66
3.2.3 Revenue Streams 74
3.2.4 Calculation Results 87
3.3 Sensitivity Analysis 95
3.3.1 Results 95
3.3.2 Summary of Sensitivity Analysis 104
3.4 Summary 105
4. Risk Management 106
4.1 General 106
4.2 Strategies for Risk Management 107
4.2.1 Revenue Stream Early Start Time (case-2) 108
4.2.2 Toll Rate Growth Parameters (case-3) 112
4.2.3 Traffic Volume Growth Parameters (case-4) 116
4.2.4 Tolls (case-5) 119
4.2.5 Traffic Volume (case-6) 122
4.2.6 Inflation Rate (case-7) 126
4.2.7 Parameter for Consignment Cost of Toll Collection (case-8) 129
4.2.8 Combination of Case-2 to Case-8 (case-9) 132
4.3 Conclusions 135
5. Conclusions and Recommendations 140
5.1 Conclusions 140
5.2 Recommendations for Future Work 142
5.2.1 Computer Programs 142
5.2.2 Correlation between Primary Variables for Revenue Streams 143
5.2.3 Deterministic Input for Primary Variables 144
Bibliography 145
Appendices 149
A Discounted Work Package Cost 149
B Input Data for Revenue Stream 152
B. 1 Closed System (Fixed Toll Rate) 152
B. 2 Closed System
(Distance Proportional Toll Rate) 157
B. 3 Open System (Fixed Toll Rate) 162
C Interchange Pair Traffic Volume and Traffic Volume and Toll Rate Growth Parameters 167
C. 1 Interchange Pair Traffic Volume 167
C. 2 Traffic Volume Growth Parameters 177
C. 3 Toll Rate Growth Parameters 178
D Source Code of the Model 179

List of Tables

1.1 Derived Variables at Each Level 7
2.1 Work Package Components 32
2.2 Input Data for Revenue Streams 35
2.3 Interchange Pair Daily Traffic Volume 36
2.4 Interchange Pair Toll 36
2.5 Interchange Pair Annual Toll Revenue 36
2.6 Vehicle Type and Toll Ratio. 41
2.7 Input Data for Toll Revenue (Example) 45
2.8 Daily Traffic Volume $Q(1, k, 1,1)$. 46
2.9 Daily Traffic Volume $Q(1, k, 1,2)$ 46
2.10 Tolls $r(1, k, 1,1)$ 46
2.11 Tolls r(1,k,1,2) 46
2.12 Daily Traffic Volume $Q(2, k, l, 1)$. 46
2.13 Daily Traffic Volume $Q(2, k, 1,2)$ 46
2.14 Toll r(2,k,l, 1) 46
2.15 Toll r(2,k,1,2) 46
2.16 Annual Revenue $R(1,1, k, 1,1)$ 46
2.17 Annual Revenue $\mathrm{R}(1,1, k, 1,2)$ 46
2.18 Annual Revenue $\mathrm{R}(1,2, k, 1,1)$ 47
2.19 Annual Revenue $R(1,2, k, 1,2)$ 47
2.20 Annual Revenue $R(2,1, k, 1,1)$ 47
2.21 Annual Revenue $\mathrm{R}(2,1, k, 1,2)$ 47
2.22 Annual Revenue $\mathrm{R}(2,2, k, 1,1)$ 47
2.23 Annual Revenue $\mathrm{R}(2,2, k, 1,2)$ 47
2.24 Annual Revenue $R(2,3, k, 1,1)$ 47
2.25 Annual Revenue $R(2,3, k, 1,2)$ 47
2.26 Total Revenues for an Example 47
2.27 Maintenance Costs 48
2.28 Operation Costs 49
2.29 Road Length 49
2.30 Tunnel Length by Ventilation Methods 50
2.31 Road Length (Example) 51
2.32 Tunnel Length by Ventilation Methods (Example) 51
2.33 Road Cleaning Costs 51
2.34 Road Maintenance Costs 52
2.35 Road Lighting Costs 52
2.36 Bridge Maintenance (Repairing) Costs 53
2.37 Bridge Maintenance (Repainting) Costs 53
2.38 Tunnel Maintenance Costs 54
2.39 Snow and Ice Control Costs 55
2.40 Overlay Costs 55
2.41 Manpower Required for Operation Office 57
2.42 Labour Cost for Operation Office 57
2.43 Manpower Required for Toll Collection 59
3.1 General Feature of the Sample Project 63
3.2 Statistics Data for Inflation, Interest, Discount Rates, and Equity Fraction 65
3.3 Five Percentile Estimate Parameters for W.P. Duration 68
3.4 Five Percentile Estimate Parameters for W.P.
Costs 68
3.5 Deterministic Values for Work Package Durations and Costs 71
3.6 Statistics for Work Package Durations and Costs 72
3.7 Discounted Work Package Costs 73
3.8 Five Percentile Estimate Parameters for Revenue Streams 74
3.9 Interchange Distances 75
3.10 Toll for Light Motor Vehicle 75
3.11 Toll for Ordinary Motor Vehicle 76
3.12 Toll for Medium-sized Motor Vehicle 76
3.13 Toll for Large-sized Motor Vehicle 76
3.14 Toll for Special Large-sized Motor Vehicle 76
3.15 Spot Traffic Volume between Interchange \#1 and \#2 77
3.16 Spot Traffic Volume between Interchange \#2 and \#3 78
3.17 Spot Traffic Volume between Interchange\#3 and \#479
3.18 Spot Traffic Volume between Interchange \#4 and \#5 80
3.19 Spot Traffic Volume between Interchange \#5 and \#6 81
3.20 Deterministic Annual Revenues and Annual Maintenance and Operating Costs (Constant Dollar) 85
3.21 Discounted Revenues for the Original
Feasibility Analysis 86
3.22 Statistics for Discounted Work Package Costs 87
3.23 Statistics for Discounted Revenues 88
3.24 Statistics for Project Duration, Discounted Project Cost, Project Revenue, and Project Net Present Value (NPV) 88
3.25 Cumulative Probability of Project Duration 89
3.26 Cumulative Probability of Project Cost 91
3.27 Cumulative Probability of Project Revenue 92
3.28 Cumulative Probability of Project Net Present Value. 94
3.29 Total sensitivity Coefficients for RVS \#1 97
3.30 Total sensitivity Coefficients for RVS \#2 97
3.31 Total sensitivity Coefficients for RVS \#3 98
3.32 Total sensitivity Coefficients for RVS \#4 98
3.33 Total sensitivity Coefficients for RVS \#5 99
3.34 Total sensitivity Coefficients for RVS \#6 100
3.35 Total sensitivity Coefficients for RVS \#7 101
3.36 Total sensitivity Coefficients for RVS \#8 102
3.37 Total sensitivity Coefficients for RVS \#9 103
4.1 Five Percentile Estimate Parameters for W.P. Durations (case-1) 109
4.2 Five Percentile Estimate Parameters for W.P. Durations (case-2) 109
4.3 Comparison of the Project Revenue (case-1 and case-2) 110
4.4 Cumulative probability of the Project Revenue (case-1 and case-2) 110
4.5 Comparison of the Project NPV (case-1 and case-2) 111
4.6 Cumulative Probability of the Project NPV (case-1 and case-2) 111
4.7 Five Percentile Estimate Parameters for Toll Rate Growth Parameters 113
4.8 Statistics Information of Five Percentile Estimate Parameters for Toll Rate Growth Parameters 113
4.9 Comparison of the Project Revenue (case-1 and case-3) 113
4.10 Cumulative probability of the Project Revenue (case-1 and case-3) 114
4.11 Comparison of the Project NPV (case-1 and case-3) 114
4.12 Cumulative Probability of the Project NPV (case-1 and case-3) 115
4.13 Five Percentile Estimate Parameters for Traffic Volume Growth Parameters 116
4.14 Statistics Information of Five Percentile Estimate Parameters for Traffic Volume Growth Parameters 116
4.15 Comparison of the Project Revenue (case-1 and case-4) 116
4.16 Cumulative probability of the Project Revenue (case-1 and case-4) 117
4.17 Comparison of the Project NPV (case-1 and case-4) 117
4.18 Cumulative Probability of the Project NPV (case-1 and case-4) 118
4.19 Five Percentile Estimate Parameters for Tolls 119
4.20 Statistics Information of Five Percentile Estimate Parameters for Tolls. 119
4.21 Comparison of the Project Revenue (case-1 and case-5) 120
4.22 Cumulative probability of the Project Revenue (case-1 and case-5) 120
4.23 Comparison of the Project NPV (case-1 and case-5) 121
4.24 Cumulative Probability of the Project NPV (case-1 and case-5) 121
4.25 Five Percentile Estimate Parameters for Traffic Volume 123
4.26 Statistics Information of Five Percentile Estimate Parameters for Traffic Volume 123
4.27 Comparison of the Project Revenue (case-1 and case-6) 123
4.28 Cumulative probability of the Project Revenue (case-1 and case-6) 124
4.29 Comparison of the Project NPV (case-1 and case-6) 124
4.30 Cumulative Probability of the Project NPV (case-1 and case-6) 125
4.31 Five Percentile Estimate Parameters for Inflation Rate 126
4.32 Statistics Information of Five Percentile Estimate Parameters for Inflation Rate 126
4.33 Comparison of the Project Revenue (case-1 and case-7) 126
4.34 Cumulative probability of the Project Revenue (case-1 and case-7) 127
4.35 Comparison of the Project NPV (case-1 and case-7) 127
4.36 Cumulative Probability of the Project NPV (case-1 and case-7) 128
4.37 Five Percentile Estimate Parameters for Parameter for Consignment Cost of Toll Collection 129
4.38 Statistics Information of Five Percentile Estimate Parameters for Consignment Cost of Toll Collection 129
4.39 Comparison of the Project Revenue (case-1 and case-8) 129
4.40 Cumulative probability of the Project Revenue (case-1 and case-8) 130
4.41 Comparison of the Project NPV (case-1 and case-8) 130
4.42 Cumulative Probability of the Project NPV (case-1 and case-8) 131
4.43 Comparison of the Project Revenue (case-1 and case-9) 132
4.44 Cumulative probability of the Project Revenue (case-1 and case-9) 132
4.45 Comparison of the Project NPV (case-1 and case-9) 133
4.46 Cumulative Probability of the Project NPV (case-1 and case-9) 133
4.47 Five Percentile Estimate Parameters for Traffic Volume 136
4.48 Statistics Information of Five Percentile Estimate Parameters for Traffic Volume 136
4.49 Comparison of the Project Revenue (case-1 and case-10) 136
4.50 Cumulative probability of the Project Revenue (case-1 and case-10) 137
4.51 Comparison of the Project NPV (case-1 and case-10) 138
4.52 Cumulative Probability of the Project NPV (case-1 and case-10) 138
B. 1 Input Data for Closed System (Fixed Toll Rate) 152
B. 2 Input Data for Closed System (Distance Proportional Toll Rate) 157
B. 3 Input Data for Open System (Fixed Toll Rate) 162
C. 1 Interchange Pair Traffic Volume at Base Year for RVS \#1 168
C. 2 Interchange Pair Traffic Volume at Base Year for RVS \#2 169
C. 3 Interchange Pair Traffic Volume at Base Year for RVS \#3 170
C. 4 Interchange Pair Traffic Volume at Base Year
for RVS \#4 171
C. 5 Interchange Pair Traffic Volume at Base Year for RVS \#5 172
C. 6 Interchange Pair Traffic Volume at Base Year for RVS \#6 173
C. 7 Interchange Pair Traffic Volume at Base Year for RVS \#7 174
C. 8 Interchange Pair Traffic Volume at Base Year for RVS \#8 175
C. 9 Interchange Pair Traffic Volume at Base Year for RVS \#9 176
C. 10 Traffic Volume Growth Parameters 177
C 11 Toll Rate Growth Parameters 178
D. 1 Program List 181

List of Figures

1.1 Flowchart for the Analytical Approach 9
2.1 Generalized Cash Flow Diagram for an Engineering Project 15
2.2 Cash Flow Diagram for a Toll Highway Project 15
2.3 Feasibility Study Components for a Toll Highway Project 16
2.4 General Pattern of Traffic Growth 17
2.5 Organizational Structure 21
2.6 Derived Variables at Each Level 24
2.7 Cash Flow Diagram for Work Package 26
2.8 Cash Flow Diagram for Net Revenue Stream 27
2.9 Cost/Revenue Components 28
2.10 Revenue Stream and Base Years 34
2.11 Interchanges (Example) 36
2.12 Toll Rate Increase (Case-1) 41
2.13 Toll Rate Increase (Case-2) 42
2.14 Toll Growth Parameters (Case-1) 42
2.15 Toll Growth Parameters (Case-2) 43
2.16 Road Structure (Example) 50
3.1 Expenditure Profiles for the Construction Phase 64
3.2 Expenditure and Revenue Profiles for the Revenue Phase 64
3.3 Time Line for a Sample Project 66
3.4 Precedence Network for the Sample Project 70
3.5 Spot Traffic Volume between Interchange
\#1 and \#2 82
3.6 Spot Traffic Volume between Interchange \#2 and \#3 82
3.7 Spot Traffic Volume between Interchange \#3 and \#4 83
3.8 Spot Traffic Volume between Interchange \#4 and \#5 83
3.9 Spot Traffic Volume between Interchange \#5 and \#6 84
3.10 Cumulative Probability of Project Duration 90
3.11 Cumulative Probability of Project Cost 91
3.12 Cumulative Probability of Project Revenue 93
3.13 Cumulative Probability of Project Net Present Value. 94
4.1 Cumulative Probability of the Project Revenue (case-1 and case-2) 111
4.2 Cumulative Probability of the Project NPV (case-1 and case-2) 112
4.3 Cumulative Probability of the Project Revenue (case-1 and case-3) 114
4.4 Cumulative Probability of the Project NPV (case-1 and case-3) 115
4.5 Cumulative Probability of the Project Revenue (case-1 and case-4) 117
4.6 Cumulative Probability of the Project NPV (case-1 and case-4) 118
4.7 Cumulative Probability of the Project Revenue (case-1 and case-5) 121
4.8 Cumulative Probability of the Project NPV (case-1 and case-5) 122
4.9 Cumulative Probability of the Project Revenue (case-1 and case-6) 124
4.10 Cumulative Probability of the Project NPV (case-1 and case-6) 125
4.11 Cumulative Probability of the Project Revenue (case-1 and case-7) 127
4.12 Cumulative Probability of the Project NPV (case-1 and case-7) 128
4.13 Cumulative Probability of the Project Revenue (case-1 and case-8) 130
4.14 Cumulative probability of the Project NPV (case-1 and case-8) 131
4.15 Cumulative Probability of the Project Revenue (case-1 and case-9) 133
4.16 Cumulative Probability of the Project NPV (case-1 and case-9) 134
4.17 Cumulative Probability of the Project Revenue (case-1 and case-10) 137
4.18 Cumulative Probability of the Project NPV (case-1 and case-10) 138
D. 1 Program Structure 180

Acknowledgement

I wish to express my most sincere gratitude to Dr. Alan Russell, my teacher and supervisor, who has had a profound and positive impact on my academic and professional attitudes. I greatly appreciate his advice, guidance, and support throughout my graduate studies. This thesis would not exist without his patient efforts and valuable suggestions.

To Michael J. Wise, Kevin Yu, Francois Medori, Bruce Granstrom, Jerry Froese, fellow colleagues and friends, many thanks for your moral support and encouragement.

I would like to thank my parents for their support, encouragement, and instilling in me a dedication that was invaluable in performing this work.

To Daiki, thank for your encouragement. You made the bad times more tolerable and the good times more enjoyable.

Finally, to Mitsuyo, your patience, support, and encouragement are most gratefully acknowledged.

Chapter 1

Introduction

1.1 General

This thesis describes an application of an analytical method for time and economic risk quantification for large toll highway projects. The methodology facilitates the investigation of the sensitivity of project performance to changes in primary variables for a toll highway project. The goal of this thesis is to model the economic and financial performance of user-pay highway facilities, to measure the uncertainty surrounding such projects, and to explore ways of reducing the uncertainty.

This chapter presents the background of the research, including the toll highway concept and the analytical method for quantification of economic risks, the objectives of the research, and the structure of the thesis.

1.2 Background of the Research

1.2.1 Toll Highway Concept

The concept of toll highway is not new at all. Many economists and researchers (Atkins, Eade, and Fisher, 1972; Beesley and Hensher, 1990; Geltner and Moavenzadeh, 1987; Gittings, 1987; Johansen, 1987; Robertson, 1987; Rusch, 1984; Schneider, 1985; Wuestefeld, 1988; et al) have discussed the toll highway concept for a long time. Many toll highways have been built in a variety of countries, particularly in Italy, France, Spain, and Japan. On the other hand, the former West Germany developed its national highway system without the use of toll financing. It is recognized that toll financing can be an effective method for developing and improving urgently needed highway systems within limited national budgets, although such an approach has unavoidable disadvantages. In addition to using the toll system for the construction of new highways, several countries are also considering toll financing in order to provide funds for the improvement and rehabilitation of existing free highway networks.

The primary objectives of toll financing are described as follows by Rusch (1984) :

- to obtain funds for urgently needed projects;
- to shift the burden of capital, operating, and maintenance costs to specific users; and
- to provide an immediate and direct source of revenue to discharge the obligations created.

Potential advantages and disadvantages have been also described by Atkins, Eade, and Fisher(1972); Beesley and Hensher(1990); Geltner and Moavenzadeh (1987); Gittings(1987); Johansen(1987); Robertson(1987); Rusch(1984); Schneider(1985); Wuestefeld (1988) et al as follows.

Advantages include:

- a more precise form of pay-as-you-go financing;
- rapid construction;
- fewer inflationary effects on capital cost;
- better quality maintenance;
- an ability to use toll rates as a form of congestion pricing; and
- a better safety record.

Disadvantages include:

- extra financing costs;
- extra costs of toll collection;
- extra costs for toll collection facilities;
- the payment of a fuel tax while traveling on a toll facility;
- time delays, increased fuel consumption, and worse air quality when motorists are stopped;
- putting more traffic back onto underpriced roads;
- creating an undesirable private monopoly of management; and
- less frequent access.

According to the analysis conducted by the Congressional Budget Office (Gittings, 1987), the benefits of toll-financing may exceed the additional costs if a needed highway facility can be built 4 or more years sooner than would be possible under conventional tax financing. However, if toll financing produces a facility only 2 or fewer years sooner, the use of toll financing is probably not worth the additional costs.

Toll collection systems are generally classified into three basic categories (Gittings, 1987).
(1) Closed (ticket) system This system limits access to toll-paying motorists. Tollbooths are located at each point of entry and exit. Examples are the New Jersey, Ohio, and Pennsylvania turnpikes.
(2) Open (main-line barrier) systems This system allows local, short distance traffic to use the facility without paying tolls. Barriers are located intermittently along the main line of the road, and no tollbooth is located on the interchange ramps. All traffic must stop at the barriers to pay the toll. However, local traffic may avoid paying tolls if there is no barrier between entry and exit. Examples are the Connecticut Turnpike and the Bee Line Expressway in Florida.
(3) Hybrid (barrier-ramp) system

This system is a hybrid of the above two systems. There is a closed and an open system. In the closed system, toll barriers are located at intervals along the main line and on most interchange ramps. Every motorist has to pay the toll. An example is the Illinois Tollway. The open system, on the other hand, allows some toll free traffic. Toll barriers are located at the main lines and on selected high-revenue interchange ramps. An example is the Garden state Parkway in New Jersey.

Gittings (1987) mentioned that significant cost savings are dependent on the design of the toll collection system - e.g. type of toll collection system, the number of collection points, the location of collection points - and the degree of automation in the system, and also that toll collection design decisions depend on cost, user access, traffic route choice, toll revenue, safety, and highway financing equity.

There are usually two levels of feasibility studies required: preliminary engineering studies, and more detailed and definitive engineering studies (Rusch, 1984). In preliminary engineering studies, aspects examined include consideration of location, alignment, toll rate, traffic projections, and estimates of construction, operation, maintenance, and financing costs. If preliminary studies indicate project feasibility, more detailed
and definitive engineering studies are required in order to produce reliable cost and revenue estimates.

Benefit-cost analysis for highway projects, which includes social benefits and impacts, has been discussed and reported on by many researchers (Andersson, 1985; Campbell and Humphrey, 1988; Christofferson, 1980; Davis and et al, 1953; Sharp, Button, and Deadman, 1986; Waters and Meyers, 1987; Weisbrod and Beckwith, 1992). Atkins, Eade, and Fisher(1972) introduced a computer based model for analysing the financial feasibility of toll roads. However, there seem to be very few academic studies which focus on toll highway projects and the measurement of economic risk.

1.2.2 Analytical Method for Quantification of Economic Risks

This research is based on the Analytical Method for Quantification of Economic Risks, which was developed by Ranasinghe (1990). A brief outline is given below.

By way of background, several probabilistic estimate methods for project decision and performance variables have been developed. They are: Probabilistic Time Methods, Probabilistic Cost Methods, Probabilistic Time/Cost Methods, and Probabilistic Present Value Methods. However, among them, only Probabilistic Present Value Methods, which evaluate a project's net present value (NPV) and internal rate of return (IRR), are suitable for economic
feasibility studies because they employ criteria necessary to the proper evaluation of a project. The Analytical Method for Quantification of Economic Risks belongs in this category. An engineering project can be described in terms of a hierarchy which consists of three levels, namely, project decision, project performance, and work package/revenue stream.

The project decision level is the highest level, and the individual work package/revenue stream level is the lowest level. At each level, derived variables are described by $Y=g(\underline{X})$, where Y is the derived variable and \underline{x} is a vector of primary variables. Derived variables at the lower level are primary variables at the higher level. See Table 1.1 for the variable hierarchy described.

Level	Primary Variables	Derived Variables
Project Decision	Project Duration Project Cost Project Revenue	NPV
Project Performance	W.P Duration W.P Cost Net Revenue Stream	Project Duration Project Cost Project Revenue
W.P/Revenue Stream	input data	W.P Duration W.P Cost Net Revenue Stream

Table 1.1 Derived Variables at Each Level

The framework for quantifying the uncertainty of a derived variable is based on four assumptions:
(1) The derived and the primary variables are continuous and their probability distributions are approximated by the Pearson family of distributions;
(2) An expert can provide estimates for the percentiles of his subjective prior probability distribution for a primary variable at the input level;
(3)A derived variable can be more accurately estimated from a set of primary variables that are functionally related to it than by direct estimation; and
(4) The correlations between primary variables are linear.

See Ranasinghe (1990) for justification of these assumption.
Figure 1.1 shows the flowchart for the analytical approach.

Analyst/Expert Input

* Precedence Relations among Work Packages and Revenue Streams
* Functions for Work Package Duration, Cost and Revenue Streams
* Subjective Estimates for Percentiles of Primary Variables and Correlation Matrices, and Shared Variables in Functions for Work Package Durations, Costs and Revenue Streams

Figure 1.1 Flowchart for the Analytical Approach (Ranasinghe, 1990)

1.3 Objectives of the Research

The primary objectives of this research are:

1. to model economic and financial performance of user-pay highway facilities, with special emphasis on modeling revenues and costs during the operating phase;
2. to explore the sensitivity of project performance to change in primary variables (input data). Sensitivity analysis for the revenue phase(traffic volume and toll rate) are emphasized;
3. to measure the uncertainty surrounding user-pay highway facilities; and
4. to explore ways of reducing the uncertainty.

The case study presented in chapter 4 is a comparison of current Japanese (Japan Highway Public Corporation) deterministic feasibility analysis with a probabilistic one, using essentially the same underlying project model.

To achieve the objectives of the thesis, extensive work had to be done on the original main frame program developed by Ranasinghe (1990) called TIERA which was converted to a PC based program called AMMA. This program was extensively revised as part of this thesis. It is listed in Appendix D.

Large toll highway projects consume large quantities of time, cost, and resources. The economic failure of a large toll highway project would undoubtedly cause serious damage to both
the owner/operator of the highway and to the society in which it has been built. Therefore, it is critical that a detailed feasibility analysis be carried out in order to minimize potential risks. Feasibility analyses for toll highway projects require long-term forecasts of usage and unit rates because of long project durations, especially for the revenue phase. This means that such projects are executed in an environment of high uncertainty. Although many traffic forecast methods are now available (Bushell, 1970; Dalton and Harmelink, 1974; Davinroy, 1962; Duffus, Alfa, and Soliman, 1987; Huber, Boutwell, and Witheford, 1968; Kadiyali, 1983; Morellet, 1981; Neveu, 1982; Newell, 1980; Thomas, 1991; et al), it is difficult to accurately estimate future traffic, because traffic volume is dependent on an uncertain economic environment, changing road network conditions and many other factors. In these situations, risk quantification should be done carefully during feasibility analysis.

1.4 Structure of the Thesis

Chapter 2 develops an analytical model for toll highway projects, with particular emphasis on the revenue phase. The model consists of three levels, work package/revenue stream level (the lowest level), project performance level, and project decision level (the highest level). As they are functionally related, this model requires that primary variables for the work
package/revenue stream level only are inputted. This model can be applied to the closed, open, and hybrid systems of toll collection.

Chapter 3 presents a numerical example patterned after a Japanese project. Results from a sensitivity and risk analysis are presented.

Chapter 4 examines strategies for risk management, and explores these impact on overall risks. Conclusions and recommendations are presented in Chapter 5.

Appendix A contains the mathematical derivation of an equation for discounted work package costs.

Appendix B contains detailed input data required by the model.

Appendix C contains interchange pair traffic volumes and growth parameters for both traffic volumes and toll rates for the sample project.

Appendix D contains source code of the model.

Chapter 2

Analytical Model

2.1 General

This chapter presents an analytical model for the feasibility analysis of a toll highway project. The model is based on an analytical method for time and economic risk quantification developed by Ranasinghe (1990). Extensions are made in the form of generalized revenue and operating cost models which draw on the approach used by the Japan Highway Public Corporation.

Figure 2.1 shows the generalized cash flow diagram for a civil engineering project. However, a modified cash flow diagram, shown in Figure 2.2, is used for this model in order to make it more appropriate to a toll highway project. In this scenario, several basic assumptions have been made in order to simplify the model:
(1) Since a project financing approach where funds are advanced during the construction phase, and repaid during the operation phase is assumed, there is no distinction between interim and permanent financing;
(2) The repayment of financing is assumed to begin after the construction phase is completed, although the model is compatible with projects involving overlapping operation and construction phases as well;
(3) The repayment of financing is assumed to last until the end of the operation phase, but a shorter repayment period or a balloon payment at the end of the revenue phase could also be assumed; and
(4) The repayment profile is assumed to be uniform and to consist of principal and interest.

A more detailed explanation of each cash flow component is given in section 2.2.

Figure 2.3 shows a flow chart of the components of a general feasibility study for a toll highway project used in Japan (Japan Highway Public Corporation, 1983). It is generally divided into seven basic steps as follows.
(1) Traffic Survey

Traffic surveys to elicit base traffic and travel speed for traffic forecasts are carried out. These surveys include a traffic volume survey, a motor vehicle origin-destination (OD) survey, and a travel speed survey.
(2) Traffic Forecast

Traffic forecasts are needed for the first year and years when relevant traffic conditions change - such as a new road opening or a big industrial area being completed. In these 'base years', traffic volume is often discontinuous because

Figure 2.1 Generalized Cash Flow Diagram for an Engineering Project

Balloon Payment

[^0]of discrete additions to capacity or changes in road conditions. See Figure 2.4.

Figure 2.4 general pattern of traffic growth

Future traffic volume is calculated on the basis of toll rates, results of traffic surveys, road length, and the traffic volume growth parameters that are based on future projections of economic conditions, population, road development plans, other national development plans, and so on.
(3) Estimation of Annual Traffic Volume

Annual traffic volume is calculated on the basis of traffic forecasts for the base years. It is not practical to carry out a traffic forecast for every year because of the cost and time involved. Therefore, traffic volume in non-base years is interpolated by parameters.

For example, if traffic volume (Qo) in a base year is derived from a traffic forecast, traffic volume (Qi) at year i is:

$$
\begin{equation*}
Q_{i}=k_{i} / k_{o} \times Q_{o} \tag{2.1}
\end{equation*}
$$

where k_{0} and k_{i} are parameters, based on economic forecasts, national development plans, and so on. These parameters for the analytical model are described in more detail in section 2.5.
(4) Design

Toll highway facilities are designed on the basis of the traffic volume forecasts, topographical and geological data, political and other factors. Then, construction costs are estimated. The design of toll highway facilities may be dependent not only on traffic volume during base years, but also on that of other years.
(5) Estimation of Annual Revenue

In its simplest form, toll revenue is calculated by multiplying traffic volume by toll rate.
toll revenue $=($ traffic volume) \times (toll rate)
Complexity arises when consideration has to be given to different vehicle types, volume between interchange points, changing rates versus time, and open versus closed systems.
(6) Estimation of Annual Maintenance and Operation Costs Annual maintenance and operation costs are calculated on the basis of traffic volume, the toll collection system, the
organizational structure adopted, weather conditions, and so on.
(7) Calculation of Project's Future Value (Redemption Table) The future value of the project at the end of every fiscal year during the construction and revenue phase can be computed in order to measure the project's financial condition. If the projected value at the end of the revenue phase is positive, the project is feasible. This calculation is based on the above-mentioned construction costs, toll revenue, and maintenance and operation costs.

This paper focuses on the procedure followed after traffic forecasts for base years have been completed, and uses the project's net present value as a decision criterion.

The organizational structure required for the administration of a toll road is one important factor that affects project expenses in terms of overheads. The organizational structure assumed for this model is shown in Figure 2.5 , and reflects the structure of the Japan Highway Public Corporation (Japan Highway Public Corporation, 1992). Headquarters is in charge of formulating basic plans and policies for execution, setting standards, financing, and auditing. A bureau is an executing body for performing the actual work, such as road construction, operation, etc. Construction Bureaus are mainly in charge of construction, and Operation Bureaus are mainly in charge of executing road operation and collecting tolls. Each Bureau controls several on-
site offices: a survey office for performing survey and design of road construction; a construction office in charge of road construction work and negotiations for acquiring rights of way; an operation office in charge of collecting tolls, operating traffic, performing road maintenance work, and management of properties. In addition, a laboratory that performs technical surveys, tests and research and development required for the construction and operation of roads is assumed.

This structure is designed for organizations that operate several toll highway projects simultaneously, but can also be used for organizations that have only a single project.

Overheads are usually allocated to each project in proportion to its construction costs and toll revenue.

The remainder of this chapter is structured as follows: section 2.2 describes the cash flows that this model assumes, section 2.3 presents the structure of the model, section 2.4 describes work packages, section 2.5 describes revenue streams, and section 2.6 describes maintenance and operation costs.

Figure 2.5 Organizational Structure

2.2 Cash Flows

It is assumed that all cash flows are continuous, and the inflation rate, interest rate, and discount rate are invariant with time. The model consists of seven categories of cash flows.
(1) Current Dollar Expenditure

This cash flow category consists of work package costs which include survey and design costs, land acquisition costs, and construction costs.
(2) Financing

In this model, an equity fraction f, which is invariant with time, is assumed. Financing is described as follows: Financing $=(1-f) \times$ current dollar expenditure of each work package.
(3) Revenue

Revenue usually consists of toll revenue and others such as rent from the toll highway's associated facilities, interest, and other miscellaneous revenues. However, this thesis considers toll revenue only. Toll revenues are calculated by using annual traffic volumes and toll rates.
(4) Amortization of Financing

It is assumed that repayment of financing begins after the construction phase is completed, and continues for the remaining operation period (recall that the operation phase could start before the end of construction).
(5) Operating Expenses

Operating expenses consist primarily of two types, maintenance costs and operation costs.
(6) Salvage Values

After the revenue phase expires, toll highway facilities are usually transferred to the government, federal, provincial, or municipal. The salvage values are dependent on the contract, the political environment, and other factors. They are sometimes zero, and sometimes not. This model can be applied to either case.
(7) Balloon Payment

At the end of the revenue phase, the loan balance is discharged by the balloon payment if there is a balance left.

2.3 Structure of the Economic Analysis Model

This analytical model consists of three levels: work package/revenue stream level, project performance level, and project decision level, as well the risk measurement framework. Figure 2.6 shows derived variables at each level.

Figure 2.6 Derived Variables at Each Level

2.3 1 Work Package/Revenue Stream Level

This is the lowest level, and each work package and revenue item is linked by way of a precedence network. The work package/revenue stream level has three derived variables: work package duration, work package cost, and net revenue stream including usage (traffic volume).
(1) Work Package Duration

Work package duration can be estimated directly by experts, or derived using functional relationships that are dependent on work scope and productivity. The selection of estimation methods depends on what the model is used for. For preliminary engineering studies or the early stages of feasibility studies, a
direct estimate may be chosen. On the other hand, for more detailed and definitive engineering studies and for monitoring a project during the operation phase, a decomposed estimate may be used.

(2) Work Package Cost

Work package cost can also be estimated directly, or derived using a functional relationship in terms of constant, current, or total dollars.
The discounted cost of a typical work package is described as follows. See Appendix A for the detailed derivation.
$W P C_{i}=f \cdot e^{\left(\theta_{i-y}\right) \cdot T_{s i}} \cdot \int_{0}^{T_{d}} C_{a i}(\tau) \cdot e^{\left(\theta_{i}-y\right) \cdot \tau} d \tau$

$$
\begin{equation*}
+\int_{0}^{T_{T-}-T_{p}} e^{-y t} d t \cdot e^{-y \cdot T_{p}} \cdot(1-f) \cdot e^{\theta_{t} \cdot T s c i} e^{r \cdot\left(T_{p}-T_{s c i}\right)} \cdot \int_{0}^{T_{t}} C_{o t}(\tau) \cdot e^{\left(\theta_{i}-r\right) \cdot \tau} d \tau / \int_{0}^{T_{r-}-T_{p}} e^{-r \cdot t} d t \tag{2.4}
\end{equation*}
$$

where $W P C_{i}$ is the discounted cost for the ith work package; Coi (τ) and $C_{i}(\tau)$ are the functions for constant dollar cash flow and current dollar cash flow for the ith work package respectively (note: $C_{i}(\tau)=C_{o i}(\tau) \cdot e^{\theta c i(T s c i+\tau)}$); $T_{s c i}, \quad T_{c i}$ are work package start time and duration; T_{T}, T_{P} and $T_{R T}$ are total project duration, construction phase finish time, and total revenue phase duration respectively; f is the equity fraction; $\theta_{c i}, r$ and y are inflation, interest and discount rates, which are invariant with time, respectively. See figure 2.7 for reference.

Figure 2.7 Cash Flow Diagram for Work Package
(3) Net Revenue Stream

Net revenue stream can be estimated directly, or derived using functional relationships. However, it is usually derived from traffic volume and toll rate.

A discounted net revenue stream is described as follows:

$$
\begin{equation*}
\left.N R S i=e^{-y \cdot \cdot T_{s i}} \int_{0}^{T_{R i}} R i(\tau)-M i(\tau)\right) \cdot e^{-y \cdot \tau} d \tau \tag{2.5}
\end{equation*}
$$

where $N R S_{i}$ is the discounted ith net revenue stream; $R_{i}(\tau)$ is the function for current dollar cash flow for the i th toll revenue; $M_{o i}(\tau)$ and $M_{i}(\tau)$ are the functions for constant dollar cash flow
and current dollar cash flow for the ith operation and maintenance cost respectively (note: $\operatorname{Mi}(\tau)=\operatorname{Moi}(\tau) \cdot e^{\theta_{A B} \cdot(T s R i+\tau)}$); TSRi and $T_{R i}$ are revenue stream start time and duration of the revenue stream; $\theta_{m i} r$ and y are inflation and discount rates respectively. See Figure 2.8 for reference.

Figure 2.8 Cash Flow Diagram for Net Revenue Stream

Figure 2.9 shows cost and revenue factors at the work package/revenue stream level. They are described in more detail later.

operation costs

2.3 2 Project Performance Level

The project performance level has three derived variables, project duration, project cost, and project revenue.
(1) Project duration

The duration of a path is described as follows:

$$
\begin{equation*}
T_{j}=\sum_{i=1}^{n} W P D_{i j} \tag{2.6}
\end{equation*}
$$

where T_{j} is the duration of the j th path and $W P D_{i j}$ is the duration of the i th work package on the j th path.

For this research, the probability of completing the project in time t, denoted as $p(t)$, is calculated on the basis of the Modified PNET method (Ranasinghe, 1990). Although PNET assumes that the activity durations are statistically independent, two different paths are considered to be correlated as a result of common activities. Then, the correlation between two paths i and j having m common activities is defined as (Ang et al., 1975),

$$
\begin{equation*}
\rho_{i j}=\frac{\sum_{k=1}^{m} \sigma_{i j k}^{2}}{\sigma i O j} \tag{2,7}
\end{equation*}
$$

where $\sigma_{i j k}^{2}$ is the variance of the $k^{t h}$ common activity on paths i and j, σ_{i} and σ_{j} are the standard deviations for duration of paths i and j, and $\rho_{i j}$ is the correlation
coefficient between paths i and j. Those paths with $\rho_{i j} \geq \rho$ are represented by path i (the longest path) from the assumption that $\rho, 0.5$ for this research, represents the transition between high and low correlation.

Therefore, the probability, $p(t)$ of completing the project in time t is given by

$$
\begin{equation*}
p(t)=P\left(T_{1} \leq t\right) P\left(T_{2} \leq t\right) \ldots . . P\left(T_{r} \leq t\right) \tag{2.8}
\end{equation*}
$$

where $P\left(T_{1} \leq t\right) P\left(T_{2} \leq t\right) \ldots . P\left(T_{r} \leq t\right)$ are the probabilities of each representative path completing the project in time t, for r representative paths. See Ranasinghe (1990) for a more extensive description.
(2) Project Cost

The discounted project cost is described as follows:

Discounted project cost $=\sum_{i=1}^{n} W P C_{i}$
(3) Project Revenue

The discounted project revenue is described as follows:

Discounted project revenue $=\sum_{i=1}^{n} N R S_{i}$

2.3.3 Project Decision Level

The project decision level has two derived variables, net present value (NPV) and internal rate of return (IRR).
(1) Net Present Value

NPV = Discounted Project Revenue - Discounted Project Cost (2.11)
(2) Internal Rate of Return
$I R R=$ Discount Rate when $N P V=0$

2.4 Work Package

A toll highway project consists of a variety of work packages. Therefore, it is not practical to consider every detail of activities such as form work and concrete pouring for a feasibility study, especially at the early stage. Table 2.1 shows factors considered as work packages in this model. Attention has not been placed in this thesis on developing cost estimating relationships for construction related work.

Phase	Work Package
(1) Survey \& Design	Survey \& Design
(2) Land Acquisition	Land Acquisition
(3) Construction	Earth Work
	Bridge
	Tunnel
	Interchange
	Junction
	Rest Area
	Pavement
	Traffic Control Facility
	Toll Collection Facility
	Building \& Repairs
(4) Revenue Stream	Overhead
(Finish W.P)	Others
	Revenue Stream for
	Different Vehicle Types
	Operation Costs

Table 2.1 Work Package Components

2.5 Toll Revenue

2.5.1 General

Toll revenue is dependent on the toll collection method, traffic volume, and toll rate. As stated previously, toll collection methods can be classified into three major categories:
(1) closed (ticket) system;
(2) open (main-line barrier) system;
(3) hybrid system.

In addition, each system has several variations such as manual toll collection, automatic toll collection, and non-stop toll collection, e.g. Automatic Vehicle Identification (AVI). This model is designed for all of them.

Each revenue stream is divided by base years. In other words, the first year of each revenue stream is a base year. See figure 2.10.

The toll revenue of each revenue stream is calculated on the basis of information from the base year and growth parameters. This is described in more detail later.

Figure 2.10 Revenue Stream and Base Years

The revenue phase of this model requires three kinds of input data, namely, general information, toll revenue information, and maintenance and operation cost information. Table 2.2 shows these data for a closed system. Deterministic versus probabilistic variables are noted. It is assumed that the physical data for a toll highway, such as the number of interchanges, are deterministic. On the other hand, forecasts of future events such as traffic volume and growth rate are treated as probabilistic. See Appendix D for more detailed input data. Although the number of primary variables for each revenue stream depends on the number of interchanges, toll collection method, revenue stream duration, and the number of vehicle types, it can be over 200. Therefore, in order to simplify the probabilistic treatment of the model, correlation between primary variables for the revenue phase is not considered in the present model.

Input Data Type	Components	
(1) General	the number of revenue streams	D
	(= the number of base years)	D
	the number of interchanges	D
	the number of vehicle types	P
	revenue stream duration	P
(2) Toll Revenue	interchange pair toll	P
	toll growth rate	P
	interchange pair traffic volume	P
	traffic volume growth rate	P
(3) Maintenance and	Weather classification	D
Operation Cost	periodic overlay	D
	periodic bridge repainting	P
	maintenance cost estimate criteria	operation cost estimate criteria

Table 2.2 Input Data for Revenue Streams
where D : deterministic variable
P : probabilistic variable

In its simplest form, toll revenue is computed as:
$R=Q \times r$
where R is toll revenue, Q is traffic volume, and r is toll rate. Q and r are usually described as an interchange pair traffic volume and interchange pair tolls when calculating toll revenue (enter at interchange 1 , exit at m, pay fare rlm).

For example, if there are 5 interchanges in year i, and interchange pair traffic volume and tolls from vehicle type j are as shown in Tables 2.3 and 2.4 , the toll revenue from vehicle type j in year i can be described as in Table 2.5 and equation 2.14 .

Figure 2.11 Interchanges (Example)

Table 2.3 Interchange Pair Daily Traffic Volume

		I.C. \#5	
		I.C. \#4	$r(i, 4,5, j)$
		I.C. \#3	$r(i, 3,4, j)$
	I.C. \#2	$r(i, 3,3, j)$	
I.C. \#1	$r(i, 1,2, j)$	$r(i, 1,3, j)$	$r(i, 2,4, j)$
$r(i, 2,5, j)$			

Table 2.4 Interchange Pair Toll

				I.C. \#5	
		I.C. \#4	$\begin{aligned} & Q(i, 4,5, j) \times \\ & r(i, 4,5, j) \times \\ & 365 \end{aligned}$		
		I.C. \#3	$\begin{aligned} & Q(i, 3,4, j) \times \\ & r(i, 3,4, j) \times \\ & 365 \end{aligned}$	$\begin{aligned} & Q(i, 3,5, j) \times \\ & r(i, 3,5, j) \times \\ & 365 \end{aligned}$	
	I.C. \#2		$\begin{aligned} & Q(i, 2,3, j) \times \\ & r(i, 2,3, j) \times \\ & 365 \end{aligned}$	$\begin{aligned} & Q(i, 2,4, j) \times \\ & r(i, 2,4, j) \times \\ & 365 \end{aligned}$	$\begin{aligned} & Q(i, 2,5, j) \times \\ & r(i, 2,5, j) \times \\ & 365 \end{aligned}$
I.C. \#1	$\begin{aligned} & Q(i, 1,2, j) \times \\ & r(i, 1,2, j) \times \\ & 365 \\ & \hline \end{aligned}$	$\begin{aligned} & Q(i, 1,3, j) \times \\ & r(i, 1,3, j) \times \\ & 365 \end{aligned}$	$\begin{aligned} & Q(i, 1,4, j) \times \\ & r(i, 1,4, j) \times \\ & 365 \end{aligned}$	$\begin{aligned} & Q(i, 1,5, j) \times \\ & r(i, 1,5, j) \times \\ & 365 \\ & \hline \end{aligned}$	

Table 2.5 Interchange Pair Annual Toll Revenue

$$
\begin{equation*}
R_{(i, j)}=\sum_{l=1}^{4} \sum_{m=l+1}^{5} Q_{(i, l, m, j)} \cdot r_{(i, l, m, j)} \tag{2.14}
\end{equation*}
$$

where

```
R(i,j) : toll revenue of vehicle type j in year i
Q(i,l,m,j) : interchange pair traffic volume between
    interchanges #l and #m for vehicle type #j in
    year i
r(i,l,m,j)}\mathrm{ : interchange pair toll between interchanges #l
    and #m for vehicle type #j in year i
```


2.5.2 General Input Data

For the closed system, input data required for the computer implementation of this model are:

- the number of revenue streams;
- the number of interchanges;
- the number of vehicle types; and
- revenue stream start time
- revenue stream duration

For the open system, input data required in this model are:

- the number of revenue streams;
- the number of interchanges;
- the number of vehicle types;
- the number of toll gates;
- location of toll gates; and
- revenue stream start time
- revenue stream duration.

For example, if a toll gate is located at interchange \#2, the location of the toll gate is indicated by 2 . If a toll gate is located between interchanges \#2 and \#3, the location of the toll gate is indicated by 2.5 .

2.5.3 Traffic Volume

As the operation period of a toll highway project is very long, e.g. 30 years, it is very difficult to accurately forecast future traffic volumes, even though many traffic forecasting methods are available (Bushell, 1970; Dalton and Harmelink, 1974; Davinroy, 1962; Duffus, Alfa, and Soliman, 1987; Huber, Boutwell, and Witheford, 1968; Kadiyali, 1983; Morellet, 1981; Neveu, 1982; Newell, 1980; Thomas, 1991; et al). In addition, because each forecasting method has its own characteristics, tendency, and validity, it is important to consider them carefully when the five percentile subjective estimates are done.

The calculation of annual revenue requires information about every interchange-pair traffic volume of every vehicle type for every year during the revenue phase. However, as mentioned previously, it is not practical to carry out a detailed traffic forecast for every year. Therefore, this model requires information on traffic volume for base years only, and traffic volume in non-base years is interpolated by parameters, as
described in equation (2.1). As also mentioned previously, traffic growth parameters in equation (2.1) are based on economic forecasts, national development plans, and so on, and the growth rate is not constant. There may be several kinds of the parameters. In this thesis, forecasted annual vehiclekilometers, which are probabilistic, are used.

This model can deal with any kind of traffic forecasting method as long as it satisfies these requirements. In this thesis, it is assumed that each traffic volume is independent, as mentioned in 2.5.1.

An annual discrete traffic growth model similar to that shown in Figure 2.10 is used for this model in order to calculate annual revenue and expenses.

As mentioned in a later section, estimates related to traffic volume have high uncertainty among the primary variables that describe a toll highway project.

Input data required in this model are:
every interchange pair traffic volume for every

- vehicle type in a base year for every revenue stream; and
- a traffic volume growth parameter for every year during the revenue phase.

It is assumed here that the traffic volume growth parameters are the same for each vehicle type. This is based on the current procedure in Japan. Future extensions to the model should facilitate the input of different growth parameters for each vehicle type, thereby rendering the model greater flexibility.

2.5.4 Toll Rate

Toll rates are generally classified into 2 categories, the distance proportional toll rate and the flat(fixed) rate. The general form of the distance proportional toll rate is:

$$
\begin{equation*}
r=r_{p} \times d+r_{f} \tag{2.15}
\end{equation*}
$$

where r_{p} : proportional part of toll rate $(\$ / \mathrm{km})$
$r s$: fixed part of toll rate (\$)
d : travel distance (km)
Tolls are calculated on the basis of the above toll rate and vehicle types. Table 2.16 shows an example of vehicle types and toll ratios between them. This model also considers the long distance discount.

It is very important to discuss whether or not future toll increases are to be considered in a feasibility analysis. Considering future toll increases may cause overestimates of toll revenue, especially if there is no guarantee that

class	description	toll ratio
class 1	Light motor vehicle	a
Class 2	Ordinary motor vehicle	1.00
class 3	Medium-sized motor vehicle	b
class 4	Large-sized motor vehicle	c
class 5	Special large-sized motor vehicle	d

Table 2.6 Vehicle Type and Toll Ratio
toll rates can be increased over time. However, in some cases, it is more realistic to take them into account. Therefore, this model is applicable in both cases.

Two kinds of toll increase considered in this model are shown in Figure 2.12 and 2.13. Figure 2.12 shows toll rates that increase annually, and Figure 2.13 shows toll rates that increase every several years. Figure 2.13 tends to reflect common practice because annual toll increases are often met by public opposition.

Figure 2.12 toll rate increase (case-1)

For both cases, the toll rate is described as:

$$
\begin{equation*}
\text { toll }_{i}=\alpha_{i} \cdot \text { toll }_{1} \tag{2.16}
\end{equation*}
$$

where toll 1 and tolli are the toll rates in base year and year i respectively, and α_{i} is a toll growth parameter for year i.

Along with traffic growth parameters, a toll growth parameter is assigned to every year during the revenue phase as input data. It is not necessary that the parameter be constant because this parameter is also dependent on economic conditions, government policies, and so on. α_{i} are sometimes described as $\alpha i=(1+\alpha)^{i-1}$, where α is average annual growth rate. α_{i} for both cases looks like Figures 2.14 and 2.15 .

Figure 2.15 toll growth parameters (case-2)

When toll rates increase, traffic volume theoretically decreases (Japan Highway Public Corporation, 1993; et al). No attempt is made to model this phenomenon here, however, because of a lack of data with which to attempt the derivation of an empirical model.

In this model, input data for the distance proportional toll are:

- proportional part of toll rate for ordinary motor vehicle;
- fixed part of toll rate (constant for all vehicle types);
- interchange pair distances;
- toll ratio between vehicle types;
- long distance discount information; and
- a toll growth parameter for every year during the revenue phase.

In this model, input data for the fixed toll are:

- every interchange pair toll for every vehicle type in base year for every revenue stream; and
- a toll growth parameter for every year during the revenue phase.

2.5.5 General Form of Toll Revenue

The constant dollar toll revenue is described as follows.

$$
\begin{align*}
P_{T O L L} & =\sum_{i=1}^{n N} \sum_{j=1}^{n d d_{(i n i c(i)-1}} \sum_{k=1}^{n i c_{(i)}} \sum_{l=k+1}^{n v t(i)} R_{m=1} R_{(i, j, k, l, m)} \tag{2.17}\\
& =\sum_{i=1}^{n N} \sum_{j=1}^{n d(i) n i c_{(i)}^{-1}} \sum_{k=1}^{n i c_{(i)}} \sum_{l=k+1}^{n v t(i)} \sum_{m=1} Q_{(i, k, l, m)} \cdot \frac{k_{(i, j)}}{k_{(i, 1)}} \cdot r_{(i, k, l, m)} \cdot q_{(i, j)} \times 365
\end{align*}
$$

where
$P_{\text {ToLL }} \quad:$ constant dollar toll revenue of the project
nrv : the number of revenue streams
$r v d_{(i)} \quad:$ duration of $\mathrm{RVS} \# i$
nic(i) : the number of interchanges for RVS \#i
$n v t_{(i)} \quad: \quad$ the number of vehicle types for RVS \#i
$R_{(i, j, k, l, m)}$: annual revenue interchanges \#k and \#l for vehicle type \#m in jth year for RVS \#i
$Q_{(i, k, l, m)}:$ daily traffic volume between interchanges $\# k$ and \#l for vehicle type $\# m$ in base year for RVS \#i
$k_{(i, j)} \quad: \quad$ traffic growth parameter of year j for RVS \#i
$k_{(i, 1)} \quad$: traffic growth parameter of base year for RVS \#i
$r_{(i, k, l, m)}$: toll between interchanges \#k and \#I
for vehicle type $\# m$ in base year for RVS \#i
$q_{(i, j)} \quad: \quad$ toll growth rate parameter in year j for RVS \#i

A simple example is shown below.

$n r v$	2
$r v d_{(1)}$	2
$r v d_{(2)}$	3
nic(1)	2
$n i c(2)$	3
$n v t_{(1)}$	2
$n v t$ (2)	2
$Q_{(1, k, l, 1)}$	See Table 2. 7.
$Q_{(1, k, l, 2)}$	See Table 2. 8.
$Q_{(2, k, l, 1)}$	See Table 2.11.
$Q_{(2, k, l, 2)}$	See Table 2.12.
$k_{(1,1)}$	5156
$k_{(1,2)}$	5350
$k_{(2,1)}$	5480
$k_{(2,2)}$	5610
$k_{(2,3)}$	5740
$r_{(1, k, l, 1)}$	See Table 2. 9.
$r_{(1, k, l, 2)}$	See Table 2.10.
$r_{(2, k, l, 1)}$	See Table 2.13.
$r_{(2, k, l, 2)}$	See Table 2.14.
$q_{(1,1)}$	1.00
$q_{(1,2)}$	$1.020 \quad\left(1.02^{1}\right)$
$q_{(2,1)}$	$1.040 \quad\left(1.02^{2}\right)$
$q_{(2,2)}$	$1.061 \quad\left(1.02^{3}\right)$
$q_{(2,3)}$	$1.082 \quad\left(1.02^{4}\right)$

Table 2.7 Input Data for Toll Revenue (Example)

	I.C.\#2
I.C.\#1	8,000

Table 2.8
Daily Traffic Volume (vehicles/day)
$Q_{(1, k, l, 1)}$

	I.C.\#2
I.C.\#1	5
Table 2.10 Tol1	

$r(1, k, l, 1)$

	I.C.\#3
	I.C.\#2
	5,000
I.C.\#1	10,000
Table 2.12	

Daily Traffic Volume
(vehicles/day)
$Q_{(2, k, l, 1)}$

$r(2, k, l, 1)$

	I.C.\#2
I.C.\#1	12,000
Table 2.9	

Daily Traffic Volume (vehicles/day) $Q_{(1, k, l, 2)}$
$r_{(1, k, l, 2)}$

	I.C.\#3
	I.C.\#2
I.C.\#1	14,000

Table 2.13
Daily Traffic Volume (vehicles/day)
$Q_{(2, k, l, 2)}$

$r_{(2, k, l, 2)}$

According to equation (2.18), toll revenues are shown in Tables (2.16) to (2.26)

Revenue Stream \#1:

I.C.\#2
I.C.\#1
Table 2.14 .60

	I.C.\#2
I.C.\#1	30.66
Table 2.17	
Annual Revenue ($\$$ million)	
$R_{(1,1, k, l, 2)}$	

I.C.\#2
I.C.\#1
Table 2.18
Annual Revenue ($\$$ million)
$R_{(1,2, k, l, 1)}$

	I.C.\#2
I.C.\#1	32.45
Table 2.19	

Annual Revenue (\$ million) $R_{(1,2, k, l, 2)}$

	I.C.\#3
	I.C.\#2
	10.63
I.C.\#1	37.20
Table 2.21	56.94

Annual Revenue (\$ million) $R_{(2,1, k, l, 2)}$

	I.C.\#3
	I.C.\#2
	11.10
I.C.\#1	38.85
Table 2.23	59.47

Annual Revenue (\$ million) $R_{(2,2, k, l, 2)}$

	I.C.\#3	
	I.C.\#2	11.58
I.C.\#1	40.54	62.05

Table 2.25
Annual Revenue (\$ million) $R_{(2,3, k, l, 2)}$

Then, total revenues are:

Total Revenue of RVS \#1	$\$ 93.16$ million
Total Revenue of RVS \#2	$\$ 538.94$ million
Total	$\$ 632.10$ million

Table 2.26 Total Revenues for an Example

2.6 Maintenance and Operation Cost Model

Maintenance and operation costs are dependent on road structures, toll collection systems, traffic volumes, weather conditions, organizational structures, and other factors.

This model assumes that maintenance costs are mainly dependent on road structure, while operation costs are dependent on the others. Components of each group are shown in Tables 2.27 and 2.28. See sections 2.6.1 and 2.6.2 for more detail. Maintenance and operation costs are written in constant dollar form. It is assumed that constant dollar maintenance and operation costs are constant during the operation phase because the highway is maintained properly.

The same inflation rate is used for all components, because of the difficulty in identifying differences between inflation rates for each component.

road cleaning	
road maintenance	
road lighting	bridge repair
bridge maintenance	bridge repainting
tunnel maintenance	
snow and ice maintenance	
overlay	
others	

Table 2.27 Maintenance Costs

labor costs	operation office overhead
	operation bureau overhead
consignment costs	headquarters overhead
	toll collection
others	toll collection machine maintenance
	building and repairs
	relevant expenses of operation
	cost of machine and equipment
	others

Table 2.28 Operation costs

2.6.1 Maintenance Costs

In this model, maintenance costs are calculated on the basis of road length and the number of lanes. Therefore, this information should be input.

	2 Lanes	4 lanes	6 lanes	Total
Bridge	$l_{B_{2}}$	$l_{B_{4}}$	$l_{B_{6}}$	$l_{B}=l_{B_{2}}+l_{B_{4}}+l_{B_{6}}$
Tunnel	$l_{T_{2}}$	$l_{T_{4}}$	$l_{T_{6}}$	$l_{T}=l_{T_{2}+}+l_{T_{4}+}+l_{T_{6}}$
earthwork	$l_{E_{2}}$	$l_{E_{4}}$	$l_{E 6}$	$l_{B}=l_{B_{2}+l_{B_{4}}+l_{B_{6}}}$
Total	$l_{2}=l_{B_{2}+l_{T_{2}}+l_{E_{2}}}$	$l_{4}=l_{B_{4}+l_{4}+l_{E_{4}}}$	$l_{6}=l_{B_{6}+}+l_{T_{6}+}+l_{66}$	$l=l_{B}+l_{T}+l_{E}$ $l=l_{2}+l_{4}+l_{6}$

Table 2.29 Road Length

no ventilation	jet fan	others	total
$l_{T_{n}}$	$l_{T_{j}}$	$l_{T_{o}}$	l_{T}

Table 2.30 Tunnel Length by Ventilation Methods

For example, if the road structure shown in Figure 2.16 is assumed, Tables 2.29 and 2.30 become Tables 2.31 and 2.32.

Legent:

$\sqrt{10}$	earth work tunnel
π	bridge
4	road direction

Figure 2.16 Road Structure (Example)

	2 Lanes	4 lanes	6 lanes	Total
Bridge	0	b 1	0	b 1
Tunnel	0	$\mathrm{t} 1+\mathrm{t} 2$	0	$\mathrm{t} 1+\mathrm{t} 2$
earthwork	0	$\mathrm{e} 2+\mathrm{e} 3+\mathrm{e} 4$	e 1	$\mathrm{e} 1+\mathrm{e} 2+\mathrm{e} 3+$ e 4
Total	0	$\mathrm{b} 1+\mathrm{t} 1+\mathrm{t} 2+$ $\mathrm{e} 2+\mathrm{e} 3+\mathrm{e} 4$	e 1	L

Table 2.31 Road Length (Example)

no ventilation	jet fan	others	total
t1	t2	0	t1+t2

Table 2.32 Tunnel Length by Ventilation Methods (Example)

Maintenance costs consist of nine factors.
(1) Road Cleaning Costs

Road cleaning costs are calculated on the basis of the road length and the number of lanes.

Input data are as follows.

the number of lanes	cost ($\$ / \mathrm{km})$
2	$C_{c 2}$
4 or more	$c_{c 4}$
Table 2.33 Road cleaning Costs	

Road Cleaning Costs $=c_{c 2} \times l_{2}+c_{c 4} \times\left(l_{4}+l_{6}\right)$
(2) Road Maintenance Costs

Road maintenance costs are calculated on the basis of the earth work length and the number of lanes. These
include pavement repair, road marking, roadside maintenance, planting, and so on.
earth work length

$$
\begin{equation*}
=\text { road length - bridge and tunnel length } \tag{2.19}
\end{equation*}
$$

Input data are as follows.

the number of lanes	cost (\$/km)
2	$c_{m 2}$
4	$c_{m 4}$
6	$c_{m 6}$
Table 2.34 Road Maintenance Costs	

road maintenance costs $=c_{m 2} \times l_{E 2}+c_{m 4} \times l_{E_{4}}+c_{m 6} \times l_{E 6}$
(3) Road Lighting Costs

Road lighting costs are calculated on the basis of the earth work and bridge length and the number of lanes. Input data are as follows.

the number of lanes	cost ($\$ / \mathrm{km})$
1 or 2	c_{1}
4 or 6	$c_{l_{4}}$

Table 2.35 Road Lighting Costs
road lighting costs $=c_{11} \times\left(l_{B_{2}}+l_{E^{2}}\right)+c_{14} \times\left\{\left(l_{B_{4}}+l_{B 6}\right)+\left(l_{E 4}+l_{E 6}\right)\right\}$
(4) Bridge Maintenance (Repair) Costs

Bridge repair costs are calculated on the basis of the bridge length and the number of lanes. These costs
include joint repair, shoe repair, handrail repair, and so on.

Input data are as follows.

the number of lanes	cost (\$/km)
2	$c_{r 2}$
4	$c_{r 4}$
6	$c_{r 6}$

Table 2.36 Bridge Maintenance (Repairing) Costs
bridge repair costs $=c_{r 2} \times l_{B 2}+c_{r 4} \times l_{B 4}+c_{r 6} \times l_{B 6}$
(5) Bridge Maintenance (Repainting) Costs

Bridge repainting costs are calculated on the basis of the bridge length and the number of lanes. Bridge repainting is performed at intervals of specific years, which depend on the owner's standards, weather conditions, etc. In this model, it is assumed that bridge repainting is performed every n1 years (for this thesis, n1 equals 7).

Input data are as follows.

the number of lanes	cost (\$/km)
2	$c_{p 2}$
4	$c_{p 4}$
6	$c_{p 6}$

Table 2.37 Bridge Maintenance (Repainting) Costs
bridge repaint costs $=c_{p 2} \times l_{B_{2}}+c_{p 4} \times l_{B_{4}}+c_{p 6} \times l_{B 6}$
(6) Tunnel Maintenance Costs

Tunnel maintenance costs are calculated on the basis of tunnel length and the ventilation methods. They include:

- cleaning costs of interior finish boards and lights,
- replacement costs of light bulbs,
- maintenance costs of independent electric power plants and cables,
- repair costs of tunnel bodies, interior finish boards, and inspection steps,
- electric fees,
- traffic control costs, etc.

Input data are as follows.

		cost (\$/km)
ventilation	no ventilation	$c_{t_{n}}$
methods	jet fan	c_{t}
	others	$c_{t_{0}}$

Table 2.38 Tunnel Maintenance Costs
tunnel maintenance $=2\left(c_{t_{n}} \times l_{T_{n}}+c_{t} \times l_{T_{j}}+c_{t_{0}} \times l_{T_{0}}\right)$
(7) Snow and Ice Control Costs

Snow and ice control costs are calculated on the basis of the road length, the number of lanes, and the weather conditions.

Input data are as follows.

weather condition	cost (\$/km/2lanes)
area of heavy snowfall (1)	$c_{s h}$
area of ordinary snowfall (2)	$c_{s o}$

Table 2.39 Snow and Ice Control Costs
snow and ice control $=c_{s i} \times\left(l_{2}+2 l_{4}+3 l_{6}\right)$ or,

$$
\begin{equation*}
c_{s o} \times\left(l_{2}+2 l_{4}+3 l_{6}\right) \tag{2.25}
\end{equation*}
$$

(8) Overlay Costs

Overlay costs are calculated on the basis of the road length and the number of lanes. These include scarification costs. Overlay is performed at intervals of specific years, which depend on the owner's standards, weather conditions, etc.. In this model, it is assumed that overlay is performed every n2 years (for this thesis, n2 equals 12).

Input data are as follows.

the number of lanes	cost $(\$ / \mathrm{km})$
2	$C_{o 2}$
4	$C_{o 4}$
6	$c_{o 6}$

Table 2.40 Overlay Costs
overlay : $l_{2} \times c_{02}+l_{4} \times c_{04}+l_{6} \times c_{06}$
(9) Other Indirect Maintenance Costs Other Indirect Maintenance Costs
$\{$ total of costs for (1) to (6) \} $\times \beta$
where
β : parameter for other indirect maintenance costs

2.6.2 Operation Costs

In this model, operation costs are mainly calculated on the basis of traffic volume and labour costs, and take the form of a step function as labour/equipment must be added in discrete units.

Operation costs consist of six factors. This model assumes that toll collection work and toll collection machine maintenance are performed by subcontractors.
(1) Labor Costs (Operation Office Overhead)

These are labor costs for operation offices, and are calculated on the basis of traffic volume, toll collection method, and the number of toll gates. Input data are as follows.

traffic volume (vehicles/day)	A	B	C	D	E	sum
0 to to1	a_{1}	$\mathrm{~b}_{1}$	c_{1}	$\mathrm{~d}_{1}$	e_{1}	$\mathrm{~s}_{1}$
t_{01} to to2	a_{2}	$\mathrm{~b}_{2}$	c_{2}	$\mathrm{~d}_{2}$	e_{2}	$\mathrm{~s}_{2}$
t_{02} to to3	a_{3}	$\mathrm{~b}_{3}$	c_{3}	$\mathrm{~d}_{3}$	e_{3}	$\mathrm{~s}_{3}$
t_{03} to to4	a_{4}	$\mathrm{~b}_{4}$	c_{4}	$\mathrm{~d}_{4}$	e_{4}	$\mathrm{~s}_{4}$
t_{04} to to5	a_{5}	$\mathrm{~b}_{5}$	c_{5}	$\mathrm{~d}_{5}$	e_{5}	$\mathrm{~s}_{5}$
t_{05} or more	a_{6}	$\mathrm{~b}_{6}$	c_{6}	$\mathrm{~d}_{6}$	e_{6}	$\mathrm{~S}_{6}$

Table 2.41 Manpower Required for Operation Office
a. closed system

Traffic volume is half of the total traffic
volume that each toll gate deals with.
b. open system

Traffic volume is the total of traffic volume that each toll gate deals with.

		Cost (\$/person)
A	director	$c_{p a}$
B	vice-director	c_{p}
C	chief	$c_{p c}$
D	clerk or engineer	$c_{p d}$
E	worker	$c_{p e}$

Table 2.42 Labour Cost for Operation Office

For example, if traffic volume is between to3 and to4, toll collection costs $=a_{4} \times c_{p a}+b_{4} \times c_{p b}+c_{4} \times c_{p}+d_{4} \times c_{p d}+e_{4} \times c_{p e}$
(2) Labor Costs (Operation Bureau Overhead) These are labor costs for operation bureaus.

Operation Bureau Overhead $=R \times \alpha_{2}$
where

$\alpha_{2} \quad:$	parameter for labor costs (operation
	bureau overhead)

(3) Labor Costs (Headquarters Overhead) These are labor costs for headquarters. Headquarters Overhead $=R \times \alpha_{3}$
where

$$
\begin{aligned}
\alpha_{3} \quad: & \text { parameter for labour costs } \\
& \text { (headquarters overhead) }
\end{aligned}
$$

(4) Consignment Costs (Toll Collection) Consignments costs for toll collection work are calculated on the basis of traffic volume, toll collection method, and the number of toll gates. Input data are as follows.
cto : labour cost (\$/person)
$\alpha_{s} \quad:(c l o s e d ~ s y s t e m) ~ p a r a m e t e r ~ f o r ~ c o n s i g n m e n t ~$ costs (toll collection)
$\alpha_{6} \quad$ (open system) parameter for consignment costs (toll collection)
(per toll gate)

closed system		open system	
traffic volume (vehicles/day)	clerk	traffic volume (vehicles/day)	clerk
0 to t_{11}	x_{1}	0 to t31	y_{1}
t_{11} to t_{12}	x_{2}	t_{31} to t32	y_{2}
t_{12} to t_{13}	x_{3}	t32 to t33	y_{3}
t_{13} to t_{14}	x_{4}	t33 to t34	y_{4}
t_{14} to t_{15}	$x 5$	t34 to t35	y_{5}
t_{15} to t_{16}	x_{6}	t35 to t36	y_{6}
t_{16} to t_{17}	x_{7}	t_{36} to t37	y_{7}
t_{17} to t_{18}	x_{8}	t_{37} to t38	y_{8}
t_{18} to t_{19}	x_{9}	t_{38} to t39	y_{9}
t_{19} to t_{20}	x_{10}	t39 to t40	y_{10}
t_{20} to t_{21}	X_{11}	t_{40} to t_{41}	y_{11}
t_{21} to t_{22}	x_{12}	t_{41} to t_{42}	y_{12}
t_{22} to t_{23}	x_{13}	t_{42} to t_{43}	y_{13}
t_{23} to t_{24}	x_{14}	t_{43} to t_{44}	y_{14}
t_{24} to t_{25}	x_{15}	t_{44} to t45	y_{15}
t_{25} to t_{26}	x_{16}	t_{45} to t_{46}	y_{16}
t_{26} to t_{27}	x_{17}	t_{46} to t_{47}	y_{17}
t27 or more	x_{18}	t_{47} to t_{48}	y_{18}
		t_{48} or more	y_{19}

Table 2.43 Manpower Required for Toll Collection
a. closed system

Consignment Costs (Toll Collection)

$$
\begin{equation*}
=\left\{\Sigma(\text { the number of clerks }) \times c_{t o}\right\} \times \alpha_{5} \tag{2.31}
\end{equation*}
$$

b. open system

Consignment Costs (Toll Collection)

$$
\begin{equation*}
=\left\{\Sigma(\text { the number of clerks }) \times c_{t o}\right\} \times \alpha_{6} \tag{2.32}
\end{equation*}
$$

(5) Consignment Costs (Toll Collection Machine Maintenance)
Consignment costs of toll collection machine maintenance are calculated on the basis of consignment costs of toll collection work and, toll collection method.
(closed system)
Consignment Costs (Toll Collection Machine Maintenance)
$=$ Consignment Costs (Toll Collection) $\times \alpha_{7}$
(open system)
Consignment Costs (Toll Collection Machine Maintenance)
$=$ Consignment Costs (Toll Collection) $\times \alpha_{8}$
where

```
    \alpha7 :(closed system)
    parameter for consignment costs
    (toll collection machine maintenance)
    \alpha8 :(open system)
    parameter for consignment costs
    (toll collection machine maintenance)
```

(6) Other Operation Costs

These include:

- building and repair expenses,
- operational expenses,
- cost for machine and equipment, and
- others.

The total of (6) to (9)

$$
\begin{equation*}
=\left\{c_{o p} \times\left(o_{s}+t_{s}\right)+c_{o s}\right\} \tag{2.35}
\end{equation*}
$$

where
$O_{s}:$ the number of operation office personnel
$t_{s}:$ the number of toll collection clerks
Cop $:$ parameter for other operation costs
Cof $:$ parameter for other operation costs

In addition, inflation rates for maintenance and operation costs are required.

2.6.4 General Form of Maintenance and Operation Costs

The constant dollar maintenance and operation costs are described as follows.

$$
\begin{equation*}
P_{M \& O}=\sum_{i=1}^{n n} \sum_{j=1}^{n m} \sum_{k=1}^{n o}\left(M_{(i, j)}+O_{(i, k)}\right) \tag{2.36}
\end{equation*}
$$

where
$P_{M \& O} \quad:$ constant dollar maintenance and operation costs
$n r v$: the number of revenue streams
$n m$: the number of items required for maintenance cost estimates $(=9$ in this model)
no : the number of items required for operation cost estimates $(=6$ in this model)
$M_{(i, j)} \quad: \quad$ maintenance cost of item \#j for RVS \#i
$O(i, j)$: operation cost of item \#j for RVS \#i

Chapter 3

Application

3.1 General

This chapter applies the analytical model described in Chapter 2 to an actual deterministic feasibility study for a large toll highway project. Section two describes the sample project, and sections three and four present results from a sensitivity and risk analysis.

The data for this example were obtained from an actual deterministic feasibility analysis conducted for a toll highway in Japan.

3.2 Sample Project

3.2.1 Sample Project General Information

This toll highway is being constructed in northern Japan as a bypass road intended to ease traffic congestion in an urban area. Because this highway passes near an urban area, high construction costs and large traffic volumes are expected.

The general details are shown in Table 3.1.

Road Length	20.8 Km			
Road Structure				
Earth Work	16.8 Km			
Bridge and Viaduct	4.0 Km			
Tunnel	-			
Number of Lanes	2 and 4			
Number of Interchanges	6			
Toll Collection System	Closed System			
	(Manual Collection)			
Number of Vehicle Types	5			
Toll Rate	34 cents/Km			
	$(0 r d i n a r y ~ M o t o r ~ V e h i c l e) ~$	$	$	(toll ratio)
:---				
Light motor vehicle				
Ordinary motor vehicle				
Medium-sized motor vehicle				
Large-sized motor vehicle				
Special large-sized motor vehicle				
Construction Period				
Operation Period				
Construction Costs				
Rest Facility				

Table 3.1 General Features of the Sample Project

This highway project is divided into three sections, each with a different opening date. However, to simplify the model, amortization of financing is assumed to start when the last segment opens.

For illustrative purposes, uniform constant dollar expenditure profiles for work package costs, uniform constant dollar annual expenditure profiles for operating costs, and uniform constant dollar annual revenue profiles for revenue streams are assumed. See Figures 3.1 and 3.2.

Figure 3.1 Expenditure Profiles for the Construction Phase

operation cost
Figure 3.2 Expenditure and Revenue Profiles for the Revenue Phase

In addition, constant interest and inflation rates are assumed. The values assumed for the inflation rate $\left(\theta_{c}\right.$ and θ_{n}), the interest rate (r), the discount rate (y), and the equity fraction (f) are shown in Table 3.2. All construction work packages are assumed to have identical inflation rates.

	Mean	σ	$\sqrt{\beta_{1}}$	β_{2}
θ_{c}	4.311%	1.093%	2.0	9.4
θ_{M}	4.311%	1.093%	2.0	9.4
r	6.500%	0.163%	0.1	5.9
y	6.500%	-	-	-
f	0.000	-	-	-

Table 3.2 Statistical Data for Inflation, Interest, Discount Rates, and Equity Fraction
$\sqrt{\beta_{1}}$ and β_{2} are the moments ratios that describe the Pearson family of distributions.

This analysis follows the procedures described in Figure 1.1 and assumes that the Pearson family of distributions will provide a good fit to most "real life" distributions (Ranasinghe, 1990). Therefore, all probabilistic primary variables and derived variables here are assumed to approximate to the Pearson family of distributions.

Figure 3.3 shows a time line for the sample project. For the base years of revenue streams \#1, \#2, and \#5, the highway is assumed to open in stages, and in the other base years, changes to conditions on related roads are predicted.

Figure 3.3 Time Line for a Sample Project

For the purpose of this thesis, the project's net present value (NPV) is dealt with as a derived variable at the decision level.

3.2.2 Work Packages

The starting point for the analysis is at the work package level. The original construction program has been modified into that described in Figure 3.4 and Table 3.5. According to Table 3.5, work package durations and work package costs seem not to be correlated. This often happens because each work package does not have the same technical complexity.

The analytical model requires the five percentile estimates for every probabilistic primary variable, and allows each work package to have a different distribution. However, to simplify the analysis for this sample project, work packages are classified into categories and the five percentile estimate parameters for a quasi normalized distribution are assigned to each category. The shapes of the distribution function for all of the work packages in one category are assumed to be identical. Such an assumption should not be made when modeling actual projects, as there can be significant differences in technical complexity amongst work packages in the same category. For example, for the category survey and design, there are 6 work packages (W.P.\#2 to W.P.\#7), and they have the same distribution function. The normalized distributions correspond to the Pearson family of distributions.

Table 3.3 shows the five percentile estimate parameters for W.P. duration. Land acquisition has high uncertainty and is skewed to the right because of probable difficulties in negotiating with land owners and residents. Earth work, Interchange, and appurtenant work also have higher uncertainty than survey and design, bridge, and others because of the greater possibility of external intervention and the complicated nature of the work.

For example, if deterministic W.P. duration for one paving job is 1 year, the estimates for $2.5,5.0,50.0,95.0$, and 97.5 percentiles are $0.90,0.91,1.00,1.09,1.10$ years respectively.

category	2.5%	5.0%	50.0%	95.0%	97.5%	$\sqrt{\beta_{1}}$	$\beta 2$
survey \& design	0.900	0.910	1.000	1.180	1.200	0.6	2.4
land acquisition	0.900	0.910	1.000	1.500	1.650	2.0	8.0
earth work	0.850	0.870	1.000	1.450	1.500	0.9	2.8
bridge	0.900	0.910	1.000	1.180	1.200	0.6	2.4
pavement	0.900	0.910	1.000	1.090	1.100	0.0	2.2
IC	0.850	0.870	1.000	1.450	1.500	0.9	2.8
ancillary facilities	0.900	0.910	1.000	1.090	1.100	0.0	2.2
appurtenant work	0.900	0.910	1.000	1.450	1.500	1.1	3.2
building \& repairing	0.900	0.910	1.000	1.090	1.100	0.0	2.2
overhead	0.900	0.910	1.000	1.180	1.200	0.6	2.4
revenue	0.900	0.910	1.000	1.090	1.100	0.0	2.2

Table 3.3 Five Percentile Estimate Parameters for W.P. Duration

There are also the five percentile estimate parameters for W.P. costs. Table 3.4 shows the five percentile estimate parameters for W.P. cost. These parameters have similar shape to those of W.P. duration. In addition, the inflation rate is expected to be highly uncertain.

category	2.5%	5.0%	50.0%	95.0%	97.5%	$\sqrt{\beta_{1}}$	β_{2}
survey \& design	0.950	0.952	1.000	1.350	1.410	1.6	5.2
land acquisition	0.920	0.930	1.000	1.500	1.650	2.0	7.6
earth work	0.900	0.920	1.000	1.550	1.700	2.0	7.8
bridge	0.920	0.930	1.000	1.250	1.300	1.2	4.0
pavement	0.920	0.930	1.000	1.250	1.300	1.2	4.0
IC	0.900	0.910	1.000	1.500	1.560	1.2	3.6
ancillary facilities	0.850	0.870	1.000	1.250	1.300	0.8	3.3
appurtenant work	0.850	0.860	1.000	1.650	1.850	2.0	8.3
building \& repairing	0.800	0.810	1.000	1.180	1.200	0.0	2.1
overhead	0.700	0.710	1.000	1.580	1.600	0.5	2.1
interest rate	0.950	0.960	1.000	1.040	1.050	0.0	5.6
inflation rate	0.800	0.820	1.000	1.300	1.400	1.4	7.7

Table 3.4 Five Percentile Estimate Parameters for W.P. Costs

Once again, these parameters are used to simplify the example.
In actual practice, however, it is recommended that each
component be estimated independently.

Tables 3.5 , and 3.6 show statistics for work package durations and constant dollar costs used for the original deterministic feasibility analysis respectively, and Table 3.7 shows discounted work package costs based on them.

Figure 3.4 Precedence Network for the Sample Project

WP\#	Work Package description	$\frac{\text { Duration }}{\text { (year) }}$	Cost (\$)
1	Start Work Package	-	-
2	Survey and design (1)	1.0	2,325,600
3	Survey and design (2)	0.5	1,162,800
4	Survey and design (3)	2.0	3,488,400
5	Survey and design (4)	2.0	6,201,600
6	Survey and design (5)	1.0	3,876,000
7	Survey and design (6)	2.5	2,325,600
8	Land Acquisition (1)	0.5	6,866,100
9	Land Acquisition (2)	2.0	143,043,750
10	Land Acquisition (3)	2.0	78,960,150
11	Earth Work (1)	0.5	1,256,500
12	Earth Work (2)	3.0	57,172,200
13	Earth Work (3)	1.5	67,224,400
14	Bridge (1)	3.0	46,589,500
15	Bridge (2)	1.5	82,825,900
16	Pavement (1)	1.0	30,064,700
17	Pavement (2)	1.5	6,906,700
18	Pavement (3)	1.5	3,656,500
19	Interchange (1)	2.5	17,600,300
20	Interchange (2)	3.0	34,435,400
21	Interchange (3)	1.5	15,304,600
22	Interchange (4)	1.5	9,182,800
23	Ancillary Facility (1)	0.5	8,570,100
24	Ancillary Facility (2)	1.0	16,767,700
25	Ancillary Facility (3)	1.5	7,452,300
26	Ancillary Facility (4)	1.5	4,471,400
27	Appurtenant Work (1)	2.5	18,373,100
28	Appurtenant Work (2)	3.0	22,456,000
29	Building and Repairs (1)	1.0	15,347,600
30	Building and Repairs (2)	1.5	4,514,000
31	Building and Repairs (3)	1.5	2,708,400
32	Overhead	10.5	32,099,500
33	Finish Work Package (Revenue Phase)	26.0	-
	Total Base Estimate	10.5	753,229,600

Table 3.5 Deterministic Values for Work Package Durations and Costs

WP\#	Duration (year)				Constant Dollar Cost (\$)			
	E [WPD]	OWPD	$\sqrt{\beta_{1}}$	β_{2}	E [Co]	OWPD	$\sqrt{\beta_{1}}$	β_{2}
1	-	-	-	-	-	-	-	-
2	1.017	0.085	0.6	2.4	2,455,530	300,516	1.6	5.2
3	0.508	0.042	0.6	2.4	1,227,770	150,258	1.6	5.2
4	2.033	0.170	0.6	2.4	3,683,300	450,774	1.6	5.2
5	2.033	0.170	0.6	2.4	6,548,080	801,376	1.6	5.2
6	1.017	0.085	0.6	2.4	4,092,550	500,860	1.6	5.2
7	2.543	0.211	0.6	2.5	2,455,530	300,516	1.6	5.2
8	0.539	0.104	2.0	8.0	7,412,300	1,369,470	2.0	7.6
9	2.152	0.410	2.0	8.0	154,423,000	28,530,600	2.0	7.6
10	2.152	0.410	2.0	8.0	85,241,400	15,748,900	2.0	7.6
11	0.530	0.094	0.9	2.8	1,365,790	274,652	2.0	7.8
12	3.178	0.565	0.9	2.8	62,143,300	12,496,600	2.0	7.8
13	1.591	0.282	0.9	2.8	73,069,600	14,693,900	2.0	7.8
14	3.050	0.255	0.6	2.4	48,141,000	4,840,470	1.2	4.0
15	1.526	0.126	0.6	2.4	85,584,000	8,605,280	1.2	4.0
16	1.000	0.055	0.0	2.2	31,065,800	3,123,600	1.2	4.0
17	1.502	0.082	0.0	2.2	7,136,740	717,584	1.2	4.0
18	1.502	0.082	0.0	2.2	3,778,280	379,898	1.2	4.0
19	2.650	0.471	0.9	2.8	18,935,300	3,371,490	1.2	3.6
20	3.178	0.565	0.9	2.8	37,047,300	6,596,390	1.2	3.6
21	1.591	0.282	0.9	2.8	16,465,500	2,931,730	1.2	3.6
22	1.591	0.282	0.9	2.8	9,879,280	1,759,040	1.2	3.6
23	0.500	0.027	0.0	2.2	8,760,390	1,021,340	0.8	3.3
24	1.000	0.055	0.0	2.2	17,139,900	1,998,280	0.8	3.3
25	1.502	0.082	0.0	2.2	7,617,730	888,125	0.8	3.3
26	1.502	0.082	0.0	2.2	4,570,640	532,875	0.8	3.3
27	2.668	0.438	1.1	3.2	20,106,600	5,019,960	2.0	8.3
28	3.200	0.526	1.1	3.2	24,574,700	6,135,510	2.0	8.3
29	1.000	0.055	0.0	2.2	15,319,200	1,726,440	0.0	2.1
30	1.502	0.082	0.0	2.2	4,505,650	507,775	0.0	2.1
31	1.502	0.082	0.0	2.2	2,703,390	304,665	0.0	2.1
32	10.676	0.891	0.6	2.4	33,821,600	8,787,020	0.5	2.1
33	26.000	1.422	0.0	2.2	801,271,150	-	-	-

Table 3.6 Statistics for Work Package Durations and Costs

WP\#	Discounted W.P. cost (\$)
1	-
2	2,296,771
3	1,127,032
4	3,277,390
5	5,542,311
6	3,336,191
7	1,916,290
8	6,654,896
9	134,391,152
10	70,565,928
11	1,217,880
12	53,053,544
13	58,959,172
14	43,233,280
15	72,642,408
16	25,556,122
17	5,690,555
18	2,865,718
19	16,640,328
20	30,396,242
21	12,768,268
22	7,196,808
23	7,610,584
24	14,432,428
25	6,217,264
26	3,504, 348
27	17,370,926
28	19,332,550
29	13,210,146
30	3,765,920
31	2,122,653
32	28,232,106
33	-
Total	675,127,211

Table 3.7 Discounted Work Package Costs

3.2.3 Revenue Streams

In this example, revenue streams, like work packages, are calculated using the five percentile estimate parameters. Table 3.8 shows the five percentile estimate parameters for revenue streams. Traffic volumes and inflation rates are assigned high uncertainty because of the difficulty in forecasting them. In contrast, toll growth rates involve less uncertainty than other factors because they can be controlled by the highway operators to a certain extent.

category	2.5%	5.0%	50.0%	95.0%	97.5%	$\sqrt{\beta 1}$	β_{2}
traffic volume	0.350	0.500	1.000	1.350	1.400	-1.0	5.9
RVS duration	0.900	0.910	1.000	1.090	1.100	0.0	2.2
toll	0.900	0.910	1.000	1.180	1.200	0.6	2.4
toll growth rate	0.800	0.850	1.000	1.050	1.060	-2.0	10.2
traffic growth rate	0.700	0.750	1.000	1.090	1.100	-1.0	3.4
road length	0.920	0.930	1.000	1.070	1.080	0.0	2.4
inflation rate	0.800	0.820	1.000	1.300	1.400	1.40	7.7
(maintenance cost)							
maintenance unit costs	0.920	0.930	1.000	1.250	1.300	1.2	4.0
cost parameter	0.900	0.910	1.000	1.250	1.300	1.0	3.4
(operation cost)							
labour cost	0.900	0.910	1.000	1.250	1.300	1.0	3.4
traffic range	0.900	0.910	1.000	1.250	1.300	1.0	3.4
number of workers	0.900	1.910	1.000	1.090	1.100	0.0	2.2
cost parameter	0.900	0.910	1.000	1.250	1.300	1.0	3.4

Table 3.8 Five Percentile Estimate Parameters for Revenue Streams

In this example, vehicles are classified into five categories: light motor vehicle, ordinary motor vehicle, medium-sized motor vehicle, large-sized motor vehicle, and special large-sized motor vehicle. Deterministic toll ratios between vehicle types are shown in Table 3.1. It is
assumed that the numbers for all vehicle types grow at the same rate, and have the same distribution. In real life, for example, when a big industrial area is developed, the number of trucks may increase more than that of other vehicle types. However, in this example, this possible difference is not considered because, at least in Japan, differential traffic volume increases due to local development are not considered for feasibility analyses for regional highways, in order to avoid overestimating future traffic volumes (Japan Highway Public Corporation, 1983). However, in the model, it is possible to set different growth rates and distributions for each vehicle type.

Interchange distances are shown in Table 3.9; tolls for each vehicle type are shown in Tables 3.10 to 3.14 ; and spot traffic volumes are shown in Tables 3.15 to 3.19 and Figures 3.5 to 3.9 ($\mathbf{\Delta}$ indicates base years).

Table 3.9 Interchange Distances

Table 3.10 Toll for Light Motor Vehicle

				(Unit : Dollar)			
			I.C. \#6				
		I.C. \#5	1.5				
			I.C. \#4	1.0	2.5		
		I.C. \#3	2.5	3.5	5.0		
	I.C. \#2			1.0	3.5	4.5	6.0
I.C. \#1	1.5			2.5	4.5	5.5	7.0

Table 3.11 Toll for Ordinary Motor Vehicle
(Unit : Dollar)

Table 3.12 Toll for Medium-sized Motor Vehicle

Table 3.13 Toll for Large-sized Motor Vehicle

Table 3.14 Toll for Special Large-sized Motor Vehicle

The toll rate is assumed to increase every three years in proportion to one half of the inflation rate, giving an increase of approximately 2% per year.

Year	RVS \#	Daily Traffic Volume (vehicles/day)
1	1	0
2	2	0
3	3	0
4	4	0
5	5	11,266
6		11,419
7	6	12,084
8		12,340
9	7	15,246
10		15,556
11		15,844
12		16,179
13	8	31,337
14		31,912
15		32,429
16		33,011
17	9	33,090
18		33,510
19		33,884
20		34,362
21		34,786
22		35,167
23		35,590
24		36,010
25		36,442
26		36,862
27		37,284
28		37,666
29		38,082
30		38,559

Table 3.15 Spot Traffic Volume between Interchange \#1 and \#2

Year	RVS \#	Daily Traffic Volume (vehicles/day)
1	1	0
2	2	12,200
3	3	18,769
4	4	20,512
5	5	26,247
6		26,601
7	6	27,985
8		28,583
9	7	31,293
10		31,936
11		32,536
12		33,232
13	8	46,416
14		47,274
15		48,064
16		48,933
17	9	49,717
18		50,363
19		50,938
20		51,668
21		52,324
22		52,908
23		53,558
24		54,205
25		54,857
26		55,509
27		56,156
28		56,741
29		57,381
30		58,112

Table 3.16 Spot Traffic Volume between Interchange \#2 and \#3

Year	RVS \#	Daily Traffic Volume (vehicles/day)
1	1	17,462
2	2	20,271
3	3	24,307
4	4	26,114
5	5	30,098
6		30,500
7	6	32,233
8		32,928
9	7	35,348
10		36,076
11		36,760
12		37,545
13	8	49,423
14		50,342
15		51,185
16		52,110
17	9	52,385
18		53,068
19		53,686
20		54,457
21		55,146
22		55,772
23		56,456
24		57,146
25		57,837
26		58,534
27		59,217
28		59,838
29		60,519
30		61,293

Table 3.17 Spot Traffic Volume between Interchange \#3 and \#4

Year	RVS \#	Daily Traffic Volume (vehicles/day)
1	1	22,212
2	2	24,960
3	3	28,421
4	4	30,591
5	5	32,386
6		32,819
7	6	34,763
8		35,518
9	7	39,651
10		40,475
11		41,251
12		42,137
13	8	53,704
14		54,712
15		55,640
16		56,647
17	9	57,008
18		57,768
19		58,441
20		59,290
21		60,052
22		60,733
23		61,487
24		62,246
25		63,007
26		63,775
27		64,530
28		65,215
29		65,964
30		66,808

Table 3.18 Spot Traffic Volume between Interchange \#4 and \#5

Year	RVS \#	Daily Traffic Volume (vehicles/day)
1	1	22,943
2	2	24,572
3	3	28,740
4	4	31,723
5	5	33,716
6		34,174
7	6	35,470
8		36,213
9	7	44,827
10		45,731
11		46,571
12		47,546
13	8	56,263
14		57,298
15		58,241
16		59,276
17	9	60,356
18		61,127
19		61,812
20		62,681
21		63,451
22		64,148
23		64,916
24		65,679
25		66,475
26		67,246
27		68,010
28		68,708
29		69,471
30		70,338

Table 3.19 Spot Traffic Volume between Interchange \#5 and \#6

Figure 3.5 spot Traffic Volume between Interchange \#1 and \#2

Figure 3.6 Spot Traffic Volume between Interchange \#2 and \#3

Figure 3.8 Spot Traffic Volume between Interchange \#4 and \#5

Appendix C contains interchange pair traffic volumes in base years, traffic volume growth parameters, and toll rate growth parameters. Appendix B contains other more detailed input data.

Table 3.20 shows deterministic annual revenues and annual maintenance and operating costs (constant dollar). A total of nine revenue streams corresponding to nine different base years are used to describe the project. Each revenue stream includes all vehicle types and all increases in traffic volumes and toll rates for that revenue stream's duration. Table 3.21 shows the deterministic discounted revenues which form parts of the
conventional analysis. They will be used later to compare with the probabilistic results.

RVS \#	year	annual revenues(\$)	annual operation costs (\$)
1	1	36,241,000	6,908,380
2	1	45,332,800	8,011,250
3	1	54,980,500	9,091,350
4	1	62,667,200	9,370,250
5	1	74,931,300	10,534,000
	2	75,820,300	10,549,100
6	1	84,904,900	11,049,400
	2	86,729,300	16,780,200
7	1	98,677,500	12,799,500
	2	106,880,000	13,087,200
	3	108,875,000	13,121,100
	4	111,036,000	16,405,300
8	1	162,106,000	15,211,800
	2	164,962,000	15,556,800
	3	168,057,000	15,905,900
	4	181,374,000	22,029,700
9	1	182,462,000	16,546,000
	2	184,958,000	16,786,100
	3	198,918,000	17,023,400
	4	201,567,000	17,068,500
	5	203,951,000	17,109,000
	6	219,245,000	17,698,200
	7	222,056,000	18,042,400
	8	224,866,000	27,284,400
	9	241,621,000	19,017,300
	10	244,604,000	19,068,000
	11	247,587,000	19,118,700
	12	265,904,000	19,430,100
	13	268,753,000	19,478,500
	14	271,918,000	19,532,400
Total		4,801,984,800	469,614,230

Table 3.20 Deterministic Annual Revenues and Annual Maintenance and Operating Costs (Constant Dollar)

RVS \#	Discounted Revenues (\$)
1	$17,197,658$
2	$20,396,808$
3	$23,375,566$
4	$25,423,164$
5	$55,608,140$
6	$51,585,960$
7	$108,936,328$
8	$137,441,792$
9	$341,720,064$
Total	$781,685,480$

Table 3.21 Discounted Revenues for the Original Feasibility Analysis

3.24 Calculation Results

Tables 3.22 to 3.24 show the statistics evaluated from the analytical approach.

WP\#	Discounted Work Package Costs (\$)			
	E[Cost]	OwPD	skewness	kurtosis
1	-	-	-	-
2	2,426,922	307,731	1.441	4.531
3	1,191,287	150,934	1.445	4.542
4	3,466,470	440,294	1.436	4.492
5	5,868,715	754,482	1.397	4.343
6	3,536,048	461,781	1.356	4.207
7	2,033,763	272,631	1.302	4.035
8	7,189,650	1,348,819	1.909	7.139
9	145,033,968	27,284,032	1.895	7.057
10	75,812,112	14,369,514	1.856	6.844
11	1,324,929	269,923	1.923	7.392
12	57,561,288	11,775,636	1.898	7.265
13	63,972,888	13,181,744	1.862	7.055
14	44,655,704	4,762,571	1.019	3.246
15	74,626,536	8,225,747	0.966	3.121
16	26,237,010	2,963,008	0.949	3.080
17	5,850,180	678,961	0.941	3.062
18	2,967,196	359,682	0.953	3.090
19	17,908,290	3,250,705	1.132	3.537
20	32,546,888	5,980,267	1.099	3.450
21	13,645,265	2,546,414	1.070	3.375
22	7,766,000	1,478,051	1.046	3.314
23	7,775,125	965,464	0.687	2.596
24	14,761,998	1,853,530	0.691	2.573
25	6,365,913	814,869	0.691	2.572
26	3,606,331	483,579	0.712	2.609
27	19,014,506	4,794,670	1.944	7.957
28	2,111,917	5,374,707	1.890	7.655
29	13,193,518	1,609,108	0.057	2.004
30	3,731,328	469,362	0.108	2.014
31	2,128,250	278,937	0.208	2.052
32	29,856,906	7,878,655	0.479	2.275
33	-	-	-	-

Table 3.22 Statistics for Discounted Work Package Costs

RS\#	Discounted Revenues (\$)			
	E[Revenue]	OwPD	skewness	kurtosis
1	$16,309,014$	$3,070,476$	-0.579	2.402
2	$19,234,812$	$3,085,872$	-0.576	2.398
3	$22,230,906$	$3,676,449$	-0.565	2.384
4	$23,743,590$	$3,901,506$	-0.557	2.372
5	$50,141,572$	$8,278,854$	-0.111	2.015
6	$46,100,320$	$8,457,769$	-0.106	2.013
7	$98,181,080$	$18,919,314$	0.252	2.076
8	$124,448,704$	$23,890,288$	0.210	2.053
9	$305,117,600$	$69,715,768$	0.246	2.073

Table 3.23 Statistics for Discounted Revenues

	Mean	OWPD	skewness	kurtosis
Project Duration (month)	135.77	7.21	0.700	3.600
Project Cost (\$)	$717,174,144$	$39,283,612$	0.876	4.100
Project Revenue (\$)	$705,507,584$	$77,309,352$	0.190	1.411
NPV(\$)	$-11,666,560$	$86,717,576$	0.053	2.043

Table 3.24 Statistics for Project Duration, Discounted Project Cost, Project Revenue, and Project Net Present Value(NPV)

Cumulative probabilities of derived variables at the project performance level and the project decision level are described below.
(1) Project Duration

Table 3.25 and Figure 3.10 present the cumulative probability of the project duration.

According to the original deterministic estimate, the project duration was 126 months. However, this analytical model indicates that the expected project duration is 135.77 months, and the standard deviation is 7.21 months. The project duration is projected to be about 10 months longer than was indicated by the original deterministic feasibility analysis.

Cumulative Probability $(\%)$	Project Duration (month)
0.25	121.69
0.50	122.31
1.00	123.05
2.50	124.32
5.00	125.57
10.00	127.22
25.00	130.49
50.00	134.89
75.00	140.11
90.00	145.47
95.00	148.97
97.50	152.16
99.00	156.04
99.50	158.77
99.75	161.38

Table 3.25 Cumulative Probability of Project Duration
Figure 3.10 Cumulative Probability of Project Duration
(2) Project Costs

Table 3.26 and Figure 3.11 present the cumulative probability of the project cost.

According to the original deterministic estimate, the discounted project cost was $\$ 675,127,211$. However, this analytical model indicates that the expected project cost is $\$ 717,174,144$, and the standard deviation is $\$ 39,283,612$. The project cost is projected to be about $\$ 42,000,000$ more than was indicated by the original deterministic feasibility analysis.

Cumulative Probability (\%)	Project Cost (\$)
0.25	606905024.00
0.50	615987392.00
1.00	625788672.00
2.50	640178240.00
5.00	652556544.00
10.00	666828288.00
25.00	690677376.00
50.00	717174144.00
75.00	743670912.00
90.00	767520000.00
95.00	781791744.00
97.50	794170048.00
99.00	808559616.00
99.50	818360896.00
99.75	827443264.00

Table 3.26 Cumulative Probability of Project Cost

Figure 3.11 Cumulative Probability of Project Cost
(3) Project Revenue

Table 3.27 and Figure 3.12 present the cumulative probability of the project revenue.

According to the original deterministic estimate, the discounted project revenue was $\$ 781,685,480$. However, this analytical model indicates that the expected project revenue is $\$ 705,507,584$, and the standard deviation is \$77,309,352.

The project revenue is projected to be about $\$ 76,000,000$ less than was indicated by the original deterministic feasibility analysis.

Cumulative Probability (\%)	Project Revenue (\$)
0.25	488500224.00
0.50	506374144.00
1.00	525662848.00
2.50	553981248.00
5.00	578341440.00
10.00	606427904.00
25.00	653362432.00
50.00	705507584.00
75.00	757652736.00
90.00	804587264.00
95.00	832673728.00
97.50	857033920.00
99.00	885352320.00
99.50	904641024.00
99.75	922514944.00

Table 3.27 Cumulative Probability of Project Revenue

Figure 3.12 Cumulative Probability of Project Revenue
(4) Net Present Value

Table 3.28 and Figure 3.13 present the cumulative probability of the Project Net Present Value (NPV).

According to the original deterministic estimate, the NPV was $\$ 106,558,269$. However, this analytical model indicates that the expected $N P V$ is $-\$ 11,666,560$, and the standard deviation is $\$ 86,717,576$.

The NPV is projected to be about $\$ 118,000,000$ less than was indicated by the original deterministic feasibility analysis.

Cumulative probability (\%)	NPV (\$)
0.25	-255082800.00
0.50	-235033696.00
1.00	-213397664.00
2.50	-181633008.00
5.00	-154308304.00
10.00	-122803808.00
25.00	-70157568.00
50.00	-11666560.00
75.00	46824444.00
90.00	99470688.00
95.00	130975184.00
97.50	158299888.00
99.00	190064544.00
99.50	211700576.00
99.75	231749680.00

Table 3.28 Cumulative Probability of Project Net Present Value

Figure 3.13 Cumulative Probability of Project Net Present Value

3.3 Sensitivity Analysis

3.3.1 Results

This section describes the sensitivity analysis for the sample project. The analytical model requires subjective estimates of primary variables whose accuracy can affect the entire analysis. Therefore, it is important to identify the sensitivity of each primary variable, and to be very careful when highly sensitive variables are estimated. The purpose of sensitivity analysis is to identify how much a change in a primary variable affects the derived variable. In this section, the focus is on revenue streams.

The sensitivity of a primary variable is measured by the total sensitivity coefficient for that variable. The general idea of sensitivity analysis is as follows.

The sensitivity of the derived variable whose functional form is given by $Y=g(X)$ is described as (Russell, 1992),

$$
\begin{equation*}
\frac{\Delta Y}{Y} \cong \sum_{i} S_{i} \frac{\Delta X_{i}}{X_{i}} \tag{3.1}
\end{equation*}
$$

where $\frac{\Delta Y}{Y}$ and $\frac{\Delta X_{i}}{X_{i}}$ are the percent changes in Y and X_{i} respectively, and S_{i} is the total sensitivity coefficient, which is defined as (Russell, 1992),

$$
\begin{equation*}
S i=\frac{\partial Y}{\partial X_{i}} \frac{X_{i}}{Y} \tag{3.2}
\end{equation*}
$$

Chapter 3: Application
where $\frac{\partial Y}{\partial X_{i}}$ is the sensitivity coefficient of Y with respect to X_{i}.

Because moment analysis is based on the truncated Taylor series expansion of $g(X)$, the partial derivatives with respect to primary variables are evaluated. However, since the analytical method transforms the primary variables X to Z and $g(X)$ to $G(Z)$ prior to using the Taylor series expansion, the sensitivity coefficients are evaluated with respect to the transformed variables.

$$
\begin{align*}
& \frac{\Delta Y}{Y} \cong \sum_{i} S_{i} \frac{\Delta Z_{i}}{Z_{i}} \tag{3.3}\\
& S i=\frac{\partial Y}{\partial Z_{i}} \frac{Z_{i}}{Y} \tag{3.4}
\end{align*}
$$

In this section, revenue streams are considered as derived variables. Highly sensitive primary variables for each derived variable are shown in Tables 3.29 to 3.37 .
(Deterministic Duration Estimate : 1 year)

Ranking	Primary Variable	S_{i}
1	parameter (toll rate growth)	1.32811
2	RVS early start time	-0.526802
3	toll(Ic\#3-\#6, vehicle-2)	0.453709
3	traffic volume (Ic\#3-\#6, vehicle-2)	0.453709
5	parameter (consignment cost of toll collection)	-0.185005
6	labor cost (toll collection)	-0.185002
7	toll(Ic\#3-\#5, vehicle-2)	0.135406
7	traffic volume (Ic\#3-\#5, vehicle-2)	0.135406
9	toll(Ic\#3-\#6, vehicle-1)	0.106513
9	toll(Ic\#3-\#6, vehicle-1)	0.106513
11	inflation rate	-0.104595

Table 3.29 Total sensitivity Coefficients for RVS \#1
(Deterministic Duration Estimate : 1 year)

Ranking	Primary Variable	S_{i}
1	parameter (toll rate growth)	1.32186
2	RVS early start time	-0.606351
3	toll (Ic\#2-\#6, vehicle-2)	0.274935
3	traffic volume (Ic\#2-\#6, vehicle-2)	0.274935
5	labor cost (toll collection)	-0.180724
5	parameter (consignment cost of toll collection)	-0.180724
7	toll(Ic\#3-\#6, vehicle-2)	0.172023
7	traffic volume (Ic\#3-\#6, vehicle-2)	0.172023
9	inflation rate	-0.117903
10	the number of toll collection clerks	-0.114262
11	toll(Ic\#2-\#5, vehicle-2)	0.108815
11	traffic volume (Ic\#2-\#5, vehicle-2)	0.108815

Table 3.30 Total sensitivity Coefficients for RVS \#2
(Deterministic Duration Estimate : 1 year)

Ranking	Primary Variable	S_{i}
1	parameter (toll rate growth)	1.28879
2	RVS early start time	-0.675688
3	toll (Ic\#2-\#6, vehicle-2)	0.325839
3	traffic volume (Ic\#2-\#6, vehicle-2)	0.325839
5	labor cost (toll collection)	-0.166774
5	parameter (consignment cost of toll collection)	-0.166774
7	toll (Ic\#2-\#5, vehicle-2)	0.125868
7	traffic volume (Ic\#2-\#5, vehicle-2)	0.125868
9	toll (Ic\#3-\#6, vehicle-2)	0.123317
9	traffic volume toll (Ic\#3-\#6, vehicle-2)	0.123317
11	inflation rate	-0.120515

Table 3.31 Total sensitivity Coefficients for RVS \#3
(Deterministic Duration Estimate : 1 year)

Ranking	Primary Variable	S_{i}
1	parameter (toll rate growth)	1.28737
2	RVS early start time	-0.755225
3	toll (Ic\#2-\#6, vehicle-2)	0.313043
3	traffic volume (Ic\#2-\#6, vehicle-2)	0.313043
5	labor cost (toll collection)	-0.169169
5	parameter (consignment cost of toll collection)	-0.169169
7	inflation rate	-0.133920
8	toll (Ic\#2-\#5, vehicle-2)	0.125191
8	traffic volume (Ic\#2-\#5, vehicle-2)	0.125191
10	toll (Ic\#3-\#6, vehicle-2)	0.105923
10	traffic volume (Ic\#3-\#6, vehicle-2)	0.105923

Table 3.32 Total sensitivity Coefficients for RVS \#4
(Deterministic Duration Estimate : 2 year)

Ranking	Primary Variable	S_{i}
1	RVS early start time	-0.884902
2	parameter (toll rate growth) the first year	0.659903
3	parameter (traffic growth) the first year	-0.624994
4	parameter (toll rate growth) the second year	0.624937
5	parameter (traffic growth) the second year	0.624933
6	traffic volume (Ic\#2-\#6, vehicle-2)	0.228876
7	toll (Ic\#2-\#6, vehicle-2)	0.228872
8	parameter (consignment cost of toll collection)	-0.168755
10	labor cost (toll collection)	-0.168751
11	inflation rate	-0.162603
11	trall (Ic\#1-\#6, vehicle-2) (Ic\#1-\#6, vehicle-2)	0.117991

Table 3.33 Total sensitivity Coefficients for RVS \#5
(Deterministic Duration Estimate : 2 year)

Ranking	Primary Variable	S_{i}
1	RVS early start time	-1.10177
2	parameter (toll rate growth) the first year	0.710231
3	parameter (traffic growth) the first year	-0.679008
4	parameter (toll rate growth) the second year	0.678934
5	parameter (traffic growth) the second year	0.678929
6	inflation rate	-0.255841
7	traffic volume (Ic\#2-\#6, vehicle-2)	0.237182
8	toll (Ic\#2-\#6, vehicle-2)	0.237177
10	parameter (consignment cost of toll collection)	-0.179586
11	labor cost (toll collection)	-0.179581
12	trall(Ic\#1-\#6, vehicle-2) trafic volume (Ic\#1-\#6, vehicle-2)	0.124552

Table 3.34 Total sensitivity Coefficients for RVS \#6
(Deterministic Duration Estimate : 4 year)

Ranking	Primary Variable	S_{i}
1	RVS early start time	-1.23521
2	parameter (traffic growth) the first year	-0.992122
3	parameter (traffic growth) the second year	0.346556
4	parameter (toll rate growth) the second year	0.346552
5	parameter (toll rate growth) the first year	0.341947
6	parameter (traffic growth) the third year	0.330304
7	parameter (toll rate growth) the third year	0.330300
8	parameter (toll rate growth) the fourth year	0.315163
8	parameter (traffic growth) the fourth year	0.315163
10	inflation rate	-0.272465
11	traffic volume (Ic\#2-\#6, vehicle-2)	0.203149
12	toll (Ic\#2-\#6, vehicle-2)	0.203153
13	labor cost (toll collection)	-0.192027
13	parameter (consignment cost of toll collection)	-0.192027
15	toll (Ic\#1-\#6, vehicle-2)	0.136613
15	traffic volume (Ic\#1-\#6, vehicle-2)	0.136613

Table 3.35 Total sensitivity Coefficients for RVS \#7

Ranking	Primary Variable	S_{i}
1	RVS early start time	-1.52193
2	parameter (traffic growth) the first year	-0.942056
3	parameter (toll rate growth) the first year	0.339475
4	parameter (toll rate growth) the second year	0.323165
4	parameter (traffic growth) the second year	0.323165
6	parameter (traffic growth) the fourth year	0.310871
7	parameter (toll rate growth) the fourth year	0.310868
8	parameter (traffic growth) the third year	0.307962
9	parameter (toll rate growth) the third year	0.307955
10	inflation rate	-0.295489
11	traffic volume (Ic\#1-\#6, vehicle-2)	0.179443
12	toll (Ic\#1-\#6, vehicle-2)	0.179440
13	labor cost (toll collection)	-0.162416
13	parameter (consignment cost of toll collection)	-0.162416
15	toll (Ic\#2-\#6, vehicle-2)	0.126082
15	traffic volume (Ic\#2-\#6, vehicle-2)	0.126082
17	toll (Ic\#1-\#6, vehicle-4)	0.126033
17	traffic volume (Ic\#1-\#6, vehicle-4)	0.126033

Table 3.36 Total sensitivity Coefficients for RVS \#8
(Deterministic Duration Estimate : 14 year)

Ranking	Primary Variable	S_{i}
1	RVS early start time	-1.91796
2	parameter (traffic growth) the first year	-1.21835
3	inflation rate	-0.520859
4	labor cost (toll collection)	-0.210106
4	```parameter (consignment cost of toll collection)```	-0.210106
6	traffic volume (Ic\#1-\#6, vehicle-2)	0.181898
6	toll (Ic\#1-\#6, vehicle-2)	0.181898
8	toll (Ic\#2-\#6, vehicle-2)	0.133843
8	traffic volume (Ic\#2-\#6, vehicle-2)	0.133843
10	toll (Ic\#1-\#6, vehicle-4)	0.122000
10	traffic (Ic\#1-\#6, vehicle-4)	0.122000
12	parameter (toll rate growth) the first year	0.118742
13	parameter (toll rate growth) the second year	0.112559
13	parameter (traffic growth) the second year	0.112559
15	parameter (toll rate growth) the third year	0.113193
15	parameter (traffic growth) the third year	0.113193
17	parameter (toll rate growth) the fourth year	0.107248
17	parameter (traffic growth) the fourth year	0.107248
19	toll (Ic\#1-\#5, vehicle-4)	0.102694
19	traffic volume (Ic\#1-\#5, vehicle-4)	0.102694
21	parameter (toll rate growth) the fifth year	0.101456
21	parameter (traffic growth) the fifth year	0.101456
23	parameter (toll rate growth) the sixth year	0.101953
23	parameter (traffic growth) the sixth year	0.101953

Table 3.37 Total sensitivity Coefficients for RVS \#9

3.3.2 Summary of Sensitivity Analysis

Although there are some differences between the revenue streams, it can be said that the following factors demonstrate high sensitivity in most cases:

- revenue stream early start time;
- toll rate growth parameter;
- traffic volume growth parameter;
- tolls and traffic volume;
- inflation rate; and
- parameter for consignment cost of toll collection.

In addition to the above, revenue stream durations affect the sensitivity coefficients of toll rate growth and traffic volume growth parameters.

3.4 Summary

This chapter applied the analytical model to a real deterministic feasibility study for a large toll highway project. The project NPV of the original deterministic feasibility study indicated that this project was feasible. However, the analytical model indicates the likelihood of delay and cost overrun, and shows negative NPV. This project should be reexamined and reconsidered.

Because this model has the capacity to measure uncertainty, and to investigate the sensitivity of the project performance to changes in primary variables for a toll highway project, it is useful for feasibility analyses both in the preliminary and detailed stages of analysis.

Chapter 4

Risk Management

4.1 General

This chapter examines strategies for risk management and explores their impact on overall project risks. In order to manage risks, it is important for the private sector and/or quasi-public corporations to negotiate risk sharing with the government. Beesley and Hensher (1990) describe some of risks that should be considered.

They are:

- termination risks that involve negotiating the residual value and takeback date when the project is handed over to the government;
- regulation risks that primarily involve consideration of possible changes such as ones in existing regulations and the political ideology of the government which affects price control;
- construction risks which include the usual engineering risks associated with construction; and
- information risks that concern the reliability of traffic forecasts.

Among these risks, only economic risks are addressed here, and the focus is on risk management for the revenue phase.

Uncertainty surrounding estimates for the revenue phase is related to:

- time estimates for work packages and revenue streams (e.g. productivity and quantity);
- revenue estimates (e.g. interchange pair traffic volume for different vehicle types, toll rate, and operating costs); and
- prediction of economic factors (e.g. inflation rate and interest rate).

Section two presents possible ways of reducing the uncertainty; section three attempts to quantify their effects; and section four presents conclusions.

4.2 Strategies for Risk Management

One of the most effective ways of decreasing risk seems to be to reduce the uncertainty of variables that performance (e.g. net present value) is highly sensitive to. According to the results of the sensitivity analysis in chapter 3, they are:
(1) revenue stream early start time;
(2) toll rate growth parameters;
(3)traffic volume growth parameters;
(4)tolls;
(5)traffic volume;
(6)inflation rate; and
(7) parameter for consignment cost of toll collection.

In this section, strategies for tightening distributions for the above variables are discussed, and the effects of tighter distributions on overall project risks are examined. The range of each distribution is decreased by half. As mentioned in chapter 3, the five percentile estimate parameters are used for this sample project. Therefore, the range of each distribution is indicated by the parameters. For convenience, the original sample project is called case-1. In each case except case-9, the distribution of variables changes in one category only in order to examine an individual effect. Cumulative effects are not considered until case-9.

4.2.1 Revenue Stream Early Start Time (case-2)

A tightening of the distribution describing revenue stream early start time is considered here. The following are possible strategies for tightening the distributions for revenue stream early start time:

- to use modern construction management techniques for better time management of the design and construction phase; and
- to add clauses such as penalty clauses for delays, in order to encourage contractors to meet deadines in contracts.

Table 4.1 shows the parameters for case-1, and Table 4.2 shows ones for case-2.

category	2.5%	5.0%	50.0%	95.0%	97.5%	$\sqrt{\beta_{1}}$	β_{2}
survey \& design	0.900	0.910	1.000	1.180	1.200	0.6	2.4
land acquisition	0.900	0.910	1.000	1.500	1.650	2.0	8.0
earth work	0.850	0.870	1.000	1.450	1.500	0.9	2.8
bridge	0.900	0.910	1.000	1.180	1.200	0.6	2.4
pavement	0.900	0.910	1.000	1.090	1.100	0.0	2.2
IC	0.850	0.870	1.000	1.450	1.500	0.9	2.8
ancillary facilities	0.900	0.910	1.000	1.090	1.100	0.0	2.2
appurtenant work	0.900	0.910	1.000	1.450	1.500	1.1	3.2
building \& repairing	0.900	0.910	1.000	1.090	1.100	0.0	2.2
overhead	0.900	0.910	1.000	1.180	1.200	0.6	2.4
revenue phase duration	0.900	0.910	1.000	1.090	1.100	0.0	2.2

Table 4.1 Five Percentile Estimate Parameters for W.P. Durations (case-1)

category	2.5%	5.0%	50.0%	95.0%	97.5%	$\sqrt{\beta 1}$	β_{2}
survey \& design	0.950	0.955	1.000	1.090	1.100	0.6	2.4
land acquisition	0.950	0.955	1.000	1.280	1.325	1.5	4.8
earth work	0.925	0.930	1.000	1.200	1.250	1.4	5.3
bridge	0.950	0.955	1.000	1.090	1.100	0.6	2.4
pavement	0.950	0.955	1.000	1.045	1.050	0.0	2.2
IC	0.925	0.930	1.000	1.200	1.250	1.4	5.3
ancillary facilities	0.950	0.955	1.000	1.045	1.050	0.0	2.2
appurtenant work	0.950	0.960	1.000	1.200	1.250	1.7	6.3
building \& repairing	0.950	0.955	1.000	1.045	1.050	0.0	2.2
overhead	0.950	0.955	1.000	1.090	1.10	0.6	2.4
revenue phase duration	0.950	0.955	1.000	1.045	1.050	0.0	2.2

Table 4.2 Five Percentile Estimate Parameters for W.P. Durations (case-2)

Tables 4.3, 4.4, and Figure 4.1 show the comparison between the two cases in terms of the project revenue, and Tables 4.5, 4.6, and Figure 4.2 show the comparison between the two cases in terms of the project NPV. Mean value and standard deviation of the
early start time of the first revenue for case-1 are 7.56 years and 0.523 years respectively, and those for case-2 are 7.25 years and 0.258 years respectively.

case	mean	σ	skewness	kurtosis
1	$705,507,584$	$77,309,352$	0.190	1.411
2	$729,199,360$	$74,547,520$	0.241	1.495

Table 4.3 Comparison of the Project Revenue (case-1 and case-2)

cumulative probability (\%)	Case $(\$, 000,000)$	Case $(\$, 000,000)$
0.25	488.5	519.9
0.50	506.4	537.2
1.00	525.7	555.8
2.50	554.0	583.1
5.00	578.3	606.6
10.00	606.4	633.7
25.00	653.4	678.9
50.00	705.5	729.2
75.00	757.7	779.5
90.00	804.9	824.7
95.00	832.7	851.8
97.50	857.0	875.3
99.00	885.4	902.6
99.50	904.6	921.2
99.75	922.5	938.5

Table 4.4 Cumulative Probability of the Project Revenue (case-1 and case-2)

Figure 4.1 Cumulative Probability of the Project Revenue (case-1 and case-2)

case	mean	σ	skewness	kurtosis
1	$-11,666,560$	$86,717,576$	0.053	2.043
2	$9,563,840$	$84,254,624$	0.078	2.131

Table 4.5 Comparison of the Project NPV (case-1 and case-2)

Cumulative Probability $(\%)$	Case $(\$, 000,000)$	Case 2 $(\$, 000,000)$
0.25	-255.1	-226.9
0.50	-235.0	-207.5
1.00	-213.4	-186.4
2.50	-181.6	-155.6
5.00	-154.3	-129.0
10.00	-122.8	-98.4
25.00	-70.2	-47.3
50.00	-11.7	9.6
75.00	46.8	66.4
90.00	99.5	117.5
95.00	131.0	148.2
97.50	158.3	174.7
99.00	190.1	205.6
99.50	211.7	226.6
99.75	231.7	246.1

Table 4.6 Cumulative Probability of the Project NPV (case-1 and case-2)

Figure 4.2 Cumulative Probability of the Project NPV (case-1 and case-2)

A tightening of the distribution describing revenue stream early start time improves expected project revenue and net present value significantly but does not reduce the uncertainty as measured by σ, by much. Clearly, efforts to fast track or accelerate a project can have a significant effect on expected NPV, although possibly at the price of increased risk.

4.2.2 Toll Rate Growth Parameters (case-3)

A tightening up of the distribution describing toll rate growth parameters, described by α_{i} in 2.5.4, is considered here. Toll rate growth parameters can be controlled by road operators even though they are affected by inflation. The following are possible strategies for reducing the uncertainty:

- to negotiate a long-term pricing policy; and
- to require that the project be feasible without increases in toll rate.

Tables 4.7 and 4.8 describe the parameters for case-1 and case-3

	2.5%	5.0%	50.0%	95.0%	97.5%
case-1	0.800	0.850	1.000	1.050	1.060
case-3	0.900	0.910	1.000	1.028	1.030

Table 4.7 Five Percentile Estimate Parameters for Toll Rate Growth Parameters

	Mean	Standard Deviation	$\sqrt{\beta_{1}}$	β_{2}
case-1	0.9815	0.0703	-2.0	10.2
case-3	0.9885	0.0383	-0.9	2.8

Table 4.8 Statistics Information of Five Percentile Estimate Parameters for Toll Rate Growth Parameters

Tables 4.9, 4.10, and Figure 4.3 show the comparison between case-1 and case-3 in terms of the project revenue, and Tables 4.11, 4.12, and Figure 4.4 show the comparison between the two cases in terms of the project NPV.

case	mean	σ	skewness	kurtosis
1	$705,507,584$	$77,309,352$	0.190	1.411
3	$715,485,760$	$77,054,544$	0.200	1.396

Table 4.9 Comparison of the Project Revenue (case-1 and case-3)

cumulative probability (\%)	Case $(\$, 000,000)$	Case 3 $(\$, 000,000)$
0.25	488.5	499.2
0.50	506.4	517.0
1.00	525.7	536.2
2.50	554.0	564.5
5.00	578.3	588.7
10.00	606.4	616.7
25.00	653.4	663.5
50.00	705.5	715.5
75.00	757.7	767.5
90.00	804.9	814.2
95.00	832.7	842.2
97.50	857.0	866.5
99.00	885.4	894.7
99.50	904.6	914.0
99.75	922.5	931.8

Table 4.10 Cumulative Probability of the Project Revenue (case-1 and case-3)

Figure 4.3 Cumulative Probability of the Project Revenue (case-1 and case-3)

case	mean	σ	skewness	kurtosis
1	$-11,666,560$	$86,717,576$	0.053	2.043
3	$-1,688,384$	$86,490,488$	0.060	2.036

Table 4.11 Comparison of the Project NPV
(case-1 and case-3)

Cumulative Probability (\%)		Case 1 $(\$, 000,000)$
0.25	-255.1	Case $(\$, 000,000)$
0.50	-235.0	-244.5
1.00	-213.4	-224.5
2.50	-181.6	-202.9
5.00	-154.3	-171.2
10.00	-122.8	-144.0
25.00	-70.2	-112.5
50.00	-11.7	-60.0
75.00	46.8	-1.7
90.00	99.5	56.6
95.00	131.0	109.2
97.50	158.3	140.6
99.00	190.1	167.8
99.50	211.7	199.5
99.75	231.7	221.1
	241.1	

Table 4.12 Cumulative Probability of the Project NPV (case-1 and case-3)

Figure 4.4 Cumulative Probability of the Project NPV (case-1 and case-3)

A tightening of the distribution describing toll rate growth parameters shifts project revenue and net present value in a positive direction, but it does little to reduce uncertainty.

4.2.3 Traffic Volume Growth Parameters (case-4)

A tightening of the distribution describing traffic volume growth parameters, described as k in section 2.1 , is considered here. It is very difficult to control the distribution for traffic volume growth parameters. A possible way is to review past data of similar highway projects, and to analyze information about development plans, road capacity, economic condition, and so on. Tables 4.13 and 4.14 describe the parameters for case-1 and case-4

	2.5%	5.0%	50.0%	95.0%	97.5%
case-1	0.700	0.750	1.000	1.090	1.100
case-4	0.850	0.870	1.000	1.045	1.050

Table 4.13 Five Percentile Estimate Parameters for traffic volume growth parameters

	Mean	Standard Deviation	$\sqrt{\beta_{1}}$	β_{2}
case-1	0.9704	0.1104	-1.0	3.4
case-4	0.9843	0.0568	-0.9	2.9

Table 4.14 Statistics Information of Five Percentile Estimate Parameters for Traffic Volume Growth Parameters

Tables 4.15, 4.16, and Figure 4.5 show the comparison between case-1 and case-4 in terms of the project revenue, and Tables 4.17, 4.18, and Figure 4.6 show the comparison between the two cases in terms of the project NPV.

case	mean	σ	skewness	kurtosis
1	$705,507,584$	$77,309,352$	0.190	1.411
4	$702,523,968$	$61,274,760$	-0.170	1.383

Table 4.15 Comparison of the Project Revenue (case-1 and case-4)

cumulative probability (\%)	Case (\$,000,000)	Case 4 $(\$, 000,000)$
0.25	488.5	530.5
0.50	506.4	544.7
1.00	525.7	560.0
2.50	554.0	582.4
5.00	578.3	601.7
10.00	606.4	624.0
25.00	653.4	661.2
50.00	705.5	702.5
75.00	757.7	743.9
90.00	804.9	781.1
95.00	832.7	803.3
97.50	857.0	822.6
99.00	885.4	845.1
99.50	904.6	860.4
99.75	922.5	874.5

Table 4.16 Cumulative Probability of the Project Revenue (case-1 and case-4)

Figure 4.5 Cumulative Probability of the Project Revenue (case-1 and case-4)

case	mean	σ	skewness	kurtosis
1	$-11,666,560$	$86,717,576$	0.053	2.043
4	$-14,650,176$	$72,785,976$	-0.239	2.281

Table 4.17 Comparison of the Project NPV
(case-1 and case-4)

Cumulative Probability (\%)	$\begin{gathered} \text { Case } 1 \\ (\$, 000,000) \end{gathered}$	$\begin{gathered} \text { Case } 4 \\ (\$, 000,000) \end{gathered}$
0.25	-255.1	-219.0
0.50	-235.0	-202.1
1.00	-213.4	-184.0
2.50	-181.6	-157.3
5.00	-154.3	-134.4
10.00	-122.8	-107.9
25.00	-70.2	-63.7
50.00	-11.7	-14.7
75.00	46.8	34.4
90.00	99.5	78.6
95.00	131.0	105.1
97.50	158.3	128.0
99.00	190.1	154.7
99.50	211.7	172.8
99.75	231.7	189.7

Table 4.18 Cumulative Probability of the Project NPV (case-1 and case-4)

Figure 4.6 Cumulative Probability of the Project NPV (case-1 and case-4)

A tightening of the distribution describing traffic volume growth parameters significantly reduces the uncertainty of an overall project; mean values of project revenue and net present value, however, are decreased.

4.2.4 Tolls (case-5)

The effects of tightening the distribution of base toll rates are considered in this section. In general, toll rates are decided on the basis of benefit-cost principles, in which the tolls charged to the various road users should not exceed the benefit normally received by them for using the highway. Practically, the uncertainty surrounding base tolls disappears near the end of the construction phase, or earlier, if the concession structure dictates the base toll rate. An example of where the uncertainty in the toll rate persists to the commissioning phase of a project is the recently completed English Chunnel project.

Tables 4.19 and 4.20 describe the parameters for case-1 and case-5.

	2.5%	5.0%	50.0%	95.0%	97.5%
case-1	0.900	0.910	1.000	1.180	1.200
case-5	0.950	0.955	1.000	1.09	1.100

Table 4.19 Five Percentile Estimate Parameters for Tolls

	Mean	Standard Deviation	$\sqrt{\beta_{1}}$	β_{2}
case-1	1.0167	0.0850	0.6	2.4
case-5	1.0083	0.0425	0.6	2.4

Table 4.20 Statistics Information of Five Percentile Estimate Parameters for Tolls

Tables 4.21, 4.22, and Figure 4.7 show the comparison between case-1 and case-5 in terms of the project revenue, and Tables 4.23, 4.24, and Figure 4.8 show the comparison between the two cases in terms of the project NPV.

case	mean	σ	skewness	kurtosis
1	$705,507,584$	$77,309,352$	0.190	1.411
5	$699,348,992$	$76,269,088$	0.192	1.419

Table 4.21 Comparison of the Project Revenue (case-1 and case-5)

cumulative probability $(\%)$	Case $(\$, 000,000)$	Case $(\$, 000,000)$
0.25	488.5	485.3
0.50	506.4	502.9
1.00	525.7	521.9
2.50	554.0	549.9
5.00	578.3	573.9
10.00	606.4	601.6
25.00	653.4	647.9
50.00	705.5	699.3
75.00	757.7	750.8
90.00	804.9	797.1
95.00	832.7	824.8
97.50	857.0	848.8
99.00	885.4	876.8
99.50	904.6	895.8
99.75	922.5	913.4

Table 4.22 Cumulative Probability of the Project Revenue (case-1 and case-5)

Figure 4.7 Cumulative Probability of the Project Revenue (case-1 and case-5)

case	mean	σ	skewness	kurtosis
1	$-11,666,560$	$86,717,576$	0.053	2.043
5	$-17,825,152$	$85,791,464$	0.051	2.061

Table 4.23 Comparison of the Project NPV (case-1 and case-5)

Cumulative Probability $(\%)$	Case 1 $(\$, 000,000)$	Case $(\$, 000,000)$
0.25	-255.1	-258.6
0.50	-235.0	$-238 / .8$
1.00	-213.4	-217.4
2.50	-181.6	-186.0
5.00	-154.3	-158.9
10.00	-122.8	-127.8
25.00	-70.2	-75.7
50.00	-11.7	-17.8
75.00	46.8	40.0
90.00	99.5	92.1
95.00	131.0	123.3
97.50	158.3	150.3
99.00	190.1	181.8
99.50	211.7	203.2
99.75	231.7	223.0

Table 4.24 Cumulative Probability of the Project NPV (case-1 and case-5)

Figure 4.8 Cumulative Probability of the Project NPV (case-1 and case-5)

A tightening of the distribution describing base toll rates does not significantly reduce overall uncertainty. A small negative impact on the expected value is observed.

4.2.5 Traffic Volume (case-6)

A tightening of the distribution of base traffic volume is considered here. It is also difficult to achieve in practice. It may be obtained, in part, through detailed traffic surveys, and more detailed traffic forecasts. Tables 4.25 and 4.26 describe the parameters for case-1 and
case-6

	2.5%	5.0%	50.0%	95.0%	97.5%
case-1	0.350	0.500	1.000	1.350	1.400
case-6	0.675	0.700	1.000	1.180	1.200

Table 4.25 Five Percentile Estimate Parameters for Traffic Volume

	Mean	Standard Deviation	$\sqrt{\beta_{1}}$	β_{2}
case-1	0.9723	0.2667	-1.0	5.9
case-6	0.9778	0.1488	-0.4	2.2

Table 4.26 Statistics Information of Five Percentile Estimate Parameters for Traffic Volume

Tables $4.27,4.28$, and Figure 4.9 show the comparison between case-1 and case-6 in terms of the project revenue, and Tables 4.29, 4.30, and Figure 4.10 show the comparison between the two cases in terms of the project NPV.

case	mean	σ	skewness	kurtosis
1	$705,507,584$	$77,309,352$	0.190	1.411
6	$712,278,592$	$73,196,800$	0.249	1.472

Table 4.27 Comparison of the Project Revenue (case-1 and case-6)

cumulative probability $(\%)$	Case 1 $(\$, 000,000)$	Case 6 $(\$, 000,000)$
0.25	488.5	506.8
0.50	506.4	523.7
1.00	525.7	542.0
2.50	554.0	568.8
5.00	578.3	591.9
10.00	606.4	618.5
25.00	653.4	662.9
50.00	705.5	712.3
75.00	757.7	761.6
90.00	804.9	806.1
95.00	832.7	832.7
97.50	857.0	855.7
99.00	885.4	882.6
99.50	904.6	900.8
99.75	922.5	917.7

Table 4.28 Cumulative Probability of the Project Revenue (case-1 and case-6)

Figure 4.9 Cumulative Probability of the Project Revenue (case-1 and case-6)

case	mean	σ	skewness	kurtosis
1	$-11,666,560$	$8,6717,576$	0.053	2.043
6	$-4,895,552$	$7,3196,800$	0.249	1.472

Table 4.29 Comparison of the Project NPV (case-1 and case-6)

$\begin{gathered} \text { Cumulative } \\ \text { Probability (\%) } \end{gathered}$	$\begin{gathered} \text { Case } 1 \\ (\$, 000,000) \end{gathered}$	$\begin{gathered} \text { Case } 6 \\ (\$, 000,000) \end{gathered}$
0.25	-255.1	-238.1
0.50	-235.0	-218.9
1.00	-213.4	-198.1
2.50	-181.6	-167.7
5.00	-154.3	-141.5
10.00	-122.8	-111.4
25.00	-70.2	-60.9
50.00	-11.7	-4.9
75.00	46.8	51.1
90.00	99.5	101.6
95.00	131.0	131.7
97.50	158.3	157.9
99.00	190.1	188.4
99.50	211.7	209.1
99.75	231.7	228.3

Figure 4.10 Cumulative Probability of the Project NPV (case-1 and case-6)

This tightening has no significant effect on reducing the uncertainty of an overall project.

4.2.6 Inflation Rate (case-7)

A tightening of the distribution for the inflation rate that applies to operating costs only is considered here. It cannot be controlled by road operators although it is necessary to observe economic conditions and to forecast its trend carefully to reduce the uncertainty.

Tables 4.31 and 4.32 describe the parameters for case-1 and case-7.

	2.5%	5.0%	50.0%	95.0%	97.5%
case-1	0.800	0.820	1.000	1.300	1.400
case-7	0.900	0.910	1.000	1.180	1.200

Table 4.31 Five Percentile Estimate Parameters for Inflation Rate

	Mean	Standard Deviation	$\sqrt{\beta_{1}}$	β_{2}
case-1	1.0222	0.1540	1.4	7.7
case-7	1.0167	0.0850	0.6	2.4

Table 4.32 Statistics Information of Five Percentile Estimate Parameters for Inflation Rate

Tables $4.33,4.34$, and Figure 4.11 show the comparison between case-1 and case-7 in terms of the project revenue, and Tables 4.35, 4.36, and Figure 4.12 show the comparison between the two cases in terms of the project NPV.

case	mean	σ	skewness	kurtosis
1	$705,507,584$	$77,309,352$	0.190	1.411
7	$709,877,120$	$73,241,816$	0.334	1.491

[^1]| cumulative
 probability (\%) | Case
 $(\$, 000,000)$ | Case
 $(\$, 000,000)$ |
| ---: | ---: | ---: |
| 0.25 | 488.5 | 504.3 |
| 0.50 | 506.4 | 521.2 |
| 1.00 | 525.7 | 539.5 |
| 2.50 | 554.0 | 566.3 |
| 5.00 | 578.3 | 589.4 |
| 10.00 | 606.4 | 616.0 |
| 25.00 | 653.4 | 660.5 |
| 50.00 | 705.5 | 709.9 |
| 75.00 | 757.7 | 759.3 |
| 90.00 | 804.9 | 803.7 |
| 95.00 | 832.7 | 830.4 |
| 97.50 | 857.0 | 853.4 |
| 99.00 | 885.4 | 880.3 |
| 99.50 | 904.6 | 898.5 |
| 99.75 | 922.5 | 915.5 |

Table 4.34 Cumulative Probability of the Project Revenue (case-1 and case-7)

Figure 4.11 Cumulative Probability of the Project Revenue (case-1 and case-7)

case	mean	σ	skewness	kurtosis
1	$-11,666,560$	$86,717,576$	0.053	2.043
7	$-6,317,120$	$82,959,512$	0.137	2.139

Table 4.35 Comparison of the Project NPV
(case-1 and case-7)

Cumulative Probability $(\%)$		Case $(\$, 000,000)$
0.25	-255.1	Case 7
$(\$, 000,000)$		
0.50	-235.0	-239.2
1.00	-213.4	-220.0
2.50	-181.6	-199.3
5.00	-154.3	-168.9
10.00	-122.8	-142.8
25.00	-70.2	-112.6
50.00	-11.7	-62.3
75.00	46.8	-6.3
90.00	99.5	49.6
95.00	131.0	100.0
97.50	158.3	130.1
99.00	190.1	156.3
99.50	211.7	186.7
99.75	231.7	207.4
		226.6

Table 4.36 Cumulative Probability of the Project NPV (case-1 and case-7)

Figure 4.12 Cumulative Probability of the Project NPV (case-1 and case-7)

This tightening has no significant effect on reducing the uncertainty for the overall project.

4.2.7 Parameter for Consignment Cost of Toll Collection (case-8)

A tightening of the distribution of the parameter for the consignment cost of toll collection is examined here. This can be controlled, in part, by road operators.

Tables 4.37 and 4.38 describe the parameters for case-1 and case-8.

	2.5%	5.0%	50.0%	95.0%	97.5%
case-1	0.900	0.910	1.000	1.250	1.300
case-8	0.950	0.955	1.000	1.120	1.150

Table 4.37 Five Percentile Estimate Parameters for Parameter for Consignment Cost of Toll Collection

	Mean	Standard Deviation	$\sqrt{\beta_{1}}$	β_{2}
case-1	1.0296	0.1104	1.0	3.4
case-7	1.0139	0.0539	1.4	5.6

Table 4.38 Statistics Information of Five Percentile Estimate Parameters for Parameter for Consignment Cost of Toll Collection

Tables 4.39, 4.40, and Figure 4.13 show the comparison between case-1 and case-8 in terms of the project revenue, and Tables 4.41, 4.42, and Figure 4.14 show the comparison between the two cases in terms of the project NPV.

case	mean	σ	skewness	kurtosis
1	$705,507,584$	$77,309,352$	0.190	1.411
8	$708,981,504$	$76,916,008$	0.197	1.420

Table (4.39) Comparison of the Project Revenue (case-1 and case-8)

cumulative probability $(\%)$	Case 1 $(\$, 000,000)$	Case 8 $(\$, 000,000)$
0.25	488.5	493.1
0.50	506.4	510.9
1.00	525.7	530.1
2.50	554.0	558.2
5.00	578.3	582.5
10.00	606.4	610.4
25.00	653.4	657.1
50.00	705.5	709.0
75.00	757.7	760.9
90.00	804.9	807.6
95.00	832.7	835.5
97.50	857.0	859.7
99.00	885.4	887.9
99.50	904.6	907.1
99.75	922.5	924.9

Table 4.40 Cumulative Probability of the Project Revenue (case-1 and case-8)

Figure 4.13 Cumulative Probability of the Project Revenue (case-1 and case-8)

case	mean	σ	skewness	kurtosis
1	$-11,666,560$	$86,717,576$	0.053	2.043
8	$-8,192,640$	$86,367,096$	0.056	2.053

Table 4.41 Comparison of the Project NPV
(case-1 and case-8)

Cumulative Probability (\%)	$\begin{gathered} \text { Case } 1 \\ (\$, 000,000) \end{gathered}$	$\begin{gathered} \text { Case } 8 \\ (\$, 000,000) \end{gathered}$
0.25	-255.1	-250.6
0.50	-235.0	-230.7
1.00	-213.4	-209.1
2.50	-181.6	-177.5
5.00	-154.3	-150.3
10.00	-122.8	-118.9
25.00	-70.2	-66.4
50.00	-11.7	-8.2
75.00	46.8	50.1
90.00	99.5	102.5
95.00	131.0	133.9
97.50	158.3	161.1
99.00	190.1	192.7
99.50	211.7	214.3
99.75	231.7	234.2

Figure 4.14 Cumulative Probability of the Project NPV (case-1 and case-8)

This tightening has no significant effect on reducing the uncertainty for the overall project.

4.2.8 Combination of Case-2 to Case-8 (case-9)

The total effect of all the distribution tightenings described in case-2 to case-8 is considered here.

Tables 4.43, 4.44, and Figure 4.15 show the comparison between case-1 and case-9 in terms of the project revenue, and Tables 4.45, 4.46, and Figure 4.16 show the comparison between the two cases in terms of the project NPV.

case	mean	σ	skewness	kurtosis
1	$705,507,584$	$77,309,352$	0.190	1.411
8	$733,059,648$	$40,677,744$	0.161	1.355

Table 4.43 Comparison of the Project Revenue (case-1 and case-9)

cumulative probability $(\%)$	Case 1 $(\$, 000,000)$	Case 9 $(\$, 000,000)$
0.25	488.5	618.9
0.50	506.4	628.3
1.00	525.7	638.4
2.50	554.0	653.3
5.00	578.3	666.1
10.00	606.4	680.9
25.00	653.4	705.6
50.00	705.5	733.1
75.00	757.7	760.5
90.00	804.9	785.2
95.00	832.7	800.0
97.50	857.0	812.8
99.00	885.4	827.7
99.50	904.6	837.8
99.75	922.5	847.2

Table 4.44 Cumulative Probability of the Project Revenue (case-1 and case-9)

Figure 4.15 Cumulative Probability of the Project Revenue (case-1 and case-9)

case	mean	σ	skewness	kurtosis
1	$-11,666,560$	$86,717,576$	0.053	2.043
9	$13,424,128$	$56,534,840$	-0.236	2.819

Table 4.45 Comparison of the Project NPV
(case-1 and case-9)

Cumulative Probability $(\%)$		Case $(\$, 000,000)$
0.25	-255.1	Case $(\$, 000,000)$
0.50	-235.0	-145.3
1.00	-213.4	-132.2
2.50	-181.6	-118.1
5.00	-154.3	-97.4
10.00	-122.8	-79.6
25.00	-70.2	-59.0
50.00	-11.7	-24.7
75.00	46.8	13.4
90.00	99.5	51.6
95.00	131.0	85.9
97.50	158.3	106.4
99.00	190.1	124.2
99.50	211.7	144.9
99.75	231.7	159.0

Table 4.46 Cumulative Probability of the Project NPV
(case-1 and case-9)

Figure 4.16 Cumulative Probability of the Project NPV (case-1 and case-9)

In this case, significant improvements for both reducing the uncertainty and increasing the project's expected net present value are observed. In practice, many of tightenings described may not be achievable, but the process is clear - examine each variable in turn, determine how its uncertainty can be reduced, and then determine the residual uncertainty. The goal is to achieve the type of result shown in Figure 4.16 - tighten or steepen the distribution, and shift it in the positive direction. Even if the tightening examined could be achieved, the example project would still, in all likelihood, be infeasible because there is a 40% chance of not obtaining the minimum attractive rate of return. Thus, additional strategies would be required to further reduce risk.

4.3 Conclusions

As suggested in the previous section, even when the range of the distribution of highly sensitive primary variables is decreased by half, the effect on overall project risks is not significant except when considered in combination (case-9). On a variablevariable basis, improvements are found only in case-4 (traffic volume growth rate). However, in practice, it is very difficult to tighten up the distribution for traffic volume growth parameters, because they are related to uncertain economic conditions, road development plans, and many other factors.

This indicates that it is very difficult for a highway operator alone to reduce risks . Therefore, it would seem that it is very important that risk sharing be negotiated with the government and some guarantee of support be received. For example, if the government guarantees a certain traffic volume, the situation improves as indicated below in case-10.

Although parameters for traffic volume should be deterministic for case-10, the model requires probabilistic values for primary variables. Therefore, very tight distributions for the parameters are used. Tables 4.47 and 4.48 describe the parameters for case-1 and case-10.

	2.5%	5.0%	50.0%	95.0%	97.5%
case-1	0.350	0.500	1.000	1.350	1.400
case-10	0.9996	0.9997	1.000	1.0003	1.0004

Table 4.47 Five Percentile Estimate Parameters for Traffic Volume

	Mean	Standard Deviation	$\sqrt{\beta_{1}}$	β_{2}
case-1	0.9723	0.2667	-1.0	5.9
case-10	1.0000	0.0002	0.0	9.0

Table 4.48 Statistics Information of Five Percentile Estimate
Parameters for Traffic Volume

Tables $4.49,4.50$, and Figure 4.17 show the comparison between case-1 and case-9 in terms of the project revenue, and Tables 4.51, 4.52, and Figure 4.18 show the comparison between the two cases in terms of the project NPV.

case	mean	σ	skewness	kurtosis
1	$705,507,584$	$77,309,352$	0.190	1.411
10	$729,600,320$	$72,625,800$	0.276	1.518

Table 4.49 Comparison of the Project Revenue (case-1 and case-10)

cumulative probability (\%)	Case $(\$, 000,000)$	Case $(\$, 000,000)$
0.25	488.5	525.7
0.50	506.4	542.5
1.00	525.7	560.7
2.50	554.0	587.3
5.00	578.3	610.1
10.00	606.4	636.5
25.00	653.4	680.6
50.00	705.5	729.6
75.00	757.7	778.6
90.00	804.9	822.7
95.00	832.7	849.1
97.50	857.0	871.9
99.00	885.4	898.5
99.50	904.6	916.7
99.75	922.5	933.5

Table 4.50 Cumulative Probability of the Project Revenue (case-1 and case-10)

Figure 4.17 Cumulative Probability of the Project Revenue (case-1 and case-10)

case	mean	σ	skewness	kurtosis
1	$-11,666,560$	$86,717,576$	0.053	2.043
8	$12,426,176$	$82,569,424$	0.094	2.169

Table 4.51 Comparison of the Project NPV
(case-1 and case-10)

Cumulative Probability (\%)	$\begin{gathered} \text { Case 1 } \\ (\$, 000,000) \end{gathered}$	$\begin{gathered} \text { Case } 9 \\ (\$, 000,000) \end{gathered}$
0.25	-255.1	-219.3
0.50	-235.0	-200.3
1.00	-213.4	-179.7
2.50	-181.6	-149.4
5.00	-154.3	-123.4
10.00	-122.8	-93.4
25.00	-70.2	-43.3
50.00	-11.7	12.4
75.00	46.8	68.1
90.00	99.5	118.2
95.00	131.0	148.2
97.50	158.3	174.3
99.00	190.1	204.5
99.50	211.7	225.1
99.75	231.7	244.2

Table 4.52 Cumulative Probability of the Project NPV (case-1 and case-10)

Figure 4.18 Cumulative Probability of the Project NPV (case-1 and case-10)

In case-10, there is no obvious improvement on the uncertainty of overall project risks. However, its profitability clearly improves. Therefore, obtaining certain guarantees concerning such factors as traffic volume must be recognized as possible and almost essential risk management strategies.

Chapter 5

Conclusions and Recommendations

5.1 Conclusions

The primary objectives of this thesis were to model economic and financial performance of user-pay highway facilities and to explore the sensitivity of project performance to changes in primary variables, uncertainty surrounding such projects, and ways of reducing the uncertainty.

The analytical model developed requires three kinds of input data: work package duration; work package costs; and revenue streams. Special attention was given to the revenue phase.

The general features of the analytical model are as follows.

1. This model consists of three levels: work package/revenue stream level; project performance level; and project decision level.
2. The work package/revenue stream level involves three derived variables: work package duration; work package cost; and revenue stream.
3. The project performance level also involves three derived variables: project duration; project cost; and project revenue.
4. The project decision level involves two derived variables: project net present value (NPV); and project internal rate of return (IRR).
5. Each derived variable is described by its expected value, standard deviation, skewness, and kurtosis.
6. This model can be applied to closed toll collection systems (manual or automatic collection), closed toll collection systems (manual or automatic collection), and their hybrids.
7. The model is dependent on traffic volume forecast, and can also deal with any traffic volume forecasting method as long as it provides the interchange pair traffic volume for each vehicle type in base years.

The results of a sensitivity and risk analysis of a Japanese project and which focused mainly on the revenue phase are as follows.

1. In most cases, the highly sensitive primary variables are as follows:
(1)revenue stream early start time;
(2) toll rate growth parameters;
(3)traffic volume growth parameters;
(4)tolls;
(5)traffic volume;
(6) inflation rate; and
(7) parameter for consignment cost of toll collection.
2. However, even if the uncertainty of these sensitive variables is decreased, their impacts on overall project risks are not great except in the case of traffic volume growth rate.
3. One of the most effective risk management strategies is to negotiate risk sharing with the government and to receive some guarantee of support.

5.2 Recommendations for Future Work

Recommendations for future work are presented in three categories: computer programs; correlation between primary variables for revenue streams; and deterministic input for primary variables.

5.2.1 Computer Programs

One of the primary objectives of this thesis was to model economic and financial performance of user-pay highway facilities. This model is based on the program "AMMA", which is a modified version of "TIERA" (Ranasinghe, 1990). "AMMA", unlike "TIERA", can be used on personal computers.

It was planned to be used in conjunction with the program "TERQ", a more user-friendly program capable of creating input data files with relative ease. However, since "TERQ" has not been completed yet, the analytical model requires users to do a lot of work creating input data files. It is strongly recommended that "TERQ" be completed as soon as possible. The analytical model, namely "AMMA", uses 2.5, $5.0,50.0,95.0$, and 97.5 percentile estimates. However, because of the difficulty in assessing the 2.5 and 97.5 percentiles subjectively, 5.0, 25.0, 50.0, 75.0, and 95.0 percentile estimates seem to be more suitable for the model.

5.2.2 Correlation between Primary Variables for Revenue Streams

The analytical model can theoretically deal with correlation between primary variables. However, since there are many primary variables, e.g. the smallest revenue stream has 181 primary variables, and the biggest revenue stream has 297 primary variables for the sample project, this thesis sets all correlation coefficients to zero. However, especially in the revenue phase, many primary variables are correlated with each other, e.g. interchange pair traffic volumes, and volumes in different years. Therefore, it is recommended that the correlation between primary variables be considered, and their impacts be measured.

5.2.3 Deterministic Input for Primary Variables

As mentioned in chapter four, the model requires probabilistic values for most primary variables. However, in order to examine risk management strategies, it is sometimes necessary to set some deterministic variables . Therefore, it is recommended that the model be modified to accept both deterministic and probabilistic values.

Bibliography

[1] Andersson, Roland, "A Bridge to Fårö - a Cost-benefit Analysis", Journal of Advanced Transportation, Volume 19, Number 3, 1985: 251-269
[2] Ang, A.H-s., Abdelnour, J., and Chaker, A.A.," Analysis of Activity Networks under Uncertainty", Journal of Engineering Mechanics Division, ASCE, Volume 101, Number EM4, 1975: 373-387
[3] Atkins, A.S., Eade, A.R., and Fisher, N.W.F., "A Model for the Financial Analysis of Toll Roads", ProceedingsSixth Conference, Australian Road Research Board, 1972: Paper Number 807
[4] Beesley, Michael and Hensher, David A., "Private Toll roads in Urban Areas. Some Thoughts on the Economic and Financial Issues.", Transportation, Volume 16, Number 4, 1990: 329-341
[5] Bushell, George, "An Optimizing Model of Traffic Assignment for the Freeway System of Southern Ontario", Centre for Urban and Community Studies, University of Toronto, Research Paper No. 40, 1970
[6] Campbell, Bruce and Humphrey, Thomas F., "Methods of Cost-effectiveness Analysis for Highway Projects", National Cooperative Highway Research Program Synthesis of Highway Practice, No 142, 1988
[7] Christofferson, Kevin Richard, "A Benefit/Cost Analysis of Reconstructing the Alaska Highway to R.A.U. 100 Status", Master thesis, University of British Columbia, Canada, 1980
[8] Dalton, P.M. and Harmelink, M.D., "Multipath Traffic Assignment: Development and Tests", the Systems Research and development Branch, Research and development Division, Ministry of Transportation and Communications, Ontario, 1974
[9] Davinroy, thomas, "Traffic Assignment", Institute of Transportation and Traffic Engineering, Barkley, University of California, 1962
[10] Davis, Harmer E., Moyer, Ralph A., Kennedy, Norman, and Lapin, Howard S., "Toll-road Developments and their Significance in the Provision of Expressways", Institute of Transportation and Traffic Engineering, University of California, U.S.A. 1953
[11] Duffus, Leonnie N., Alfa, Attahiru Sule, and Soliman, Afifi H., "The Reliability of Using the Gravity Model for Forecasting Trip Distribution", Transportation, Volume 14, 1987: 175-192
[12] Geltner, David and Moavenzadeh, Fred, "An Economic Argument for Privatization of Highway Ownership", Transportation Research Record, Volume 1107, 1987: 1420
[13] Gittings, Gary L., "Some Financial, Economic, and Social Policy Issues Associated with Toll Finance.", Transportation Research Record, Volume 1107, 1987: 2030
[14] Huber, Matthew J., Boutwell, Harvey B., and Witheford, David K., "Comparative Analysis of Traffic Assignment Techniques with Actual Highway Use", National Cooperative Highway Research Program, Highway Research Board, No. 58, 1968
[14] Japan Highway Public corporation, "the General Information", Tokyo, Japan 1992
[15] Japan Highway Public corporation, "the Planning and Surveying Standards for Ordinary Toll Roads", Tokyo, Japan, 1983
[16] Japan Highway Public corporation, "Outline of Expressway Traffic Volume Estimation", Unpublished, Tokyo, Japan, 1993
[17] Johansen, Frida, "Economic Arguments on Toll Roads", Transportation Research Record 1107, 1987: 80-84
[18] Kadiyali, L.R., "Traffic Engineering and Transportation Planning", Ministry of Shipping and Transport, New Delhi, 1983
[19] Morellet, Oliver, "A Demand Model for Intercity Private Car Traffic", Report of the Fifty-eight Round Table on Transport Economics, European Conference of Ministers of Transport, 1981: 9-20
[20] Neveu, Alfred J., " Quick-Response Procedures to Forecast Rural Traffic: Background Document", Transportation Analysis Report 3, Planning Division, New York State Department of Transportation, 1982
[21] Newell, G.F., "Traffic Flow on Transportation Networks", The MIT Press, Cambridge, Massachusetts, 1980
[22] Ranasinghe, M., "Analytical Method for Quantification of Economic Risks During Feasibility Analysis for Large Engineering Projects.", Ph.D. Thesis, University of British Columbia, Canada, 1990
[23] Robertson, Richard B., "Overview of Toll Financing in Countries that are Members of the Organization for Economic Cooperation and Development", Transportation Research Record, Volume 1107, 1987: 65-67
[24] Rusch, w.A., "Toll Highway Financing" National Cooperative Highway Research Program Synthesis of Highway Practice, No 117, 1984
[25] Russell, A.D., Civil 522 - Course Notes", University of British Columbia, Vancouver, Canada, 1992
[26] Sharp, Clifford, Button, Kenneth, and Deadman, Derek, "The Economics of Tolled Road Crossing", Journal of Transport Economics and Policy, 1986: 255-274
[27] Schneider, Suzanne, "Toll Financing of U.S. Highways", Congress of the United States, Congressional Budget Office, 1985
[28] Thomas, Roy, "Traffic Assignment Techniques", Centre for Transport Studies, Department of Civil Engineering, University of Salford, 1991
[29] Waters, W.G. and Meyers, Shane J., "Benefit Cost Analysis of a Toll Highway - British Columbia Coquihalla", CTRF conference proceedings, 1987: 494-513
[30] Weisbrod, Glen E. and Beckwith, James, "Measuring Economic Development Benefits for Highway Decisionmaking: the Wisconsin Case", Transportation Ouarterly, Volume 46, Number 1, 1992: 57-79
[31] Wuestefeld, Norman H., "Toll Roads", Transportation Ouarterly, Volume 42, Number 1, 1988: 5-22

Appendix A

Discounted Work Package Cost

The following figure shows a cash flow diagram of work Package \#i. Uniform repayment of financing is assumed.

WPCi is the discounted ith work package cost
Coi (τ) is the function for constant dollar cash flow for the ith work package

Tsci is start time of Work Package\#i
$T_{c i}$ is work package duration
T_{p} is construction phase duration
T_{T} is total project duration (construction and operation phase)
$T_{R T}$ is operation phase duration
f is the equity fraction,
$\theta_{c i}, r$ and y are inflation, interest and discount rates respectively which are invaried with time.

First, figure out the amount of annual repayment for ith work package, P_{i}.

FW at end of WP\#i is:

$$
\begin{aligned}
& (1-f) \cdot \int_{0}^{T_{d}} e^{\theta_{i} T T_{s c i}} \cdot C_{o i}(\tau) \cdot e^{\theta_{i} \cdot \tau} \cdot e^{(T c-\tau) \cdot r} d \tau \\
= & (1-f) \cdot e^{\theta_{i} \cdot T_{s c i}} \cdot e^{T c i r} \cdot \int_{0}^{T_{d}} C_{o i}(\tau) \cdot e^{\left(\theta_{i-}-\right) \cdot \tau} d \tau
\end{aligned}
$$

FW at T_{p} is :

$$
\begin{aligned}
& (1-f) \cdot e^{\theta_{i} \cdot T_{s c i}} \cdot e^{T_{c i} \cdot r} \cdot \int_{0}^{T_{c i}} C_{o i}(\tau) \cdot e^{\left(\theta_{i-r}\right) \cdot \tau} d \tau \cdot e^{r \cdot\left(T_{p}-T_{s c i}-T_{c i}\right)} \\
= & (1-f) \cdot e^{\theta_{i} \cdot T_{s c i}} \cdot e^{r \cdot\left(T_{p}-T_{s c i}\right)} \cdot \int_{0}^{T_{d}} C_{o i}(\tau) \cdot e^{\left(\theta_{i-T)}\right) \cdot} d \tau
\end{aligned}
$$

FW at T_{p} is also described as:

$$
\int_{0}^{T r-T_{P}} P_{i} \cdot e^{-r t} d t
$$

Therefore,

$$
P_{i}=(1-f) \cdot e^{\theta_{i} \cdot T_{s c i}} e^{r \cdot\left(T_{p}-T_{s c i}\right)} \cdot \int_{0}^{T_{i}} C_{o i}(\tau) \cdot e^{\left(\theta_{i}-r\right) \tau} d \tau / \int_{0}^{T_{-}-T_{P}} e^{-r i t} d t
$$

Then, discounted ith work package cost is,

$$
\begin{aligned}
W P C_{i}= & f \cdot e^{\left(\theta_{i}-y\right) \cdot T_{s i}} \int_{0}^{T_{i i}} C_{o i}(\tau) \cdot e^{\left(\theta_{i}-y\right) \cdot t} d \tau+\int_{0}^{T_{r-T P}} P_{i} \cdot e^{-y \cdot t} d t \cdot e^{-y \cdot T_{p}} \\
= & f \cdot e^{\left(\theta_{i}-y\right) \cdot T_{s i t}} \cdot \int_{0}^{T_{a}} C_{o i}(\tau) \cdot e^{\left(\theta_{i}-y\right) \cdot \tau} d \tau \\
& +\int_{0}^{T_{r-T}-P_{P}} e^{-y \cdot t} d t \cdot e^{-y \cdot T_{p}} \cdot(1-f) \cdot e^{\theta_{i} \cdot T_{s c i}} e^{r \cdot\left(T_{p}-T_{s i t}\right)} \cdot \int_{0}^{T_{c}} C_{o i}(\tau) \cdot e^{\left(\theta_{i}-r\right) \cdot \tau} d \tau / \int_{0}^{T_{r-T p}} e^{-r \cdot t} d t
\end{aligned}
$$

Appendix B

Input Data for Revenue Stream

The following tables shows input data for revenue streams.

B. 1 Closed System (Fixed Toll Rate)

	Input Data	
nAL	the number of interchanges(IC)	deterministic
nP	the number of vehicle types	deterministic
nWC	weather classification	deterministic
nOL	periodic overlay	deterministic
nBR	periodic bridge repainting	deterministic
	(General Data)	automatically calculated
iby	start time of the revenue stream	
ird	revenue stream duration	
	(Data related to Toll Rate)	
fee(1,J,K,L)	toll rate of vehicle type L between IC \#J and \#K at the first year	
ptr(I)	toll growth rate parameter at year I	
	(Data related to Traffic Volume)	
	traffic volume growth rate parameter at year I	
ptv(I)	traffic volume of vehicle type L between IC \#J and \#K at the first year	
$\operatorname{traf(1,J,\mathrm {K},\mathrm {L})}$		

	(Maintenance Cost)	
1b2	2 lane bridge length	
1b4	4 lane bridge length	
1b6	6 lane bridge length	
1t2	2 lane tunnel length	
1t4	4 lane tunnel length	
146	6 lane tunnel length	
le2	2 lane earthwork section length	
le4	4 lane earthwork section length	
le6	6 lane earthwork section length	
1tn	length of tunnel with no ventilation	
1 lj	length of tunnel with jet fan	
1to	length of tunnel with other ventilation	
cc2	road cleaning cost (2 lanes)	
cc4	(4 lanes or more)	
cm2	road maintenance cost (2 lanes)	
cm4	(4 lanes)	
cm6	(6 lanes)	
cl1	lighting cost (1 or 2 lanes)	
cl4	(4 or 6 lanes)	
cr2	bridge repair cost (2 lanes)	
cr4	(4 lanes)	
cr6	(6 lanes)	
cp2	bridge paint cost (2 lanes)	
cp4	(4 lanes)	
cp6	(6 lanes)	
ctn	tunnel maintenance cost (no ventilation)	
ctj	tunnel maintenance cost (jet fan)	
cto	tunnel maintenance cost (others)	
csh	snow and ice control cost (heavy snow area))	
cso	(ordinary snow area)	
co2	overlay cost (2 lanes)	
co4	(4 lanes)	
co6	(6 lanes)	
pcot	other maintenance cost parameter	
	(Operation Cost)	
1dir	labor cost of operation office (director)	
1vdir	(vice director)	

Ichi	(chief)	
leng	(clerk or engineer)	
1wor	(worker)	
t1	traffic volume(boundary-1)	
ital	the number of directors needed for less traffic volume than $t 1$	
itb1	the number of vice directors needed	
itc1	the number of chiefs needed	
itd1	the number of clerks and engineers needed	
ite1	the number of workers needed	
t2	traffic volume(boundary-2)	
ita2	the number of directors needed for less traffic volume than t 2	
itb2	the number of vice directors needed	
itc2	the number of chiefs needed	
itd2	the number of clerks and engineers needed	
ite2	the number of workers needed	
t3	traffic volume(boundary-3)	
ita	the number of directors needed for less traffic volume than $t 3$	
itb3	the number of vice directors needed	
itc3	the number of chiefs needed	
itd3	the number of clerks and engineers needed	
ite3	the number of workers needed	
t4	traffic volume(boundary-4)	
ita4	the number of directors needed for less traffic volume than $t 4$	
itb4	the number of vice directors needed	
itc4	the number of chiefs needed	
itd4	the number of clerks and engineers needed	
ite4	the number of workers needed	
t5	traffic volume(boundary-5)	
ita5	the number of directors needed for less traffic volume than $t 5$	
itb5	the number of vice directors needed	
itc5	the number of chiefs needed	
itd5	the number of clerks and engineers needed	
ite5	the number of workers needed	
ita6	the number of directors needed for more traffic volume than $t 5$	
itb6	the number of vice directors needed	

itc6	the number of chiefs needed	
itd6	the number of clerks and engineers needed	
ite6	the number of workers needed	
ltc	labor cost of toll collection (clerk)	
tc1	traffic volume(boundary-1)	
itct1	the number of clerks needed for less traffic volume than t1	
tc2	traffic volume(boundary-2)	
itct2	the number of toll collection clerks needed for less traffic volume than t2	
tc3	traffic volume(boundary-3)	
itct3	the number of toll collection clerks needed for less traffic volume than t3	
tc4	traffic volume(boundary-4)	
itct4	the number of toll collection clerks needed for less traffic volume than t4	
tc5	traffic volume(boundary-5)	
itct5	the number of toll collection clerks needed for less traffic volume than t5	
tc6	traffic volume(boundary-6)	
itct6	the number of toll collection clerks needed for less traffic volume than t6	
tc13	traffic volume(boundary-7)	
itct7	the number of toll collection clerks needed for less traffic volume than t7	
traffic volume(boundary-13)		
tc8	traffic volume(boundary-8)	
itct8	the number of toll collection clerks needed for less traffic volume than t8	
tc10	tra	
itct10	traffic volume(boundary-9) the number of toll collection clerks needed for less traffic volume than t9	traffic volume(boundary-10) the number of toll collection clerks needed for less traffic volume than t10
itct11	the number of toll collection clerks needed for less traffic volume than t11	
traffic volume(boundary-12)		

itct13	the number of toll collection clerks needed for less traffic volume than t13	
tc14	traffic volume(boundary-14)	
itct14	the number of toll collection clerks needed for less traffic volume than t14	
tc15	traffic volume(boundary-15)	
itct15	the number of toll collection clerks needed for less traffic volume than t15	
tc16	traffic volume(boundary-16)	
itct16	the number of toll collection clerks needed for less traffic volume than t16	
tc17	traffic volume(boundary-17)	
itct17	the number of toll collection clerks needed for less traffic volume than t17	
itct18	the number of toll collection clerks needed for more traffic volume than t17	
ptct	(consigment costs of toll collection) are (toll collection labor costs) * ptct(parameter)	
ptcm	toll collection machine maintenance costs) are (consigment costs of toll collection) ptcm(parameter)	
ibrco1	cost parameter of building and repainting expenses etc.	
ibrco2	cost parameter of building and repainting expenses etc.	
pobo	operation bureau overhead parameter	
pho	headquarters overhead	
flr	inflation rate (maintenance and operation costs)	

Table B. 1 Closed System (Fixed Toll Rate)

B. 2 Closed System (Distance Proportional Toll Rate)

	Input Data	
nAL	the number of interchanges(IC)	deterministic
nP	the number of vehicle types	deterministic
nWC	weather classification	deterministic
nOL	periodic overlay	deterministic
nBR	periodic bridge repainting	deterministic
	(General Data)	
iby	start time of the revenue stream	automatically calculated
ird	revenue stream duration	
	(Data related to Toll Rate)	
disc1	toll discount boundary-1 (distance)	
ratel	toll discount rate-1	
disc2	toll discount boundary-2 (distance)	
rate2	toll discount rate-2	
perKm	toll rate (distance proportional part) of ordinary motor vehicle	
entFee	toll rate (fixed part) of ordinary motor vehicle	
al(I)	distance between IC \#I-1 and \#I	
p(K)	toll ratios compared between ordinary motor vehicle and vehicle type K	
ptr(I)	toll growth rate parameter at year I	
	(Data related to Traffic Volume)	
ptv(I)	traffic volume growth rate parameter at year I	
$\operatorname{traf}(1, \mathrm{~J}, \mathrm{~K}, \mathrm{~L})$	traffic volume of vehicle type L between IC \#J and \#K at the first year	
	(Maintenance Cost)	
1 b 2	2 lane bridge length	
1b4	4 lane bridge length	
$1 \mathrm{b6}$	6 lane bridge length	
1t2	2 lane tunnel length	
144	4 lane tunnel length	
146	6 lane tunnel length	
le2	2 lane earthwork section length	
le4	4 lane earthwork section length	

le6	6 lane earthwork section length	
1tn	length of tunnel with no ventilation	
1tj	length of tunnel with jet fan	
1to	length of tunnel with other ventilation	
cc2	road cleaning cost (2 lanes)	
cc4	(4 lanes or more)	
cm2	road maintenance cost (2 lanes)	
cm4	(4 lanes)	
cm6	(6 lanes)	
cl1	lighting cost (1 or 2 lanes)	
cl4	(4 or 6 lanes)	
cr2	bridge repair cost (2 lanes)	
cr4	(4 lanes)	
cr6	(6 lanes)	
cp2	bridge paint cost (2 lanes)	
cp4	(4 lanes)	
cp6	(6 lanes)	
ctn	tunnel maintenance cost (no ventilation)	
ctj	tunnel maintenance cost (jet fan)	
cto	tunnel maintenance cost (others)	
csh	snow and ice control cost (heavy snow area))	
cso	(ordinary snow area)	
co2	overlay cost (2 lanes)	
co4	(4 lanes)	
co6	(6 lanes)	
pcot	other maintenance cost parameter	
	(Operation Cost)	
1dir	labor cost of operation office (director)	
1vdir	(vice director)	
lchi	(chief)	
leng	(clerk or engineer)	
1wor	(worker)	
t1	traffic volume(boundary-1)	
ital	the number of directors needed for less traffic volume than tl	
itb1	the number of vice directors needed	
itc1	the number of chiefs needed	
itd1	the number of clerks and engineers needed	
ite 1	the number of workers needed	

$\left.\begin{array}{|l|l|l|}\hline \text { t2 } & \text { traffic volume(boundary-2) } & \\ \hline \text { ita2 } & \begin{array}{l}\text { the number of directors needed for less traffic } \\ \text { volume than t2 }\end{array} & \\ \hline \text { itb2 } & \text { the number of vice directors needed } & \\ \hline \text { itc2 } & \text { the number of chiefs needed } & \\ \hline \text { itd2 } & \text { the number of clerks and engineers needed } & \\ \hline \text { ite2 } & \text { the number of workers needed } & \\ \hline \text { t3 } & \text { traffic volume(boundary-3) } & \\ \hline \text { ita3 } & \begin{array}{l}\text { the number of directors needed for less traffic } \\ \text { volume than t3 }\end{array} & \\ \hline \text { itb3 } & \text { the number of vice directors needed } & \\ \hline \text { itc3 } & \text { the number of chiefs needed } & \\ \hline \text { itd3 } & \text { the number of clerks and engineers needed } & \\ \hline \text { ite3 } & \text { the number of workers needed } & \\ \hline \text { t4 } & \text { traffic volume(boundary-4) } & \\ \hline \text { ita4 } & \begin{array}{l}\text { the number of directors needed for less traffic } \\ \text { volume than t4 }\end{array} & \\ \hline \text { itb4 } & \text { the number of vice directors needed } & \\ \hline \text { itc4 } & \text { the number of chiefs needed } & \\ \hline \text { itd4 } & \text { the number of clerks and engineers needed } & \\ \hline \text { ite4 } & \text { the number of workers needed } & \\ \hline \text { t5 } & \text { traffic volume(boundary-5) } & \\ \hline \text { ita5 } & \begin{array}{l}\text { the number of directors needed for less traffic } \\ \text { volume than t5 }\end{array} & \\ \hline \text { itb5 } & \text { the number of vice directors needed } & \\ \hline \text { itc5 } & \text { the number of chiefs needed } & \\ \hline \text { itd5 } & \text { the number of clerks and engineers needed } & \\ \hline \text { ite5 } & \text { the number of toll collection clerks needed for less } \\ \hline \text { traffic volume than t2 } & \\ \hline \text { ita6 } & \text { the number of directors needed for more traffic } \\ \text { volume than t5 }\end{array}\right)$

tc3	traffic volume(boundary-3)	
itct3	the number of toll collection clerks needed for less traffic volume than t3	
tc4	traffic volume(boundary-4)	
itct4	the number of toll collection clerks needed for less traffic volume than t4	
tc5	traffic volume(boundary-5)	
itct5	the number of toll collection clerks needed for less traffic volume than t5	
tc6	traffic volume(boundary-6)	
itct6	the number of toll collection clerks needed for less traffic volume than t6	
tc7	traffic volume(boundary-7)	the number of toll collection clerks needed for less traffic volume than t7
itct7	traffic volume(boundary-8)	
tc8	the number of toll collection clerks needed for less traffic volume than t8	
itct8	traffic volume(boundary-9)	
tc9	the number of toll collection clerks needed for less traffic volume than t9	
itct9	traffic volume(boundary-10)	
tc10	the number of toll collection clerks needed for less traffic volume than t10	
tct16	traffic volume(boundary-16)	
tc11	traffic volume(boundary-11)	
itct11	the number of toll collection clerks needed for less traffic volume than t11	
traffic volume than t15		

itct16	the number of toll collection clerks needed for less traffic volume than t16			
tc17	traffic volume(boundary-17)			
itct17	the number of toll collection clerks needed for less traffic volume than t17			
itct18	the number of toll collection clerks needed for more traffic volume than t17			
ptct	(consigment costs of toll collection) are (toll collection labor costs) ptct(parameter)		\quad	ptcm
:---				
toll collection machine maintenance costs) are (consigment costs of toll collection) ptcm(parameter)				
ibrcol				
cost parameter of building and repainting expenses etc.				
ibrco2				
cost parameter of building and repainting expenses etc.				
pobo				
operation bureau overhead parameter				
flr		headquarters overhead		
:---				

Table D. 2 Closed System (Distance Proportional Toll Rate)

B. 3 Open System (Fixed Toll Rate)

	Input Data	
nAL	the number of interchanges(IC)	deterministic
nP	the number of vehicle types	deterministic
nTG	the number of toll gates	deterministic
TGL(J)	locations of toll gates	deterministic
nWC	weather classification	deterministic
nOL	periodic overlay	deterministic
nBR	periodic bridge repaintingr	deterministic
	(General Data)	
iby	start time of the revenue stream	automatically calculated
ird	revenue stream duration	
	(Data related to Toll Rate)	
Fee	toll rate of ordinary motor vehicle	
$\mathrm{p}(\mathrm{K})$	toll ratios compared between ordinary motor vehicle and vehicle type K	
$\operatorname{ptr}(\mathrm{I})$	toll growth rate parameter at year I	
	(Data related to Traffic Volume)	
ptv(I)	traffic volume growth rate parameter at year I	
$\operatorname{traf}(1, \mathrm{~J}, \mathrm{~K}, \mathrm{~L})$	traffic volume of vehicle type L between IC \#J and \#K at the first year	
	(Maintenance Cost)	
1 b 2	2 lane bridge length	
1b4	4 lane bridge length	
lb6	6 lane bridge length	
1t2	2 lane tunnel length	
1t4	4 lane tunnel length	
1 166	6 lane tunnel length	
le2	2 lane earthwork section length	
le4	4 lane earthwork section length	
le6	6 lane earthwork section length	
1tn	length of tunnel with no ventilation	
1tj	length of tunnel with jet fan	
Ito	length of tunnel with other ventilation	

cc2	road cleaning cost (2 lanes)	
cc4	(4 lanes or more)	
cm2	road maintenance cost (2 lanes)	
cm4	(4 lanes)	
cm6	(6 lanes)	
cl1	lighting cost (1 or 2 lanes)	
cl4	(4 or 6 lanes)	
cr2	bridge repair cost (2 lanes)	
cr4	(4 lanes)	
cr6	(6 lanes)	
cp2	bridge paint cost (2 lanes)	
cp4	(4 lanes)	
cp6	(6 lanes)	
ctn	tunnel maintenance cost (no ventilation)	
ctj	tunnel maintenance cost (jet fan)	
cto	tunnel maintenance cost (others)	
csh	snow and ice control cost (heavy snow area))	
cso	(ordinary snow area)	
co2	overlay cost (2 lanes)	
co4	(4 lanes)	
co6	(6 lanes)	
pcot	other maintenance cost parameter	
	(Operation Cost)	
1 lir	labor cost of operation office (director)	
1vdir	(vice director)	
1chi	(chief)	
leng	(clerk or engineer)	
1wor	(worker)	
t1	traffic volume(boundary-1)	
ital	the number of directors needed for less traffic volume than $t 1$	
itb1	the number of vice directors needed	
itc1	the number of chiefs needed	
itd1	the number of clerks and engineers needed	
ite1	the number of workers needed	
t2	traffic volume(boundary-2)	
ita2	the number of directors needed for less traffic volume than $t 2$	
itb2	the number of vice directors needed	

itc2	the number of chiefs needed	
itd2	the number of clerks and engineers needed	
ite2	the number of workers needed	
t3	traffic volume(boundary-3)	
ita3	the number of directors needed for less traffic volume than t3	
itb3	the number of vice directors needed	
itc3	the number of chiefs needed	
itd3	the number of clerks and engineers needed	
ite3	the number of workers needed	
t4	traffic volume(boundary-4)	
ita4	the number of directors needed for less traffic volume than t4	
itb4	the number of vice directors needed	
itc4	the number of chiefs needed	
itd4	the number of clerks and engineers needed	
ite4	the number of workers needed	
t5	traffic volume(boundary-5)	
ita5	the number of directors needed for less traffic volume than t5	
itb5	the number of vice directors needed	
itc5	the number of chiefs needed	
itd5	the number of clerks and engineers needed	
ite5	the number of workers needed	
ita6	the number of directors needed for more traffic	
volume than t5		
itb6	the number of vice directors needed	
itc6	the number of chiefs needed	
itd6	traffic volume than t3	
ite6	the number of clerks and engineers needed	
ltc	tabor cost of toll collection (clerk)	
tc1	traffic volume(boundary-1)	
itct1	the number of clerks needed for less traffic volume than t1	
tc2	traffic volume(boundary-2)	
itct2	the number of toll collection clerks needed for less traffic volume than $\mathbf{t} 2$	
tc3		

itct4	the number of toll collection clerks needed for less traffic volume than t4	
tc5	traffic volume(boundary-5)	
itct5	the number of toll collection clerks needed for less traffic volume than t5	
tc6	traffic volume(boundary-6)	
itct6	the number of toll collection clerks needed for less traffic volume than t6	
tc7	traffic volume(boundary-7)	
itct7	the number of toll collection clerks needed for less traffic volume than t7	
tc8	traffic volume(boundary-8)	
itct8	the number of toll collection clerks needed for less traffic volume than t8	
tc9	traffic volume(boundary-9)	
itct9	the number of toll collection clerks needed for less traffic volume than t9	
tc10	traffic volume(boundary-10)	
itct10	the number of toll collection clerks needed for less traffic volume than t10	
tc11	traffic volume(boundary-11)	
itct11	the number of toll collection clerks needed for less traffic volume than t11	
tc12	traffic volume(boundary-12)	
itct12	the number of toll collection clerks needed for less traffic volume than t12	
traffic volume than t17		

tc18	traffic volume(boundary-18)	
itct18	the number of toll collection clerks needed for less traffic volume than t18	
itct19	the number of toll collection clerks needed for more traffic volume than t18	
ptct	(consigment costs of toll collection) are (toll collection labor costs) * ptct(parameter)	
ptcm	toll collection machine maintenance costs) are (consigment costs of toll collection) ptcm(parameter)	
ibrcol	cost parameter of building and repainting expenses etc.	
ibrco2	cost parameter of building and repainting expenses etc.	
pobo	operation bureau overhead parameter	
pho	headquarters overhead	
flr	inflation rate (maintenance and operation costs)	

Table D. 3 Open System (Fixed Toll Rate)

Appendix C

Interchange Pair Traffic Volume and Traffic Volume and Toll Rate Growth Parameters

C. 1 Interchange Pair Traffic Volume

```
Tables C.I to C.9 shows interchange pair traffic
volume for the sample project.
They are described by daily traffic volume, and their
units are vehicles/day.
```

vehicle type-1 (light motor vehicle)					1.C. \#6
				I.C. \#5	1,636
			I.C. \#4	449	853
		I.C. \#3	660	756	2,275
	1.C. \#2				
I.C.\#1					

vehicle type-4 (large-sized motor vehicle)					$\begin{array}{r} \text { I.C. } \# 6 \\ 505 \end{array}$
				I.C. \#5	
			I.C. \#4	183	346
		I.C. \#3	141	117	862
	I.C. \#2				
I.C.\#1					

vehicle ty					I.C. \#6
(special la	-sized	tor vehic		I.C. \#5	44
			1.C. \#4	39	37
		I.C. \#3	12	15	85
	I.C. \#2				
I.C.\#1					

Table C.1: Interchange Pair Traffic Volume at Base Year for RVS \#1.

vehicle type-1 (light motor vehicle)					I.C. \#6		
		I.C. \#5	1,676				
			I.C. \#4	469	880		
				I.C. \#3	333	333	955
	I.C. \#2	7	411	610	1,536		
I.C.\#1							

vehicle type-2 (ordinary motor vehicle)					I.C. \#6	
			I.C. \#5	4,751		
				I.C. \#4	1,923	2,740
		I.C. \#3	704	1,495	3,233	
	I.C. \#2	22	947	2,272	4,306	
1.C.\#1						

vehicle type-3(medium-sized motor vehicle)					I.C. \#6
				I.C. \#5	727
(medium-sized motor vehicle)			I.C. \#4	306	461
		I.C. \#3	26	154	396
	I.C. \#2	6	156	104	881
I.C. \#1					

vehicle type-4 (large-sized motor vehicle)					I.C. \#6
				I.C. \#5	506
			I.C. \#4	198	358
		I.C. \#3	19	96	304
	I.C. \#2	6	120	69	672
I.C. \#1					

vehicle type-5 (special large-sized motor vehicle)					I.C. \#6
				I.C. \#5	46
			I.C. \#4	43	39
		I.C. \#3	2	17	41
	1.C. \#2	0	10	5	64
I.C.\#1					

(total)
I.C.\#1

				I.C. \#6
			1.C. \#5	7,706
		I.C. \#4	2,939	4,478
	I.C. \#3	1,084	2,095	4,929
I.C. \#2	41	1,644	3,060	7,459
0	0	0	0	0

Table C.2: Interchange Pair Traffic Volume at Base Year for RVS \#2.

vehicle type-2 (ordinary motor vehicle)					1.C. \#6
				I.C. \#5	5,493
			I.C. \#4	1,647	3,084
		I.C. \#3	703	1,112	2,883
	I.C. \#2	991	1,414	3,269	6,348
I.C.\#1					

vehicle type-3 (medium-sized motor vehicle)					I.C. \#6	
			I.C. \#5	770		
				I.C. \#4	270	490
		I.C. \#3	27	110	344	
	I.C. \#2	72	192	169	1,138	
I.C.\#1						

vehicle type-4 (large-sized motor vehicle)					$\begin{array}{r} \hline \text { I.C. } \# 6 \\ \hline 538 \\ \hline \end{array}$
				I.C. \# 5	
			I.C. \#4	173	382
		I.C. \#3	19	62	262
	1.C. \#2	38	152	119	925
I.C.\#1					

vehicle type-5					I.C. \#6
(special large-sized motor vehicle)				1.C. \#5	51
			I.C. \#4	41	44
		I.C. \#3	2	11	41
	I.C. \#2	6	12	13	86
I.C . \# 1					

					1.C. \#6
(total)				1.C. \# 5	8,821
			I.C. \#4	2,532	4,983
		I.C. \#3	1,079	1,564	4,353
	1.C. \#2	1,458	2,322	4,406	10,583
I.C. \#1	0	0	0	0	0

Table C.3: Interchange Pair Traffic Volume at Base Year for RVS \#3.

vehicle type-5 (special large-sized motor vehicle)					I.C. \#6
				I.C. \#5	150
			I.C. \#4	41	59
		I.C. \#3	2	14	36
	I.C. \#2	6	13	20	115
I.C. \#1					

(total)					1.C. \#6
				I.C. \#5	10,569
			I.C. \#4	2,554	5,403
		I.C. \#3	1,117	1,995	4,157
	1.C. \#2	1,667	2,363	4,888	11,594
I.C.\#1	0	0	0	0	0

Table C.4: Interchange Pair Traffic Volume at Base Year for RVS \#4.

vehicle type-2

(ordinary motor vehicle)				I.C. \#5	6,671
			I.C. \#4	1,745	2,251
		I.C. \#3	752	1,438	2,736
	I.C. \#2	1,181	1,127	1,798	5,859
I.C.\#1	290	1,055	787	2,462	2,589

vehicle type-3

(medium-sized motor vehicle)				I.C. \#5	1,543
			I.C. \#4	292	518
		I.C. \#3	29	136	277
	I.C. \#2	112	125	132	991
I.C.\#1	38	143	163	123	434

vehicle type-4

(large-sized motor vehicle)				I.C. \#5	1,076
			I.C. \#4	188	411
		I.C. \#3	20	78	208
	1.C. \#2	60	76	86	815
I.C.\#1	29	90	135	99	366

vehicle type-5 (special large-sized motor vehicle)					I.C. \#6
				I.C. \#5	169
(special large-sized m			I.C. \#4	43	53
		I.C. \#3	2	14	40
	I.C. \#2	10	10	14	85
I.C. \#1	3	11	11	6	28

(total)

Table C.5: Interchange Pair Traffic Volume at Base Year for RVS \#5.

vehicle type-1 (light motor vehicle)					I.C. \#6		
		I.C. \#5	2,529				
			I.C. \#4	464	782		
				I.C. \#3	376	446	755
	I.C. \#2	460	518	490	1,652		
I.C.\#1	80	302	318	688	1,164		

vehicle type-2
(ordinary motor vehicle)

		I.C. \#4	1,956	2,357
	I.C. \#3	802	2,128	2,497
	I.C. \#2	1,267	1,199	2,124
I.C . \#1	312	1,134	832	2,745

vehicle type-3 (medium-sized motor vehicle)					I.C. \#6
				I.C. \#5	1,837
			I.C. \#4	315	557
		I.C. \#3	31	159	283
	I.C. \#2	120	135	148	1,032
I.C.\#1	42	151	173	134	474

					I.C. \#6
vehicle type-5 (special large-sized motor vehicle)				I.C. \#5	205
			I.C. \#4	49	61
		I.C. \#3	2	15	42
	I.C. \#2	10	11	16	91
I.C. \#1	4	13	12	7	28

(total)					I.C. \#6
				I.C. \#5	13,096
			I.C. \#4	2,987	4,200
		1.C. \#3	1,233	2,842	3,790
	I.C. \#2	1,922	1,947	2,875	9,626
I.C. \#1	469	1,696	1,477	3,685	4,758

Table C.6: Interchange Pair Traffic Volume at Base Year for RVS \#6.

vehicle type-1 (light motor vehicle)					1.C. \#6		
		I.C. \#5	3,528				
			I.C. \#4	558	950		
				I.C. \#3	437	482	875
	I.C. \#2	586	534	493	1,624		
I.C.\#1	110	437	371	770	1,419		

vehicle type-2 (ordinary motor vehicle)					I.C. \#6
				I.C. \#5	10,366
(ordinary motor vehicle)			I.C. \#4	2,205	3,690
		1.C. \#3	922	2,215	2,946
	I.C. \#2	1,627	1,241	1,915	6,216
I.C.\#1	457	1,706	960	3,081	3,583

vehicle type-3(medium-sized motor vehicle)					I.C. \#6
				1.C. \#5	2,286
(medium-sized motor vehicle)			I.C. \#4	309	774
		I.C. \#3	34	217	354
	I.C. \#2	141	146	83	953
I.C.\#1	50	91	189	83	722

vehicle type-4

(large-sized motor vehicle)				I.C. \#5	1,677
			1.C. \#4	201	599
		I.C. \#3	24	136	289
	1.C. \#2	93	97	45	785
I.C.\#1	38	130	156	68	634

vehicle type-5					I.C. \#6
(special large-sized motor vehicle)				I.C. \#5	266
			I.C. \#4	47	111
		I.C. \#3	5	24	39
	I.C. \#2	14	12	12	91
I.C.\#1	6	19	13	3	50

Table C.7: Interchange Pair Traffic Volume at Base Year for RVS \#7.

vehicle type- 1 (light motor vehicle)					$\begin{array}{r} \hline \text { I.C. \#6 } \\ \hline 4,002 \\ \hline \end{array}$		
		I.C. \#5					
			I.C. \#4	636	980		
				I.C. \#3	497	542	1,009
	I.C. \#2	617	602	538	1,580		
I.C.\#1	195	829	402	1,114	2,177		

vehicle type-2 (ordinary motor vehicle)

(ordinary motor vehicle)				I.C. \#5	11,532
			I.C. \#4	2,496	3,815
		I.C. \#3	1,051	2,497	3,448
	I.C. \#2	1,656	1,386	2,052	5,858
I.C.\#1	908	3,315	1,093	4,944	7,146

vehicle type-5 (special large-sized motor vehicle)				I.C. \# 5	$\begin{array}{r} \text { I.C. \#6 } \\ \hline 239 \\ \hline \end{array}$
			I.C. \#4	55	107
		I.C. \#3	5	31	55
	I.C. \#2	16	14	14	71
I.C. \#1	10	35	17	39	371

Table C.8: Interchange Pair Traffic Volume at Base Year for RVS \#8.

vehicle type-1 (light motor vehicle)					$\begin{aligned} \hline \text { I.C. } \# 6 \\ \hline 4,443 \end{aligned}$		
		1.C. \#5					
			I.C. \#4	709	1,075		
				I.C. \#3	560	572	1,109
	I.C. \#2	705	679	601	1,732		
I.C. \#1	219	967	441	1,193	2,287		

vehicle type-2 (ordinary motor vehicle)

(ordinary motor vehicle)				1.C. \#5	12,614
			I.C. \#4	2,768	4,194
		1.C. \#3	1,183	2,657	3,811
	I.C. \#2	1,888	1,559	2,339	6,322
I.C.\#1	1,035	3,846	1,200	5,290	7,364

vehicle type-3

(medium-sized motor vehicle)				1.C. \#5	2,319
			I.C. \#4	387	826
		I.C. \#3	44	214	464
	1.C. \#2	177	176	105	803
I.C.\#1	146	460	215	314	3,562

vehicle ty					I.C. \#6
Ispecial la	-sized m	or vehicl		I.C. \#5	276
			I.C. \#4	61	114
		1.C. \#3	6	31	62
	I.C. \#2	17	15	17	79
I.C.\#1	15	46	20	27	385

(total)					I.C. \#6
				I.C. \#5	21,336
			I.C. \#4	4,181	6,868
		I.C. \#3	1,825	3,599	5,811
	I.C. \#2	2,891	3,637	3,120	9,600
I.C.\#1	1,521	5,676	2,064	7,088	16,741

Table C.9: Interchange Pair Traffic Volume at Base Year for RVS \#9.

C. 2 Traffic Volume Growth Parameters

Table C. 10 shows traffic volume growth parameters used for deterministic feasibility analysis.

RVS \#	Year in RVS	Parameter
1	1	559
2	1	567
3	1	574
4	1	582
5	1	590
	2	597
6	1	605
	2	618
7	1	630
	2	643
	3	655
	4	668
8	1	681
	2	693
	3	706
	4	718
9	1	731
	2	741
	3	751
	4	761
	5	770
	6	780
	7	790
	8	800
	9	810
	10	820
	11	830
	12	840
	13	849
	14	859

Table C.lo Traffic Volume Growth Parameters

C. 3 Toll Rate Growth Parameters

Table C.ll shows toll rate growth parameters used for deterministic feasibility analysis.

RVS \#	Year in RVS	Parameter
1	1	1.0000
2	1	1.0000
3	1	1.0000
4	1	1.0404
5	1	1.0404
	2	1.0404
6	1	1.1041
	2	1.1041
7	1	1.1041
	2	1.1717
	3	1.1717
	4	1.1717
8	1	1.2434
	2	1.2434
	3	1.2434
	4	1.3195
9	1	1.3195
	2	1.3195
	3	1.4002
	4	1.4002
	5	1.4002
	6	1.4859
	7	1.4859
	8	1.4859
	9	1.5769
	10	1.5769
	11	1.5769
	12	1.6734
	13	1.6734
	14	1.6734

Table C. 11 Toll Rate Growth Parameters

Appendix D

Source Code of the Model

Appendix D shows source code of the model.

main program	AMMA	
sub-routine	WPDURA	evaluate the first four moments of the work package duration.
	EAST	evaluate the first four moments of the early start time of work packages. obtain the calendar month of the early start time.
	WPCOST	evaluate the first four moments of the work package cost.
	REVSTR	evaluate the first four moments of the net revenue stream.
	PRJCST	approximate the first four moments of the project cost at the MARR.
	PRJREV	approximate the first four moments of the project revenue at the MARR.
	PRJNPV	approximate the first four moments of the project NPV at the MARR.
	PRJIRR	approximate the cumulative distribution function and the first four moments of the project IRR.
	CDFUNC	obtain values of cumulative distribution function of a dependent variable approximated by a pearson typed distribution.
	INTPOL	interpolate the betal and beta2 values of the pearson table by a method of linear interpolation.
	VARBLE	approximate a variable to a pearson type distribution by using five percentile estimates.
	TRANS	transform a set of correlated variables to a set of uncorrelated variables.
	TANSP	transform correlated work package costs/revenue streams to uncorrelated work package costs/revenue.
	WPDFF	check the type of functional form for work package duration. estimate the function at the mean values of the transformed variables.
	WPCMMT	evaluate the first four moments of the work package cost for different discount rates.

	RVSMMT	evaluate the first four moments of the revenue streams for different discount rates.
	WPCFF	check the type of functional form for work package cost. estimate the function at the mean values of the transformed variables.
	RVSFF	check the type of functional form for revenue streams. estimate the function at the mean values of the transformed variables.
	MMTWPL	approximate the first four moments of a dependent variables at work package/revenue stream level (by Taylor series).
	COVAR	approximate the correlation between two dependent variables by using information between the primary variables and their partial derivatives.
	NETWRK	evaluate the first four moments of work package early start time (by PNET).
	EARLY	evaluate the first four moments of a path early start time by uncorrelating the work package durations.
	ESTMMT	approximate the first four moments for early start time (if PNET is used).
	INV	invert a matrix
	DECOMP	decompose A to A=L*Ltranspose (by Choleski method).
	DGMULT	calculate matrix * matrix e.g. transformation matrix $\left(\mathbf{L}^{-1} \times \mathbf{D}^{-1}\right)$
	$\begin{aligned} & \hline \text { RVSF11 - } \\ & 13 \\ & \hline \end{aligned}$	the functional forms for revenue streams for toll highway projects
	SPARSE	save huge arrays that contain mainly zero.
	FOO1	called by "RVSF12"
	TRACE	trace the procedure

Table D. 1 Program List

C Amma.FOR

C modified by Toshiaki Hatakama in July 1994 in order to adjust C the program to toll highway projects that require a lot of primary C variables (e.g. 200) for revenue streams.

C However, this program limits the number of primary variables to 300 C due to memory capacity.

C For example, if the number of interchanges is 6 , the number of C vehicle types is 5 , toll collection system is closed system (fixed C toll rates), and a revenue stream duration is 14 years, the number C of primary variables of the revenue stream is 297 . This is almost C the limit. If you have big enough RAM, you can increase this C number.

C AMMA is capable of dealing with correlations between variables. C However, due to memory capacity, correlation coefficients for C revenue streams are automatically calculated as zero. In other C words, work package duration and cost input files should include C correlation coefficients, but revenue stream input file does not C include them.

C In addition, save memory spaces, subroutine SPARSE is used. Most C correlation coefficients are often zero. SPARSE can save these C spaces. See source code.

C Common blocks in the oxiginal program (written in 1990) are C replaced by Dummy Arguments.

C This program requires $2.5,5.0,50.0,95.0$, and 97.5 percentile C estimates (note : not 5.0 , 25.0 , $50.0,75.0,95.0$).

C Step functions are used for operation cost estimates, there is a C problem when partial derivatives are calculated. Even small C changes in some primary variables may cause big differences because C their ranks sometimes change. See operation cost estimates in C RVSFli, 12 , and 13.inc for reference. Therefore, AMMA uses a trick C to deal with this, namely, parameters KT and KP. See REVSTR, C RVSMMT, and RVSF11, 12, and 13.inc.


```
==
PROGRAM AMMA
```



```
IMPLICIT REAL*4 (A-H,O-Z)
CHARACTER*64 FNAME
```

C if you have 16 M or more Ram, choose "enough" $=1$.
C if not, choose any number but 1 .
SDEFINE Enough $=0$

```
    REAL*4 PEARSN (:,:)
    ALLOCATABLE PEARSN
    REAL*4 WPTIME (:,:), CORRD (:,:), ESTART (:,:)
    INTEGER IWPC (:), NWPCF (:), NDVR (:)
    INTEGER NRVSF (:), NDRV (:)
    REAL*4 XUCOST (:,:,:), TRIWPC (:,:,:), COST (:,:), CORRC (:,:)
    REAL*4 BOTTLE (:,:), XUREV (:,:,:), REV (:,:), CORRR (:,:)
$IF enough .EQ. 1
    REAL*4 TRIRVS (:,:,:)
$ELSE
    REAL*4 TRIRVS (:)
$ENDIF
    REAL*4 PCOST (4), PREV (4)
    ALLOCATABLE WPTIME, CORRD, ESTART
    ALLOCATABLE IWPC, NWPCF, NDVR, NRVSF, NDRV, BOTTLE
    ALLOCATABLE XUCOST, TRIWPC, COST, CORRC
    ALLOCATABLE XUREV, TRIRVS, REV, CORRR
    INCLUDE 'DEBUG.CMN'
    CALL TRACE (1, 'MAIN', 'Amma 2.0 begins execution.')
C get certain parameters from a startup file, such as
    OPEN (UNIT=1, FILE='AMMA.INI', STATUS='UNKNOWN')
    READ (1, *) NPEARS ! the size of the pearson table (always
        ! 2655)
    READ (1, *) MAXDVC ! max # of variables for COST (~25)
    READ (1, *) MAXDVR ! max # of variables for REVENUE (~ 300)
    READ (1, *) IDEBUG ! 0=silent, 1=enter/exit, 2=more...
    CLOSE (UNIT=1)
C Read in the Pearson Distribution Definition and store in an array.
C the pearson table should REALLY be (17,NPEARS).
C that way, you don't have to refer to NPEARS all the time.
    ALLOCATE (PEARSN (NPEARS, 17))
    OPEN (UNIT=1, FILE='PEARSON', STATUS='UNKNOWN')
    DO 10 I=1,2655
    10 READ (1,9901) (PEARSN(I,J), J=1,17)
        CLOSE (UNIT=1)
    C Get all the input file names from the Pipe between Terq and AMMA
    C fName is read into as many times as is required to get at the
    C actual data (the program 'comments' the parameters...
        OPEN (UNIT=90, FILE='TERQAMMA.PIP', STATUS='UNKNOWN')
        READ (90,*) fName
```

```
    READ (90,*) fName
        READ (90,*) fName
        READ (90,*) fName
        READ (90,*) fName ! LR filename, usually 'tTerq.LR'
        OPEN (UNIT=10, FILE=fName, STATUS='UNKNOWN' )
            READ (90,*) fName
            READ (90,*) fName ! D filename, usually 'tTerq.D'
        OPEN (UNIT=11, FILE=fname, STATUS='UNKNOWN' )
            READ (90,*) fName
            READ (90,*) fName l C filename, usually 'tTerq.C'
        OPEN (UNIT=12, FILE=fName, STATUS='UNKNOWN' )
            READ (90,*) fName
READ (90,*) fName ! R filename, usually 'tTerq.R'
    OPEN (UNIT=13, FILE=fName, STATUS='UNKNOWN' )
READ (90,*) fName
READ (90,*) fName ! Output filename, usually 'tTerq.OUT'
    OPEN (UNIT=7, FILE=fName, STATUS='UNKNOWN' )
    CALL TRACE (1, 'MAIN', fName)
CLOSE (UNIT=90)
C EXCEL.CSV is a 'Comma Separated Value' file for EXCEL to play
C with...
C This file is used to draw cumulative probability distributions.
            OPEN (UNIT=20, FILE='AMMA.CSV', STATUS='UNKNOWN')
            READ (11, 9902)
            + NWP ! number of Work Packages, inc. start/fin.
            ALLOCATE (WPTIME (4, NWP))
            ALLOCATE (CORRD (NWP, NWP))
C set the global error variable to 0.
C if there is a problem, this gets set to something other than 0,
C and the program jumps to the STOP statement.
            IERR = 0
            CALL TRACE (1, 'MAIN', 'calling Work Package DuRAtion.')
            CALL WPDURA (PEARSN, WPTIME, CORRD)
C READ from unit 11 (correlation of primary variables)
C CALLs VARBLE, TRANS, WPDFF, MMTWPL & COVAR (the reader!)
IF (0 < IERR) THEN
    CALL TRACE (1, 'MAIN', 'WPDURA set IERR, exiting.')
            GO TO 1000
ENDIF
ALLOCATE (ESTART (4, NWP))
```

```
Appendix D: Source Code of the Model
    CALL TRACE (I, 'MAIN', 'calling EArly STart.')
        CALL EAST (PEARSN, WPTIME, CORRD, ESTART)
C READ from unit 10, just one line with system parameters
C CALLs NETWRK, which CALLs EARLY, CDFUNC & ESTMMT
    IF (0 < IERR) THEN
        CALL TRACE (1, 'MAIN', 'EAST set IERR, exiting.')
        GO TO 1000
        ENDIF
    READ (12, 9903)
    + DR, ! minimum attractive rate of return
    + FRA ! equity fraction
    READ (13, 9904)
    + NRS ! the number of revenue streams
    ALLOCATE (IWPC (NWP))
    ALLOCATE (NWPCF (NWP))
    ALLOCATE (NDVR (NWP))
    ALLOCATE (XUCOST (4, NWP, MAXDVC))
    ALLOCATE (TRIWPC (NWP, NWP, NWP))
    ALLOCATE (COST (4, NWP))
    ALLOCATE (CORRC (NWP, NWP))
    CALL TRACE (1, 'MAIN', 'calling Work Package COST.')
    CALL WPCOST (DR, FRA,
                                    PEARSN,
                                    WPTIME,
                            ESTART,
                            IWPC, NWPCF, NDVR,
                    cosT,
                    XUCOST, TRIWPC,
                    CORRC)
C READ from unit 12, alot of work package stuff
C CALLS VARBLE, TRANS, WPCMMT, WPCFF & COVAR (the reader!)
    IF (0 < IERR) THEN
        CALL TRACE (1, 'MAIN', 'WPCOST set IERR, exiting.')
        GO TO 1000
    ENDIF
    ALLOCATE (NRVSF (NRS))
    ALLOCATE (NDRV (NRS))
    ALLOCATE (XUREV (4, NRS, MAXDVR))
C this is a sparse array, so go figure...
$IF enough .EQ. 1
    ALLOCATE (TRIRVS (NRS, MAXDVR, MAXDVR))
$ELSE
    NSIZ = (MAXDVR * 3 * NRS) + 6
    NSIZ = 10002 ! and this is an optimal patch for the time
being...
    ALLOCATE (TRIRVS (NSIZ))
    CALL SPA_INIT3 (TRIRVS, NSIZ, NRS, MAXDVR, MAXDVR)
$ENDIF
```

 CALL TRACE (1, 'MAIN', 'calling REVenue STReam.')
 CALL REVSTR (PEARSN,
 + DR,
+ WPTIME,
+ ESTART,
$+\quad$ NRVSF, NDRV,
+ XUREV, TRIRVS,
+ REV, CORRR,
+ BOTTLE)
C READ from unit 13 , tons of data into NRVSF, etc.
C CALLs VARBLE, TRANS, RVSMMT, RVSFF \& COVAR
IF (0 < IERR) THEN
CALL TRACE (1, 'MAIN', 'REVSTR set IERR, exiting.')
GO TO 1000
ENDIF
DEALLOCATE (WPTIME, CORRD)
DEALLOCATE (ESTART)

C THE PROJECT PERFORMANCE LEVEL

```
    CALL TRACE (1, 'MAIN', 'calling PRoJect CoST.')
    CALL PRJCST (DR,
    + COST,
    + CORRC,
    + PCOST)
C CALLS TANSP
```

CALL TRACE (1, 'MAIN', 'calling PRoJect REVenue.')
CALL PRJREV (DR,

+ REV,
+ CORRR,
+ PREV)

C
CALLS TANSP

C if (constant, current or total dollars $=0$), then we're done.
IF (DR = = O.ODO) THEN
CALL TRACE (1, 'MAIN', 'minumum attractive rate=0,
exiting.')
+ exiting.')
GO TO 1000
ENDIF

C THE PROJECT DECISION LEVEL

```
Appendix D: Source Code of the Model
    CALL PRJNPV (DR,
    + PCOST,
    + PREV)
C If you are trying to run a huge toll highway project, stop here.
C You need to modify the program to IRR, because it may take 20
C minutes per discount rate.
    CALL TRACE (1, 'MAIN', 'calling PRoJect Internal Rate of
    + Return!')
    CALL PRJIRR (PEARSN,FRA,
    + IWPC, NWPCF, NDVR,
    + CORRC, TRIWPC,
    + XUCOST, COST,
    + NRVSF, NDRV,
    + CORRR, TRIRVS,
    + XUREV, REV,
    + BOTTLE)
C CALLS WPCMMT, TANSP, RVSMMT, CDFUNC
    DEALLOCATE (IWPC, NWPCF, NDVR, NRVSF, NDRV)
    DEALLOCATE (CORRC, XUCOST, COST)
    DEALLOCATE (CORRR, XUREV, REV)
    DEALLOCATE (BOTTLE)
    CALL TRACE (1, 'MAIN', 'that''s all, folks!')
1000 STOP
    990 CALL TRACE (1, 'MAIN', 'damn.')
    GOTO 1000
9901 FORMAT (8F8.4,7F7.4,2F4.1)
9902 FORMAT (I3)
9903 FORMAT (2F8.3)
9904 FORMAT (I3)
    END
    INCLUDE 'TRACE.MJW'
    INCLUDE 'ANSI.MJW'
$IF enough .NE. 1
    INCLUDE 'SPARSE.MJW'
$ENDIF
```

```
C WpDura.FOR
C modified by Toshiaki Hatakama in July, 1994.
C THE ROUTINE TO EVALUATE THE FIRST FOUR MOMENTS OF THE WORK
C PACKAGE DURATION BY APPLYING THE FRAMEWORK
```



```
    SUBROUTINE WPDURA (PEARSN,
    + WPTIME,CORRD)
```


IMPLICIT REAL*4 (A-H,O-Z)
INCLUDE 'DEBUG.CMN'
REAL*4 PEARSN (2655, 17)
REAL*4 WPTIME (4, *), CORRD (NWP, *)
INTEGER IWPD (:), NWPDF (:), NDVR(:)
ALLOCATABLE IWPD,NWPDF,NDVR
REAL* 4 PRCEST(:,:)
REAL* 4 CALC(:,:)
ALLOCATABLE PRCEST,CALC
REAL*4 X(:), Z(:),SZ(:),GZS(:),GZL(:)
REAL* 4 XWPD (:,:,:), ZWPD (:,:,:)
ALLOCATABLE X,Z,SZ,GZS,GZL,XWPD,ZWPD
REAL*4 WPDCO(:,:,:), PWPD1(:), PWPD2(:), PWPDX(:,:)
REAL* 4 TRIWPD(:,:), STFO(:)
ALLOCATABLE WPDCO, PWPD1, PWPD2, PWPDX,TRIWPD, STFO
CALL TRACE (2, 'WPDURA', 'starting.')
ALLOCATE (IWPD (NWP))
ALLOCATE (NWPDF (NWP))
ALLOCATE (NDVR (NWP))
ALLOCATE (PRCEST(5,NWP))
ALLOCATE (CALC (4,NWP))
ALLOCATE (X (MAXDVC))
ALLOCATE (Z (MAXDVC))
ALLOCATE (SZ (MAXDVC))
ALLOCATE (GZS (MAXDVC))
ALLOCATE (GZL (MAXDVC))
ALLOCATE (XWPD (4,NWP, MAXDVC))
ALLOCATE (ZWPD (4, NWP, MAXDVC))
ALLOCATE (WPDCO (NWP,MAXDVC,MAXDVC))
ALLOCATE (PWPDI (MAXDVC))
ALLOCATE (PWPD2 (MAXDVC))
ALLOCATE (PWPDX(NWP,MAXDVC))
ALLOCATE (TRIWPD (MAXDVC, MAXDVC))
ALLOCATE (STFO (NWP))

DO $2 \mathrm{~K}=1$, 4
2 WPTIME (K, 1) $=0$. DO

C basic data about the work packages
DO 150 INWP $=2$,NWP

C type of work package duration : holistic or decomposed
C IWPD(I) = 1 , detailed estimate
C IWPD (I) $=2$, holistic
C IWPD (I) = 3, ?? ?
C IWPD (I) $=4$, direct input
READ (11, 10) IWPD (INWP)
10
FORMAT (I2)

SELECT CASE (IWPD (INWP))

C detailed estimate
CASE (1)

C NWPDF(I) $=$ type of functional form
C NDVR(I) = number of discrete primary variables
READ (11,20) NWPDF(INWP), NDVR (INWP)
20
FORMAT (I2, I3)
C approximate the primary variables in the functional forms
C for work package durations to pearson type distributions
C to obtain the first four moments for them.

C NNVR = number of primary variables...
C why are we getting an array dimension from something we just
C read in that is specific to only one data set? something funny
C is going on here.
NNVR $=$ NDVR (INWP)
IF (NNVR . GT. MAXDVC) THEN
CALL TRACE (1, 'WPDURA', 'MAXDVC exceeded.')
IERR = 1
GOTO 1000
ENDIF

DO 50 JPV=1,NNVR

C subjective estimates for each variable in the
C functional form for the work package duration.

```
READ (11, 8001) A,B,C,D,E
CALL VARBLE (PEARSN, A,B,C,D,E, C1,C2,C3,C4)
IF (IERR .EQ. 1) GOTO 9001
XWPD (1, INWP, JPV) = C1
XWPD (2, INWP, JPV) = C2
XWPD (3, INWP, JPV) = C3
XWPD (4, INWP, JPV) = C4
```

```
    50 CONTINUE
C correlation coefficients between the primary variables in
C the work package. correlation matrix is positive definite.
    DO 90 JPV = 1,NNVR
        JPV1 = JPV+1
        IF (JPV1.IE.NNVR) THEN
        READ (11,70) (WPDCO(INWP,JPV,K),K=JPV1,NNVR)
    7 0
        FORMAT(20F6.2)
            DO 80 K=JPV1,NNVR
    80 WPDCO(INWP,K,JPV) = WPDCO(INWP,JPV,K)
        ENDIF
    CONTINUE
C calculate the first four moments for a WP duration when
C the duration is estimated holistically.
C why are there TWO ways to do this???
    CASE (2,3)
    JPV = 1
    READ (11, 8001) A,B,C,D,E
    CALL VARBLE (PEARSN, A,B,C,D,E, C1,C2,C3,C4)
    IF (IERR .EQ. 1) GOTO 9002
    WPTIME (1, INWP) = C1
    WPTIME (2, INWP) = C2
    WPTIME (3, INWP) = C3
    WPTIME (4, INWP) = C4
C moments of the work package durations are entered directly
    CASE (4)
    READ(11,125) (WPTIME(K,INWP), K=1,4)
    125 FORMAT(4F25.6)
    END SELECT
150 CONTINUE
C correlation between work package durations?
C looks to me like defining some zeros in the matrix...
C making the matrix triangular?
    NWPM1 = NWP-1
    DO 170 INWP=2,NWPM1
        INWPI = INWP+1
        IF (INWP1 .LE. NWPM1) THEN
            DO 160 J = INWP1, NWPM1
                CORRD (INWP,J) = 0.0DO
                        CORRD (J,INWP) = O.ODO
            ENDIF
170 CONTINUE
```

C WHEN DURATIONS ARE ESTIMATED WHOLISTICALLY OR FROM MOMENTS.
DO 200 INWP $=2$, NWPM1
IF (IWPD(INWP).GE.2) THEN INWP1 = INWP+1 IF (INWP1 .LE. NWPM1) THEN DO 190 J=INWP1, NWPM1 IF (IWPD (J). GE.2) THEN READ (11,180) CORRD (INWP,J) FORMAT (F6.2) CORRD (J, INWP) = CORRD (INWP, J) ENDIF CONTINUE ENDIF
ENDIF
200 CONTINUE
C THE FIRST FOUR MOMENTS OF THE WORK PACKAGE DURATION WHEN THE C DURATION IS ESTIMATED FROM A DECOMPOSITION.

DO 300 INWP $=2$,NWP
C WHEN WORK PACKAGE DURATIONS ARE ESTIMATED WHOLISTICALLY C OR FOR THE WORK PACKAGES TO PHASE PROJECTS WITH A TIME C LAG OR FOR THE FINISH WORK PACKAGE.

IF (IWPD (INWP).EQ.1) THEN
C TRANSFORM CORRELATED VARIABLES TO UNCORRELATED VARIABLES.
C ONLY THE LINEAR CORRELATION IS CONSIDERED.

NNVR $=$ NDVR (INWP)
CALL TRANS (INWP,NNVR,NWP,MAXDVC, XWPD, ZWPD,WPDCO, TRIWPD)
IF (0 < IERR) GO TO 1000
C ESTIMATE G(Z) FROM THE $g(X)$ GIVEN BY THE USER AT THE MEAN
C VALUES OF Z (THE TRANSFORMED VARIABLES) AND THE PARTIAL
C DERATIVES WITH RESPECT TO THE TRANSFORMED VARIABLES.
DO 210 JPV=1, NNVR
$210 \quad \mathrm{Z}(\mathrm{JPV})=\mathrm{ZWPD}(1, I N W P, J P V)$
DO 220 JPV=1, NNVR
$X(J P V)=0.0 D 0$ DO $220 \mathrm{KSV}=1$, NNVR
$220 \quad X(J P V)=X(J P V)+T R I W P D(J P V, K S V) * Z(K S V)$

C THE VALUE OF G(Z) AT THE MEAN VALUES OF Z

CALL WPDFF (NWPDF (INWP), $X, G Z$)

C THE PARTIAL DERAVATIVES OF THE TRANSFORMED VARIABLES
C JPV is the primary variable index

```
C KSV is the secondary variable index
C KTV is the tertiary (third) variable index...
C i think....
```

 DO 290 JPV=1,NNVR
 \(Z(J P V)=Z W P D(1, I N W P, J P V) * 0.99 D 0\)
 \(S Z(J P V)=Z W P D(1, I N W P, J P V) * 0.01 D 0\)
 DO 240 KSV=1,NNVR
 \(X(K S V)=0.0 D 0\)
 DO 240 LTV=1, NNVR
 240
 \(\mathrm{X}(\mathrm{KSV})=\mathrm{X}(\mathrm{KSV})+\mathrm{TRIWPD}(\mathrm{KSV}, \mathrm{LTV}) * \mathrm{Z}(\mathrm{LTV})\)
 C THE VALUE FOR G(Z) WHEN $Z(J)$ IS LESS THAN THE MEAN VALUE
C (NEGATIVE INCREMENT)
CALL WPDFF(NWPDF (INWP), X, GZS (JPV))
$Z(J P V)=Z W P D(1, I N W P, J P V) * 1.01 D 0$
DO $260 \mathrm{KSV}=1$, NNVR
$\mathbf{x}(\mathrm{KSV})=0.0 \mathrm{DO}$
DO 260 LTV=1,NNVR
$\mathbf{X}(\mathrm{KSV})=\mathbf{X}(\mathrm{KSV})+\mathrm{TRIWPD}(\mathrm{KSV}, \mathrm{LTV})$ * $\mathbf{Z}(\mathrm{LTV})$
260
CONTINUE
C THE VALUE FOR G(Z) WHEN $Z(J)$ IS MORE THAN THE MEAN VALUE
C (POSITIVE INCREMENT)
CALL WPDFF (NWPDF (INWP), $\mathrm{X}, \mathrm{GZL}(\mathrm{JPV})$)
C 1st \& 2nd partial derivatives wrt $Z(J)$
PWPD1 (JPV) $=(G Z L(J P V)-G Z S(J P V)) /(2.0 D 0 * S Z(J P V))$
PWPD2(JPV) $=(G Z L(J P V)+G Z S(J P V)-2.0 D O * G Z)$
$+$
/ (SZ (JPV)**2)
$Z(J P V)=Z W P D(1, I N W P, J P V)$
290
CONTINUE
C the first four moments for the work package duration
CALL MMTWPL (INWP,NNVR,
+ NWP, ZWPD,
+ GZ, PWPD1, PWPD2,
+ WPTIME,STFO(INWP))
ENDIF
300 CONTINUE
C APPROXIMATE THE CORRELATION BETWEEN THE WORK PACKAGES FOR
C MOMENT APPROXIMATIONS AT THE PROJECT LEVEL.
C ESTIMATE $g(X)$ GIVEN BY THE USER AT MEAN OF X AND THE FIRST
C PARTIAL DERAVATIVE WITH RESPECT TO THE CORRELATED VARIABLES.
NWPM1 = NWP-1

DO 350 INWP = 2 ,NWPM1
IF (IWPD (INWP).EQ.1) THEN
NNVR = NDVR(INWP)

C as kludgy as this may seem, WPDFF can potentially make C a reference to ALL elements of $X . .$. DO $330 \mathrm{JPV}=1$, NNVR
$330 \quad X(J P V)=X W P D(1, I N W P, J P V)$

C THE FIRST PARTIAL DERAVATIVE OF THE CORRELATED VARIABLES DO 340 JPV=1,NNVR $X(J P V)=X W P D(1, I N W P, J P V) * 0.99 D 0$ $S Z(J P V)=X W P D(1, I N W P, J P V) * 0.01 D 0$

C THE VALUE FOR $g(X)$ WHEN $X(J)$ IS LESS THAN THE MEAN VALUE C (NEGATIVE INCREMENT)

CALI. WPDFF (NWPDF (INWP), $X, G Z S$ (JPV))
$\mathbf{X}(J P V)=X W P D(1, I N W P, J P V) * 1.01 D 0$

C THE VALUE FOR $g(X)$ WHEN $X(J)$ IS MORE THAN THE MEAN VALUE C (POSITIVE INCREMENT)

CALL WPDFF (NWPDF (INWP), $X, G Z L$ (JPV))

C THE FIRST PARTIAL DERAVATIVE WITH RESPECT TO Z (J)

PWPDX(INWP, JPV) $=(G Z L(J P V)-G Z S(J P V)) /$
$+\quad(2.0 D 0 * S Z(J P V))$
$\mathbf{X}(J P V)=$ XWPD (1, INWP, JPV)
$340 \quad$ CONTINUE
ENDIF
350 CONTINUE

C ESTIMATE THE CORRELATION BETWEEN TWO WORK PACKAGE DURATIONS.
$\mathbf{J U}=11$
NN = NWP-1
DO 380 INWP $=2$, NN
IF (IWPD (INWP) .EQ. 1) THEN $N I=$ NDVR(INWP)
INWP1 $=$ INWP +1
IF (INWP1.LE. NN) THEN
DO 370 JWP=INWP1,NN
IF (IWPD (JWP) .EQ. 1) THEN
$\mathrm{NJ}=\mathrm{NDVR}$ (JWP)

C MJW moved this read out of COVAR,
C 'cause why make the call if you do NADA? ("Nothing")

```
READ (JU, *) NDCV
```

IF (NDCV $==0$) THEN
CORRD (INWP, JWP) $=0.0 \mathrm{DO}$

```
Appendix D: Source Code of the Model
                            CORRD (JWP, INWP) = O.ODO
                            ELSE
                            CALL COVAR(JU, NDCV, INWP,JWP,NI,NJ,
    + PWPDX,
    + XWPD,
    + WPDCO,
    + STFO(INWP),STFO(JWP),
    + CORRD)
                                    ENDIF
                ENDIF
370
                    CONTINUE
                    ENDIF
            ENDIF
380 CONTINUE
1000 DEALLOCATE (IWPD, NWPDF, NDVR)
    DEALLOCATE (PRCEST, CALC)
    DEALLOCATE (X, Z, SZ, GZS, GZL)
    DEALLOCATE (XWPD, ZWPD)
    DEALLOCATE (WPDCO)
    DEALLOCATE (PWPD1, PWPD2, PWPDX)
    DEALLOCATE (TRIWPD,STFO)
    CALL TRACE (2, 'WPDURA', 'exiting.')
    RETURN
8001 FORMAT(5F20.4)
9001 WRITE (7, 9901) INWP, JPV
9901 FORMAT (/,'WP#(',I3,') var(',I2,') != Pearson Type.',/)
    GOTO 1000
9002 WRITE (7, 9902) INWP
9902 FORMAT (/,'WP#(',I3,').Duration != Pearson Dist.',/)
    GOTO 1000
```

END

C East.for
C modified by Toshiaki Hatakama in July, 1994.
C ROUTINE TO EVALUATE THE FIRST FOUR MOMENTS OF THE EARLY START C TIME OF WORK PACKAGES USING A PRECEDENCE NETWORK AND OBTAIN C THE CALENDAR MONTH OF THE EARLY START TIME.


```
    SUBROUTINE EAST (PEARSN, WPTIME, CORRD, ESTART)
```


IMPLICIT REAL*4(A-H,O-Z)
INCLUDE 'DEBUG.CMN'
REAL* 4 PEARSN (NPEARS, *)
REAL* 4 WPTIME (4, *), CORRD (NWP, *)
REAL* 4 ESTART (4, *)
CHARACTER*3 LM (:)
INTEGER LY (:)
REAL* 4 SDET(:), SKET(:), AKET(:), AMEET(:)
ALLOCATABLE LM, LY, SDET, SKET, AKET, AMEET
C this is ment to ease the burden of calculating some of the days.
C the last index is $1=7$ day ww, $2=6$ day ww, $3=5$ day ww.
INTEGER DAYS (13, 3)
CHARACTER*3 MONTHS (12)
DATA DAYS/
+ 0, 22, 42, 64, 86, 108, 130, 151, 173, 195,217,239,261, ! 5 day week
$+0,27,51,77,103,130,156,182,209,235,261,287,313$, ! 6 day week
$+0,31,59,90,120,151,181,212,243,273,304,334,365 /$! 7 day week
DATA MONTHS/
+ 'JAN','PEB','MAR','APR','MAY','JUN',
+ 'JUL','AUG','SEP','OCT','NOV','DEC'/
C START AND FINISH DATES IN CALENDAR TIME AND THE TIME UNIT
C IDS $=$ day start
C IMS = month start
C IYS = year start
C IDF = day finish
C IMF = month finish
C IYF = year finish
C NUNT = time unit (1=day, 2=month, 3=year)
C NWW $=(5,6,7)=$ number of days in work week.
CALL TRACE (2, 'EAST', 'starting.')
ALLOCATE (LM (NWP), LY (NWP))
ALLOCATE (SDET (NWP), SKET (NWP), AKET (NWP), AMEET (NWP))
READ (10, 9910) IDS, IMS, IYS, IDF, IMF, IYF, NUNT, NWW
IF (NWW < 5 .OR. 7 < NWW) THEN
IERR = 1
WRITE (7, 9901)

```
Appendix D: Source Code of the Model
            GO TO 1000
    ENDIF
    IF (IYS == 0) THEN
        SDATE = 0.0DO
        GO TO 400
    ENDIF
    IWW = NWW - 4
    IYB = 1988
    ICHS = IYS - IYB
    ND = ICHS * DAYS (13, IWW)
    NDS = ND + IDS + DAYS (IMS, IWW)
    IF (0 < ICHS) GO TO 180
    IF (IMS < 3) GO TO 200
    180 NDS = NDS + 1
    JS = IFIX (ICHS / 4.)
    IF (2 < IMS) GO TO 190
    NDS = NDS + JS - 1
    GO TO 200
    190 NDS = NDS + JS
    200 SELECT CASE (NUNT)
        CASE (1)
                                SDATE = FLOAT (NDS)
        CASE (2)
            SDATE = FLOAT (NDS) / 30.4167DO
        CASE (3)
            SDATE = FLOAT (NDS) / 365.ODO
    END SELECT
    IF (IYF == 0) GO TO 400
    ICHF = IYF - IYB
    NF = ICHF * DAYS (13, IWW)
    NDF = NF + IDF + DAYS (IMF, IWW)
    IF (0 < ICHF) GO TO 380
    IF (IMF < 3) GO TO 400
380 NDF = NDF + 1
    JF = IFIX (ICHF / 4.)
    IF (2 < IMF) THEN
        NDF = NDF + JF
    ELSE
        NDF = NDF + JF - 1
    ENDIF
400 CALL NETWRK (PEARSN, WPTIME, CORRD, ESTART, TRCOR)
    IF (0 < IERR) GO TO 1000
C the work package durations in the specified time unit
```

```
Appendix D: Source Code of the Model
    WRITE (7, 9911)
    WRITE (7, 9912)
    DO 1590 I = 1, NWP
        IF (WPTIME (2, I) == 0.ODO) THEN
        SDTME = O.ODO
        SKTME = 0.0DO
        AKTME = O.ODO
    ELSE
        SDTME = WPTIME (2, I) ** 0.5D0
        SKTME = WPTIME (3, I) / (WPTIME (2, I) ** 1.5D0)
        ASKT = 1.2DO * (SKTME ** 2) +2.0
        AKTME = WPTIME (4, I) / (WPTIME (2, I) ** 2)
        IF (AKTME < ASKT) THEN
                AKTME = ASKT
            ENDIF
    ENDIF
    SELECT CASE (NUNT)
                CASE (1)
                AMTME = WPTIME (1, I) / 30.4167DO
                SDTME = SDTME / 30.4167D0
            CASE (2)
                AMTME = WPTIME (1, I)
                SDTME = SDTME
            CASE (3)
                AMTME = WPTIME (1, I) * 12.0D0
                    SDTME = SDTME * 12.0DO
    END SELECT
    1570 WRITE (7, 9913) I, AMTME, SDTME, SKTME, AKTME
    1590 CONTINUE
    WRITE (7, 9914) TRCOR
    WRITE (7, 9915)
DO 2250 I = 1, NWP
    IF (ESTART (2, I) == 0.ODO) THEN
        SDET (I) = O.ODO
        SKET (I) = O.ODO
        AKET (I) = O.ODO
    ELSE
        SDET (I) = ESTART (2, I) ** 0.5D0
        SKET (I) = ESTART (3, I) / (ESTART (2, I) ** 1.5DO)
        ARET (I) = ESTART (4, I) / (ESTART (2, I) ** 2)
    ENDIF
C convert the early start time of a work package to calendar
C time from absolute time.
    SELECT CASE (NWW + NUNT - 1)
C 7 day ww, daily
    CASE (7)
```


C 7 day ww, monthly
CASE (8)
AMST $=(E S T A R T(1, I)+S D A T E) * 30.4167 D 0$
AMEET (I) $=$ ESTART (1, I)
SDET (I) = SDET (I)
C 7 day ww, yearly CASE (9)

AMST $\quad=(E S T A R T(1, I)+\operatorname{SDATE}) * 365.0 D 0$
AMEET (I) $=\operatorname{ESTART}(1, I) * 12.0 D 0$ SDET (I) $=$ SDET (I) * $12.0 D 0$
C 5 day ww (daily)
CASE (5)
AMST $\quad=\operatorname{ESTART}(1, I)$
SDET (I) = SDET (I) / 21.75D0
C 6 day ww (daily)
CASE
(6)

AMST $\quad=\operatorname{ESTART}(1, I)$
SDET (I) $=$ SDET (I) / $26.0833 D 0$
END SELECT
LYY $=$ IFIX (AMST / DAYS (13, IWW))
$L Y(I)=I Y B+L Y Y$

LDC = IFIX (AMST)
LDD $=$ MOD (LDC, DAYS (13, IWW))
IF (0 < LYY) GO TO 1710
IF (LDD < DAYS (2, IWW)) GO TO 1730
1710 JJ = IFIX (LYY / 4.)
IF (DAYS (2, IWW) < LDD) GO TO 1720
LDD = LDD - JJ + 1
GO TO 1730
1720 LDD = LDD - JJ
1730 ITEMP = 1
DO 1731, WHILE ((DAYS (ITEMP + 1 ,IWW) <= LDD) . AND.
ITEMP < 12)
1731 ITEMP $=$ ITEMP +1
2250 LM (I) = MONTHS (ITEMP)
C the early start times of the work packages DO $2300 \mathrm{I}=1$, NWP
2300 WRITE (7, 9916) I, LM (I), LY (I),
AMEET (I), SDET (I), SKET (I), AKET(I)
C the project duration : E.S.T of the Nth work package
WRITE (7, 9917) TRCOR
WRITE (7, 9918)
SELECT CASE (NUNT)
CASE (1)
AMP = ESTART (1, NWP) / 30.4167D0
CASE (2)

```
                            AMP = ESTART (1, NWP)
                CASE (3)
                            AMP = ESTART (1, NWP) * 12.ODO
    END SELECT
    SDP = SDET (NWP)
    SKP = SKET (NWP)
    AKP = AKET (NWP)
    WRITE (7, 9903) LM (NWP), LY (NWP), AMP, SDP, SKP, AKP
    CALL CDFUNC (PEARSN, AMP, SDP, SKP, AKP,
    + V1,V2,V3,V4,V5,V6,V7, V8, V9,V10,V11,V12,V13,V14,V15)
    WRITE (20, 9930)
    + V1,V2,V3,V4,V5,V6,V7, V8, V9,V10,V11,V12,V13,V14,V15
    1000 CALL TRACE (2, 'EAST', 'exiting.')
    DEALLOCATE (LM, LY)
    DEALLOCATE (SDET, SKET, AKET, AMEET)
    RETURN
    9901 FORMAT ('EAST: Work Week should be 5, 6 or 7 days.')
C 9902 FORMAT ('***** WHEN WORK WEEK = (5,6), TIME UNIT Sb DAYS.')
    9903 FORMAT (A3,' / ',I4,4F15.2)
    9910 FORMAT (2I3,I5,2I3,I5,2I2)
    9911 FORMAT (/,'Work Package Durations',/,'The TIME UNIT is
MONTHS.')
    9912 FORMAT ('W.P.# Exp.Value====== ',
    + 'S.Dev.========= Skewness Kurtosis')
9913 FORMAT (I4,6X,2F15.3,2F8.2)
9914 FORMAT (/,'Work Package Early Start Times for a Transitional ',
    + 'Correlation of', F5.2,/,'The TIME UNIT is MONTHS.')
9915 FORMAT ('W.P.# Exp.Month===== Exp.Value====== ',
    + 'S.Dev========= Skewness Kurtosis')
9916 FORMAT (I4,7X,A3,'/ ',I4,4X,2F15.2,2F8.2)
9917 FORMAT (/,'The Project Duration for a Transitional ',
    + 'Correlation of', F5.2,/,'The TIME UNIT is MONTHS.')
9918 FORMAT ('MOnth Exp.Value====== ',
    + 'S.Dev========== Skewness Kurtosis')
9930 FORMAT (' Project Duration export for EXCEL',
    + /,' ',F20.2,', 0.25',
    + /,' ',F20.2,', 0.50',
    + /,' ',F20.2,', 1.00',
    + /,' ',F20.2,', 2.50',
    + /,' ',F20.2,', 5.00',
    + /,' ',F20.2,',10.00',
    + /,' ',F20.2,',25.00',
    + /,' ',F20.2,',50.00',
    + /,' ',F20.2,',75.00',
    + /,' ',F20.2,',90.00',
    + /,' ',F20.2,',95.00',
```

+	/,' ', F20.2,',97.50',
+	/,' ',F20.2,',99.00',
+	/,' ', F20.2,',99.50',
+	/,' ', F20.2,',99.75')

END

C WpCost.FOR
C modified by Toshiaki Hatakama in July, 1994.
C THE ROUTINE TO EVALUATE THE FIRST FOUR MOMENTS OF THE WORK
C PACKAGE COST BY APPLYING THE FRAMEWORK

SUBROUTINE WPCOST (DR,FRA, PEARSN,

+ WPTIME,
+ ESTART,
+ IWPC, NWPCF, NDVR,
$+\quad \operatorname{cosT}$,
+ XUCOST, TRIWPC,
$+$

CORRC)

IMPLICIT REAL* 4 (A-H, O-Z)
INCLUDE 'DEBUG.CMN'
REAL* 4 PEARSN (NPEARS, *)
REAL*4 WPTIME (4, *)
REAL* 4 ESTART (4, *)
INTEGER IWPC (*), NWPCF (*), NDVR (*)
REAL* 4 XUCOST (4, NWP, *), TRIWPC (NWP, NWP, *)
REAL* 4 COST (4, *), CORRC (NWP, *)
INTEGER NNVR, NTYP (50)
REAL*4 X(25), SZ(25), GZS(25), GZL(25)
REAL*4 XCOST (:,:,:), WPCCO (:,:,:), PWPCX (:,:) ALLOCATABLE XCOST, WPCCO, PWPCX

REAL*4 STPO (:), TRI (:, :)
ALLOCATABLE STFO, TRI

CALL TRACE (2, 'WPCOST', 'starting.')
ALLOCATE (STFO (NWP))
ALLOCATE (TRI (MAXDVC, MAXDVC))
ALLOCATE (XCOST (4, NWP, MAXDVC))
ALLOCATE (WPCCO (NWP, MAXDVC, MAXDVC))
ALLOCATE (PWPCX (NWP, MAXDVC))
C the first four moments of the start work package
$\operatorname{cost}(1,1)=0 . D 0$
$\operatorname{COST}(2,1)=0 . D 0$
$\operatorname{cost}(3,1)=0 . D 0$
$\operatorname{cost}(4,1)=0 . D 0$

C basic data about the work packages
IWPC (1) $=0$
NWPCF (1) $=0$
NDVR (1) $=0$
NTYP (1) $=0$

```
            DO 300 I=2,NWP
```

 READ (12, 8020)
 IWPC(I) ! type of work package cost
 ! 1 =decomposed
 ! 2=wholistic
 ! 3 =direct input
 GOTO (10, 150, 200) IWPC(I)
 GOTO 9003 ! something's worng
 C type of functional form and the number of primary variables
10 READ (12, 8030) NWPCF (I), NDVR (I), NTYP (I)
NNVR $=$ NDVR (I)

C DURATION AND EARLY FINISH TIME ARE PRIMARY VARIABLES IN
C ALL THE FUNCTIONAL FORMS FOR WORK PACKAGE COST. (THE LINK C BETWEEN TIME AND COST BECAUSE COST IS TIME DEPENDENT).

C Var\#1 is the duration of the work package
$\operatorname{Xcost}(1, I, 1)=\operatorname{WPTIME}(1, I)$
$\operatorname{XCOST}(2, I, 1)=\operatorname{WPTIME}(2, I)$
$\operatorname{Xcost}(3, I, 1)=\operatorname{WPTIME}(3, I)$
$\operatorname{XCOST}(4, I, 1)=W P T I M E(4, I)$
C Var\#2 is the early finish time

C Var\#3 is the project duration, aka the time at which the loan is due.

```
    XCOST (1, I, 3) = ESTART (1, NWP)
    XCOST (2, I, 3) = ESTART (2, NWP)
    XCOST (3, I, 3) = ESTART (3, NWP)
    XCOST (4, I, 3) = ESTART (4, NWP)
```

C Var\#4 is the revenue phase duration, which equals the finish C work package duration.

```
IF (11 <= NWPCF (I)) THEN
    XCOST (1, I, 4) = WPTIME (1, NWP)
    XCOST (2, I, 4) = WPTIME (2, NWP)
    XCOST (3, I, 4) = WPTIME (3, NWP)
    XCOST (4, I, 4) = WPTIME (4, NWP)
    DO 35 J=1,4
            JJ = J+1
            DO 34 K=JJ,NNVR
```

$\operatorname{WPCCO}(I, J, K)=0.0 D 0$
$\operatorname{WPCCO}(I, K, J)=0 . O D O$
34
CONTINUE
35
CONTINUE

C APPROXIMATE THE PRIMARY VARIABLES IN THE FUNCTIONAL FORMS C FOR WORK PACKAGE COST TO PEARSON TYPE DISTRIBUTIONS TO C OBTAIN THE FIRST FOUR MOMENTS FOR THEM.

DO $40 \mathrm{~J}=5$, NNVR
IF (1 < NTYP (I)) THEN ! direct read the moments READ (12, 37) (XCOST (K, I, J), K = 1, 4)
37 FORMAT (4F30.5)
ELSE
READ (12, 8010) A,B,C,D,E
CALL VARBLE (PEARSN, A,B,C,D,E, C1, C2, C3, C4) IF (IERR == 1) GO TO 9001
$\operatorname{Xcost}(1, I, J)=C 1$
$X \operatorname{CosT}(2, I, J)=C 2$
$X \cos T(3, I, J)=C 3$ $X \operatorname{CosT}(4, I, J)=C 4$

ENDIF
40 CONTINUE

C CORRELATION COEFFICIENTS BETWEEN THE PRIMARY VARIABLES IN C THE WORK PACKAGE. CORRELATION MATRIX IS POSITIVE DEFINITE.

```
                DO 45 J = 5,NNVR
```

 \(J J=J+1\)
 IF (NNVR < JJ) GO TO 45
 READ (12,41) (\(\operatorname{WPCCO}(I, J, K), K=J J, N N V R)\)
 FORMAT(20F6.2)
 DO \(42 \mathrm{~K}=\mathrm{JJ}\), NNVR
 \(\operatorname{WPCCO}(I, K, J)=W P C C O(I, J, K)\)
 CONTINUE
42
45 CONTINUE
ELSE
DO $50 \mathrm{~J}=1,3$
JJ $=\mathrm{J}+1$
DO $50 \mathrm{~K}=\mathrm{JJ}$, NNVR
$W P C C O(I, J, K)=0.0 D O$
50
$W \operatorname{WPCCO}(I, K, J)=0.0 \mathrm{DO}$

C APPROXIMATE THE PRIMARY VARIABLES IN THE FUNCTIONAL FORMS
C FOR WORK PACKAGE COST TO PEARSON TYPE DISTRIBUTIONS TO
C OBTAIN THE FIRST FOUR MOMENTS FOR THEM.

C SUBJECTIVE ESTIMATES FOR OTHER VARIABLES IN THE
C FUNCTIONAL FORM FOR THE WORK PACKAGE COST.

```
DO 100 J=4,NNVR
    IF (1 < NTYP (I)) THEN
        READ (12, 70) (XCOST (K, I, J), K = 1, 4)
        FORMAT (4F30.5)
    ELSE
```

 70
    ```
                                READ (12, 8010) A,B,C,D,E
    CALL VARBLE (PEARSN, A,B,C,D,E,C1,C2,C3,C4)
    IF (IERR == 1) GO TO 9001
    XCOST (1, I, J) = C1
    XCOST (2,I, J) = C2
    XCOST (3, I, J) = C3
    XCOST (4, I,J)=C4
    ENDIF
        CONTINUE
    100
C CORRELATION COEFFICIENTS BETWEEN THE PRIMARY VARIABLES IN
C THE WORK PACKAGE. CORRELATION MATRIX IS POSITIVE DEFINITE.
        DO 140 J = 4,NNVR
        JJ = J+1
        IF (JJ <= NNVR) THEN
            READ (12, 110) (WPCCO (I,J,K),K=JJ,NNVR)
            110
                        FORMAT (20F6.2)
                DO 120 K=JJ,NNVR
            120 WPCCO (I,K,J) = WPCCO (I,J,K)
                ENDIF
            140 CONTINUE
        ENDIF
        GO TO 300
C THE FIRST FOUR MOMENTS FOR A WORK PACKAGE COST WHEN THE
C COST IS ESTIMATED WHOLISTICALLY.
    150 J = 1
            READ (12, 8010) A,B,C,D,E
            CALL VARBLE (PEARSN, A,B,C,D,E, C1,C2,C3,C4)
            IF (0 < IERR) GO TO 9002
            CosT (1, I) = C1
            CosT (2,I) = C2
            CosT (3, I) = C3
            CosT (4, I) = C4
                C**********************************************
    XuCosT (1, I, 1) = C1
    XucosT (2, I, 1) = C2
    xucosT (3, I, 1) = C3
    xucosT (4, I, 1) = C4
C**********************************************
    GO TO 300
C MOMENTS OF THE WORK PACKAGE DURATIONS ARE ENTERED DIRECTLY
    200 READ (12, 210) (COST (K, I),K=1,4)
    210 FORMAT (4F25.6)
    300 CONTINUE ! Go back and get the next work package info.
```

```
Appendix D: Source Code of the Model
C CORRELATION BETWEEN WORK PACKAGE COSTS.
    NN = NWP-1
    DO 320 I=2,NN
        JJ = I+1
        IF (JJ <= NN) THEN
            DO 310 J=JJ,NN
                CORRC(I,J) = 0.ODO
310
                        CORRC(J,I) = 0.ODO
            ENDIF
320 CONTINUE
C WHEN WORK PACKAGE COSTS ARE INPUT AS MOMENTS.
            DO 350 I=2,NN
            IF (2 < IWPC(I)) THEN
                JJ = I+1
                IF (NN < JJ) GO TO 350
                DO 340 J=JJ,NN
                    IF (2 < IWPC(J)) THEN
                    READ(12,330) CORRC(I,J)
                        FORMAT(F6.2)
                        CORRC(J,I) = CORRC(I,J)
                            ENDIF
        CONTINUE
            ENDIF
350 CONTINUE
C THE FIRST FOUR MOMENTS OF THE WORK PACKAGE COST WHEN THE COST
C IS ESTIMATED FROM A DECOMPOSITION.
C WHEN WORK PACKAGE COST ARE ESTIMATED WHOLISTICALLY OR FOR
C THE FINISHED WORK PACKAGE,
C TRANSFORM CORRELATED VARIABLES TO UNCORRELATED VARIABLES.
C ONLY THE LINEAR CORRELATION IS CONSIDERED.
    DO 400 I = 2, NWP
    IF (IWPC(I) == 1) THEN
                NNVR = NDVR(I)
                CALL TRANS (I, NNVR, NWP, MAXDVC,
                        xcosT,
                        xucosT,
                                    WPCCO, TRI)
                            IF (IERR == 1) GO TO 1000
C THE TRANSFORMATION MATRIX FOR A WORK PACKAGE
        DO 360 J=1,NNVR
                        DO 360 K=1,NNVR
                        TRIWPC(I,J,K) = TRI(J,K)
                        TRIWPC(I,K,J)=TRI(K,J)
    360
        CONTINUE
C this is the only place where COST is affected
C by anything when IWPC(I) = 1...
```

CALL WPCMMT (I, DR, FRA,

+ NWPCF, NDVR,
+ XUCOST, TRIWPC,
$+\quad \cos T$,
+ STFO (I))
ENDIF
400 CONTINUE

C APPROXIMATE THE CORRELATION BETWEEN THE WORK PACKAGES FOR C MOMENT APPROXIMATIONS AT THE PROJECT LEVEL.

C EStIMATE $g(X)$ GIVEN BY the USER AT MEAN OF X AND THE FIRSt C PARTIAL DERAVATIVE WITH RESPECT TO THE CORRELATED VARIABLES.

NN $=$ NWP-1
DO 450 I=2,NN IF (1 < IWPC(I)) GO TO 450 NNVR $=$ NDVR(I) DO $430 \mathrm{~J}=1$, NNVR $\mathbf{X}(J)=X \operatorname{CosT}(1, I, J)$ 430 CONTINUE

C THE FIRST PARTIAL DERAVATIVE OF THE CORRELATED VARIABLES

DO $440 \mathrm{~J}=1$, NNVR
$\mathbf{X}(J)=X \operatorname{Cos} T(1, I, J) * 0.99 D 0$
SZ(J) $=X \operatorname{COST}(1, I, J) * 0.01 D 0$

C the value for $g(X)$ When $X(J)$ IS Less than the mean value C (NEGATIVE INCREMENT)

```
C *********************
```

CALL WPCFF (NWPCF (I), DR,FRA, X,GZS (J))
$\mathbf{X}(J)=X \operatorname{COST}(1, I, J) * 1.01 D 0$

C THE VALUE FOR $g(X)$ WHEN $X(J)$ IS MORE THAN THE MEAN VALUE
C (POSITIVE INCREMENT)

```
C ***********************
```

CALL WPCFF (NWPCF (I), DR,FRA, X,GZL(J))

C THE FIRST PARTIAL DERAVATIVE WITH RESPECT TO Z(J)
$\operatorname{PWPCX}(I, J)=(G Z L(J)-G Z S(J)) /(2.0 D 0 * S Z(J))$
$X(J)=X \operatorname{Cos} T(1, I, J)$
440 CONTINUE
450 CONTINUE

C ESTIMATE THE CORRELATION BETWEEN TWO WORK PACKAGE COSTS. C COVAR does something to the SECOND set of values of XCOST. C check this carefully.

```
    JU = 12
    NN = NWP-1
    DO 500 I = 2, NN
        IF (IWPC(I) == 1) THEN
        NI = NDVR (I)
        JJ = I+1
        IF (JJ <= NN) THEN
            DO 470 J=JJ,NN
                IF (IWPC(J) == 1) THEN
                    NJ = NDVR (J)
                    READ (JU, *) NDCV
                    IF (NDCV == 0) THEN
                                    CORRC (I, J) = O.ODO
                                    CORRC (J, I) = O.ODO
                                    ELSE
                                    CALL COVAR (JU,NDCV, I,J,NI,NJ,
        + PWPCX,
        + XCOST,
        + WPCCO,
        + STFO (I),STFO(J),
        + CORRC)
            ENDIF
                ENDIF
        CONTINUE
        ENDIF
        ENDIF
    500 CONTINUE
    1000 DEALLOCATE (XCOST, WPCCO, STFO, TRI)
        CALL TRACE (2, 'WPCOST', 'exiting.')
        RETURN
    8010 FORMAT(5F20.4)
    8020 FORMAT(I2)
C 8030 FORMAT (I2, I3, I2)
    8030 FORMAT (I4, I4, I4)
    9001 WRITE (7,9901) I, J
    9901 FORMAT ('WPCOST: WP(',I3,').Var(',I2,') is not PEARSON.')
        GOTO 1000
    9002 WRITE (7, 9902) I
    9902 FORMAT ('WPCOST: WP(',I3,') is not PEARSON.')
        GOTO 1000
9003 WRITE (7, *) 'What Gives! Type greater than 3?'
        GOTO 1000
        END
```

C RevStr.for
C modified by Toshiaki Hatakama in July, 1994.
C THE ROUTINE TO EVALUATE THE FIRST FOUR MOMENTS OF THE NET C REVENUE STREAM BY APPLYING THE FRAMEWORK TO THE WP/RS LEVEL.
C calls VARBLE, RVSMMT


```
    SUBROUTINE REVSTR (PEARSN,
    + DR,
    + WPTIME,
    + ESTART,
    + NRVSF, NDRV,
    + XUREV,
    + TRIRVS,
    + REV, CORRR,
    + BOTTLE)
```


C if you have 16 M Ram, chhose "enough" $=1$.
C if not, choose any number but 1 .
\$DEFINE enough $=0$
IMPLICIT REAL*4 (A-H,O-Z)
INCLUDE 'DEBUG.CMN'
REAL* 4 PEARSN (NPEARS, *)
REAL*4 WPTIME (4, *)
REAL* 4 ESTART (4, *)
INTEGER NRVSF (*), NDRV (*)
REAL*4 BOTTLE (NRS, *)
\$IF enough .EQ. 1
REAL* 4 XUREV (4, NRS, *), TRIRVS (NRS, MAXDVR, *)
\$ELSE
REAL* 4 XUREV (4, NRS, *), TRIRVS (*)
\$ENDIF
REAL* 4 REV (4, *), CORRR(NRS, *)
REAL*4 X (300), SZ, GZS, GZL
REAL* 4 XREV (:,:,:), RVSCO(:,:,:), PRVSX(:,:)
ALLOCATABLE XREV, RVSCO, PRVSX
REAL* 4 STFO(:), TRI(:,:)
ALLOCATABLE STFO, TRI
C basic data about the revenue streams
CALL TRACE (1, 'REVSTR', 'starting.')
ALLOCATE (STFO (NRS))
ALLOCATE (XREV (4, NRS, MAXDVR))
C Only 1 Multi-Megabyte Array per application, please....
C we can't get rid of this because TRANS \& COVAR do alot of work with

C it.
ALLOCATE (RVSCO (NRS, MAXDVR, MAXDVR))
ALLOCATE (PRVSX (NRS, MAXDVR))

DO 100 INRS $=1$, NRS
PRINT *, 'Reading in REVenue STReam \#', INRS READ (13, 9901) $\begin{array}{ll}+\quad \text { NRVSF (INRS), }!\text { type of functional form } \\ + & \text { NDRV (INRS), } \quad \text { number of primary variables }\end{array}$ + LL, ! the work package number

+ PERT ! the fraction of the duration after
! which
! the revenue begins...

C if this is a toll highway project, read more basic data. C we have to pass extra info to our custom RVSFF functions, C so we're going to do it in x, our WONDER-VECTOR. C the first element of X tells how many elements are sacred to C RVSFnn.

```
        SELECT CASE (NRVSF (INRS))
        CASE (11) ! 'closed' toll highway (one toll booth per gate)
            READ (13, 9905)
                BOTTLE (INRS, 1), ! nAL = # of interchanges
                BOTTLE (INRS, 2) ! nP = # of vehicle types
            READ (13, 9906)
                BOTTLE (INRS, 3) ! nWC = weather
                ! class(1,2,...)
            READ (13, 9906)
            READ (13, 9906)
            BOTTLE (INRS, 5) ! nBR = bridge repaint
                ! year(0,1,2,...)
            CASE (12) ! 'open' toll highway (some may not have gates)
            READ (13, 9907)
                BOTTLE (INRS, 1), ! nAL = # of interchanges
            BOTTLE (INRS, 2), ! nP = # of vehicle types
            BOTTLE (INRS, 6) ! nTG = # of toll gates
            DO 50 J = 1, BOTTLE (INRS, 6)
        READ (13, 9908)
            BOTTLE (INRS, (J + 6)) ! toll gate location
    READ (13, 9906)
            BOTTLE (INRS, 3) ! nWC = weather class
                                    ! (1,2,...)
    READ (13, 9906)
        BOTTLE (INRS, 4) ! nOL = overlay
```

! years ($0,1,2, \ldots$)

CASE (13) ! 'closed' toll highway (fixed toll) READ (13, 9905) BOTTLE (INRS, 1), ! nAL = \# of interchanges BOTTLE (INRS, 2) ! $n P=\#$ of vehicle types

READ $\{13$, 9906)
BOTTLE (INRS, 3) ! nWC = weather class ! (1,2,...)

READ (13, 9906)
BOTTLE (INRS, 4) ! nOL = overlay ! years (0,1,2,..)

READ (13, 9906)
BOTTLE (INRS, 5) $!$ nBR = bridge repaint
! year ($0,1,2, \ldots$)
END SELECT

NNVR = NDRV (INRS)
C the start time of the revenue stream is a primary variable C in all the functional forms for a revenue stream. the link C between time and revenue because revenue is time dependent.
C variable\#1 is the start time of the revenue stream.
XREV (1, INRS, 1) = ESTART (1, LL) + PERT * WPTIME (1, LL)
XREV (2, INRS, 1) = ESTART (2, LL) + PERT * WPTIME (2, LL)
XREV (3, INRS, 1) = ESTART (3, LL) + PERT * WPTIME (3, LL)
$\operatorname{XREV}(4, \operatorname{INRS}, 1)=\operatorname{ESTART}(4, L L)+\operatorname{PERT} * \operatorname{WPTIME}(4, L L)$
C approximate the primary variables in the functional forms
C for revenue streams to pearson type distributions to
C obtain the first four moments for them.
DO $65 \mathrm{~J}=1$, NNVR
DO $60 \mathrm{~K}=1$, NNVR
RVSCO (INRS, J, K) $=0.0 \mathrm{DO}$
60 CONTINUE
RVSCO (INRS, J, J) = 1.0D0
CONTINUE
DO $90 \mathrm{~J}=2$, NNVR
C subjective estimates for other variables in the
C functional form for the revenue streams.
READ (13, 9902) A,B,C,D,E ! 5\%ile estimate
CALL VARBLE (PEARSN, A, B, C, D,E,
XREV (1, INRS, J),
$+$
$+\quad$ XREV $(2$, INRS, J),

```
Appendix D: Source Code of the Model
```



```
        + XREV (3, INRS, J),
```

 + XREV (3, INRS, J),
 + XREV (4, INRS, J))
 + XREV (4, INRS, J))
 90 IF (0<IERR) GOTO 9000
 90 IF (0<IERR) GOTO 9000
 100 CONTINUE
 100 CONTINUE
 C the first four moments of the revenue stream.
C the first four moments of the revenue stream.
C DR is fixed.
C DR is fixed.
C in PRJIRR, we will vary DR to get a desired ... IRR.
C in PRJIRR, we will vary DR to get a desired ... IRR.
ALLOCATE (TRI (MAXDVR, MAXDVR))
ALLOCATE (TRI (MAXDVR, MAXDVR))
OPEN (UNIT = 121, FILE = 'REVI.SEN', STATUS = 'UNKNOWN')
OPEN (UNIT = 121, FILE = 'REVI.SEN', STATUS = 'UNKNOWN')
OPEN (UNIT = 122, FILE= 'REV2.SEN', STATUS = 'UNKNOWN')
OPEN (UNIT = 122, FILE= 'REV2.SEN', STATUS = 'UNKNOWN')
DO 300 INRS = 1, NRS
DO 300 INRS = 1, NRS
C transform correlated variables to uncorrelated variables.
C transform correlated variables to uncorrelated variables.
NNVR = NDRV(INRS)
NNVR = NDRV(INRS)
CALL TRANS (INRS, NNVR, NRS, MAXDVR,
CALL TRANS (INRS, NNVR, NRS, MAXDVR,
+ XREV, XUREV, RVSCO, TRI)
+ XREV, XUREV, RVSCO, TRI)
IF (IERR == 1) GO TO 1000
IF (IERR == 1) GO TO 1000
C the transformation matrix for a revenue stream
C the transformation matrix for a revenue stream
DO 200 J = 1, NNVR
DO 200 J = 1, NNVR
DO 200 K = 1, NNVR
DO 200 K = 1, NNVR
\$IF enough .EQ. 1
\$IF enough .EQ. 1
TRIRVS (INRS, J, K) = TRI (J,K)
TRIRVS (INRS, J, K) = TRI (J,K)
\$ELSE
\$ELSE
CALL SPA SET3 (TRIRVS, TRI (J, K), INRS, J, K)
CALL SPA SET3 (TRIRVS, TRI (J, K), INRS, J, K)
\$ENDIF

```
$ENDIF
```

```
300 CONTINUE
    DEALLOCATE (TRI)
```

C approximate the correlation between the revenue streams for
C moment approximations at the project level.
C estimate $g(x)$ given by the user at mean of X and the first
C partial derivative with respect to the correlated variables.
DO 450 INRS $=1$,NRS
NNVR $=$ NDRV(INRS)

```
Appendix D: Source Code of the Model
            DO 430 J=1,NNVR
            X(J) = XREV (1, INRS, J)
4 3 0
    CONTINUE
C ROCK (-1%) AND ROLL (+1%) THE VARIABLES TO GET THE PARTIALS
            DO 440 J=1,NNVR
                        SZ = XREV (1, INRS, J) * 0.01DO ! the increment...
                X (J) = XREV (1, INRS, J) * 0.99D0 ! rock
                CALL RVSFF (NRVSF (INRS), J, 1, DR, BOTTLE, INRS, X,
                    GZS)
                        X (J) = XREV (1, INRS, J) * 1.01D0 ! roll
                CALL RVSFF (NRVSF (INRS), J, 3, DR, BOTTLE, INRS, X,
    +
                            X (J) = XREV (1, INRS, J) ! reset
                            PRVSX (INRS, J) = (GZL - GZS) / (2.ODO * SZ)
                        CONTINUE
                    440
450 CONTINUE
C ESTIMATE THE CORRELATION BETWEEN TWO REVENUE STREAMS.
C COVAR does something to the SECOND set of values of XREV.
C check this carefully.
    JU = 13
    PRINT *, 'about to call COVAR, many times...'
    DO 500 INRS = 1, NRS
            NI = NDRV (INRS)
            JJ = INRS + 1
            IF (JJ <= NRS) THEN
                DO 470 J=JJ,NRS
                    NJ = NDRV (J)
                        READ (JU, *) NDCV
                        IF (NDCV == 0) THEN
                        CORRR (INRS, J) = 0.ODO
                            CORRR (J, INRS) = O.ODO
                        ELSE
                            CALL COVAR (JU,NDCV, INRS,J,NI,NJ,
                                    PRVSX,
                                    XREV,
                                    RVSCO,
                                    STFO (INRS), STFO (J),
                                    CORRR)
                    ENDIF
                    4 7 0
                        CONTINUE
            ENDIF
        500 CONTINUE
1000 DEALLOCATE(XREV, RVSCO, STFO)
```

```
Appendix D: Source Code of the Model
    CALL TRACE (2, 'REVSTR', 'exiting.')
    RETURN
9000 WRITE (6, *) INRS, J, '--> Bogositude to the max.'
    WRITE (6, *) A,B,C,D,E
    WRITE (7, 9909) INRS, J
    GOTO 1000
9901 FORMAT (I4,I4,I4,F10.5)
9902 FORMAT (5F20.4)
9905 FORMAT (2I4)
9906 FORMAT (I2)
9907 FORMAT (3I4)
9908 FORMAT (F10.2)
9909 FORMAT (/,'RS(',I3,').VAR(',I4,') is NOT pearson dist.',/)
    END
```

```
C PrjCst.FOR
C modified by Toshiaki Hatakama in July, 1994.
C ROUTINE TO APPROXIMATE THE FIRST FOUR MOMENTS OF THE PROJECT
C COST AT THE MINIMUM ATTRACTIVE RATE OF RETURN (OR IN TOTAL
C DOLLARS WHEN THE MARR IS EQUAL TO ZERO).
```



```
    SUBROUTINE PRJCST (DR,
    + COST,
    + CORRC,
    + pCOST)
```


IMPLICIT REAL*4(A-H,O-Z)
INCLUDE 'DEBUG.CMN'
REAL* 4 COST (4, *), CORRC (NWP, *), PCOST (*)
REAL* 4 X (:,:), Z (:,:), TRI (:,:), COR (:,:), PD (:)
ALLOCATABLE $X, Z, T R I, C O R, P D$
CALL TRACE (2, 'PRJCST', 'starting.')
ALLOCATE (X (4, NWP))
ALLOCATE (Z (4, NWP))
ALLOCATE (TRI (NWP-2, NWP-2))
ALLOCATE (COR (NWP-2, NWP-2))
ALLOCATE (PD (NWP))
IF (DR /= 0.ODO) THEN
WRITE (7, 9901) DR
ELSE
WRITE (7, 9902)
ENDIF
WRITE (7, 9903)
DO $100 \mathrm{I}=1$, NWP
IF (COST (2, I) $==0.0 D 0$) THEN
SDWPC $=0.0 D 0$
$S K W P C=0.0 D 0$
AKWPC $=0.0 D 0$
ELSE
SDWPC $=\operatorname{COST}(2, I) * * 0.5 D 0$
$\operatorname{SKWPC}=\operatorname{COST}(3, I) /(\operatorname{COST}(2, I) * * 1.5 D 0)$
ASKP $=1.2 D 0 *$ (SKWPC ** 2) + 2.ODO
$\operatorname{AKWPC}=\operatorname{COST}(4, I) /(\operatorname{COST}(2, I) * * 2)$
IF (AKWPC .LT. ASKP) AKWPC = ASKP
ENDIF
100 WRITE (7, 9904) I, COST (1, I), SDWPC, SKWPC, AKWPC
C first four moments of the project cost at MARR

```
PCOST (1) = 0.ODO
PCOST (2) = O.ODO
PCOST (3) = O.ODO
```

$\operatorname{PCOST}(4)=0.0 \mathrm{DO}$

C all this segment is here for is to move the variables into a C slightly different place for the benefit of TANSP.... C TANSP needs to take an offset of some sort. later.

```
    DO 120 I = 2, (NWP - 1)
    K = I - I
    X (1, K) = CosT (1, I)
    X (2, K) = CosT (2, I)
    X (3, K) = CosT (3, I)
    X (4, K) = COST (4, I)
    IF (I < (NWP - 1)) THEN
        DO 110 J = (I + 1), (NWP - 1)
            L = J - 1
            TEMP = CORRC (I, J)
            COR (K, L) = TEMP
    110 COR (L, K) = TEMP
        ENDIF
    120 CONTINUE
```

C transform the correlated W. P costs to uncorrelated W.P costs
C hand TANSP another parameter, namely where to start work?
CALL TANSP ((NWP - 2),
$+\quad \mathbf{X}$,
+Z ,
+ COR,TRI)
IF ($0<I E R R$) GO TO 500
C first partial deravatives of the transformed w.p costs. second
C partial deravative is zero because the function is linear.
DO $150 \mathrm{I}=2$, (NWP - 1)
PD (I) $=0.0 \mathrm{DO}$
DO $150 \mathrm{~J}=2$, (NWP - 1)
150 PD (I) $=P D(I)+T R I(J-1, I-1)$
DO $200 \mathrm{I}=2$, (NWP - 1)
$\operatorname{PcosT}(1)=\operatorname{PCosT}(1)+P D(I) \quad * \mathrm{Z}(1, I-1)$
$\operatorname{PCOST}(2)=P \operatorname{COST}(2)+P D(I) * * 2 * Z(2, I-1)$
$\operatorname{PCOST}(3)=\operatorname{PCOST}(3)+P D(I) * * 3 * Z(3, I-1)$
FC $=0.0 \mathrm{DO}$
IF (I < (NWP - 1)) THEN
DO $180 \mathrm{~J}=(\mathrm{I}+1)$, (NWP - 1)
180
$F C=F C+6.0 D 0$ *
(PD (I) * PD (J)) ** 2 * $\mathbf{Z}(2, I-1) * Z(2, J-$
$\begin{array}{lr}+ & (P D \\ + & 1)\end{array}$
ENDIF
$200 \quad \mathrm{PCOST}(4)=P \operatorname{cosT}(4)+\mathrm{FC}+\mathrm{PD}(I) * * 4 * \mathrm{Z}(4, \mathrm{I}-1)$

C standard deviation, skewness and kurtosis of project cost

```
SDPC = PCOST (2) ** 0.5D0
SKPC = PCOST (3) / (PCOST (2) ** 1.5D0)
AKPC = PCOST (4) / (PCOST (2) ** 2)
```

```
Appendix D: Source Code of the Model
    IF (DR == 0.ODO) THEN
    WRITE (7, 9906)
    ELSE
    WRITE (7, 9905)DR
    ENDIF
    WRITE (7, 9907)
    WRITE (7, 9908) PCOST (1), SDPC, SKPC, AKPC
    CALL CDFUNC (PEARSN, PCOST (1), SDPC, SKPC, AKPC,
    + V1,V2,V3,V4,V5,V6,V7, V8, V9,V10,V11,V12,V13,V14,V15)
    WRITE (20, 9910)
    + v1,v2,V3,V4,v5,v6,v7, v8, v9,V10,v11,v12,v13,V14,V15
    500 CALL TRACE (2, 'PRJCST', 'exiting.')
    DEALLOCATE (X, Z, TRI, COR, PD)
    RETURN
```

```
9901 FORMAT (/,'WP Costs (Discount rate of ', F6.3, ')')
```

9901 FORMAT (/,'WP Costs (Discount rate of ', F6.3, ')')
9902 FORMAT (/,'WP Costs (Total Dollars)')
9902 FORMAT (/,'WP Costs (Total Dollars)')
9903 FORMAT ('W.P.\# Exp.Value====== S.Dev========== ',
9903 FORMAT ('W.P.\# Exp.Value====== S.Dev========== ',
+
+
'Skewness====== Kurtosis=======')
'Skewness====== Kurtosis=======')
9904 FORMAT (I4,6X,4F15.3)
9904 FORMAT (I4,6X,4F15.3)
9905 FORMAT (/,'The Project Cost (discount rate of Return
of',F6.3,')')
9906 FORMAT (/,'The Project Cost (Total Dollars)')
9907 FORMAT (' Exp.Value===== S.Dev========== ',
+ 'Skewness====== Kurtosis======')
9908 FORMAT (10X,4F15.3)
9910 FORMAT (' Project Cost export for EXCEL',
+ /,' ',F20.2,', 0.25',
+ /,' ',F20.2,', 0.50',
+ /,' ',F20.2,', 1.00',
+ /,'',F20.2,', 2.50',
+ /,' ',F20.2,', 5.00',
+ /,' ',F20.2,'.10.00',
+ /,' ',F20.2,',25.00',
+ /,' ',F20.2,',50.00',
+ /,' ',F20.2,',75.00',
+ /,' ',F20.2,',90.00',
+ /,' ',F20.2,',95.00',
+ /,' ',F20.2,',97.50',
+ /,' ',F20.2,',99.00',
+ /,' ',F20.2,',99.50',
+ /,' ',F20.2,',99.75')

```

END
```

C PrjRev.FOR
C modified by Toshiaki Hatakama in July, 1994.
C ROUTINE TO APPROXIMATE THE FIRST FOUR MOMENTS OF THE PROJECT
C REVENUE AT THE MINIMUM ATTRACTIVE RATE OF RETURN (OR IN TOTAL
C DOLLARS WHEN THE MARR IS EQUAL TO ZERO).

```

```

 SUBROUTINE PRJREV (DR,
 + REV,
 + CORRR,
 + PREV)
    ```

```

 IMPLICIT REAL*4 (A-H,O-Z)
 REAL*4 REV (4, *), PREV (4), CORRR (NRS, *)
 REAL*4 Z (:,:), TRI (:,:), PD (:)
 ALLOCATABLE Z, TRI, PD
 INCLUDE 'DEBUG.CMN'
 CALL TRACE (2, 'PRJREV', 'starting.')
 ALLOCATE (Z (4, NRS))
 ALLOCATE (TRI (NRS, NRS))
 ALLOCATE (PD (NRS))
 IF (DR == 0.ODO) THEN
 WRITE(7,9901)
 ELSE
 WRITE(7,9902)DR
 ENDIF
 WRITE(7,9903)
 DO 80 I = 1, NRS
 IF (REV (2, I) == O.ODO) THEN
 SDRVS = O.ODO
 SKRVS = O.ODO
 AKRVS = O.ODO
 ELSE
 SDRVS = REV (2, I) ** 0.5D0
 SKRVS = REV (3, I) / (REV (2, I) ** 1.5D0)
 ASKR = 1.2DO * (SKRVS ** 2) + 2.ODO
 AKRVS = REV (4, I) / (REV (2, I) ** 2)
 IF (AKRVS < ASKR) THEN
 AKRVS = ASKR
 ENDIF
 ENDIF
 80 WRITE (7, 9904) I, REV (1, I), SDRVS, SKRVS, AKRVS
 C first four moments of the project revenue at MARR

```
```

Appendix D: Source Code of the Model
PREV (1) = 0.0D0
PREV (2) = O.ODO
PREV (3) = O.ODO
PREV (4) = 0.ODO
C transform the correlated RVS to uncorrelated RVS
CALL TANSP (NRS,
+ REV,
+ Z,
+ CORRR,
+ TRI)
IF (IERR > 0) GO TO 500
C first partial derivatives of the transformed RVS.
C second partial derivatives are zero because the function is linear.
DO 150 I = 1, NRS
PD(I) = O.ODO
DO 150 J = 1, NRS
150 PD (I) = PD (I) + TRI (J, I)
DO 200 I = 1, NRS
PREV (1) = PREV (1) + PD (I) * Z (1, I)
PREV (2) = PREV (2) + PD (I) ** 2 * Z (2, I)
PREV (3) = PREV (3) + PD (I) ** 3 * Z (3, I)
FR = 0.0D0
IF (I < NRS) THEN
DO 180 J = I + 1, NRS
IF (NRS < J) THEN
PRINT *, 'why are we here...?'
PRINT *,
PRINT *,
ENDIF
FR = FR + 6.ODO * (PD (I) * PD(J)) ** 2 *
Z (2, I) * Z (2, J)
180 CONTINUE
ENDIF
200 PREV (4) = PREV (4) + FR + PD (I) ** 4 * Z (4, I)
C standard deviation, skewness and kurtosis of project revenue

```
```

SDPR = PREV (2) ** 0.5D0

```
SDPR = PREV (2) ** 0.5D0
SKPR = PREV (3) / (PREV (2) ** 1.5DO)
SKPR = PREV (3) / (PREV (2) ** 1.5DO)
AKPR = PREV (4) / (PREV (2) ** 2)
AKPR = PREV (4) / (PREV (2) ** 2)
IF (DR == 0.ODO) THEN
IF (DR == 0.ODO) THEN
        WRITE (7, 9905)
        WRITE (7, 9905)
ELSE
ELSE
    WRITE (7, 9906)DR
    WRITE (7, 9906)DR
ENDIF
ENDIF
WRITE (7, 9907)
WRITE (7, 9907)
WRITE (7, 9908) PREV(1), SDPR, SKPR, AKPR
WRITE (7, 9908) PREV(1), SDPR, SKPR, AKPR
CALL CDFUNC (PEARSN, PREV (1), SDPR, SKPR, AKPR,
+
+ V1,V2,V3,V4,V5,V6,V7, V8, V9,V10,V11,V12,V13,V14,V15)
```

```
        WRITE (20, 9910)
    + V1,V2,V3,V4,V5,V6,V7, V8, V9,V10,V11,V12,V13,V14,V15
500 DEALLOCATE (Z, TRI, PD)
    CALL TRACE (2, 'PRJREV', 'exiting.')
    RETURN
```

```
9901 FORMAT (/,'Net Revenue Streams in Total $s')
```

9901 FORMAT (/,'Net Revenue Streams in Total \$s')
9902 FORMAT (/,'Net Revenue Streams (Discount Rate',F6.3,')')
9902 FORMAT (/,'Net Revenue Streams (Discount Rate',F6.3,')')
9903 FORMAT ('RevStr\# Exp.Value====== S.Dev=========== ',
9903 FORMAT ('RevStr\# Exp.Value====== S.Dev=========== ',
+ 'Skewness====== Kurtosis======'')
+ 'Skewness====== Kurtosis======'')
9904 FORMAT (I4,6X,4F15.3)
9904 FORMAT (I4,6X,4F15.3)
9905 FORMAT (/,'The Project Revenue in Total Dollars')
9905 FORMAT (/,'The Project Revenue in Total Dollars')
9906 FORMAT (/,'The Project Revenue (Discount Rate',F6.3,')')
9906 FORMAT (/,'The Project Revenue (Discount Rate',F6.3,')')
9907 FORMAT (' Exp.Value===== S.Dev========== ',
9907 FORMAT (' Exp.Value===== S.Dev========== ',
+ 'Skewness====== Kurtosis======'')
+ 'Skewness====== Kurtosis======'')
9908 FORMAT (10X,4F15.3)
9908 FORMAT (10X,4F15.3)
9910 FORMAT (' Project Revenue export for EXCEL',
9910 FORMAT (' Project Revenue export for EXCEL',
+ /,' ',F20.2,', 0.25',
+ /,' ',F20.2,', 0.25',
+ /,' ',F20.2,', 0.50',
+ /,' ',F20.2,', 0.50',
+ /,' ',F20.2,', 1.00',
+ /,' ',F20.2,', 1.00',
+ /,' ',F20.2,', 2.50',
+ /,' ',F20.2,', 2.50',
+ /,' ',F20.2,', 5.00',
+ /,' ',F20.2,', 5.00',
+ /,' ',F20.2,',10.00',
+ /,' ',F20.2,',10.00',
+ /,' ',F20.2,',25.00',
+ /,' ',F20.2,',25.00',
+ /,' ',F20.2,',50.00',
+ /,' ',F20.2,',50.00',
+ /,' ',F20.2,',75.00',
+ /,' ',F20.2,',75.00',
+ /,' ',F20.2,',90.00',
+ /,' ',F20.2,',90.00',
+ /,' ',F20.2,',95.00',
+ /,' ',F20.2,',95.00',
+ /,' ',F20.2,',97.50',
+ /,' ',F20.2,',97.50',
+ /,' ',F20.2,',99.00',
+ /,' ',F20.2,',99.00',
+ /,' ',F20.2,',99.50',
+ /,' ',F20.2,',99.50',
+ /,' ',F20.2,',99.75')

```
    + /,' ',F20.2,',99.75')
```


END

```
C PrjNPV.FOR
C modified by Toshiaki Hatakama in July, 1994
C ROUTINE TO APPROXIMATE THE FIRST FOUR MOMENTS OF THE PROJECT
C NET PRESENT VALUE AT THE MINIMUM ATTRACTIVE RATE OF RETURN
C (OR IN TOTAL DOLLARS WHEN THE MARR IS EQUAL TO ZERO).
```



```
    SUBROUTINE PRJNPV (DR,
```

 SUBROUTINE PRJNPV (DR,
 + PCOST,
 + PCOST,
 + PREV)
    ```
    + PREV)
```


IMPLICIT REAL*4(A-H,O-Z)
REAL*4 PCOST(4), PREV(4), NPV (4)
C the first four moments of project net present value
CALL TRACE (2, 'PRJNPV', 'starting.')
NPV (1) = PREV (1) - PCOST (1)
NPV (2) $=\operatorname{PREV}(2)+\operatorname{PCOST}$ (2)
NPV (3) = PREV (3) - PCOST (3)
$\operatorname{NPV}(4)=\operatorname{PREV}(4)+\operatorname{PCOST}(4)+6.0 \mathrm{D} 0$ *PREV (2) * PCOST

C standard deviation, skewness and kurtosis of project NPV

```
    SDNPV = NPV (2) **0.5DO
```

 SKNPV \(=\mathrm{NPV}(3) /(\mathrm{NPV}(2) * * 1.5 \mathrm{D} 0)\)
 \(\mathrm{AKNPV}=\mathrm{NPV}(4) /(\mathrm{NPV}(2) \quad * * 2)\)
 WRITE (7, 9901) DR
 WRITE (7, 9902)
 WRITE (7, 9903) NPV (1), SDNPV, SKNPV, AKNPV
 CALL CDFUNC (PEARSN, NPV (1), SDNPV, SKNPV, AKNPV,
 \(+\quad \mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 4, \mathrm{~V} 5, \mathrm{~V} 6, \mathrm{~V} 7, \mathrm{~V} 8, \mathrm{~V} 9, \mathrm{~V} 10, \mathrm{~V} 11, \mathrm{~V} 12, \mathrm{~V} 13, \mathrm{~V} 14, \mathrm{~V} 15)\)
 WRITE (20, 9910)
 \(+\quad \mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 4, \mathrm{~V} 5, \mathrm{~V} 6, \mathrm{~V} 7, \mathrm{~V} 8, \mathrm{~V} 9, \mathrm{~V} 10, \mathrm{~V} 11, \mathrm{~V} 12, \mathrm{~V} 13, \mathrm{~V} 14, \mathrm{~V} 15\)
 CALL TRACE (2, 'PRJNPV', 'exiting.')
 RETURN
 9901 FORMAT (/,'The Project NPV at a Discount Rate of', F6.3)
 9902 FORMAT (' Exp.Value===== S.Dev========= ',
+ 'Skewness====== Kurtosis======1)
9903 FORMAT (10X,4F15.3)
9910 FORMAT (' Project Net Present Value export for EXCEL',
$+\quad /,^{\prime} 1, F 20.2,1,0.25^{\prime}$,
$+\quad /, 1, F 20.2,1,0.501$,
$+\quad /, ', \mathrm{~F} 20.2,1,1.00^{\prime}$,
$+\quad /, '$ 'F20.2,', 2.50',
$+\quad /{ }^{\prime} \quad 1, F 20.2, ', 5.00^{\prime}$,

| + | /,' ', F20.2, ', 10.00', |
| :---: | :---: |
| + | /,' ', F20.2,',25.00', |
| + | /,' ', F20.2,',50.00', |
| + | /,' ', F20.2,',75.00', |
| + | /,' ',F20.2,',90.00', |
| + | /,' ', F20.2,',95.00', |
| + | /,' ', F20.2,',97.50', |
| + | /,' ', F20.2,',99.00', |
| + | /,' ',F20.2,',99.50', |
| + | /,' ',F20.2,',99.75') |
| END | |

```
C PrjIrr.for
C modified by Toshiaki Hatakama in July, 1994.
C in order to calculate IRR, it is necessary to improve this
C subroutine, because, it takes too long.
C ROUTINE TO APPROXIMATE THE CUMULATIVE DISTRIBUTION FUNCTION
C AND THE FIRST FOUR MOMENTS OF PROJECT INTERNAL RATE OF RETURN.
```



```
    SUBROUTINE PRJIRR (PEARSN, FRA,
    + IWPC, NWPCF, NDVR,
    + CORRC, TRIWPC,
    + XUCOST, COST,
    + NRVSF, NDRV,
    + CORRR, TRIRVS,
    + XUREV, REV,
    + BOTTLE)
```



```
C if you have 16M RAM, chhose "enough" = 1.
C if not, choose any number but 1.
$DEFINE enough = 0
    IMPLICIT REAL*4(A-H,O-Z)
    INCLUDE 'DEBUG.CMN'
    PARAMETER (JSZ=50,ISZ=10)
    REAL*4 PEARSN (NPEARS, *)
    INTEGER IWPC (*), NWPCF (*), NDVR (*), NRVSF (*), NDRV (*)
    REAL*4 CORRC (NWP, *), TRIWPC (NWP, NWP, *)
    REAL*4 XUCOST (4, NWP, *), COST (4, *), CORRR (NRS, *)
$IF enough .EQ. 1
    REAL*4 TRIRVS (NRS, MAXDVR, *)
$ELSE
    REAL*4 TRIRVS (*)
$ENDIF
    REAL*4 XUREV (4, NRS, *), REV (4, *)
    REAL*4 BOTTLE (NRS, *)
    REAL*4 STFO
    REAL*4 X (:,:), Z (:,:), COR (:,:), TRI (:,:)
    ALLOCATABLE X, Z, COR, TRI
C correlation arrays, etc
    REAL*4 PDC(JSZ)
    REAL*4 PDR(300)
    REAL*4 PIRR(300)
```



```
Appendix D: Source Code of the Model
DRF2 = 0.0DO
DRG2 = 0.0D0
    DRM2 = 0.0DO
        DRT2 = 0.0D0
        DRU2 = 0.0DO
        DRV2 = 0.0DO
        DRW2 = 0.0D0
        DRX2 = 0.0D0
        DRY2 = O.ODO
    C the cycle to obtain the cumulative distribution function for
    C project internal rate of return at various Discount Rates
    C between 1% and 300%
        I = 1
    10 DR = FLOAT (I) / 100.0DO
        IF (300< I) GO TO 1200 ! give up.
    C call WPCMMT a number of times to generate the first four moments
    C of the work package costs
        NN = NWP - 1
    DO 30 J = 2, NN
        IF (1 < IWPC (J)) THEN
                CosT (1, J) = 0.0D0
                COST (2,J) = O.ODO
                CosT (3,J) = O.ODO
                COST (4,J) = O.ODO
            ELSE
                    CALL WPCMMT (J, DR, FRA,
                        NWPCF, NDVR,
                        XUCOST, TRIWPC,
                        COST, STFO)
                ENDIF
    30 CONTINUE
C first four moments of the project cost
```

```
APRC = 0.0DO
```

APRC = 0.0DO
SPRC = O.ODO
SPRC = O.ODO
TPRC = 0.ODO
TPRC = 0.ODO
FPRC = O.ODO
FPRC = O.ODO
NNVR = NWP-2
NNVR = NWP-2
NN = NWP-1
NN = NWP-1
ALLOCATE (COR (NNVR, NNVR))
ALLOCATE (COR (NNVR, NNVR))
DO 50 M = 2, NN
DO 50 M = 2, NN
K=M-1
K=M-1
X (1, K) = COST (1, M)
X (1, K) = COST (1, M)
X (2, K) = CosT (2, M)
X (2, K) = CosT (2, M)
X (3,K) = CosT (3, M)
X (3,K) = CosT (3, M)
X (4,K) = COST (4, M)
X (4,K) = COST (4, M)
JJ = M + 1

```
    JJ = M + 1
```

```
Appendix D: Source Code of the Model
            IF (JJ <= NN) THEN
            DO 40 J = JJ, NN
                L=J - 1
                TEMP = CORRC (M, J)
                COR (K, L) = TEMP
                COR (L, K) = TEMP
                        CONTINUE
            ENDIF
    CONTINUE
C transform the correlated W.P costs to uncorrelated W.P costs
            ALLOCATE (TRI (NNVR, NNVR))
            CALL TANSP (NNVR, X, Z, COR, TRI)
            IF (O < IERR) GO TO 1200
            DEALLOCATE (COR)
C first partial deravatives of the transformed w.p costs.
            DO 80 M = 2, NN
            PDC (M) = O.ODO
            DO 80 J = 2, NN
            80
                        PDC (M) = PDC (M) + TRI (J - 1, M - 1)
            DEALLOCATE (TRI)
        DO 110 M = 2, NN
            APRC = APRC + PDC (M) * Z (1, M - 1)
            SPRC = SPRC + PDC (M) ** 2 * Z (2,M - 1)
            TPRC = TPRC + PDC (M) ** 3 * Z (3, M - 1)
            FC=0.0DO
            JJ = M + I
            IF (NN >= JJ) THEN
                DO 100 J=JJ, NN
                    100 FC=FC + 6.0DO * (PDC (M) * PDC (J)) ** 2 *
            + Z (2,M - 1) * Z (2, J - 1)
            ENDIF
            FPRC = FPRC + FC + PDC(M) ** 4 * Z (4, M - 1)
                    110 CONTINUE
C first four moments of the net revenue streams
C this is where the major time is being spent...
C do we have to shake all the leaves?
C can we shake the whole tree at once?
    DO 140 J = 1, NRS
                STFO = O.ODO
                    140
                            CALL RVSMMT (J, DR, BOTTLE,
                                    NRVSF, NDRV,
                                    XUREV, TRIRVS,
                                    REV, STFO)
```

```
C first four moments of the project revenue
```

```
    APRR = 0.0DO
    SPRR = O.ODO
    TPRR = 0.0D0
    FPRR = 0.ODO
```

C transform the correlated RVS to uncorrelated RVS.
ALLOCATE (TRI (NRS, NRS))
CALL TANSP (NRS,
+ REV,
$+\quad \mathrm{Z}$,
+ CORRR,
$+\quad$ TRI)
IF (0 < IERR) GO TO 1200
DO $150 \mathrm{M}=1$, NRS
$\operatorname{PDR}(\mathrm{M})=0.0 \mathrm{DO}$
DO $150 \mathrm{~J}=1$, NRS
150 PDR (M) = PDR (M) +TRI (J, M)
DEALLOCATE (TRI)
DO $200 \mathrm{M}=1$, NRS
$A P R R=A P R R+P D R(M) \quad * Z(1, M)$
$S P R R=S P R R+P D R(M) * * 2 * Z(2, M)$
$T P R R=T P R R+P D R(M) * * 3 * Z(3, M)$
$\mathrm{FR}=0.0 \mathrm{DO}$
$\mathbf{J J}=\mathbf{M}+1$
IF (JJ <= NRS) THEN
DO $180 \mathrm{~J}=\mathrm{JJ}, \mathrm{NRS}$
$180 \quad \mathrm{FR}=\mathrm{FR}+6.0 \mathrm{D} 0$ * (PDR (M) * PDR (J)) ** 2 *
$Z(2, M) * Z(2, J)$
ENDIF
$200 \quad F P R R=F P R R+F R+P D R(M) * * 4 * Z(4, M)$
C first four moments of project net present value
$A N P V=A P R R-A P R C$
$S N P V=S P R R+S P R C$
TNPV = TPRR - TPRC
$F N P V=F P R R+F P R C+6 . O D O * S P R R * S P R C$
C standard deviation, skewness and kurtosis of project NPV
SDNPV = SNPV ** 0.5D0
SKNPV = TNPV / (SNPV ** 1.5DO)

```
Appendix D: Source Code of the Model
            AKNPV = FNPV / (SNPV ** 2)
C values of the cumulative distribution function approximated
C for the net present value of the project
CALL CDFUNC (PEARSN,
+ ANPV,SDNPV,SKNPV,AKNPV,
+ VA,VB,VC,VD,VE,VF,VG,
+ VM,
+ VT,VU,VV,VW,VX,VY,VZ)
C probability of NPV = O at this discount rate
    IF (I == I) THEN
        VA1 = VA
        ENDIF
        IF (0.0D0 <= VA1) GO TO 205
        IF (0 < KM) GO TO 205
        KM = 1
    205 IF ( O.ODO < VA) GO TO 490
    IF (VA < O.ODO .AND. O.ODO <= VB) GO TO 210
    IF (VB < O.ODO .AND. O.ODO<= VC) GO TO 230
    IF (VC < O.ODO .AND. O.ODO <= VD) GO TO 250
IF (VD < O.ODO .AND. O.ODO <= VE) GO TO 270
IF (VE < O.ODO .AND. O.ODO <= VF) GO TO 290
IF (VF < O.ODO .AND. O.ODO<= VG) GO TO 310
    IF (VG < O.ODO .AND. O.ODO <= VM) GO TO 330
    IF (VM < O.ODO .AND. O.ODO <= VT) GO TO 350
    IF (VT < O.ODO .AND. O.ODO <= VU) GO TO 370
    IF (VU < O.ODO .AND. O.ODO <= VV) GO TO 390
IF (VV < O.ODO .AND. O.ODO <= VW) GO TO 410
IF (VW < O.ODO .AND. O.ODO <= VX) GO TO 430
IF (VX < O.ODO .AND. O.ODO <= VY) GO TO 450
IF (VY < O.ODO .AND. O.ODO <= VZ) GO TO 470
IF (VZ < O.ODO) GO TO 500
210 KM = I
PIRR (I) = 0.0025D0 + ((0.0D0-VA)*0.0025D0/(VB-VA))
PRB1 = PIRR(I)
DRB1 = FLOAT(I) / 100.0D0
GO TO 490
```

PIRR(I) = 0.0050D0 + ((0.0D0-VB)*0.0050D0/(VC-VB))

```
PIRR(I) = 0.0050D0 + ((0.0D0-VB)*0.0050D0/(VC-VB))
    IF (PRB2.GT.O.ODO) GO TO 240
    IF (PRB2.GT.O.ODO) GO TO 240
    PRB2 = PIRR(I)
    PRB2 = PIRR(I)
    DRB2 = FLOAT(I) / 100.0D0
```

 DRB2 = FLOAT(I) / 100.0D0
    ```
```

240 PRC1 = PIRR(I)
DRC1 = FLOAT(I) / 100.0D0
IF (PRB2.LE.PIRR(I)) GO TO 490
PRB2 = PIRR(I)
DRB2 = FLOAT(I) / 100.ODO
GO TO 490
250 PIRR(I) = 0.0100D0 + ((0.0D0-VC)*0.0150D0/(VD-VC))
IF (PRC2.GT.O.ODO) GO TO 260
PRC2 = PIRR(I)
DRC2 = FLOAT(I) / 100.ODO
260 PRD1 = PIRR(I)
DRD1 = FLOAT(I) / 100.0DO
IF (PRC2.LE.PIRR(I)) GO TO 490
PRC2 = PIRR(I)
DRC2 = FLOAT(I) / 100.0DO
GO TO 490
270 PIRR(I) = 0.0250DO + ((0.0DO-VD)*0.0250D0/(VE-VD))
IF (PRD2.GT.O.ODO) GO TO 280
PRD2 = PIRR(I)
DRD2 = FLOAT(I) / 100.0DO
280 PRE1 = PIRR(I)
DRE1 = FLOAT(I) / 100.0DO
IF (PRD2.LE.PIRR(I)) GO TO 490
PRD2 = PIRR(I)
DRD2 = FLOAT(I) / 100.0DO
GO TO 490
290 PIRR(I) = 0.0500D0 + ((0.0D0-VE)*0.0500D0/(VF-VE))
IF (PRE2.GT.O.ODO) GO TO 300
PRE2 = PIRR(I)
DRE2 = FLOAT(I) / 100.0DO
PRF1 = PIRR(I)
DRF1 = FLOAT(I) / 100.0DO
IF (PRE2.LE.PIRR(I)) GO TO 490
PRE2 = PIRR(I)
DRE2 = FLOAT(I) / 100.ODO
GO TO 490
310 PIRR(I) = 0.1000D0 + ((0.0D0-VF)*0.1500D0/(VG-VF))
IF (PRF2.GT.O.ODO) GO TO 320
PRF2 = PIRR(I)
DRF2 = FLOAT(I) / 100.0DO
PRG1 = PIRR(I)
DRG1 = FLOAT(I) / 100.0D0
IF (PRF2.LE.PIRR(I)) GO TO 490
PRF2 = PIRR(I)
DRF2 = FLOAT(I) / 100.0DO
GO TO 490
330 PIRR(I) = 0.2500D0 + ((0.0D0-VG)*0.2500D0/(VM-VG))
IF (PRG2.GT.O.ODO) GO TO 340
PRG2 = PIRR(I)
DRG2 = FLOAT(I) / 100.0D0
PRM1 = PIRR(I)
DRM1 = FLOAT(I) / 100.0DO

```
```

Appendix D: Source Code of the Model
IF (PRG2.LE.PIRR(I)) GO TO 490
PRG2 = PIRR(I)
DRG2 = FLOAT(I) / 100.0D0
GO TO 490
350 PIRR(I) = 0.5000D0 + ((0.0D0-VM)*0.2500D0/(VT-VM))
IF (PRM2.GT.O.ODO) GO TO 360
PRM2 = PIRR(I)
DRM2 = FLOAT(I) / 100.0D0
PRT1 = PIRR(I)
DRT1 = FLOAT(I) / 100.0DO
IF (PRM2.LE.PIRR(I)) GO TO 490
PRM2 = PIRR(I)
DRM2 = FLOAT(I) / 100.0DO
GO TO 490
PIRR(I) = 0.7500D0 + ((0.0D0-VT)*0.1500D0/(VU-VT))
IF (PRT2.GT.O.ODO) GO TO 380
PRT2 = PIRR(I)
DRT2 = FLOAT(I) / 100.ODO
PRU1 = PIRR(I)
DRU1 = FLOAT(I) / 100.0DO
IF (PRT2.LE.PIRR(I)) GO TO 490
PRT2 = PIRR(I)
DRT2 = FLOAT(I) / 100.0DO
GO TO 490
390 PIRR(I) = 0.9000D0 + ((0.0D0-VU)*0.0500D0/(VV-VU))
IF (PRU2.GT.O.ODO) GO TO 400
PRU2 = PIRR(I)
DRU2 = FLOAT(I) / 100.0D0
400 PRV1 = PIRR(I)
DRV1 = FLOAT(I) / 100.0D0
IF (PRU2.LE.PIRR(I)) GO TO 490
PRU2 = PIRR(I)
DRU2 = FLOAT(I) / 100.0DO
GO TO 490
410 PIRR(I) = 0.9500D0 + ((0.0D0-VV)*0.0250D0/(VW-VV))
IF (PRV2.GT.O.ODO) GO TO 420
PRV2 = PIRR(I)
DRV2 = FLOAT(I) / 100.ODO
PRW1 = PIRR(I)
DRW1 = FLOAT(I) / 100.0D0
IF (PRV2.LE.PIRR(I)) GO TO 490
PRV2 = PIRR(I)
DRV2 = FLOAT(I) / 100.0DO
GO TO 490
430 PIRR(I) = 0.9750DO + ((0.0DO-VW)*0.0150D0/(VX-VW))
IF (PRW2.GT.O.ODO) GO TO 440
PRW2 = PIRR(I)
DRW2 = FLOAT(I) / 100.0DO
PRX1 = PIRR(I)
DRX1 = FLOAT(I) / 100.0DO
IF (PRW2.LE.PIRR(I)) GO TO 490
PRW2 = PIRR(I)

```
```

Appendix D: Source Code of the Model
DRW2 = FLOAT(I) / 100.0DO
GO TO 490
450 PIRR(I) = 0.9900D0 + ((0.0D0-VX)*0.0050D0/(VY-VX))
IF (PRX2.GT.O.ODO) GO TO 460
PRX2 = PIRR(I)
DRX2 = FLOAT(I) / 100.0D0
PRY1 = PIRR(I)
DRYI = FLOAT(I) / 100.0DO
IF (PRX2.LE.PIRR(I)) GO TO 490
PRX2 = PIRR(I)
DRX2 = FLOAT(I) / 100.0D0
GO TO 490
470 PIRR(I) = 0.9950D0 + ((0.0D0-VY)*0.0025D0/(VZ-VY))
IF (PRY2.GT.O.ODO) GO TO 480
PRY2 = PIRR(I)
DRY2 = FLOAT(I) / 100.ODO
480 IF (PRY2.LE.PIRR(I)) GO TO 490
PRY2 = PIRR(I)
DRY2 = FLOAT(I) / 100.0D0
490 I = I+1
GO TO 10
C we're done, and we have the desired value of IRR...
500 CONTINUE
PRINT*,'after line 500'
C the fractile estimates (0.01, 0.025, 0.05, 0.10, 0.25, 0.5,
C 0.75, 0.90, 0.95, 0.975 \& 0.99) to approximate the expected
C value and standard deviation of the internal rate of return
C using the approximations given by E.S.PEARSON AND J.W.TUKEY
C and to plot the cumulative distribution function.
C the 0.005 fractile estimate for internal rate of return
IF (PRB1.EQ.O.ODO.AND.PRB2.EQ.O.ODO) GO TO 510
IF (DRB1.GT.O.ODO) GO TO 505
DIRB = DRB2
GO TO 515
505 DIRB = DRB1 + ((0.005D0-PRB1) * (DRB2-DRB1) / (PRB2-PRB1))
GO TO 515
510 DIRB = 0.0D0
C the 0.01 fractile estimate for internal rate of return
515 IF (PRC1.EQ.O.ODO.AND.PRC2.EQ.O.ODO) GO TO 525
IF (DRC1.GT.O.ODO) GO TO 520
DIRC = DRC2
GO TO 530
DIRC = DRC1 + ((0.01D0-PRC1) * (DRC2-DRC1) / (PRC2-PRC1))

```
```

Appendix D: Source Code of the Model
GO TO 530
525 DIRC = 0.0D0
C the 0.025 fractile estimate for internal rate of return
530 IF (PRD1.EQ.O.ODO.AND.PRD2.EQ.O.ODO) GO TO 550
IF (DRD1.GT.0.ODO) GO TO 540
DIRD = DRD2
GO TO 560
540 DIRD = DRD1 + ((0.025D0-PRD1) * (DRD2-DRD1) / (PRD2-PRD1))
GO TO 560
550 DIRD = 0.0DO
C the 0.05 fractile estimate for internal rate of return
560 IF (PRE1.EQ.O.ODO.AND.PRE2.EQ.O.ODO) GO TO 580
IF (DRE1.GT.O.ODO) GO TO 570
DIRE = DRE2
GO TO 590
570 DIRE = DRE1 + ((0.05D0-PRE1) * (DRE2-DRE1) / (PRE2-PRE1))
GO TO 590
580 DIRE = O.ODO
C the 0.10 fractile estimate for internal rate of return
590 IF (PRF1.EQ.O.ODO.AND.PRF2.EQ.O.ODO) GO TO 610
IF (DRF1.GT.O.ODO) GO TO 600
DIRF = DRF2
GO TO 620
600 DIRF = DRF1 + ((0.10D0-PRF1) * (DRF2-DRF1) / (PRF2-PRF1))
GO TO 620
610 DIRF = 0.0D0
C the 0.25 fractile estimate for internal rate of return
620 IF (PRG1.EQ.O.ODO.AND.PRG2.EQ.O.ODO) GO TO 640
IF (DRG1.GT.O.ODO) GO TO 630
DIRG = DRG2
GO TO 650
630 DIRG = DRG1 + ((0.25DO-PRG1) * (DRG2-DRG1) / (PRG2-PRG1))
GO TO 650
640 DIRG = 0.0DO
C the 0.50 fractile estimate for internal rate of return
650 IF (PRM1.EQ.O.ODO.AND.PRM2.EQ.O.ODO) GO TO 670
IF (DRMI.GT.O.ODO) GO TO 660
DIRM = DRM2
GO TO 680
660 DIRM = DRM1 + ((0.50D0-PRM1) * (DRM2-DRM1) / (PRM2-PRM1))
GO TO 680
670 DIRM = O.ODO
C the 0.75 fractile estimate for internal rate of return
680 IF (PRT1.EQ.O.ODO.AND.PRT2.EQ.O.ODO) GO TO 700
IF (DRT1.GT.O.ODO) GO TO 690

```
```

Appendix D: Source Code of the Model
DIRT = DRT2
GO TO }71
690 DIRT = DRT1 + ((0.75D0-PRT1) * (DRT2-DRT1) / (PRT2-PRT1))
GO TO 710
700 DIRT = 0.ODO
C the 0.90 fractile estimate for internal rate of return
710 IF (PRU1.EQ.O.ODO.AND.PRU2.EQ.O.ODO) GO TO 730
IF (DRU1.GT.O.0DO) GO TO 720
DIRU = DRU2
GO TO 740
720 DIRU = DRU1 + ((0.90D0-PRU1) * (DRU2-DRU1) / (PRU2-PRU1))
GO TO 740
730 DIRU = O.ODO
C the 0.95 fractile estimate for internal rate of return
740 IF (PRV1.EQ.O.ODO.AND.PRV2.EQ.O.ODO) GO TO 760
IF (DRV1.GT.O.ODO) GO TO 750
DIRV = DRV2
GO TO 770
750 DIRV = DRV1 + ((0.95D0-PRV1) * (DRV2-DRV1) / (PRV2-PRV1))
GO TO 770
760 DIRV = O.ODO
C the 0.975 fractile estimate for internal rate of return
770 IF (PRW1.EQ.O.ODO.AND.PRW2.EQ.O.ODO) GO TO 790
IF (DRW1.GT.O.ODO) GO TO 780
DIRW = DRW2
GO TO 800
780 DIRW = DRW1 + ((0.975D0-PRW1) * (DRW2-DRW1) / (PRW2-PRW1))
GO TO 800
790 DIRW = 0.0D0
C the 0.99 fractile estimate for internal rate of return
800 IF (PRX1.EQ.O.ODO.AND.PRX2.EQ.O.ODO) GO TO 810
IF (DRX1.GT.O.ODO) GO TO 805
DIRX = DRX2
GO TO 815
805 DIRX = DRX1 + ((0.99D0-PRX1) * (DRX2-DRX1) / (PRX2-PRX1))
GO TO 815
810 DIRX = 0.0D0
815 IF (PRY1.EQ.O.ODO.AND.PRY2.EQ.O.ODO) GO TO 825
IF (DRY1.GT.O.ODO) GO TO 820
DIRY = DRY2
GO TO 830
820 DIRY = DRY1 + ((0.995D0-PRY1) * (DRY2-DRY1) / (PRY2-PRY1))
GO TO 830
825 DIRY = 0.0D0

```
    PRINT*,'cheking point A'
```

C check the fractile estimates
830 IF (DIRB.LT.DIRC.AND.DIRC.LT.DIRD) GO TO 835
IF (DIRB.GT.DIRD) GO TO 835
DIRC = DIRB + ((0.01D0-0.005D0)*(DIRD-DIRB)/(0.025D0-
0.00500))
835 IF (DIRC.LT.DIRD.AND.DIRD.LT.DIRE) GO TO 840
IF (DIRC.GT.DIRE) GO TO 840
DIRD = DIRC + ((0.025D0-0.01D0)*(DIRE-DIRC)/(0.05D0-0.01D0))
840 IF (DIRD.LT.DIRE.AND.DIRE.LT.DIRF) GO TO 845
IF (DIRD.GT.DIRF) GO TO 845
DIRE = DIRD + ((0.05D0-0.025D0)*(DIRF-DIRD)/(0.1D0-0.025D0))
845 IF (DIRE.LT.DIRF.AND.DIRF.LT.DIRG) GO TO 850
IF (DIRE.GT.DIRG) GO TO 850
DIRF = DIRE + ((0.1D0-0.05D0)*(DIRG-DIRE)/(0.25D0-0.05D0))
850 IF (DIRF.LT.DIRG.AND.DIRG.LT.DIRM) GO TO 855
IF (DIRF.GT.DIRM) GO TO 855
DIRG = DIRF + ((0.25D0-0.1D0)*(DIRM-DIRF)/(0.5D0-0.1D0))
855 IF (DIRG.LT.DIRM.AND.DIRM.LT.DIRT) GO TO 860
IF (DIRG.GT.DIRT) GO TO 860
DIRM = DIRG + ((0.5D0-0.25D0)*(DIRT-DIRG)/(0.75D0-0.25D0))
860 IF (DIRM.LT.DIRT.AND.DIRT.LT.DIRU) GO TO 865
IF (DIRM.GT.DIRU) GO TO 865
DIRT = DIRM + ((0.75D0-0.5D0)*(DIRU-DIRM)/(0.9D0-0.5D0))
865 IF (DIRT.LT.DIRU.AND.DIRU.LT.DIRV) GO TO 870
IF (DIRT.GT.DIRV) GO TO 870
DIRU = DIRT + ((0.9D0-0.75D0)*(DIRV-DIRT)/(0.95D0-0.75D0))
870 IF (DIRU.LT.DIRV.AND.DIRV.LT.DIRW) GO TO 875
IF (DIRU.GT.DIRW) GO TO 875
DIRV = DIRU + ((0.95D0-0.9D0)*(DIRW-DIRU)/(0.975D0-0.9D0))
875 IF (DIRV.LT.DIRW.AND.DIRW.LT.DIRX) GO TO 880
IF (DIRV.GT.DIRX) GO TO 880
DIRW = DIRV + ((0.975D0-0.95D0)*(DIRX-DIRV)/(0.99D0-0.95D0))
880 IF (DIRW.LT.DIRX.AND.DIRX.LT.DIRY) GO TO 900
IF (DIRW.GT.DIRY) GO TO 900
DIRX = DIRW + ((0.99D0-0.975D0)*(DIRY-DIRW)/(0.995D0-
0.975D0))
C the expected value of internal rate of return
900 DELT = DIRV + DIRE - (2.0DO * DIRM)
AIRT = DIRM + (0.185DO * DELT)
AIRR = AIRT * 100.0D0
PRINT*,'just after line 900'

```

C the standard deviation of internal rate of return
```

 IF (DIRV <= DIRE) GO TO 950
 SIG1 = (DIRV - DIRE) / 3.25DO
 SIR1 = 3.29D0 - (0.100D0 * (DELT/SIG1)**2)
 IF (SIR1 <= 3.08DO) GO TO 910
 SIGM1 = (DIRV - DIRE) / SIR1
 GO TO 920
 910 SIGM1 = (DIRV - DIRE) / 3.08D0
920 SIRR = SIGM1 * 100.0D0
GO TO 960
950 SIRR = 0.0D0
960 WRITE (7,970)
970 FORMAT (/,'The Internal Rate of Return for the Project (%)')
WRITE (7,980)
980 FORMAT (' Exp.Value====== S.Dev==========='')
WRITE (7,990) AIRR,SIRR
990 FORMAT (10X,2F15.3)
DIRD = DIRD * 100.0D0
DIRE = DIRE * 100.0D0
DIRF = DIRF * 100.0D0
DIRG = DIRG * 100.0D0
DIRM = DIRM * 100.0DO
DIRT = DIRT * 100.0DO
DIRU = DIRU * 100.0DO
DIRV = DIRV * 100.0D0
DIRW = DIRW * 100.0D0
WRITE (7, 1100)
1100 FORMAT (/,'Probable IRRs')
WRITE (7, 1101) ' 2.5', DIRD
WRITE (7, 1101) ' 5.0', DIRE
WRITE (7, 1101) '10.0', DIRF
WRITE (7, 1101) '25.0', DIRG
WRITE (7, 1101) '50.0', DIRM
WRITE (7, 1101) '75.0', DIRT
WRITE (7, 1101) '90.0', DIRU
WRITE (7, 1101) '95.0', DIRV
WRITE (7, 1101) '97.5', DIRW
1101 FORMAT (A4,'% = ', F15.2)
WRITE (20, 9910)
+ DIRD,DIRE,DIRF,DIRG,DIRM,DIRT,DIRU,DIRV,DIRW
PRINT*,'DIRD,DIRE,DIRF,DIRG,DIRM,DIRT,DIRU,DIRV,DIRW',
+ DIRD,DIRE,DIRF,DIRG,DIRM,DIRT,DIRU,DIRV,DIRW
9910 FORMAT (' Project IRR export for EXCEL',
+ /,' 1,F20.2,', 2.50',
+ /,' ',F20.2,', 5.00',

```
```

Appendix D: Source Code of the Model

+	/, ' 'F20.2,1,10.00
+	/,' ', F20.2, ', 25.00',
+	/,' ', F20.2,',50.00',
+	/,' ', F20.2,',75.00'
+	/,' ',F20.2, ${ }^{\prime}$,90.00'
+	/,' ', F20.2,',95.00'
+	/,' ',F20.2,',97.50'

```
```

1200 DEALLOCATE (x, Z)
CALL TRACE (2, 'PRJIRR', 'exiting.')
RETURN
END

```
```

C Varble.fOR
C modified by Toshiaki Hatakama in July, 1994.
C ROUTINE TO APPROXIMATE A VARIABLE TO A PEARSON TYPE
C DISTRIBUTION USING FIVE PERCENTILE ESTIMATES.
C PEARSN is the pearson table
C EST 1 thru 5 are the 5%ile estimates
C CALC 1 thru 4 are the result calculus entries
C this requires 2.5, 5.0, 50.0, 95.0, and 97.5 percentiles.

```


```

 SUBROUTINE VARBLE (PEARSN,
    ```
    SUBROUTINE VARBLE (PEARSN,
    + EST05, EST25, EST50, EST75, EST95,
    + EST05, EST25, EST50, EST75, EST95,
    + CALC1, CALC2, CALC3, CALC4)
```

 + CALC1, CALC2, CALC3, CALC4)
    ```

```

 IMPLICIT REAL*4(A-H,O-Z)
 INCLUDE 'DEBUG.CMN'
 REAL*4 PEARSN (NPEARS, *)
 REAL*4 SIGM1(600), SIGM2(600)
 DEL = EST75 + EST25 - 2.ODO * EST50
 CALC1 = EST50 + 0.185DO * DEL
 SIG1 = (EST75 - EST25) / 3.25D0
 SIG2 = (EST95 - EST05) / 3.92D0
 IF (SIG1 .EQ. O.ODO .AND. SIG2 .EQ. O.ODO) THEN
 CALC1 = EST50
 CALC2 = 0.0D0
 CALC3 = 0.0D0
 CALC4 = 0.0DO
 GOTO 9999
 ENDIF
 SIGM1(1) = 0.ODO
 SIGM2(1) = 0.0D0
 K = 2
 SIGM1(K)=SIG1
 50 IF (590<K) GO TO 700
 XSIGM1 = SIGM1(K) - SIGM1(K-1)
 XCHEK1 = SIGM1(K-1) * 0.0001D0
 IF (DABS (XSIGM1) < DABS (XCHEK1)) GO TO 70
 K=K + I
 S1 = 3.29D0 - 0.100D0 * (DEL/SIGM1 (K-1))**2
    ```
```

 IF (3.08D0 < S1) THEN
 SIGM1(K) = (EST75 - EST25) / S1
 ELSE
 SIGM1(K) = (EST75 - EST25) / 3.08D0
 END IF
 GOTO 50
 70 CONTINUE
 C
C approximated standard deviation from 5% and 95% estimates
C
ASIGM1 = SIGM1(K)
K=2
SIGM2(K) = SIG2
80 IF (590< K) GO TO 700
XSIGM2 = SIGM2(K) - SIGM2(K-1)
XCHEK2 = SIGM2(K-1) * 0.0001D0
IF (DABS (XSIGM2) < DABS (XCHEK2)) GO TO 100
K=K+1
S2 = 3.98D0 - 0.138D0 * (DEL/SIGM2(K-1))**2
IF (3.66DO < S2) THEN
SIGM2(K) = (EST95 - EST05) / S2
ELSE
SIGM2(K) = (EST95 - EST05) / 3.66D0
END IF
GOTO 80
100 CONTINUE
ASIGM2 = SIGM2(K)
IF (ASIGM1 < ASIGM2) GO TO 110
SIGMAD = ASIGM1
GO TO 120
110 SIGMAD = ASIGM2
120 CALC2 = SIGMAD ** 2
XA = (EST05 - CALC1) / SIGMAD
XB = (EST25 - CALC1) / SIGMAD
XC = (EST50 - CALC1) / SIGMAD
XD = (EST75 - CALC1) / SIGMAD
XE = (EST95 - CALC1) / SIGMAD
C Select best fit distribution
C compare standardised values to those of the pearson table
C to obtain the skewness and the kurtosis from an approximated
C pearson type distribution

```
\[
x X=10.0
\]
```

C NP = 0

```
        DO \(150 \mathrm{~K}=1,2655\)
        SUMSQ \(=(\) PEARSN (K, 4) - XA ) ** 2 +
        (PEARSN (K, 5) - XB ) ** 2 +
        (PEARSN (K, 8) - XC ) ** \(2+\)
        (PEARSN (K,11) - XD ) ** 2 +
                                (PEARSN (K,12) - XE) ** 2
\(C\) if the square root of the sum of squared deviations is bigger than
10,
\(C\) or what we've seen previousely, don't save 'em.
        IF (SUMSQ < XX) THEN
            \(\mathbf{X X} \quad=\) SUMSQ
C
                \(\mathrm{NP} \quad=\mathrm{K}\)
                    BET1 = PEARSN (K, 16)
                    BET2 2 PEARSN ( \(\mathrm{K}, 17\) )
        ENDIF
    150 CONTINUE
    C IF (0.01DO < XX) GO TO 700
    C 2.5\% and 97.5\% estimates
    CALC3 = BET1 * CALC2 ** 1.5
    CALC4 \(=\) BET2 * CALC2 ** 2
9999 RETURN
700 IERR = 1
    GOTO 9999
    END
```

C Trans.FOR
C modified by Toshiaki Hatakama in July, 1994.
C ROUTINE TO TRANSFORM A SET OF CORRELATED VARIABLES TO A SET OF
C UNCORRELATED VARIABLES USING THE CORRELATION MATRIX. THE
C APPROACH IS REFFERED TO AS THE VARIABLE TRANSFORMATION METHOD.
C THE FIRST FOUR MOMENTS OF THE TRANSFORMED VARIABLES ARE
C EVALUATED FROM THE FIRST FOUR MOMENTS OF THE PRIMARY VARIABLES
C calls INV, DECOMP, DGMULT

```

```

 SUBROUTINE TRANS (I, NM, NSIZE1, NSIZE2, CALC1, CALC2, COR,
 +
 TRI)
    ```

```

 IMPLICIT REAL*4 (A-H,O-Z)
 INCLUDE 'DEBUG.CMN'
 REAL*4 CALCI (4, NSIZE1, *)
 REAL*4 CALC2 (4, NSIZE1, *)
 REAL*4 COR (NSIZE1, NSIZE2, *)
 REAL*4 TRI (NSIZE2, *)
 INTEGER IPERM (:)
 ALLOCATABLE IPERM
 REAL*4 SCOR (:)
 REAL*4 ADIG (:,:), ADIGI (:,:), TR (:,:), CORR (:)
 REAL*4 CORRL (:,:), CORLI (:,:)
 ALLOCATABLE SCOR, ADIG, ADIGI, TR, CORR, CORRL, CORLI
 CALL TRACE (3, 'TRANS', 'starting.')
 ALLOCATE (IPERM (NM))
 ALLOCATE (SCOR (NM))
 ALLOCATE (ADIG (NM, NM))
 ALLOCATE (ADIGI (NM, NM))
 ALLOCATE (TR (NM, NM))
 ALLOCATE (CORR (NM * NM))
 ALLOCATE (CORRL (NM, NM))
ALLOCATE (CORLI (NM, NM))
DRATIO = 1.OD-7
C diagonal matrix of the standard deviations
DO 20 J=1,NM
DO 20 K=1,NM
IF (J == K) THEN
ADIG(J,K)= CALCI(2,I,J)**0.5D0
ELSE
ADIG(J,K) = 0.ODO
ENDIF

```
```

Appendix D: Source Code of the Model
20 CONTINUE
C correlation matrix as a l-D array for Cholesky decomposition
LLN = NM - 1
DO 100 J=1,NM
DO 90 K=1,NM
L = (LLN * K) + J = LLN
IF (J < K) THEN
CORR (L) = COR(I,K,J)
ELSE IF (J == K) THEN
CORR (L) = 1.ODO
ELSE
CORR (L) = O.ODO
ENDIF
CONTINUE
CONTINUE
C the inverse of the diagonal matrix of standard deviations
CALL INV (NM, NM, ADIG, IPERM, NM, ADIGI, DDET, JEXP, DCOND)
IF (DDET == 0) THEN
WRITE (7, 9901) I
GO TO 9999
ENDIF
CALL DECOMP (CORR, NM, NM, DRATIO)
IF (DRATIO <= O.ODO) THEN
WRITE (7, 9902) I
GO TO 9999
ENDIF
C the lower traingular matrix from the Cholesky decomposition
DO 200 J=1,NM
DO 190 K=1,NM
IF (J < K) GO TO 180
L = (LLN*K) + J - LLN
CORRL(J,K) = CORR(L)
GO TO 190
180 CORRL (J,K) = O.ODO
190 CONTINUE
200 CONTINUE
C the inverse of the lower triangular matrix from C.D
CALL INV (NM, NM, CORRL, IPERM, NM, CORLI, DDET,JEXP,DCOND)
IF (DDET == 0) THEN
WRITE(7,9903)I
GO TO 9999
ENDIF

```
```

C the transformation matrix

```
    CALL DGMULT (CORLI, ADIGI, TR, NM, NM, NM)
C the inverse of the transformation matrix
C NSIZE2 had better darn well be larger than NM
    CALL INV (NM, NM, TR, IPERM, NSIZE2, TRI, DDET, JEXP, DCOND)
    IF (DDET \(=0\) ) THEN
        WRITE (7, 9904) I
        GO TO 9999
    ENDIF
C MOMENTS OF THE TRANSFORMED UNCORRELATED VARIABLES
C \(\mathrm{z}=\mathrm{CALC1}(1\),
C Z : TRANSFORMED VARIABLES
C \(X\) : CORRELATED VARIABLES
C A : THE TRANSFORMATION MATRIX
C CALC2 (1 : EXPECTED VALUE OF tHE TRANSFORMED VARIABLES
    DO \(340 \mathrm{~J}=1\), NM
        CALC2 (1,I, J) \(=0.0 \mathrm{D} 0\)
        DO \(340 \mathrm{~K}=1\), NM
    340
        \(\operatorname{CALC} 2(1, I, J)=\operatorname{CALC} 2(1, I, J)+\operatorname{TR}(J, K) * \operatorname{CALC1}(1, I, K)\)
C CALC2 (2, : SECOND CENTRAL MOMENT OF THE TRANSFORMED VARIABLES
    DO \(401 \mathrm{~J}=1\), NM
        \(\operatorname{SCOR}(J)=0.0 D 0\)
        DO \(401 \mathrm{~K}=1\), NM-1
            \(T E M P=T R(J, K)\)
            IF (TEMP .NE. O.ODO) THEN
                DO \(400 \mathrm{~L}=\mathrm{K}+1\), NM
    \(400 \operatorname{SCOR}(J)=\operatorname{SCOR}(J)+\operatorname{TEMP} * T R(J, L) *\)
        \(+\operatorname{COR}(\mathrm{I}, \mathrm{K}, \mathrm{L})\) *
        \(+\quad\) (CALC1 \((2, I, K)\) *
        \(+\quad\) CALC1 (2, I, L) ) ** 0.5DO
        ENDIF
    401 CONTINUE
        DO \(450 \mathrm{~J}=1\), NM
        CALC2 \(2, I, J)=2 . O D O * \operatorname{SCOR}(J)\)
        DO \(450 \mathrm{~K}=1\), NM
    \(450 \operatorname{CALC} 2(2, I, J)=\operatorname{CALC} 2(2, I, J)+T R(J, K) * * 2 * \operatorname{CALC1}(2, I, K)\)
C CALC2 (3, : THIRD CENTRAL MOMENT OF THE TRANSFORMED VARIABLES
    DO \(500 \mathrm{~J}=1\), NM
        CALC2 \((3, I, J)=0.0 D 0\)
        DO \(500 \mathrm{~K}=1\), NM
500
        \(\operatorname{CALC} 2(3, I, J)=\operatorname{CALC} 2(3, I, J)+\operatorname{TR}(J, K) * * 3 * \operatorname{CALC}(3, I, K)\)
```

Appendix D: Source Code of the Model
243
C CALC2(4, : FOURTH CENTRAL MOMENT OF THE TRANSFORMED VARIABLES
DO 600 J=1,NM
CALC2(4,I,J) = 0.0DO
DO 600 K=1,NM
CALC2(4,I,J) = CALC2(4,I,J) + TR(J,K)**4 * CALC1 (4,I,K)
1000 CALL TRACE (3, 'TRANS', 'exiting.')
DEALLOCATE (SCOR, ADIG, ADIGI, TR, CORR, CORRL, CORLI)
RETURN
9999 IERR = 1
GOTO 1000
9901 FORMAT(/,'WP(',I5,'), MTX INV. FAILED.',/,/)
9902 FORMAT(/,'WP(',I5,'), CHOLESKY DECOMP. FAILED.',/,/)
9903 FORMAT(/,'WP(',I5,'), LOWER TRI MTX INV. FAILED.',/,/)
9904 FORMAT(/,'WP(',I5,'), TRNSF MTX INV. FAILED.',/,/)
END

```
```

C WPDFF.FOR
C modified by Toshiaki Hatakama in July, 1994.
C Routine to check the type of functional form for work package
C duration and to estimate the function at the mean values of
C the transformed variables.

```

```

 SUBROUTINE WPDFF(IFF,X,EVY)
    ```

```

 IMPLICIT REAL*4(A-H,O-Z)
 INTEGER IFF
 REAL*4 EVY, X(*)
 GO TO (10,10,30,10,10),IFF
 10 EVY = X(1) / (X(2) * X(3))
 GO TO 100
 30 EVY = X(1) + (3000.ODO / (X(2) * X(3)))
 GO TO 100
 100 RETURN
 END
    ```
```

C MmTwPl.FOR
C modified by Toshiaki Hatakama in July, 1994.
C 07mar94 MJW
C ROUTINE TO APPROXIMATE THE FIRST FOUR MOMENTS OF A DEPENDENT
C VARIABLE AT WORK PACKAGE/REVENUE STREAM LEVEL. IT USES THE
C MOMENTS OF THE TRANSFORMED VARIABLES WITH THE TRUNCATED
C SECOND ORDER TAYLOR SERIES EXPANSION OF THE FUNCTION.

```

```

 SUBROUTINE MMTWPL (I,NN,NDIM,CALC1,GZ,PD1,PD2,CALC2,STFO)
    ```

```

 IMPLICIT REAL*4(A-H,O-Z)
 INCLUDE 'DEBUG.CMN'
 REAL*4 CALC1 (4, NDIM, *), CALC2 (4, *)
REAL*4 PD1 (*), PD2 (*)
DOUBLE PRECISION TROUBL
CALL TRACE (3, 'MMTWPL', 'starting.')
CALC2 (1,I) = GZ ! the expected value of the dependent
! variable
CALC2 (2,I) = O.ODO
CALC2 (3,I) = 0.0DO
CALC2 (4,I) = 0.0D0
STFO = 0.0DO
DO }10\textrm{J}=1,\textrm{NN
CALC2 (I,I) = CALC2 (1,I) + 0.5D0 * PD2 (J) * CALC1 (2,I,J)
C the second central moment of the dependent variable
C from the first order approximation
STFO = STFO + PD1(J)**2 * CALC1 (2,I,J)
C from the second order approximation

```
```

 CALC2(2,I) = CALC2(2,I) + PD1(J)**2 *
    ```
        CALC2(2,I) = CALC2(2,I) + PD1(J)**2 *
        CALC1(2,I,J) + PD1(J) * PD2(J) *
        CALC1(2,I,J) + PD1(J) * PD2(J) *
        CALC1(3,I,J) + 0.25DO * PD2(J)**2 *
        CALC1(3,I,J) + 0.25DO * PD2(J)**2 *
        (CALC1(4,I,J) - CALC1(2,I,J)**2)
        (CALC1(4,I,J) - CALC1(2,I,J)**2)
C the third central moment of the dependent variable
```

```
    CALC2(3,I) = CALC2(3,I) + PD1(J)**3 *
```

 CALC2(3,I) = CALC2(3,I) + PD1(J)**3 *
 CALC1(3,I,J) + 1.5D0 * PD1(J)**2 * PD2(J) *
 CALC1(3,I,J) + 1.5D0 * PD1(J)**2 * PD2(J) *
 +
+ (CALCI (4,I,J) - CALCI (2,I,J)**2)
(CALCI (4,I,J) - CALCI (2,I,J)**2)
C the fourth central moment of the dependent variable

```
```

Appendix D: Source Code of the Model
TROUBL = PD1(J) ** 4 * CALC1 (4, I, J)
10 CALC2 (4,I) = CALC2 (4,I) + TROUBL
CALL TRACE (3, 'MMTWPL', 'exiting.')
RETURN
END

```
```

C CoVar.fOR
C modified by Toshiaki Hatakama in July 1994.
C ROUTINE TO APPROXIMATE THE CORRELATION BETWEEN TWO DEPENDENT
C VARIABLES USING CORRELATION INFORMATION BETWEEN THE PRIMARY
C VARIABLES AND THEIR PARTIAL DERAVATIVES.
C SX is a (4,NWP,*) array, we only access SX(2,I,*) \& SX(2,J,*).

```

```

 SUBROUTINE COVAR(JU,NDCV, I,J,NI,NJ,PX,SX,COR,STFOI,STFOJ,COC)
    ```

    IMPLICIT REAL*4 (A-H, O-Z)
    INCLUDE 'DEBUG.CMN'
    PARAMETER (JSZ=50,KSZ=25)
    REAL* 4 PX (NWP, *),
\(+\quad S X(4, N W P, *)\),
\(+\quad\) COR (NWP, MAXDVC, *),
\(+\quad\) COC (NWP, *)
    REAL* 4 COV(JSZ, JSZ), CORR(JSZ,KSZ,KSZ)
    REAL* 4 PD (JSZ,KSZ), SD(JSZ,KSZ)
    INTEGER MI (KSZ), MJ (KSZ)
C read the number of common variables in the functional forms
\(C\) for the dependent variables
    CALL TRACE (2, 'COVAR', 'starting.')
C read the combinations of common variables
    READ (JU, 30 ) (MI (K), MJ (K), \(K=1\), NDCV)
    30 FORMAT (26(I2,I2))

C renumber the second central moment and the partial deravative
\(C\) of common variables in given order
```

DO 50 K=1,NDCV
MMI = MI(K)
MMJ = MJ(K)
PD(I,K) = PX(I,MMI)
SD(I,K) = SX(2,I,MMI)
PD(J,K) = PX(J,MMJ)
SD(J,K) = SX(2,J,MMJ)

```

C the correlation coefficients between the common variables
```

 LL=K+I
    ```
        IF (LL.GT.NDCV) GO TO 50
        DO \(40 \mathrm{~L}=\mathrm{LL}\), NDCV
        LLI = MI (L)
        LLJ = MJ (L)
        \(\operatorname{CORR}(I, K, L)=\operatorname{COR}(I, M M I, L L I)\)
```

Appendix D: Source Code of the Model248
CORR(I,L,K)= COR(I,LLI,MMI)
CORR(J,K,L) = COR(J,MMJ,LLJ)
CORR(J,L,K) = COR(J,LLJ,MMJ)
4 0
CONTINUE
50 CONTINUE
C renumber the second central moment and the partial deravative
C of the other variables in the functional forms
LL = NDCV
DO 80 K = 1,NI
DO 70 L=1,NDCV
MMI = MI(L)
IF (K.EQ.MMI) GO TO 80
CONTINUE
LL=LL+1
MI(LL) = K
PD(I,LL) = PX(I,K)
SD(I,LL) = SX(2,I,K)
80 CONTINUE
LL = NDCV
DO 100 K = 1,NJ
DO 90 L=1,NDCV
MMJ = MJ(L)
IF (K.EQ.MMJ) GO TO 100
CONTINUE
LL=LL+1
MJ(LL) = K
PD(J,LL) = PX(J,K)
SD(J,LL) = SX(2,J,K)
100 CONTINUE
C the correlation between the common variables and the others.
LL = NDCV +1
DO 120 K=LL,NI
MMK = MI(K)
DO 110 L=1,NI
MMI = MI(L)
IF (MMI.EQ.MMK) GO TO 110
CORR(I,K,L) = COR(I,MMK,MMI)
CORR(I,L,K) = COR(I,MMI,MMK)
110 CONTINUE
120 CONTINUE
LL = NDCV +1
DO 150 K=LL,NJ
MMK = MJ(K)
DO 140 L=1,NJ
MMJ = MJ (L)
IF (MMJ.EQ.MMK) GO TO 140
CORR(J,K,L) = COR(J,MMK,MMJ)
CORR(J,L,K) = COR(J,MMJ,MMK)
CONTINUE

```
```

Appendix D: Source Code of the Model

150 CONTINUE

```
\(C\) covariance between two dependent variables \(I\) and \(J\)
\(C\) from the common variables in \(I\) and \(J\)
\(\operatorname{COV}(I, J)=0.0 D O\)
DO \(200 \mathrm{~K}=1\), NDCV
DO \(200 \mathrm{~L}=1\), NDCV
IF (K.EQ.L) THEN
\(\operatorname{CORR}(\mathrm{I}, \mathrm{K}, \mathrm{L})=1.0 \mathrm{DO}\)
\(\operatorname{CORR}(J, K, L)=1.0 D 0\)
ENDIF
\(200 \operatorname{COV}(I, J)=\operatorname{COV}(I, J)+\operatorname{PD}(I, K) * \operatorname{PD}(J, L)\)
\(+\quad *(S D(I, K) * S D(J, L)) * * 0.5 D O * \operatorname{CORR}(I, K, L)\)
C from the common variables in \(I\) and others in \(J\)
NNV \(=\mathrm{NDCV}+\mathrm{I}\)
DO \(240 \mathrm{~K}=1\), NDCV
DO 240 L=NNV,NJ
240
\(\operatorname{Cov}(I, J)=\operatorname{Cov}(I, J)+P D(I, K) * P D(J, L)\)
* (SD(I,K) * SD (J,L)) **0.5D0 * CORR(J,K,L)
C from the common variables in \(J\) and others in \(I\)
NNV \(=\mathrm{NDCV}+1\)
DO \(300 \mathrm{~K}=1\), NDCV
DO \(300 \mathrm{~L}=\mathrm{NNV}, \mathrm{NI}\)
300
\(\operatorname{Cov}(I, J)=\operatorname{COV}(I, J)+P D(J, K) * P D(I, L)\)
* (SD (J,K) * SD (I,L)) **0.5DO * CORR(I,K,L)
C the correlation coefficient between two dependent variables
\(\operatorname{COC}(I, J)=\operatorname{COV}(I, J) /((S T F O I * S T F O J) * * 0.5 D O)\) \(\operatorname{COC}(J, I)=\operatorname{COC}(I, J)\)
500 CONTINUE
CALL TRACE (2, 'COVAR', 'exiting.') RETURN
END
```

C NetWrk.FOR
C Toshiaki Hatakama in July. 1994.

C NOTHING preventing this from being called BEFORE EAST...
C ...directly from MAIN (AMMA).

C ROUTINE TO EVALUATE THE FIRST FOUR MOMENTS OF WORK PACKAGE.
C EARLY START TIME USING THE PNET ALGORITHM

C calls EARLY, CDFUNC, ESTMMT


```
    SUBROUTINE NETWRK (PEARSN, WPTIME, CORRD, ESTART, TRCOR)
```


IMPLICIT REAL*4 (A-H,O-Z)
PARAMETER (JSZ=50)
INCLUDE 'DEBUG.CMN'
REAL*4 PEARSN (NPEARS, 17)
REAL* 4 WPTIME (4, NWP), CORRD (NWP, NWP)
REAL*4 ESTART (4, NWP)
INTEGER LIST (200, 40), LISREP (101, 40)
CHARACTER*10 DESC (JSZ, 3)
INTEGER WPNO (JSZ), NDEP (JSZ), PREWP (JSZ, 30)
INTEGER SP, STACK (0:200), LIS (0:40), NTEMP (0:200)
INTEGER LPP (200), LPPR (200), LISTR (200, 40)
INTEGER LCOM (40), LPPS (200), LISTS (200, 40)
INTEGER LPREP (200)
REAL* 4 CORTR (200, 200), SCOR (40)
REAL* 4 EVAL (200), SIGM (200), RVAL (200), RSIG (200)
REAL* 4 REVAL (200), RSIGM (200)
REAL* 4 SDTME (300), SKTME (300), AKTME (300)
REAL*4 PTE (101,101)
REAL* 4 VA (300), VB (300), VC (300), VD (300), VE (300)
REAL*4 VF (300)
REAL*4 VG (300), VM (300), VT (300), VU (300), VV (300)
REAL* 4 VW (300)
REAL* 4 VX (300), VY (300), VZ (300)
REAL*4 TM (101), PT (101)
REAL*4 ED (JSZ), EE (JSZ), EG (JSZ),
$+\quad$ EM (JSZ)
$+\quad$ ET (JSZ), EV (JSZ), EW (JSZ)
REAL* 4 ETEMP (4, 101)
CALL TRACE (1, 'NETWRK', 'starting.')
$\operatorname{ESTART}(1,1)=0.0 \mathrm{D} 0$
ESTART (2, 1) = 0.ODO
$\operatorname{ESTART}(3,1)=0.0 D 0$
$\operatorname{ESTART}(4,1)=0.0 D 0$

C read the input data from file at unit 10
NDEP(1) $=0$

C all the data about to be read in (except TRCOR) goes into temp C vars.
C it never leaves this routine, at least not without being processed.
C WPNO \& DESC are read in, then discarded like so much trash....
C TRCOR is returned to the calling routine.

READ (10, 9901) TRCOR
DO 11 INWP = 2, NWP
READ (10, 9902) WPNO (INWP), NDEP (INWP),
$+\quad$ (DESC (INWP, J), J = 1, 3)
11 READ (10, 9903) (PREWP (INWP, J), J = 1, NDEP (INWP))
$J=\operatorname{WPNO}(2)+\operatorname{ICHAR}(\operatorname{DESC}(2,1)(1: 1))$

C initialize the arrays (stack machine)

DO $12 \mathrm{~J}=0,200$
12 STACK (J) $=0$

DO $13 \mathrm{~J}=0,20$
13 LIS (J) $=0$

DO $14 \mathrm{~J}=0,100$
14 NTEMP $(J)=0$

C the first four moments of Estart time from PNET
C set up the stack machine
DO 990 INWP $=2$, NWP
$S P=0$
$L P=0$
$\mathrm{LN}=0$
STACK (SP) = INWP
LIS (LP) = INWP NTEMP (INWP) = NDEP (INWP)

C develop the stack with current W. P. and its predecessors
DO $90 \mathrm{~J}=1$, NDEP (INWP) PRED = PREWP (INWP, J) $S P=S P+1$ STACK (SP) = PRED NTEMP (PRED) = NDEP (PRED)

C develop the lists of all the paths to the work packages

100 IF (SP ==0) GO TO 200
PRED = STACK (SP)
IF (PRED $==1$) GO TO 150
IF (NTEMP (PRED) $==0$) GO TO 180
$L P=L P+1$
LIS (LP) = PRED

C predecessors of the predecessors are added to the stack
DO $110 \mathrm{~J}=1$, NDEP (PRED)
$S P=S P+1$
STACK (SP) = PREWP (PRED, J)
PPRED = PREWP (PRED, J)
110 NTEMP (PPRED) = NDEP (PPRED)
GO TO 100
$150 \quad \mathrm{LP}=\mathrm{LP}+1$
$\mathrm{LN}=\mathrm{LN}+1$
LPP(LN) = LP
LIS (LP) = PRED
DO $160 \mathrm{~J}=1$, LP
160 LIST(LN,J) = LIS(J)

C remove the work package from the stack and list
$180 \quad \operatorname{STACK}(S P)=0$ LIS (LP) $=0$ $S P=S P-1$ $L P=L P-1$ PRED = LIS (LP) NTEMP (PRED) = NTEMP (PRED) - 1 GO TO 100

C check the number of paths to the work package

200 IF (LN ==1) GO TO 950

C expected value and standard deviation for all paths

```
DO 230 J=1,LN
                        EVAL(J) = 0.ODO
                        SIGM(J) = O.ODO
                        LP=LPP(J)-1
                        DO 230 K=1,LP
                        SCOR(K) = O.ODO
            J1 = LIST(J,K)
            EVAL(J) = EVAL(J) + WPTIME (1, J1)
            MM = K+1
            IF (MM <= LP) THEN
                DO 210 M=MM,LP
                    J2 = LIST(J,M)
                        SCOR(K) = SCOR(K) + CORRD(J1,J2)
        + * (WPTIME (2, J1) * WPTIME (2, J2))**0.5DO
            ENDIF
220 SIGM(J) = SIGM(J) + WPTIME (2, J1) + 2.0D0*SCOR(K)
```

230 CONTINUE

C rearrange lists according to decreasing order of $S . D$

$$
M R=0
$$

```
    250 SMAX = O.ODO
    MR = MR+1
    DO 260 J=1,LN
        IF (SMAX < SIGM (J)) THEN
            SMAX = SIGM (J)
            MO = J
        ENDIF
    260 CONTINUE
        IF (O.ODO < SMAX) THEN
        RVAL (MR) = EVAL (MO)
        RSIG (MR) = SIGM (MO)
        LPPS (MR) = LPP (MO) - 1
        LP = LPPS (MR)
        DO 280 K = 1, LP
        280 LISTS (MR, K) = LIST (MO, K)
    SIGM (MO) = O.ODO
    GO TO 250
        ENDIF
C rearrange lists according to decreasing order of E.V.
C Son of BOGOSORT...
    MR = 0
    300 AMAX = 0.0D0
        MR = MR+1
        DO 310 J=1,LN
        IF (AMAX < RVAL(J)) THEN
            AMAX = RVAL(J)
            MO = J
        ENDIF
    310 CONTINUE
        IF (AMAX /= 0.ODO) THEN
        REVAL (MR) = RVAL (MO)
        RSIGM(MR) = RSIG(MO)
        LPPR(MR) = LPPS(MO)
        LP = LPPR(MR)
        DO 330 K=1,LP
    330
            LISTR(MR,K) = LISTS(MO,K)
        RVAL (MO) = O.ODO
        GO TO 300
        ENDIF
C transition correlation coefficient between paths
    DO 390 J=1,LN
        LP = LPPR(J)
        KK = J+1
        IF (KK <= LN) THEN
            DO 385 K=KK,LN
```

```
Appendix D: Source Code of the Model
```

MNO = 0

```
MNO = 0
    MP = LPPR(K)
    MP = LPPR(K)
    DO 360 L=1,LP
        J1 = LISTR(J,L)
        DO 360 M=1,MP
            J2 = LISTR(K,M)
            IF (J1 == J2) THEN
                    MNO = MNO+1
                    LCOM(MNO) = J1
                ENDIF
    360
    CONTINUE
    CORTR(J,K) = 0.0DO
C no common work packages in the two paths
    IF (MNO /= 0) THEN
        DO 380 L=1,MNO
        J1 = LCOM(L)
        380
        + (WPTIME (2, JI) / ((RSIGM(J) * RSIGM(K))**0.5D0))
        ENDIF
    385 CONTINUE
        ENDIF
    390 CONTINUE
C select the representative paths
    400 MREP=0
        DO 450 J=1,LN
        IF (REVAL(J) /= 0.ODO) THEN
        MREP = MREP+1
        LPREP(MREP) = LPPR(J)
        LPP = LPREP(MREP)
        DO 420 K=1,LP
    420
            KK=J+1
            IF (KK <= LN) THEN
            DO 430 K=KK,LN
                        IF (TRCOR <= CORTR (J,K)) REVAL (K) = 0.0DO
    4 3 0
                    CONTINUE
        ENDIF
        ENDIF
    450 CONTINUE
    C if there is only one representative path, skip to line 900
    IF (MREP == 1) GO TO 900
C first four moments of a representative path
    SMAX = O.ODO
    DO 500 J=1, MREP
        ETEMP (1, J) = 0.ODO
        ETEMP (2,J) = 0.0D0
        ETEMP (3,J) = 0.0D0
```

```
Appendix D: Source Code of the Model
ETEMP (4, J) = 0.ODO
LN = J
LP = LPREP(J)
IF (LP <= 1) THEN
C only one work package on the path
    4 7 0
                DO 470 K=1,LP
                        J1 = LISREP(LN,K)
                            ETEMP (1, J) = ETEMP (1, J) + WPTIME (1, J1)
                            ETEMP (2,J) = ETEMP (2,J) + WPTIME (2,J1)
                        ETEMP (3,J) = ETEMP (3,J) + WPTIME (3, J1)
                        ETEMP (4,J) = ETEMP (4, J) + WPTIME (4, J1)
ELSE
C multiple work packages on the path
CALL EARLY (J, LN, LP, 2,
+ WPTIME, CORRD,
+ ETEMP,
+ LIST, LISREP)
    IF (0 < IERR) GO TO 1000
ENDIF
C standard deviation, skewness and kurtosis for the path
\(\operatorname{SDTME}(J)=\operatorname{ETEMP}(2, J) * * 0.5 D 0\)
\(\operatorname{SKTME}(J)=\operatorname{ETEMP}(3, J) /(\operatorname{ETEMP}(2, J) * * 1.5 D 0)\)
\(\operatorname{AKTME}(J)=\operatorname{ETEMP}(4, J) /(\operatorname{ETEMP}(2, J) * * 2)\)
C values of the approximated pearson distribution
CALL CDFUNC (PEARSN,
(J),
\(+\quad \operatorname{VA}(J), V B(J), V C(J), V D(J), V E(J), V F(J), V G(J)\),
\(+\quad \mathrm{VM}(\mathrm{J})\),
\(+\quad \operatorname{VT}(J), V U(J), V V(J), V W(J), V X(J), V Y(J), V Z(J))\)
C maximum standard deviation for representative paths
IF (SMAX < SDTME(J)) THEN
SMAX = SDTME(J)
ENDIF
500 CONTINOE
C starting duration and incremental step for CDF of EST
\(C\) this is the only reference to an unindexed value of AETME.
C this means that AETME, SETME, TETME \& FETME can probably be
C scrapped.
```

```
TSTART = ETEMP (1, 1) - (3.ODO * SMAX)
```

TSTART = ETEMP (1, 1) - (3.ODO * SMAX)
TSTEP = SMAX / 10.ODO

```
TSTEP = SMAX / 10.ODO
```

```
DO WHILE (VA (1) < TSTART)
    TSTART = TSTART - TSTEP
END DO
```

C duration cycle to develop the CDF for $E S T$

```
    530 JNUM = J
        JJ = J-1
        TM(J) = TSTART + (FLOAT(JJ)*TSTEP)
```

 \(\mathrm{J}=1\)
 C probability of achieving the duration for each path
C FORTRAN doesn't know how to deal with a REAL* 4 valued CASE
C statement
C so this is the closest that we can come. this could be re-written
C to use a table to pull out these two values....
C 0.0D0
C $0.0025 \mathrm{DO}, 0.0025 \mathrm{D} 0$
C $0.0050 \mathrm{DO}, 0.0050 \mathrm{DO}$
C $0.0100 \mathrm{DO}, 0.0150 \mathrm{D} 0$
C $0.0250 \mathrm{DO}, 0.0250 \mathrm{DO}$
C $0.0500 \mathrm{DO}, 0.0500 \mathrm{D} 0$
C $0.1000 \mathrm{DO}, 0.1500 \mathrm{DO}$
C 0.2500D0, 0.2500D0
C $0.5000 \mathrm{DO}, 0.2500 \mathrm{D} 0$
C $0.7500 \mathrm{DO}, 0.1500 \mathrm{DO}$
C $0.9000 \mathrm{DO}, 0.0500 \mathrm{DO}$
C 0.9500DO, 0.0250DO
C $0.9750 \mathrm{D} 0,0.0150 \mathrm{DO}$
C $0.990000,0.005000$
C 0.9950D0, 0.0025D0
C 1.000

```
        DO 700 K=1,MREP
            IF (TM(J) <= VA(K)) THEN
                PTE(J,K) = O.ODO
    ELSE IF (VA(K) < TM(J) .AND. VB(K) >= TM(J)) THEN
        PTE (J,K) = 0.0025D0 +
+ ((TM(J) - VA(K)) * 0.0025D0 / (VB(K) - VA(K)))
    ELSE IF (VB(K) < TM(J) .AND. VC(K) >= TM(J)) THEN
        PTE(J,K) = 0.0050DO +
+ ((TM(J) - VB(K)) * 0.0050D0 / (VC(K) - VB(K)))
    ELSE IF (VC(K) < TM(J) .AND. VD(K) >= TM(J)) THEN
        PTE(J,K) = 0.0100D0 +
            ((TM(J) - VC(K)) * 0.0150D0 / (VD(K) - VC(K)))
+ ELSE IF (VD(K) < TM(J) .AND. VE(K) >= TM(J)) THEN
        PTE(J,K) = 0.0250DO +
            ((TM(J) - VD(K)) * 0.0250D0 / (VE(K) - VD(K)))
    ELSE IF (VE(K) < TM(J) .AND. VF(K) >= TM(J)) THEN
        PTE(J,K) = 0.0500D0 +
+ ((TM(J) - VE(K)) * 0.0500D0 / (VF(K) - VE(K)))
    ELSE IF (VF(K) < TM(J) .AND. VG(K) >= TM(J)) THEN
        PTE(J,K) = 0.1000D0 +
+ ((TM(J) - VF(K)) * 0.1500D0 / (VG(K) - VF(K)))
    ELSE IF (VG(K) < TM(J) .AND. VM(K) >= TM(J)) THEN
```

```
                            PTE(J,K) = 0.2500D0 +
    + ((TM(J) - VG(K)) * 0.2500DO / (VM(K) - VG(K)))
    ELSE IF (VM(K) < TM(J) .AND. VT(K) >= TM(J)) THEN
    PTE(J,K) = 0.5000D0 +
    + ((TM(J) - VM(K)) * 0.2500DO / (VT(K) - VM(K)))
    ELSE IF (VT(K) < TM(J) .AND. VU(K) >= TM(J)) THEN
        PTE(J,K) = 0.7500D0 +
                            ((TM(J) - VT(K)) * 0.1500D0 / (VU(K) - VT(K)))
    ELSE IF (VU(K) < TM(J) .AND. VV(K) >= TM(J)) THEN
        PTE(J,K) = 0.9000DO +
    + ((TM(J) - VU(K)) * 0.0500D0 / (VV(K) - VU(K)))
    ELSE IF (VV(K) < TM(J) .AND. VW(K) >= TM(J)) THEN
        PTE (J,K) = 0.9500D0 +
                            ((TM(J) - VV(K)) * 0.0250D0 / (VW(K) - VV(K)))
    ELSE IF (VW(K) < TM(J) .AND. VX(K) >= TM(J)) THEN
        PTE(J,K) = 0.9750D0 +
                            ((TM(J) - VW(K)) * 0.0150D0 / (VX(K) - VW(K)))
    ELSE IF (VX(K) < TM(J) .AND. VY(K) >= TM(J)) THEN
        PTE(J,K) = 0.9900D0 +
    + ((TM(J) - VX(K)) * 0.0050D0 / (VY(K) - VX(K)))
    ELSE IF (VY(K) < TM(J) .AND. VZ(K) >= TM(J)) THEN
            PTE(J,K) = 0.9950DO +
                            ((TM(J) - VY(K)) * 0.0025D0 / (VZ(K) - VY(K)))
        ELSE IF (VZ(K) < TM(J)) THEN
            PTE(J,K) = 1.ODO
        ENDIF
        CONTINUE
```

 700
 C cumulative probability of the duration being EST
$\mathrm{PT}(\mathrm{J})=1.0 \mathrm{DO}$
DO $710 \mathrm{~K}=1$, MREP
710 PT(J) = PT(J)*PTE (J,K)
IF (PT(J) < I.ODO) THEN
$\mathrm{J}=\mathrm{J}+1$
GO TO 530
ENDIF

C re-check this CAREFULLY with the original source to make sure that C all the tests come out correctly.
C this is very messy. but I gather that it has a point.
C notice the interchanging of $K \& J$ throughout.
C fractile values of the CDF for work package EST

$$
\text { DO } \begin{aligned}
800 J \\
K=J-1
\end{aligned}
$$

 IF (PT(J) < 0.025DO) GOTO 800
 IF (PT(K) < 0.025DO .AND. PT(J) \(>=0.025 \mathrm{DO}\)) THEN
 ED (INWP) =
 TM (K) + (0.025D0-PT(K))*(TM(J)-TM(K))/(PT(J)-PT(K))
 IF (TM(J) \(>=0.050 \mathrm{DO}\)) EE (INWP) =
 \(T M(K)+(0.050 D 0-P T(K)) *(T M(J)-T M(K)) /(P T(J)-P T(K))\)
 ENDIF
 IF (PT(J) < 0.050D0) GOTO 800
    ```
Appendix D: Source Code of the Model
IF (PT(K) < 0.050DO .AND. PT(J) >= 0.050D0) THEN
    EE (INWP) =
    TM(K)+(0.050D0-PT(K))*(TM(J)-TM(K))/(PT(J)-PT(K))
    IF (TM(J) >= 0.250DO) EG (INWP) =
    TM(K)+(0.250D0-PT(K))*(TM(J)-TM(K))/(PT(J)-PT(K))
ENDIF
IF (PT(J) < 0.250DO) GOTO 800
IF (PT(K) < 0.250D0 .AND. PT(J) >= 0.250D0) THEN
    EG (INWP) =
    TM(K) + (0.250D0-PT(K)) *(TM(J) -TM(K))/(PT(J)-PT(K))
    IF (TM(J) >= 0.500DO) EM (INWP) =
        TM(K)+(0.500D0-PT(K))*(TM(J)-TM(K))/(PT(J)-PT(K))
ENDIF
IF (PT(J) < 0.500DO) GOTO 800
IF (PT(K) < 0.500D0 .AND. PT(J) >= 0.500D0) THEN
    EM (INWP) =
    TM(K) +(0.500D0-PT(K))*(TM(J)-TM(K))/(PT(J)-PT(K))
    IF (TM(J) >= 0.750DO) ET (INWP) =
        TM(K) +(0.750D0-PT(K))*(TM(J)-TM(K))/(PT(J)-PT(K))
ENDIF
IF (PT(J) < 0.750D0) GOTO 800
IF (PT(K) < 0.750DO .AND. PT(J) >= 0.750DO) THEN
        ET (INWP) =
    TM(K) +(0.750D0-PT(K))*(TM(J)-TM(K))/(PT(J)-PT(K))
        IF (TM(J) >= 0.950D0) EV (INWP) =
    TM(K) + (0.950D0-PT(K))*(TM(J)-TM(K))/(PT(J)-PT(K))
ENDIF
IF (PT(J) < 0.950DO) GOTO 800
IF (PT(K) < 0.950D0 .AND. PT(J) >= 0.950DO) THEN
        EV (INWP) =
    TM(K) + (0.950D0-PT(K))*(TM(J)-TM(K))/(PT(J)-PT(K))
        IF (TM(J) >= 0.975D0) EW (INWP) =
    TM(K) + (0.975D0-PT(K))* (TM(J)-TM(K))/(PT(J)-PT(K))
ENDIF
IF (PT(J) < 0.975D0) GOTO 800
IF (PT(K) < 0.975D0 .AND. PT(J) >= 0.975D0) THEN
        EW (INWP) =
    TM(K) +(0.975D0-PT(K))*(TM(J)-TM(K))/(PT(J)-PT(K))
ENDIF
800 CONTINUE
C first four moments of work package Estart time
    CALL ESTMMT (INWP, PEARSN,
    ED, EE,EG, EM, ET, EV, EW,
    ESTART)
GO TO 990
C when there is only one representative path
```

```
Appendix D: Source Code of the Model
    900 LN = MREP
    LPP(LN) = LPREP(LN) +1
    LP = LPREP(LN)
    DO 920 K = 1, LP
    920 LIST(LN,K) = LISREP(LN,K)
C first four moments when only one PATH to the work package
    950 ESTART (1, INWP) = 0.0DO
        ESTART (2, INWP) = O.ODO
        ESTART (3, INWP) = O.ODO
        ESTART (4, INWP) = O.ODO
        LP=LPP(LN)-1
C deal with the special case of only one WORK PACKAGE.
        IF (1 < LP) THEN
        CALL EARLY (INWP, 1, LP, 1,
                                WPTIME, CORRD,
        +
        + ESTART,
        + LIST, LISREP)
            IF (0 < IERR) GO TO 1000
        ELSE
            DO 970 K=1,LP
                J1 = LIST(LN,K)
                                ESTART (1, INWP) = ESTART (1, INWP) + WPTIME (1, J1)
                                ESTART (2, INWP) = ESTART (2, INWP) + WPTIME (2, J1)
                                ESTART (3, INWP) = ESTART (3, INWP) + WPTIME (3, J1)
                                ESTART (4, INWP) = ESTART (4, INWP) + WPTIME (4, JI)
        ENDIF
    990 CONTINUE
1000 CALL TRACE (1, 'NETWRK', 'exiting.')
        RETURN
9901 FORMAT(F6.3)
9902 FORMAT(2I3,3A10)
9903 FORMAT(30I3)
        END
```

```
C WpCmmt.FOR
C modified by Toshiaki Hatakama in July, 1994
C ROUTINE TO EVALUATE THE FIRST FOUR MOMENTS OF THE WORK
C PACKAGE COST FOR DIFFERENT DISCOUNT RATES.
```



```
    SUBROUTINE WPCMMT (I,DR,FRA,
```

 SUBROUTINE WPCMMT (I,DR,FRA,
 + NWPCF, NDVR,
 + NWPCF, NDVR,
 + XUCOST, TRIWPC,
 + XUCOST, TRIWPC,
 + COST, STFO)
    ```
    + COST, STFO)
```



```
    IMPLICIT REAL*4(A-H,O-Z)
    INCLUDE 'DEBUG.CMN'
    INTEGER NWPCF (*), NDVR (*)
    REAL*4 XUCOST (4, NWP, *), TRIWPC (NWP, NWP, *)
    REAL*4 COST (4, *)
    REAL*4 X (:), Z (:), SZ (:), GZS (:), GZL (:)
    REAL*4 PWPC1 (:),PWPC2(:)
    ALLOCATABLE X, Z, SZ, GZS, GZL, PWPC1, PWPC2
    CALL TRACE (3, 'WPCMMT', 'starting.')
    NNVR = NDVR(I)
    ALLOCATE (X (NNVR))
    ALLOCATE (Z (NNVR))
    ALLOCATE (SZ (NNVR))
    ALLOCATE (GZS (NNVR))
    ALLOCATE (GZL (NNVR))
    ALLOCATE (PWPC1 (NNVR))
    ALLOCATE (PWPC2 (NNVR))
C estimate G(Z) from the g(X) given by the user at the mean
C values of Z (the transformed variables) and the partial
C deratives with respect to the transformed variables.
    DO 10 J=1,NNVR
    10 Z(J) = xUCOST (I, I, J)
    DO 20 J=1,NNVR
        X(J) = 0.0DO
        DO 20 K=1,NNVR
    20 X(J) = X(J) + TRIWPC(I,J,K) * Z(K)
C the value of G(Z) at the mean values of }
    CALL WPCFF (NWPCF (I), DR, FRA, X, GZ)
C the partial deravatives of the transformed variables
```

```
        DO 100 J=1,NNVR
        Z(J) = XUCOST (1, I, J) * 0.99D0
        SZ(J) = XUCOST (1, I, J) * 0.01D0
        DO 50 K=1,NNVR
            X(K) = 0.0DO
        DO 50 L=1,NNVR
                        X(K) = X(K) + TRIWPC(I,K,L) * Z(L)
```

C the value for $G(Z)$ when $Z(J)$ is less than the mean value
C (negative increment)
CALL WPCFF (NWPCF (I), DR, FRA, X, GZS (J))
$Z(J)=X U C O S T(1, I, J) * 1.01 D 0$
DO $60 \mathrm{~K}=1$, NNVR
$\mathrm{X}(\mathrm{K})=0.0 \mathrm{DO}$
DO $60 \mathrm{~L}=1$, NNVR
60
$\mathbf{X}(\mathrm{K})=\mathbf{X}(\mathrm{K})+\mathrm{TR} \operatorname{IWPC}(\mathrm{I}, \mathrm{K}, \mathrm{L}) * \mathbf{Z}(\mathrm{~L})$
C the value for $G(Z)$ when $Z(J)$ is more than the mean value
C (positive increment)

CALL WPCFF (NWPCF (I), DR, FRA, X, GZL (J))
C the first partial deravative with respect to $Z(J)$
PWPCI(J) $=(G Z L(J)-G Z S(J)) /(2.0 D 0 * S Z(J))$
C the second partial deravative with respect to $Z(J)$

PWPC2 (J) $=($ GZL (J) +GZS (J)-2.OD0*GZ) / (SZ (J)**2)
$\mathbf{Z}(J)=X U C O S T(1, I, J)$

C PRINT*,'I, J,PWPC2, XUCOST (2, I, J)=',I, J, PWPC2 (J),
$\mathrm{C}+\mathrm{XUCOST}(2, I, J)$

100 CONTINUE

C the first four moments for the work package cost

```
    CALL MMTWPL (I,NNVR,
    + NWP, XUCOST,
+ GZ,PWPC1,PWPC2,
+ COST, STFO)
```

DEALLOCATE (X, Z, SZ, GZS, GZL, PWPC1, PWPC2)
CALL TRACE (3, 'WPCMMT', 'exiting.') RETURN
END

```
C WpCff.FOR
C modified by Toshiaki Hatakama in July, 1994.
C Routine to check the type of functional form for work package
C cost and to estimate the function at the mean values of the
C transformed variables.
```



```
    SUBROUTINE WPCFF (IFF, DR, FRA, X, EVY)
```



```
    IMPLICIT REAL*4(A-H,O-Z)
    INTEGER IFF
    REAL*4 EVY, X (*)
    REAL*4 Z (5), AZ (5)
    EVY = O.ODO
    GO TO (100,200,200,200,200,200,200,200,900,1000,1100),IFF
C Type 1 functional form
100 z(1) = X(13)-DR
    IF (DABS(Z(1)).GT.0.001DO) GO TO 110
    AZ(1) = X(1)
    GO TO 120
110 AZ(1) = (DEXP(Z(1)*X(2)) - DEXP(Z(1)*(X(2)-X(1))))/ Z(1)
120 Z(2) = X(14)-DR
    IF (DABS(Z(2)).GT.O.001DO) GO TO 130
    AZ(2)= X(1)
    GO TO 140
130 AZ(2) = (DEXP(Z(2)*X(2)) - DEXP(Z(2)*(X(2)-X(1))))/ Z(2)
140 Z(3)=X(15)-DR
    IF (DABS(Z(3)).GT.0.001DO) GO TO 150
    AZ(3) = X(1)
    GO TO 160
150 AZ(3) = (DEXP(Z(3)*X(2)) - DEXP(Z(3)*(X(2)-X(1))))/ Z(3)
160 Z(4) = X(16)-DR
    IF (DABS(Z(4)).GT.0.001D0) GO TO 170
    AZ(4) = X(1)
    GO TO 180
170 AZ(4) = (DEXP(Z(4)*X(2)) - DEXP(Z(4)*(X(2)-X(1))))/ Z(4)
180 Z(5) = X(17)-DR
    IF (DABS(Z(5)).GT.0.001D0) GO TO 190
    AZ(5) = X(1)
    GO TO 191
```

$190 \mathrm{AZ}(5)=(\operatorname{DEXP}(\mathrm{Z}(5) * X(2))-\operatorname{DEXP}(\mathrm{Z}(5) *(X(2)-X(1)))) / \mathrm{Z}(5)$

```
    191 Y1 = X(9)* X(5)*AZ(1) + X(10) * X(4) * X(5) * AZ(2)
    + + X(11) * X(6) * AZ(3) + (X(7)/X(1)) * AZ(4)
    + + X(8) * AZ(5)
    Y2 = X(9) * X(5) * (DEXP((X (13)-X(12))*X(2))
    + - DEXP((X(13)-X(12))*(X(2)-X(1))))/(X(13) - X(12))
    + + X(10) * X(4) * X(5) * (DEXP((X(14)-X(12))*X(2))
    + - DEXP((X(14)-X(12))*(X(2)-X(1)))) / (X(14) - X(12))
    + + X(11) * X(6) * (DEXP((X(15)-X(12))*X(2))
    + - DEXP((X(15)-X(12))*(X(2)-X(1))))/(X(15) - X(12))
    + + (X(7)/X(1)) * (DEXP((X (16)-X(12))*X(2))
    + - DEXP((X(16)-X(12))*(X(2)-X(1))))/(X(16) - X(12))
    + + X(8) * (DEXP((X(17)-X(12))*X(2))
    + - DEXP((X(17)-X(12))*(X(2)-X(1)))) / (X(17) - X(12))
    EVY = FRA * Y1 + (1-FRA) * DEXP((X(12)-DR)*X(3)) * Y2
    GO TO 9999
C Type 2, 3, 4, 5, 6, 7, and 8 functional forms.
    200 EVY = X(1)/ (X(2) * X(3))
        GO TO 9999
C Type g functional form, just constant dollar cost
    900 EVY = X(4)
        GO TO 9999
C Type 10 functional form.
    1000 Z(1)=X(6)-DR
        IF (0.001DO< DABS (Z (1))) GO TO 1010
        AZ(1) = X(1)
        GO TO 1020
    1010 AZ(1)=(DEXP(Z(1)*X(2)) - DEXP(Z(1)*(X(2)-X(1))))/Z(1)
    1020 Y1 = (X(4)/X(1)) * AZ(1)
        Y2 = (X(4)/X(1))*(DEXP(X(6)*(X(2)-X(1))+(X(6)-X(5))*X(1))
        C - DEXP(X(6)*(X(2)-X(1))))/(X(6) - X(5))
    EVY = FRA * Y1 + (1-FRA) * DEXP((X(5)-DR)*X(3)) * Y2
        GO TO 9999
C Type 11 functional form (toll highway).
1100 Z(1) = X(7)-DR
    IF (DABS(Z(1)).GT.0.001DO) GO TO 1110
    AZ(1) = X(1)
    GO TO 1120
1110 AZ(1)=(DEXP(Z(1)*X(2)) - DEXP(Z(1)*(X(2)-X(1))))/Z(1)
1120 Z(2)=X(7)-X(6)
    IF (DABS(Z (2)).GT.0.001DO) GO TO 1130
    AZ(2)=(DEXP(X(7)*(X(2)-X(1))+X(6)*X(3)))*X(1)
    + /(DEXP(-X(6)*X(4))-1)
    GO TO 1140
```

```
Appendix D: Source Code of the Model
```

1130 AZ(2) = (DEXP(X(7)*(X(2)-X(1))+X(6)*(X(3)-(X(2)-X(1)))))

```
1130 AZ(2) = (DEXP(X(7)*(X(2)-X(1))+X(6)*(X(3)-(X(2)-X(1)))))
    + *(DEXP((X(7)-X(6))*X(1))-1)
    + *(DEXP((X(7)-X(6))*X(1))-1)
    + /(DEXP(-X(6)*X(4))-1)/(X(7)-X(6))
    + /(DEXP(-X(6)*X(4))-1)/(X(7)-X(6))
1140 IF (DABS(DR).GT.0.001DO) GO TO 1150
    AZ(3)=X(4)
    GO TO 1160
1150 AZ(3) = (DEXP(-DR*(X(3)+X(4)))-DEXP(-DR*X(3)))/DR
1160 Y1 = (X(5)/X(1))*AZ(1)
    Y2 = X(6)*(X(5)/X(1)) * AZ(2) * AZ(3)
    EVY = FRA * Y1 + (1-FRA) * Y2
```


9999 RETURN

```
END
```


C RvsMMT.FOR

C modified by Toshiaki Hatakama in July, 1994.
C ROUTINE TO EVALUATE THE FIRST FOUR MOMENTS OF THE REVENUE
C STREAMS FOR DIFFERENT DISCOUNT RATES.

C DR is passed unchanged thru to RVSFF.
C pass X, our beloved carrier variable, to RVSMMT as well.
C let RVSF11 \& 12 take their parameters from there.
C everyone else is doing it.... EXCEPT PRJIRR!
C all values in x beyond NNVR are not modified by this routine.
C NNVR is NDRV(I), the maximum value of which is MAXDV...
C calls RVSFF, MMTWPL
C called by REVSTR, PRJIRR

+	
+	
+	
+	

C if you have 16 M Ram enough $=1$
C if not $=\backslash 1$
\$DEFINE enough $=0$
INCLUDE 'DEBUG.CMN'
IMPLICIT REAL* 4 (A-H, O-Z)
INTEGER NRVSF (*), NDRV (*)
REAL* 4 XUREV (4, NRS, *)
\$IF enough .EQ. 1
REAL* 4 TRIRVS (NRS, MAXDVR, *)
\$ELSE
REAL* 4 TRIRVS (*), TEMPRVS (:, :)
ALLOCATABLE TEMPRVS
\$ENDIF

REAL*4 REV (4, *), BOTTLE (NRS, *)
REAL* 4 X (:), Z (:), PRVS1 (:), PRVS2 (:)
ALLOCATABLE $X, Z, P R V S 1, ~ P R V S 2$
CALL TRACE (3, 'RVSMMT', 'starting.')
NNVR $=$ NDRV (I)
ALLOCATE (X (NNVR))
ALLOCATE (Z (NNVR))
ALLOCATE (PRVSI (NNVR))
ALLOCATE (PRVS2 (NNVR))

```
Appendix D: Source Code of the Model
$IF enough .NE. 1
    ALLOCATE (TEMPRVS (NNVR, NNVR))
$ENDIF
C estimate G(Z) from the g(X) given by the user at the mean
C values of }Z\mathrm{ (the transformed variables) and the partial
C deratives with respect to the transformed variables.
        DO 10 J = 1, NNVR 
    10 CONTINUE
        DO 20 J = 1, NNVR
        X (J) = O.ODO
        DO 20 K = 1, NNVR
$IF enough .EQ. 1
        X (J) = X (J) + TRIRVS (I, J, K) * Z (K)
$ELSE
    TEMPRVS (J, K) = SPA_GET3 (TRIRVS, I, J, K)
    X (J) = X (J) + TEMPRVS (J, K) * Z (K)
$ENDIF
    20 CONTINUE
        PRINT *, 'shakin tree #', I
        CALL RVSFF (NRVSF (I), O, 2, DR, BOTTLE, I, X, GZ) ! G(Z) at
meanval of Z(J)
    PRINT*,'mean value finished'
        DO 100 J = 1, NNVR
            SZ = XUREV (1, I, J) * 0.01D0
        Z (J) = XUREV (1, I, J) * 0.99D0 ! G(Z) when Z(J) <
                                ! meanval
    DO 50 K = 1, NNVR
        X (K) = 0.0DO
        DO 50 L = 1, NNVR
$IF enough .EQ. 1
    X (K) = X (K) + TRIRVS (I, K, L) * Z (L)
$ELSE
    X (K) = X (K) + TEMPRVS (K, L) * Z (L)
$ENDIF
    50 CONTINUE
        CALL RVSFF (NRVSF (I), J, 1, DR, BOTTLE, I, X, GZS)
    Z (J)= XUREV (1, I, J)* 1.01D0 G G(Z) when Z(J) >
```

```
Appendix D: Source Code of the Model
        DO 70 K = 1, NNVR
        X (K) = O.ODO
        DO 70 L = 1, NNVR
$IF enough .EQ. 1
    X (K) = X (K) + TRIRVS (I, K, L) * Z (L)
$ELSE
$ENDIF
    70 CONTINUE
            CALL RVSFF (NRVSF (I), J, 3, DR, BOTTLE, I, X, GZL)
C the first and second partial deravative with respect to Z(J)
            PRVS1 (J) = (GZL - GZS) / (2.ODO *SZ)
            PRVS2 (J) = (GZL + GZS - 2.ODO * GZ) / (SZ ** 2)
            Z (J) = XUREV (1, I, J)
                SENSITIVE = PRVSI (J) * Z (J) / GZ
                WRITE (121, *) 'Sensitivity coefficientl for',J,'=',SENSITIVE
                DY = sensitive * 0.02
                WRITE (122, *) 'Sensitivity coefficient2 for',J,'=',DY
    100 CONTINUE
C the first four moments for the revenue stream
    CALL MMTWPL (I, NNVR, NRS, XUREV, GZ, PRVS1, PRVS2, REV, STFO)
    DEALLOCATE (X, Z, PRVS1, PRVS2)
$IF enough .NE. 1
    DEALLOCATE (TEMPRVS)
$ENDIF
    CALL TRACE (3, 'RVSMMT', 'exiting.')
    RETURN
    END
```

```
C RvSff.for
C modified by Toshiaki Hatakama in July, 1994.
C Routine to check the type of functional form for revenue
C streams and to estimate the function at the mean values of
C the transformed variables.
C includes calls to RVSF11, RVSF12
C called by RVSMMT
```



```
    SUBROUTINE RVSFF (IFF, KP, KT, DR, BOTTLE, I, X, EVY)
```



```
    IMPLICIT REAL*4(A-H,O-Z)
    INCLUDE 'DEBUG.CMN'
    REAL*4 X (*), BOTTLE (NRS, *)
    REAL*4 Z (5), AZ (5)
    GO TO
+(100,200,200,200,200,200,200,200,200,1000,1100,1200,1300),
+ IFF
```

C Type 1 functional form.
$100 \mathrm{Z}(1)=\mathrm{X}(5)-\mathrm{DR}$
IF (0.001 DO < DABS (Z (1))) THEN
AZ (1) =

ELSE
AZ (1) $=\mathrm{X}$ (4)
ENDIF
$\mathrm{Z}(2)=\mathrm{X}(6)-\mathrm{DR}$
IF (0.001 DO < DABS (Z (2))) THEN
AZ (2) =
$+\quad(\operatorname{DEXP}(Z \quad(2) *(X(1)+X(4)))$
$+\quad-\operatorname{DEXP}(Z(2) * X(1)) \quad$) $\mathbf{Z}(2)$
ELSE
$A Z(2)=X(4)$
ENDIF
$E V Y=(X(2) * A Z(1))-(X(3) * A Z$ (2)) GO TO 9999

C Type 2, 3, 4, 5, 6, 7, 8, and 9 functional forms
$200 \mathrm{EVY}=\mathbf{X}(1) /(X(2) * X(3))$
GO TO 9999

C Type 10 functional form

```
Appendix D: Source Code of the Model
```

 1000 z(1) = X(5)-DR
    ```
    1000 z(1) = X(5)-DR
    IF (DABS(Z(1)).GT.0.001D0) GO TO 1010
    IF (DABS(Z(1)).GT.0.001D0) GO TO 1010
    AZ(1) = X(4)
    AZ(1) = X(4)
    GO TO 1020
    GO TO 1020
    1010 AZ(1) = (DEXP(Z(1)*(X(1)+X(4))) - DEXP(Z(1)*X(1))) / Z(1)
    1010 AZ(1) = (DEXP(Z(1)*(X(1)+X(4))) - DEXP(Z(1)*X(1))) / Z(1)
    1020 Z(2) = X(6)-DR
    1020 Z(2) = X(6)-DR
    IF (DABS(Z(2)).GT.0.001D0) GO TO 1030
    IF (DABS(Z(2)).GT.0.001D0) GO TO 1030
    AZ(2) = X(4)
    AZ(2) = X(4)
    GO TO 1040
    GO TO 1040
1030 AZ(2) = (DEXP(Z(2)*(X(1)+X(4))) - DEXP(Z(2)*X(1)))/ Z(2)
1030 AZ(2) = (DEXP(Z(2)*(X(1)+X(4))) - DEXP(Z(2)*X(1)))/ Z(2)
1040 EVY = (X(2) * AZ(1)) - (X(3) * AZ(2))
1040 EVY = (X(2) * AZ(1)) - (X(3) * AZ(2))
    GO TO 9999
    GO TO 9999
C Type 11 functional form (Closed Toll Highway)
C Type 11 functional form (Closed Toll Highway)
    1100 CALL RVSF11 (KP, KT, DR, BOTTLE, I, X, EVY)
    1100 CALL RVSF11 (KP, KT, DR, BOTTLE, I, X, EVY)
        GOTO 9999
        GOTO 9999
C Type 12 functional form ('Open' Toll Highway)
C Type 12 functional form ('Open' Toll Highway)
    1200 CALL RVSF12 (KP, KT, DR, BOTTLE, I, X, EVY)
    1200 CALL RVSF12 (KP, KT, DR, BOTTLE, I, X, EVY)
    GOTO 9999
    GOTO 9999
C Type 13 functional form ('Closed' Toll Highway: fixed toll)
C Type 13 functional form ('Closed' Toll Highway: fixed toll)
1300 CALL RVSF13 (KP, KT, DR, BOTTLE, I, X, EVY)
1300 CALL RVSF13 (KP, KT, DR, BOTTLE, I, X, EVY)
    GOTO 9999
    GOTO 9999
9999 RETURN
9999 RETURN
    END
    END
    INCLUDE 'RVSFII.INC'
    INCLUDE 'RVSFII.INC'
    INCLUDE 'RVSF12.INC'
    INCLUDE 'RVSF12.INC'
    INCLUDE 'RVSF13.INC'
```

 INCLUDE 'RVSF13.INC'
    ```
```

C TanSp.for
C modified by Toshiaki Hatakama in July, 1994.
C ROUTINE TO TRANSFORM CORRELATED WORK PACKAGE COSTS OR REVENUE
C STREAMS TO UNCORRELATED WORK PACKAGE COSTS / REVENUE STREAMS.
C this should take some sort of an offset into X to reduce the work
C of copying arrays that are slightly non-standard into tempVars...

```

```

 SUBROUTINE TANSP (NM,
 + X,
 + Z,
 + COR,
 +
 TRI)
    ```

```

 IMPLICIT REAL*4(A-H,O-Z)
 INCLUDE 'DEBUG.CMN'
 REAL*4 X (4, *)
 REAL*4 Z (4, *)
 REAL*4 COR (NM, NM)
 REAL*4 TRI (NM, NM)
 INTEGER IPERM (300) ! just in case this is used on MAXDVR vars.
 REAL*4 SCOR (:), CORR (:)
 REAL*4 ADIG (:,:), ADIGI (:,:)
 REAL*4 TR (:,:)
 REAL*4 CORRL (:,:), CORLI (:,:)
 ALLOCATABLE SCOR, CORR, ADIG, ADIGI, TR, CORRL, CORLI
 CALL TRACE (3, 'TANSP', 'starting.')
 ALLOCATE (SCOR (NM))
 ALLOCATE (CORR (NM * NM))
 ALLOCATE (ADIG (NM, NM))
 ALLOCATE (ADIGI (NM, NM))
 ALLOCATE (TR (NM, NM))
 ALLOCATE (CORRL (NM, NM))
 ALLOCATE (CORLI (NM, NM))
 DRATIO = 1.OD-7
 C diagonal matrix of the standard deviations
 DO 10 J=1, NM
 DO 10 K=1, NM
 IF (J == K) THEN
 ADIG (J, K) = X (2, J) ** 0.5D0
 ELSE
 ADIG (J, K) = 0.0DO
 ENDIF
 10 CONTINUE
    ```
```

Appendix D: Source Code of the Model
C correlation matrix as a 1-D array for Cholesky decomposition
40 LL = NM * NM
DO 50 J = 1, LL
50 CORR (J) = 0.0D0
LLN = NM - 1
DO 100 J = 1, NM
DO 90 K = 1, NM
IF (J <= K) GO TO 60
L}=(LLN * K) + J - LLNN
CORR (L) = COR (K,J)
GO TO 90
60
IF (J<K) GO TO 90
L = (LLN * K) + J - LLN
CORR(L) = 1.ODO
90 CONTINUE
100 CONTINUE
C the inverse of the diagonal matrix of standard deviations
CALL INV (NM, NM, ADIG, IPERM, NM, ADIGI, DDET, JEXP, DCOND)
IF (DDET == 0.ODO) THEN
WRITE (7, 9901)
IERR = 1
GO TO 1000
ENDIF
C Cholesky decomposition of the correlation matrix
CALL DECOMP (CORR, NM, NM, DRATIO)
IF (DRATIO <= O.ODO) THEN
DO 160 J = 1, NM
KK = J + 1
IF (KK <= NM) THEN
DO 150 K = KK, NM
COR (J,K) = O.ODO
150
COR (K,J) = O.ODO
ENDIF
160 CONTINUE
GO TO 40
ENDIF
C the lower triangular matrix from the Cholesky decomposition
DO 200 J = 1,NM
DO 200 K = 1, NM
IF (J < K) THEN
CORRL (J,K) = O.ODO
ELSE
L = (LLN * K) + J - LLN
CORRL (J, K) = CORR (L)

```

ENDIF
200 CONTINUE
C the inverse of the lower triangular matrix from the decomposition

CALL INV (NM, NM, CORRL, IPERM, NM, CORLI, DDET, JEXP,DCOND)
IF (DDET = = O.ODO) THEN
WRITE (7, 9902)
IERR = 1
GO TO 1000
ENDIF

C the transformation matrix

CALL DGMULT (CORLI, ADIGI, TR, NM, NM, NM)

C the inverse of the transformation matrix

CALL INV (NM, NM, TR, IPERM, NM, TRI, DDET, JEXP,DCOND)
IF (DDET == O.ODO) THEN
WRITE (7, 9903)
IERR = 1
GO TO 1000
ENDIF

C moments of the transformed \(W\). \(P\) costs / revenue \(s t: Z=X(1, K)\)
C \(Z\) : transformed W.P.C/R.S
C X : correlated W.P.C/R.S
\(C\) A : the transformation matrix
\(C \mathrm{Z}\) : expected value of the transformed W.P.cost or rev. str.

DO \(300 \mathrm{~J}=1\), NM
\(Z(1, J)=0.0 D 0\)
DO \(300 \mathrm{~K}=1\), NM
\(300 \mathrm{Z}(1, \mathrm{~J})=\mathbf{Z}(1, \mathrm{~J})+\mathrm{TR}(\mathrm{J}, \mathrm{K}) * \mathbf{X}(\mathbf{1}, \mathrm{~K})\)
\(C \mathrm{Z}\) (2, : second central moment of the transformed w.P.C or R.S

DO \(400 \mathrm{~J}=1\), NM
\(\operatorname{SCOR}(J)=0 . O D O\)
DO \(400 \mathrm{~K}=1\), NM
\(K K=K+1\)
IF (KK < = NM) THEN
DO 390 L \(=\) KK, NM
\(390 \operatorname{SCOR}(J)=\operatorname{SCOR}(J)+\operatorname{TR}(J, K) * \operatorname{TR}(J, L) *\) \(+\operatorname{COR}(\mathrm{K}, \mathrm{L})\) *
\(+\quad(\mathrm{X}(2, \mathrm{~K}) * \mathrm{X}(2, \mathrm{~L})) * * 0.5 \mathrm{D} 0\)
ENDIF
400 CONTINUE

DO \(410 \mathrm{~J}=1\), NM
Z (2, J) = 2.0DO * SCOR (J)
DO \(410 \mathrm{~K}=1\), NM
410
\[
Z(2, J)=Z(2, J)+T R(J, K) * * 2 * X(2, K)
\]
```

C Z (3, : third central moment of the transformed W.P.C or R.S
DO 500 J=1,NM
Z (3, J) = O.ODO
DO 500 K=1,NM
500 Z (3,J) = Z (3, J) + TR (J, K) ** 3 * X (3, K)
C Z (4, : fourth central moment of the transformed W.P.C or R.S
DO 600 J=1,NM
Z (4, J) = 0.0DO
DO 600 K=1,NM
600 Z (4,J) = Z (4, J) + TR (J, K) ** 4 * X (4, K)
1000 DEALLOCATE (SCOR, CORR, ADIG, ADIGI, TR, CORRL, CORLI)
CALL TRACE (3, 'TANSP', 'exiting.')
RETURN
9901 FORMAT(/,'INVERSION OF DIAG. MTX OF STD. DEV. FAILED.',//)
9902 FORMAT(/,'INVERSION OF LOWER TRIANGULAR MTX FAILED.',//)
9903 FORMAT(/,'INVERSION OF THE TRANSFORMATION MTX FAILED.',//)
END

```
```

C CdFunc.FOR
C modified by Toshiaki Hatakama in July 1994
C ROUTINE TO OBTAIN VALUES OF THE CUMULATIVE DISTRIBUTION
C FUNCTION OF A DEPENDENT VARIABLE APPROXIMATED BY A PEARSON
C TYPE DISTRIBUTION.

```


```

 SUBROUTINE CDFUNC (PEARSN,
    ```
            SUBROUTINE CDFUNC (PEARSN,
            + AM,SD,SK,AK,
            + AM,SD,SK,AK,
            + VA,VB,VC,VD,VE,VF,VG,
            + VA,VB,VC,VD,VE,VF,VG,
            + VM,
            + VM,
            + VT,VU,VV,VW,VX,VY,VZ)
```

 + VT,VU,VV,VW,VX,VY,VZ)
    ```


```

 IMPLICIT REAL*4(A-H,O-Z)
 INCLUDE 'DEBUG.CMN'
 REAL*4 PEARSN (NPEARS,*)
 CALL TRACE (3, 'CDFUNC', 'starting.')
 C select the pearson distribution that best approximates the
C shape characteristics of the dependent variable.
C the beta2 values for the lower bound of betal
DO 40 PINDEX = 1,NPEARS
YS = SK - PEARSN (PINDEX, 16)
YK = AK - PEARSN (PINDEX, 17)
IF (0.ODO <= YS .AND. YS < 0.1DO) THEN
IF (0.ODO <= YK .AND. YK < O.1DO) GO TO 50
ENDIF
40 CONTINUE
GO TO 200
C lower bound of betal fits a pearson type distribution
50 RSKW = YS
RKRT = YK
C is the lower bound of betal the last value
YCHK = PEARSN (PINDEX + 1, 16) - PEARSN (PINDEX, 16)
IF (0.0001DO < YCHK) GO TO 200
IY1 = PINDEX
IY2 = PINDEX + 1
C the beta2 values for the upper bound of the betal
DO 90 PINDEX = 1,NPEARS
ZS = PEARSN (PINDEX,16) - SK
ZK = AK - PEARSN (PINDEX,17)
IF (0.0DO <= ZS .AND. ZS < 0.1DO) THEN
IF (0.ODO <= ZK.AND. ZK < 0.1DO) GO TO 100

```

ENDIF
90 CONTINUE GO TO 200

C upper bound of betal fits a pearson type distribution C redo with arrays, then this becomes a simple loop
\(C\) is the upper bound of betal the last value
100 ZCHK = PEARSN (PINDEX+1, 16) - PEARSN (PINDEX, 16)
IF ( \(0.0001 \mathrm{DO}<\mathrm{ZCHK})\) GO TO 200
IZI = PINDEX
IZ2 \(=\) PINDEX +1

C interpolate the percentage points and evaluate values of the C cumulative distribution function of the dependent variable.

C redo with arrays, then this becomes a simple loop.
Call IntPol (Pearsn, RSKW, RKRT, IY1, IY2,IZ1,IZ2, <n>, SD, AM, V<n>)
\begin{tabular}{|c|c|c|}
\hline CALL & & (PEARSN, RSKW, RKRT, IY1, IY2, IZ1, IZ2, 1,SD, AM, VA) \\
\hline CALL & INTPOL & SN, RSKW, RKRT, IY1, IY 2 , IZ1, IZ \(2,2, S D, A M, V B\) ) \\
\hline CALI & INTPOL & 1,IZ2, 3,SD, AM, VC) \\
\hline CALL & INTPOL & \(2,4, S D, A M, V D)\) \\
\hline CALL & INTPOL & 2, 5, SD, AM, VE) \\
\hline CALL & INTPOL & EARSN, RSKW, RKRT, IY1, IY2,IZ1, IZ2, 6, SD, AM, VF) \\
\hline CALL & INTPOL & (PEARSN, RSKW, RKRT, IY1, IY2,IZ1, IZ2, 7, SD, AM, VG) \\
\hline CALI & INTPOL & (PEARSN, RSKW, RKRT, IY1, IY2,IZ1, IZ2, 8, SD, AM, VM) \\
\hline CALI & INTPOL & (PEARSN, RSKW, RKRT, IY1, IY \(2, I Z 1, I Z 2, ~ 9, S D, A M, V T)\) \\
\hline CALI & INTPOL & (PEARSN, RSKW, RKRT, IY1, IY \(2, I Z 1, I Z 2,10, S D, A M, V U)\) \\
\hline CALL & INTPOL & (PEARSN, RSKW, RKRT, IY1, IY2,IZ1, IZ2, 11, SD, AM, VV) \\
\hline CALI & INTPOL & (PEARSN, RSKW, RKRT, IY1, IY2, IZ1, IZ2, 12, SD, AM, VW) \\
\hline CALI & INTPOL & (PEARSN, RSKW, RKRT, IY1, IY2,IZ1, IZ2, 13, SD, AM, VX) \\
\hline CALI & INTPOL & (PEARSN, RSKW, RKRT, IY1, IY2,IZ1, IZ2, 14, SD, AM, VY) \\
\hline CALL & INTPOL & (PEARSN, RSKW, RKRT, IY1, IY2,IZ1, IZ2, 15, SD, AM, VZ) \\
\hline
\end{tabular}

GO TO 300
C the normal distribution is used as the default distribution


\section*{300 CALL TRACE (3, 'CDFUNC', 'exiting.') RETURN END}

INCLUDE 'INTPOL.INC'
```

C Inv.MJW
C modified by Toshiaki Hatakama in July, 1994.
C this optimized version tests for the special case of a diagonal
C matrix.
C A can be as large as it likes, we only access up to [N,N]...

```

```

 SUBROUTINE INV (N, NDIMT, TI, IP, NDIMA, A, DET, IEXP, COND)
    ```

```

IMPLICIT REAL*4 (A-H,O-Z)
REAL*4 A (NDIMA, NDIMA), T1 (NDIMT, NDIMT)
INTEGER IP (*)
C copy T1[N,N] into A
DET = 1.DO
IEXP = 0
COND = 0.ODO
ISDIAG = 1
DO 30 J=1,N
DO 30 I=1,N
A (I, J) = T1 (I, J)
IF (I == J .AND. A (I, J) == O.ODO) THEN
ISDIAG = 0
ELSE
IF (I .NE. J .AND. A (I, J) .NE. O.ODO) THEN
ISDIAG = 0
ENDIF
ENDIF

```
        30 CONTINUE
    IF (N == 1) GO TO 1991
    IF (ISDIAG == 1) GOTO 1993
C first part of Cond
    CSUMA=0.DO
    DO \(45 \mathrm{~J}=1, \mathrm{~N}\)
    DO \(45 \mathrm{I}=1\), N
        45 CSUMA \(=\) CSUMA \(+A(I, J)\) ** 2
C inversion starts
    DO \(199 \mathrm{~K}=1, \mathrm{~N}\)
C find maximum element in \(K * t h\) column
    AMAX \(=\mathrm{DABS}(\mathrm{A}(\mathrm{K}, \mathrm{K})\) )
    IMAX \(=K\)
```

Appendix D: Source Code of the Model
IF(K.EQ.N) GO TO 65
50 KP=K+1
DO 60 I=KP,N
AIK=DABS (A (I,K))
IF (AIK.LE.AMAX) GO TO 60
AMAX=AIK
IMAX=I
60 CONTINUE
C test for singularity
65 IF (AMAX == 0.DO) GO TO 300
C interchange rows K and IMAX
IP (K) = IMAX
IF (K.EQ.IMAX) GO TO 100
DET=-DET
C compute the determinant, and scale as appropriate.
100 DET = DET * A (IMAX, K)
IF (1.0D15 < DABS (DET)) THEN
DET = DET * 1.OD-15
IEXP = IEXP + 15
ENDIF
IF (DABS (DET) < 1.OD-15) THEN
DET = DET * 1.0D15
IEXP = IEXP - 15
ENDIF
C divide K*th row by A(K,K)
750 T=1./A(IMAX,K)
A(IMAX,K) =A (K,K)
A (K,K) =-1.0D0
DO 1999 I=1,N
A(I,K)=-A(I,K)*T
1999 CONTINUE
DO 144 J=1,N
IF (J == K) GO TO 144
C interchange rows }K\mathrm{ and IMAX
TEMP=A(IMAX,J)
IF (K.EQ.IMAX) GO TO 140
A(IMAX,J) =A (K,J)
75
A(K,J) =TEMP
C divide K*th row by A(K,K)
140
A(K,J) =TEMP*T
C subtract A(I,K) times K*th row from other rows

```
```

Appendix D: Source Code of the Model
DO 109 I = 1, N
IF (I .NE. K) THEN
A (I,J) = A (I,J) + TEMP * A (I,K)
ENDIF
CONTINUE
109
144 CONTINUE
199 CONTINUE
C restore proper column order in the inverse
NM1=N-1
DO 250 KK=1,NM1
C column now in K*th position actually column......
K=N-KK
210 J=IP (K)
C ... of the inverse. Therefore......
IF (J == K) GO TO 250
C relocate column K to position J
220 DO 225 I=1,N
T=A(I,J)
A(I,J)=A(I,K)
A(I,K)=T
225 CONTINUE
250 CONTINUE
C calculate COND
260 CSUMB = O.ODO
DO 270 J = 1, N
DO 270 I = 1,N
270 CSUMB = CSUMB + A (I, J) ** 2
275 COND = DSQRT (CSUMA * CSUMB) / FLOAT (N)
RETURN
C procedure for singular or nearly singular matrix.
300 WRITE (6,310) K,AMAX
310 FORMAT (1HO,'STEP',I3,' PIVOT =',D18.8,', is singular?')
DET=0.ODO
IEXP=0
COND=O.ODO
RETURN
C *** CODE FOR ORDER 1
1991 IF (A (1, 1) == 0.0D0) GO TO 1992
DET=A(1,1)
A(1, 1) =1. DO/A (1, 1)
COND=1.ODO
RETURN

```
```

1992 K=1
AMAX=0.ODO
GO TO 300
C the INV of a DIAGonal matrix is trivial... I think...
1993 SUMA = O.ODO
SUMB = 0.0DO
DO 1994 J = 1, N
A (J, J) = 1.0D0 / T1 (J, J)
DET = DET * T1 (J, J)
SUMA = SUMA + T1 (J,J) ** 2
SUMB = SUMB + A (J,J) ** 2
IF (1.D15 < DABS (DET)) THEN
DET = DET * 1.OD-15
IEXP = IEXP + 15
ENDIF
IF (DABS (DET) < 1.OD-15) THEN
DET = DET * 1.0D15
IEXP = IEXP - 15
ENDIF
1994 CONTINUE
COND = DSQRT (SUMA * SUMB) / FLOAT (N)
RETURN
END

```
```

C Decomp.FOR
C modified by Toshiaki Hatakama in July, 1994.
C THIS ROUTINE DECOMPOSES A TO A=L*LTRANSPOSE VIA CHOLESKI METHOD.

```

```

 SUBROUTINE DECOMP (A, N, M, RATIO)
    ```

```

 IMPLICIT REAL*4 (A-H,O-Z)
 REAL*4 A(*)
 CALL TRACE (3, 'DECOMP', 'starting.')
 MM=M-1
 NM=N*M
 NM1 =NM-MM
 3001 MP=M+1
 C transformation of A.
C A is transformed into a lower triangular matrix L such that A=L.LT
C (LT=transpose of L.).
C error return taken if RATIO<1.E-7
C
KK=2
NCN=0
DET=1.DO
FAC=RATIO
BIGL=DSQRT(A(1))
SML=BIGL
IF (M == 1) GO TO 101
IF (0.ODO < A(1)) GO TO 15
NROW=1
RATIO=A(1)
GO TO 60
15 DET=A(1)
A(1) =SML
A(2) =A(2)/A(1)
TEMP=A(MP)-A(2)*A(2)
IF (TEMP <= O.ODO) RATIO=TEMP
IF (0.ODO < TEMP) GO TO 21
NROW=2
GO TO 60
101 DO 102 I=1,N
TEMP=A(I)
DET=TEMP*DET
IF (TEMP <= 0.ODO) GO TO 104
IF (DET < 1.D15) GO TO 1144

```
```

Appendix D: Source Code of the Model
DET=DET*1.D-15
NCN=NCN+15
GO TO 1145
1144 IF (1.0D-15 < DET) GO TO 1145
DET=DET*1.D15
NCN=NCN-15
1145 CONTINUE
A(I) =DSQRT(TEMP)
IF (BIGL < A(I)) BIGL=A(I)
IF (A(I) < SML) SML=A(I)
CONTINUE
GO TO 52
104 RATIO=TEMP
103 NROW=I
GO TO 60
21 A(MP)=DSQRT(TEMP)
DET=DET*TEMP
IF (BIGL < A(MP)) BIGL=A(MP)
IF (A(MP) < SML) SML=A(MP)
IF (N == 2) GO TO 52
MP=MP+M
DO 62 J=MP,NM1,M
JP=J-MM
MZC=0
IF(M <= KK) GO TO I
KK=KK+1
II=1
JC=1
GO TO 2
1 KK=KK+M
II=KK-MM
JC =KK - MM
2 DO 65 I=KK,JP,MM
IF (A(I) == O.ODO) GO TO 64
GO TO 66
64 JC=JC+M
65 MZC=MZC+1
ASUM1=0.DO
GO TO 61
MMZC=MM*MZC
II=II+MZC
KM=KK+MMZC
A(KM) =A (KM)/A(JC)
IF(JP <= KM) GO TO 6
KJ=KM+MM
DO 5 I=KJ,JP,MM

```
```

Appendix D: Source Code of the Model
ASUM2=0.DO
IM=I-MM
II=II+1
KI=II+MMZC
DO }7\textrm{K}=\textrm{KM},IM,M
ASUM2 =ASUM2 +A(KI) *A (K)
7 KI=KI +MM
5 A(I)=(A(I)-ASUM2)/A(KI)
6 ASUM1=0.DO
DO }4\textrm{K}=\textrm{KM},\textrm{JP},M
4 ASUM1=ASUM1 +A(K)*A(K)
61 S=A(J) - ASUM1
IF (S < O.ODO) RATIO=S
IF (O.DO < S) GO TO 63
NROW=(J+MM)/M
GO TO 60
63 A(J)=DSQRT(S)
DET=DET*S
IF (1.D-15 < DET) GO TO 144
DET=DET*1.D+15
NCN=NCN-15
GO TO 145
144 IF (DET < 1.D+15) GO TO 145
DET=DET*1.D-15
NCN=NCN+15
145 CONTINUE
IF (BIGL < A(J)) BIGL=A(J)
IF (A(J) < SML) SML=A(J)
6 2 ~ C O N T I N U E ~
52 IF (SML <= FAC*BIGL) GO TO 54
GO TO 53
54 RATIO=0.DO
GOTO 1000
60 PRINT *, "SYstem is NOT POSITIVE DEFINITE in row", NROW
GOTO 1000
53 RATIO=SML/BIGL
1000 CALL TRACE (3, 'DECOMP', 'exiting.')
RETURN
END

```
```

C DgMMJW.FOR
C modified by Toshiaki Hatakama in July, 1994.

```

```

 SUBROUTINE DGMULT (A, B, C, IAROWS, IBROWS, IBCOLS)
    ```

```

 REAL*4 A (IAROWS, IBROWS)
 REAL*4 B (IBROWS, IBCOLS)
 REAL*4 C (IAROWS, IBCOLS)
 INTEGER I, J, K, IAO, IBO
 IAO = O ! this will contain the number of zero entries in A
 DO 2 I = 1, IAROWS
 DO 1 K = 1, IBROWS
 IF (A (I, K) == 0.ODO) IAO = IAO + 1
 1
 CONTINUE
 DO 2 J = 1, IBCOLS
 C (I, J) = O.ODO
 2 CONTINUE
 IBO = O ! this will contain the number of zero entries in B
 DO 3 J = 1, IBCOLS
 DO 3 K = 1, IBROWS
 IF (B (K, J) == 0.ODO) IBO = IBO + 1
 CONTINUE

```

C we have a decision to make. which order should we do the calcs in? C it is possible (probable) that it won't make any difference, but it C could.
C so, which path will result in the most savings...?
IF ((IBO * IAROWS) \(<=\) (IAO * IBCOLS)) THEN
C there are more (or just as many) zero-product-reductions in \(A\).
DO \(5 I=1\), IAROWS DO \(5 \mathrm{~K}=1\), IBROWS

TEMP \(=A(I, K)\)
IF (TEMP .NE. O.ODO) THEN
DO \(4 \mathrm{~J}=1\), IBCOLS
\(4 \mathrm{C}(I, J)=C(I, J)+(T E M P * B(K, J))\)
ENDIF
5 CONTINUE
ELSE
C there are more zero-product-reductions in \(B\), so use that way in C stead.
```

DO 7 J = 1, IBCOLS
DO 7 K = 1, IBROWS
TEMP = B (K, J)
IF (TEMP .NE. O.ODO) THEN

```

6
DO \(6 \mathrm{I}=1\), IAROWS
\(\mathbf{C}(I, J)=C(I, J)+(A(I, K) * T E M P)\)
ENDIF
7 CONTINUE
ENDIF

RETURN
END

\section*{C Early.for}

C modified by Toshiaki Hatakama in July, 1994.

C ROUTINE TO EVALUATE THE FIRST FOUR MOMENTS OF A PATH EARLY C START TIME BY UNCORRELATING THE WORK PACKAGE DURATIONS.
C
C 'Suggested' enhancement. redo the defs of LIST \& LISREP so that
C they can be passed interchangeably to EARLY, then forget LID,
C cause then it's useless. It's only function is to choose between
C the two. That's it. If one is used, the other is ignored.

```

 SUBROUTINE EARLY (J,
 + LN,
 + LP,
 + LID, ! choose between LIST or LISREP
 + WPTIME, CORRD,
 + ESTART,
 + LIST, LISREP) ! two tables with similar information....
    ```

    IMPLICIT REAL* 4 (A-H, O-Z)
    INCLUDE 'DEBUG.CMN'
    INTEGER LN, LP, LID
    REAL* 4 WPTIME (4, *), CORRD (NWP, *)
    REAL* 4 ESTART (4, *)
    INTEGER LIST (200, 40), LISREP (101, 40)
    REAL*4 COR (:,:), TRI (:,:), PD (:), X (:,:), Z (:,:)
ALLOCATABLE COR, TRI, PD, X, Z
    CALL TRACE (3, 'EARLY', 'starting.')
    ALLOCATE (COR (LP, LP), TRI (LP, LP), PD (LP))
    ALLOCATE (X (4, LP), Z (4, LP))
    DO \(32 \mathrm{~K}=1\), LP
    DO \(31 \mathrm{~L}=1,4\)
            \(Z(L, K)=0.0 D 0\)
        DO \(32 \mathrm{~L}=1\), LP
        IF ( \(K==L\) ) THEN
            \(\operatorname{COR}(\mathrm{K}, \mathrm{K})=1.0 \mathrm{DO}\)
        ELSE
            \(\operatorname{COR}(L, K)=0.0 D 0\)
            ENDIF
            \(\operatorname{TRI}(L, K)=0 . O D O\)
        DO \(120 \mathrm{~K}=1\), LP
        IF (LID \(==1\) ) THEN
            J1 = LIST (LN, K)
        ELSE
            J1 = LISREP (LN, K)
        ENDIF
```

 X (1, K) = WPTIME (1, J1)
 X (2, K) = WPTIME (2, J1)
 X (3, K) = WPTIME (3, J1)
 X (4, K) = WPTIME (4, J1)
 MM = K + I
 IF (MM <= LP) THEN
 DO 110 M = MM,LP
 IF (LID == 1) THEN
 J2 = LIST (LN, M)
 ELSE
 J2 = LISREP (LN, M)
 ENDIF
 COR (K, M) = CORRD (J1, J2)
 COR (M, K) = COR (K, M)
 CONTINUE
 ENDIF
 120 CONTINUE

```

C transform correlated W.P. durations to uncorrelated durations

CALL TANSP (LP, \(X, Z, C O R, T R I)\)
IF ( 0 < IERR) GOTO 500
C first partial deravatives of the transformed w.P durations.
DO \(150 \mathrm{~K}=1\), LP
PD (K) \(=0.0 D 0\)
DO \(150 \mathrm{M}=1\), LP
150 PD \((K)=P D(K)+T R I(M, K)\)
C first four moments of a path early start time
DO \(190 \mathrm{~K}=1\), LP
\(\operatorname{ESTART}(1, J)=\operatorname{ESTART}(1, J)+\operatorname{PD}(K) \quad * Z(1, K)\)
\(\operatorname{ESTART}(2, J)=\operatorname{ESTART}(2, J)+P D(K) * * 2 * Z(2, K)\)
\(\operatorname{ESTART}(3, J)=\operatorname{ESTART}(3, J)+\operatorname{PD}(K) * * 3 * Z(3, K)\)
\(\mathrm{FC}=0.0 \mathrm{DO}\)
\(\mathrm{MM}=\mathrm{K}+\mathbf{1}\)

IF (MM < = LP) THEN
DO \(180 \mathrm{M}=\mathrm{MM}\), LP

ENDIF

190 ESTART (4, J) = ESTART (4, J) + FC + PD (K) ** 4 * \(\mathbf{Z}(4, \mathrm{~K})\)
500 DEALLOCATE (TRI, COR, PD, X, Z)
CALL TRACE (3, 'EARLY', 'exiting.')
RETURN

END
```

C EstMMT.FOR
C modified by Toshiaki Hatakama in July, 1994.
C ROUTINE TO APPROXIMATE THE FIRST FOUR MOMENTS FOR EARLY START
C TIME WHEN THE MODIFIED PNET ALGORITHM IS USED.

```


```

 SUBROUTINE ESTMMT(JPV, PEARSN,
    ```
    SUBROUTINE ESTMMT(JPV, PEARSN,
    + D,E,G,M,T,V,W,
    + D,E,G,M,T,V,W,
    + ESTART)
```

 + ESTART)
    ```


```

 IMPLICIT REAL*4(A-H,O-Z)
 INCLUDE 'DEBUG.CMN'
 REAL*4 PEARSN (NPEARS, *)
 REAL*4 D(*), E(*), G(*), M(*), T(*), V(*), W(*)
 REAL*4 ESTART (4,*)
 C expected value of early start time
CALL TRACE (3, 'ESTMMT', 'starting')
DEL = V (JPV) + E (JPV) - 2.ODO * M (JPV)
ESTART (1, JPV) = M (JPV) + 0.185D0 * DEL
C standard deviation of elements V \& E
C parameters 3.25D0, 0.0001D0, 3.29D0, 0.100D0, 3.08D0
50 IF (590< K) GO TO 9999
XSIGM1 = SIGM1 - SIGML
XCHEK1 = SIGML * 0.0001D0
IF (DABS(XSIGM1) < DABS(XCHEK1)) GOTO 70
K=K+1
SIGML = SIGM1
SIGM1 = (V (JPV) - E (JPV)) /
+ DMAX1 (3.29D0 - 0.100D0 * (DEL / SIGML) ** 2, 3.08D0)
GO TO 50
70 ASIGM1 = SIGM1
C standard deviation of elements W \& D
C parameters 3.92D0, 0.0001D0, 3.98D0, 0.138D0, 3.66D0
K = 2
SIGML = 0.ODO
SIGM2 = (W (JPV) - D (JPV)) / 3.92D0

```
```

80 IF (590<K) GO TO 9999
XSIGM2 = SIGM2 - SIGML
XCHEK2 = SIGML * 0.0001D0
IF (DABS (XSIGM2) < DABS (XCHEK2)) GO TO 100
K=K+1
SIGML = SIGM2
SIGM2 = (W (JPV) - D (JPV)) /
+ DMAX1 (3.98DO - 0.138DO * (DEL / SIGML) ** 2, 3.66DO)
GO TO 80
100 ASIGM2 = SIGM2
C OK, which SD is greater???
SIGMAD = DMAX1 (ASIGM1, ASIGM2)
C use that one to scale the vector for the pearson comparison
ESTART (2, JPV) = SIGMAD ** 2
X4 = (D (JPV) - ESTART (1, JPV)) / SIGMAD
X5 = (E (JPV) - ESTART (1, JPV)) / SIGMAD
X7 = (G (JPV) - ESTART (1, JPV)) / SIGMAD
X8 = (M (JPV) - ESTART (1, JPV)) / SIGMAD
X9 = (T (JPV) - ESTART (1, JPV)) / SIGMAD
X11 = (V (JPV) - ESTART (1, JPV)) / SIGMAD
X12 = (W (JPV) - ESTART (1, JPV)) / SIGMAD
C compare standardized values to those from the pearson table
RLOW = 10.0
DO 150 K = 1, NPEARS
SUMSQR = ((PEARSN (K, 4) - X4) ** 2
+ + (PEARSN (K, 5) - X5) ** 2
+ + (PEARSN (K, 7) - X7) ** 2
+ + (PEARSN (K, 8) - X8) ** 2
+ + (PEARSN (K, 9) - X9) ** 2
+ + (PEARSN (K,11) - X11) ** 2
+ + (PEARSN (K,12) - X12) ** 2) ! ** 0.5
IF (SUMSQR < RLOW) THEN
RLOW = SUMSQR
BETA1 = PEARSN (K, 16)
BETA2 = PEARSN (K, 17)
ENDIF
150 CONTINUE
IF (0.0225DO < RLOW) GO TO 9999
C third and fourth moments for work package EST

```
```

Appendix D: Source Code of the Model
ESTART (3, JPV) = BETA1 * (ESTART (2, JPV) ** 1.5)
ESTART (4, JPV) = BETA2 * (ESTART (2, JPV) ** 2)
250 CONTINUE
CALL TRACE (3, 'ESTMMT', 'exiting.')
RETURN
C default to a normal distribution
9999 ESTART (3, JPV) = 0.0D0
ESTART (4, JPV) = 3.ODO * (ESTART (2, JPV) ** 2)
GO TO 250
END

```
```

C RvSf11.INC
C 07mar94 MJW rationalization of the functions
C
C Closed System (Manual Collection)
C we ask nicely for the money from the motorist!
C

```
SUBROUTINE RVSFII (KP, KT, DR, BOTTLE, I, X, Y)
IMPLICIT REAL*4 (A-H,O-Z)
INCLUDE 'DEBUG.CMN'
REAL* 4 BOTTLE (NRS, *), X (*)
REAL* 4 Y,AY,AZ,BZ,Z
REAL* 4 mcbpl(50), mcoll(50),ots(50)
REAL* 4 ooo(50), oom(50), reve (50)
REAL* 4 tcmt(50), tccc(50), tccm (50), brco(50), obo(50), ho(50)
REAL* 4 maint (50), oper (50), aoper (50)
REAL*4 X1 (200), X2 (200)
REAL* 4 cost (:,:,:,), traf (:,:,:, )
ReAL*4 tcc (:,:), tcm (:,:), cts (:,:)
ALLOCATABLE cost, traf, tcc, tcm, cts
C
C CALL TRACE (2, 'RVSFII', 'starting.')
```

nAL = BOTTLE (I, 1)
nP = BOTTLE (I, 2)
nWC = BOTTLE (I, 3)
nOL = BOTTLE (I, 4)
nBR = BOTTLE (I, 5)

```
rIBY \(=\mathbf{X}\) (1)
IRD \(=\) NINT (X (2))
ALLOCATE (cost (IRD, nAL, nAL, nP))
ALLOCATE (traf (IRD, nAL, nAL, nP))
ALLOCATE (tcc (IRD, nAL))
ALLOCATE (tcm (IRD, nAL))
ALLOCATE (cts (IRD, nAL))
DISC1 \(=\mathrm{X}\) (3)
RATE1 \(=\mathbf{X}\) (4)
DISC2 \(=\mathrm{X}\) (5)
RATE2 \(=\mathbf{X}(6)\)
perkm \(=\mathrm{X}\) (7)
entFee \(=x\) (8)
DO 90 II=1,IRD
    DO \(90 \mathrm{~J}=1\), nAL-1
        travld \(=0\)
```

Appendix D: Source Code of the Model
DO 90 K=J+1,nAL
travld = travld + X(7+K)
breakl = 0
break2 = 0
IF (DISC1 < travld) THEN
break1 = travld - DISC1
travld = DISC1
ENDIF
IF (DISC2 < (travld + break1)) THEN
break2 = (travld + breakl) - DISC2
break1 = (DISC2 - DISC1)
ENDIF
DO 90 L=1,nP
cost(II,J,K,L)
= ((travld + (breakl * RATE1) + (break2 * RATE2))
* perKM * X(7+nAL+L) + entFee) * X(7+nAL+nP+II)
CALL TRACE (3, 'RVSF11', 'traffic volume calculation.')
DO 1150 II=1,IRD
M=0
DO 1150 J=1,nAL-1
DO 1150 K=J+1,nAL
DO 1150 L=1,nP
M=M+1
1150
traf (II,J,K,L)=
X(7+nAL+nP+ 2 * IRD+M) *
+ X(7+nAL+nP+ 2 * IRD+M) *
+ X(7+nAL+nP+ IRD+II) /
+ X(8+nAL+nP+ IRD)
CALL TRACE (3, 'RVSF11', 'annual toll revenue...')
DO 1470 II=1,IRD
reve (II) = 0.00
DO 1470 J=1, nAL
DO 1470 K=J+1,nAL
DO 1470 L=1,nP
1470
reve (II) = reve (I) +

+ traf (II,J,K,L)*cost (II,J,K,L)*365
L1 = 7 + nAL + nP + 2*IRD + nAL* (nAL-1)/2*nP
CALL TRACE (3, 'RVSFII', 'fixed costs...')
mcrc = ! road cleaning costs
+ X(L1+13)*(X(L1+1) + X(L1+4) + X(L1+7)) + X(L1+14)*(X(L1+2) +
+ X(L1+5) + X(L1+8) + X(L1+3) + X(L1+6) + X(L1+9))
mcrm = ! road maintenance
+ X(L1+15)*X(L1+7) + X(L1+16)*X(L1+8) + X(L1+17)*X(L1+9)
mcl = ! lighting
+ X(L1+18)*(X(L1+1) + X(L1+7)) +
+ X(L1+19)*((X(L1+2) + X(L1+3)) + (X(L1+8) + X(L1+9)))

```
```

 mcbr = ! bridge repair
 + X(L1+20)*X(L1+1) + X(L1+21)*X(L1+2) + X(L1+22)*X(L1+3)
mcbp = ! bridge painting
+ X(L1+23)*X(L1+1) + X(L1+24)*X(L1+2) + X(L1+25)*X(L1+3)
mctm = ! tunnel maintenance
+ X(L1+10)*X(L1+26) + X(L1+11)*X(L1+27) + X(L1+12)*X(L1+28)

```
    SELECT CASE (nWC) ! snow and ice control based on nWC
    CASE (1)
    mesc =
\(+X(L 1+29) *(X(L 1+1)+X(L 1+4)+X(L 1+7))\)
\(+\quad+2 *(X(L 1+2)+X(L 1+5)+X(L 1+8))\)
\(+\quad+3 *(X(L 1+3)+X(L 1+6)+X(L 1+9)))\)
    CASE (2)
    mesc \(=\)
\(+\mathrm{X}(\mathrm{L} 1+30) *(\mathrm{X}(\mathrm{L} 1+1)+\mathrm{X}(\mathrm{L} 1+4)+\mathrm{X}(\mathrm{L} 1+7))\)
\(+\quad+2 *(X(L 1+2)+X(L 1+5)+X(L 1+8))\)
\(+\quad+3 *(X(L 1+3)+X(L 1+6)+X(L 1+9))\)
CASE DEFAULT
mesc \(=0.00\)
END SELECT
```

mcol = ! overlay
$+\mathrm{X}(\mathrm{L} 1+31) *(\mathrm{X}(\mathrm{L} 1+1)+\mathrm{X}(\mathrm{L} 1+4)+\mathrm{X}(\mathrm{L} 1+7) \mathrm{f})+$
$+x(L 1+32) *(x(L 1+2)+x(L 1+5)+x(L 1+8))+$
$+X(L 1+33) *(X(L 1+3)+X(L 1+6)+X(L 1+9))$

```
mcot \(=X(L 1+34) *(m c r c+m c r m+m c l+m c b r+m c t m+m c s c)\)
DO 2295 II=1,IRD
    IF (II.EQ.nBR .OR. II.EQ. (nBR+7) .OR. II.EQ. (nBR+14)
\(+\quad . O R . I I . E Q .(n B R+21)\). OR. II.EQ. (nBR+28) .OR.
+ II.EQ. (nBR+35) .OR. II.EQ. (nBR+42) .OR.
\(+\quad\) II.EQ.(nBR+49)) THEN
        \(\operatorname{mcbp}(I I)=m c b p\)
    ELSE
            mebp1 (II) \(=0.00\)
    END IF
    IF (II.EQ.nOL .OR. II.EQ.(nOL+12) .OR. II.EQ.(nOL+24)
+ .OR. II.EQ.(nOL+36) .OR. II.EQ.(nOL+48)) THEN
            mcoll(II) = mcol
        ELSE
        mcoll(II) \(=0.00\)
        END IF
2295 CONTINUE
C OPERATION COSTS
CALL TRACE (3, 'RVSF11', 'operation costs...')
C
C Operation office overhead
```

C--------------------------------

```
    DO 2500 II=1,IRD
        \(\mathrm{M}=0\)
        \(X 2(I I)=X(7+n A L+n P+I R D+I I)\)
        \(\mathrm{X} 00=7+\mathrm{nAL}+\mathrm{nP}+I R \mathrm{D}+\mathrm{II}\)
        DO \(2500 \mathrm{~J}=1\), \(\mathrm{nAL}-1\)
        DO \(2500 \mathrm{~K}=\mathrm{J}+1\), nAL
            DO \(2500 \mathrm{~L}=1\), nP
                \(M=M+1\)
                \(\mathrm{XO}=7+\mathrm{nAL}+\mathrm{nP}+2 * I R D+M\)
                \(\mathrm{X} 1(\mathrm{M})=\mathrm{X}(\mathrm{XO})\)
                    IF (KP = \(=X 0\) ) THEN
                    IF (KT = = 1) THEN
                    \(\mathrm{XI}(\mathrm{M})=\mathrm{X}(\mathrm{X} 0) / 0.99\)
                    ELSE IF (KT == 3) THEN
                        \(\mathrm{X} 1(\mathrm{M})=\mathrm{X}(\mathrm{XO}) / 1.01\)
                    END IF
                ELSE IF (KP == XOO) THEN
                    IF (KT == 1) THEN
                    \(\mathrm{X} 2(\mathrm{II})=\mathrm{X}(X 00) / 0.99\)
                    ELSE IF (KT == 3) THEN
                    \(\mathrm{X} 2(\mathrm{II})=\mathrm{X}(X 00) / 1.01\)
                    END IF
                    END IF
2500
    traf (II, J, K, L) \(=\mathrm{XI}(\mathrm{M}) * \mathrm{X} 2(\mathrm{II}) / \mathrm{X} 2(1)\)
    DO 3450 II=1,IRD
    ots \((I I)=0.00\)
    DO \(3440 \mathrm{~J}=1\), nAL-1
        DO \(3430 \mathrm{~K}=\mathrm{J}+1\), nAL
            DO \(3420 \mathrm{~L}=1\), nP
                ots (II) =ots (II) +traf(II, J, K, L)
            CONTINUE
        CONTINUE
    CONTINUE
```

DO 3485 II=1,IRD
OOO(II)=0

```
C treated traffic is half of through traffic
    ots (II) =ots (II)*0.5
    X3 \(=X(L 1+40)\)
    \(X 4=X(L 1+46)\)
    \(X 5=X(L 1+52)\)
    \(\mathrm{X} 6=\mathrm{X}(\mathrm{L} 1+58)\)
    \(X 7=X(L 1+64)\)
    IF (KP = \(=11+40\) ) THEN
        IF (KT == 1) THEN
                \(\mathrm{X} 3=\mathrm{X}(\mathrm{L} 1+40) / 0.99\)
        ELSE IF (KT == 3) THEN
                \(\mathrm{X} 3=\mathrm{X}(\mathrm{L} 1+40) / 1.01\)
            END IF
ELSE IF (KP = = L1+46) THENIF (KT = = 1) THEN
            \(\mathrm{X} 4=\mathrm{x}(\mathrm{L} 1+46) / 0.99\)
        ELSE IF (KT == 3) THEN
            \(X 4=X(L 1+46) / 1.01\)
    END IF
ELSE IF (KP == L1+52) THEN
    IF (KT == 1) THEN
            \(\mathrm{X} 5=\mathrm{X}(\mathrm{L} 1+52) / 0.99\)
    ELSE IF (KT == 3) THEN
            \(X 5=X(L 1+52) / 1.01\)
        END IF
ELSE IF (KP == L1+58) THEN
        IF (KT == 1) THEN
            \(\mathrm{X} 6=\mathrm{X}(\mathrm{L} 1+58) / 0.99\)
        ELSE IF (KT == 3) THEN
            \(X 6=X(L 1+58) / 1.01\)
        END IF
ELSE IF (KP == LI \(1+64\) ) THEN
    IF (KT == 1) THEN
        \(\mathrm{X7}=\mathrm{X}(\mathrm{L} 1+64) / 0.99\)
        ELSE IF (KT = = 3) THEN
        \(\mathrm{X} 7=\mathrm{X}(\mathrm{L} 1+64) / 1.01\)
        END IF
END IF
    IF (ots (II).LE.X3) THEN
    \(000(\mathrm{II})=\mathrm{X}(\mathrm{L} 1+41) * X(\mathrm{~L} 1+35)+\mathrm{X}(\mathrm{L} 1+42) * X(\mathrm{~L} 1+36)+\mathrm{X}(\mathrm{L} 1+43)\)
                            * \(X(L 1+37)+X(L 1+44) * X(L 1+38)+X(L 1+45) * X(L 1+39)\)
    \(\operatorname{com}(I I)=X(L 1+41)+X(L 1+42)+X(L 1+43)+X(L 1+44)+X(L 1+45)\)
ELSE IF (Ots(II).LE.X4) THEN
    O०० (II) \(=\mathrm{X}(\mathrm{L} 1+47) * X(L 1+35)+X(L 1+48) * X(L 1+36)+X(L 1+49)\)
                            * \(X(L 1+37)+X(L 1+50) * X(L 1+38)+X(L 1+51) * X(L 1+39)\)
    oom (II) \(=\mathrm{X}(\mathrm{L} 1+47)+\mathrm{X}(\mathrm{L} 1+48)+\mathrm{X}(\mathrm{L} 1+49)+\mathrm{X}(\mathrm{L} 1+50)+\mathrm{X}(\mathrm{L} 1+51)\)
    ELSE IF (Ots (II).LE.X5) THEN
    ००० (II) \(=X(L 1+53) * X(L 1+35)+X(L 1+54) * X(L 1+36)+X(L 1+55)\)
                            * \(\mathrm{X}(\mathrm{L} 1+37)+\mathrm{X}(\mathrm{L} 1+56) * \mathrm{X}(\mathrm{L} 1+38)+\mathrm{X}(\mathrm{L} 1+57)\) * \(\mathrm{X}(\mathrm{L} 1+39)\)
        oom (II) \(=\mathrm{X}(\mathrm{L} 1+53)+\mathrm{X}(\mathrm{L} 1+54)+\mathrm{X}(\mathrm{L} 1+55)+\mathrm{X}(\mathrm{L} 1+56)+\mathrm{X}(\mathrm{L} 1+57)\)
    ELSE IF (ots(II).LE.X6) THEN
        \(000(I I)=X(L 1+59) * X(L 1+35)+X(L 1+60) * X(L 1+36)+X(L I+61)\)
            * \(X(L 1+37)+X(L 1+62) * X(L 1+38)+X(L 1+63) * X(L 1+39)\)
        oom (II) \(=\mathrm{X}(L 1+59)+\mathrm{X}(L 1+60)+\mathrm{X}(\mathrm{L} 1+61)+\mathrm{X}(\mathrm{L} 1+62)+\mathrm{X}(\mathrm{L} 1+63)\)
        ELSE IF (Ots(II).LE.X7) THEN
        \(000(I I)=X(L 1+65) * X(L 1+35)+X(L 1+66) * X(L 1+36)+X(L 1+67)\)
            * \(X(L 1+37)+X(L 1+68) * X(L 1+38)+X(L 1+69) * X(L 1+39)\)
    oom (II) \(=\mathrm{X}(\mathrm{L} 1+65)+\mathrm{X}(\mathrm{L} 1+66)+\mathrm{X}(\mathrm{L} 1+67)+\mathrm{X}(\mathrm{L} 1+68)+\mathrm{X}(\mathrm{L} 1+69)\)
        ELSE
        ○○○ (II) \(=\mathrm{X}(\mathrm{L} 1+70) * \mathrm{X}(\mathrm{L} 1+35)+\mathrm{X}(\mathrm{L} 1+71) * \mathrm{X}(\mathrm{L} 1+36)+\mathrm{X}(\mathrm{L} 1+72)\)
        * \(\mathrm{X}(\mathrm{L} 1+37)+\mathrm{X}(\mathrm{L} 1+73) * \mathrm{X}(\mathrm{L} 1+38)+\mathrm{X}(\mathrm{L} 1+74) * \mathrm{X}(\mathrm{L} 1+39)\)
        \(\operatorname{oom}(I I)=X(L 1+70)+X(L 1+71)+X(L 1+72)+X(L 1+73)+X(L 1+74)\)
        END IF
        CONTINUE

\section*{C-}

C CONSIGNMENT COSTS OF TOLL COLLECTION
```

C--

```
```

DO 3550 II=1,IRD
DO 3540 M=I,nAL
cts(II,M)=0.00
DO 3530 J=1,nAL-1
DO 3520 K=J+1, nAL
DO 3510 L=1,nP
IF(J.EQ.M .OR. K.EQ.M) THEN
cts(II,M)=cts(II,M)+traf(II,J,K,L)
ELSE
cts(II,M)=cts(II,M)
END IF
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE

```
    DO 3790 II=1,IRD
        DO \(3780 \mathrm{M}=1\), nAL
        \(\operatorname{tcc}(I I, M)=0\)
        \(\mathrm{X8}=\mathrm{X}(\mathrm{L} 1+76)\)
        \(\mathrm{X} 9=\mathrm{X}(\mathrm{L1}+78)\)
        \(\mathrm{X} 10=\mathrm{X}(\mathrm{L} 1+80)\)
        \(\mathrm{X} 11=\mathrm{X}(\mathrm{L} 1+82)\)
        \(\mathrm{X} 12=\mathrm{X}(\mathrm{L} 1+84)\)
        \(X 13=X(L 1+86)\)
        \(\mathrm{X} 14=\mathrm{X}(\mathrm{L} 1+88)\)
        \(\mathrm{X} 15=\mathrm{X}(\mathrm{L} 1+90)\)
        \(\mathrm{X} 16=\mathrm{X}(\mathrm{L} 1+92)\)
        \(\mathrm{X} 17=\mathrm{X}(\mathrm{L} 1+94)\)
        X18 \(=x(L 1+96)\)
        \(\mathbf{X 1 9}=\mathbf{X}(L 1+98)\)
        \(\mathbf{x 2 0}=\mathbf{X}(\mathrm{L} 1+100)\)
        \(\mathbf{X 2 1}=\mathbf{X}(L 1+102)\)
        \(\mathrm{X} 21=\mathrm{X}(\mathrm{L} 1+104)\)
        \(\mathbf{x 2 1}=\mathbf{X}(\mathrm{L} 1+106)\)
        \(\mathbf{x 2 1}=\mathrm{X}(\mathrm{L} 1+108)\)
        IF (KP = \(=11+76\) ) THEN
            IF (KT == 1) THEN
                \(\mathrm{XB}=\mathrm{x}(\mathrm{L} 1+76) / 0.99\)
            ELSE IF (KT == 3) THEN
                \(\mathrm{X} 8=\mathrm{X}(\mathrm{L} 1+76) / 1.01\)
            END IF
        ELSE IF (KP == L1+78) THEN
            IF (KT = = 1) THEN
                \(X 9=X(L 1+78) / 0.99\)
            ELSE IF (KT == 3) THEN
                \(\mathrm{X} 9=\mathrm{X}(\mathrm{L} 1+78) / 1.01\)
            END IF
        ELSE IF (KP = \(=1+80\) ) THEN
            IF (KT == 1) THEN
                \(\mathrm{X10}=\mathrm{X}(\mathrm{L} 1+80) / 0.99\)
            ELSE IF (KT = = 3) THEN
\(\mathrm{x} 10=\mathrm{X}(\mathrm{L} 1+80) / 1.01\)
END IF
ELSE IF (KP == L1+82) THEN
IF (KT = = 1) THEN
\(\mathrm{X11}=\mathrm{X}(\mathrm{L} 1+82) / 0.99\)
ELSE IF (KT \(==3\) ) THEN
\(\mathrm{X} 11=\mathrm{X}(\mathrm{L} 1+82) / 1.01\)
END IF
ELSE IF (KP == L1+84) THEN
IF (KT == 1) THEN
\(\mathrm{X} 12=\mathrm{X}(\mathrm{L} 1+84) / 0.99\)
ELSE IF (KT == 3) THEN
\(\mathrm{x} 12=\mathrm{X}(\mathrm{L} 1+84) / 1.01\)
END IF
ELSE IF (KP == L1+86) THEN
IF (KT == 1) THEN
\(\mathrm{X} 13=\mathrm{X}(\mathrm{L} 1+86) / 0.99\)
ELSE IF (KT == 3) THEN \(\mathrm{X} 13=\mathrm{X}(\mathrm{L} 1+86) / 1.01\)
END IF
ELSE IF (KP = = L1+88) THEN
IF (KT == 1) THEN
\(\mathrm{X14}=\mathrm{X}(\mathrm{L} 1+88) / 0.99\)
ELSE IF (KT == 3) THEN \(\mathrm{x} 14=\mathrm{x}(\mathrm{L} 1+88) / 1.01\)
END IF
ELSE IF (KP = \(=\mathbf{L} 1+90\) ) THEN
IF (KT == 1) THEN \(\mathrm{X15}=\mathrm{X}(\mathrm{L} 1+90) / 0.99\)
ELSE IF (KT = = 3) THEN \(\mathrm{X} 15=\mathrm{X}(\mathrm{L} 1+90) / 1.01\)
END IF
ELSE TF (KP == L1+92) THEN
IF (KT = = 1) THEN
\(\mathrm{X16}=\mathrm{X}(\mathrm{L} 1+92) / 0.99\)
ELSE IF (KT == 3) THEN
\(\mathrm{X16}=\mathrm{x}(\mathrm{L} 1+92) / 1.01\)
END IF
ELSE IF (KP = = L1+94) THEN
IF (KT == 1) THEN \(\mathrm{X} 17=\mathrm{X}(\mathrm{L} 1+94) / 0.99\)
ELSE IF (KT == 3) THEN
\(\mathrm{X} 17=\mathrm{X}(\mathrm{L} 1+94) / 1.01\)
END IF
ELSE IF (KP = = L1+96) THEN
IF (KT == 1) THEN \(\mathrm{X18}=\mathrm{X}(\mathrm{L} 1+96) / 0.99\)
ELSE IF (KT == 3) THEN \(\mathbf{X 1 8}=\mathrm{X}(\mathrm{L} 1+96) / 1.01\)
END IF
ELSE IF (KP = = LI +98) THEN
IF (KT == 1) THEN \(\mathrm{X19}=\mathrm{X}(\mathrm{L} 1+98) / 0.99\)
ELSE IF (KT == 3) THEN \(\mathbf{X 1 9}=\mathrm{X}(\mathrm{L} 1+98) / 1.01\)
END IF
ELSE IF (KP = \(=\mathbf{L} 1+100\) ) THEN

IF (KT == 1) THEN \(\mathrm{X} 20=\mathrm{X}(\mathrm{L} 1+100) / 0.99\)
ELSE IF (KT = = 3) THEN
\(\mathrm{X} 20=\mathrm{X}(\mathrm{L} 1+100) / 1.01\)
END IF
ELSE IF (KP = = L1+102) THEN
IF (KT == 1) THEN
\(\mathbf{x 2 1}=\mathrm{X}(\mathrm{L} 1+102) / 0.99\)
ELSE IF (KT == 3) THEN \(\mathbf{x 2 1}=\mathrm{X}(\mathrm{L} 1+102) / 1.01\)
END IF
ELSE IF (KP = = L1+104) THEN
IF (KT == 1) THEN \(\mathrm{X} 22=\mathrm{X}(\mathrm{L} 1+104) / 0.99\)
ELSE IF (KT == 3) THEN \(\mathrm{X} 22=\mathrm{X}(\mathrm{L} 1+104) / 1.01\)
END IF
ELSE IF (KP = = L1+106) THEN
IF (KT == 1) THEN X23 \(=\mathrm{X}(\mathrm{L} 1+106) / 0.99\)
ELSE IF (KT == 3) THEN \(\mathrm{X} 23=\mathrm{X}(\mathrm{L} 1+106) / 1.01\)
END IF
ELSE IF (KP = = L1+108) THEN
IF (KT == 1) THEN \(\mathbf{X 2 4}=\mathrm{X}(\mathrm{L} 1+108) / 0.99\)
ELSE IF (KT ==3) THEN \(\mathbf{x} 24=\mathbf{X}(L 1+108) / 1.01\)
END IF
END IF

IF (cts (II, M).LE.X8) THEN
\(\operatorname{tcc}(I I, M)=X(L 1+77) * X(L 1+75) * X(L 1+111)\)
\(\mathrm{tcm}(\mathrm{II}, \mathrm{M})=\mathrm{X}(\mathrm{L} 1+77\) )
ELSE IF(cts(II,M).LE.X9) THEN
\(\operatorname{tcc}(I I, M)=X(L 1+79) * X(L 1+75) * X(L 1+111)\)
\(\operatorname{tcm}(I I, M)=X(L 1+79)\)
mLSE IF (cts (II, M).LE.X10) THEN
\(\operatorname{tcc}(I I, M)=X(L 1+81) * X(L 1+75) * X(L 1+111)\)
\(\mathrm{tcm}(\mathrm{II}, \mathrm{M})=\mathrm{X}(\mathrm{L} 1+81)\)
ELSE IF (Cts (II, M).LE.X11) THEN
\(\operatorname{tcc}(I I, M)=X(L 1+83) * X(L 1+75) * X(L 1+111)\)
\(\operatorname{tcm}(I I, M)=X(L 1+83)\)
ELSE IF(Cts (II, M).LE.X12) THEN
\(\operatorname{tcc}(I I, M)=X(L 1+85) * X(L 1+75) * X(L 1+111)\)
\(\operatorname{tcm}(I I, M)=X(L 1+85)\)
ELSE IF(cts (II, M).LE.X13) THEN
\(\operatorname{tcc}(I I, M)=X(L 1+87) * X(L 1+75) * X(L 1+111)\)
\(\operatorname{tcm}(I I, M)=X(L 1+87)\)
ELSE IF (Cts (II, M).LE.X14) THEN
\(\operatorname{tcc}(I I, M)=X(L 1+89) * X(L I+75) * X(L 1+111)\)
\(\operatorname{tcm}(I I, M)=X(L 1+89)\)
ELSE IF (Cts (II, M).LE.X15) THEN
\(\operatorname{tcc}(I I, M)=X(L 1+91) * X(L 1+75) * X(L 1+111)\)
\(\operatorname{tcm}(I I, M)=X(L 1+91)\)
ELSE IF(Cts(II,M).LE.X16) THEN
```

tcc(II,M)=X(L1+93)*X(L1+75)*X(L1+111)
tcm(II,M) =X(L1+93)
ELSE IF(cts(II,M).LE.X17) THEN
tcc(II,M)=X(L1+95)*X(L1+75)*X(L1+111)
tcm(II,M) = X(L1+95)
ELSE IF(cts(II,M).LE.X18) THEN
tcc(II,M)=X(L1+97)*X(L1+75)*X(L1+111)

```
    \(\operatorname{tcm}(I I, M)=X(L 1+97)\)
ELSE IF(Cts (II, M).LE.X19) THEN
    \(\operatorname{tcc}(I I, M)=X(L 1+99) * X(L 1+75) * X(L 1+111)\)
    \(\operatorname{tcm}(I I, M)=X(L 1+99)\)
ELSE IF(cts(II,M).LE.X20) THEN
        \(\operatorname{tcc}(I I, M)=X(L 1+101) * X(L 1+75) * X(L 1+111)\)
        \(\operatorname{tcm}(I I, M)=X(L 1+101)\)
ELSE IF(cts (II, M).LE.X21) THEN
        \(\operatorname{tcc}(I I, M)=X(L 1+103) * X(L 1+75) * X(L 1+111)\)
        \(\operatorname{tcm}(I I, M)=X(L 1+103)\)
ELSE IF(cts (II, M).LE.X22) THEN
        \(\operatorname{tcc}(I I, M)=x(L 1+105) * X(L 1+75) * X(L 1+111)\)
        \(\operatorname{tcm}(I I, M)=X(L 1+105)\)
ELSE IF(Cts(II,M).LE.X23) THEN
        \(\operatorname{tcc}(I I, M)=X(L 1+107) * X(L 1+75) * X(L 1+111)\)
        \(\operatorname{tcm}(I I, M)=X(L 1+107)\)
ELSE IF(cts(II,M).LE.X24) THEN
        \(\operatorname{tcc}(I I, M)=X(L 1+109) * X(L 1+75) * X(L 1+111)\)
        \(\operatorname{tcm}(I I, M)=X(L 1+109)\)
ELSE
        \(\operatorname{tcc}(I I, M)=X(L 1+110) * X(L 1+75) * X(L 1+111)\)
        \(\operatorname{tcm}(I I, M)=X(I 1+110)\)
            END IF
    3780 CONTINUE
    3790 CONTINUE
    DO 3797 II=1,IRD
    \(\operatorname{tcmt}(I I)=0\)
    DO \(3794 \mathrm{M}=1\), nAL
        \(\operatorname{tcmt}(I I)=\operatorname{tcmt}(I I)+t c m(I I, M)\)
    3794 CONTINUE
3797 CONTINUE
```

C---
C TOLL COLLECTION MACHINE MAINTENANCE COSTS
C--
DO 3820 II=1,IRD
tcce(II)=0
DO 3812 J=1,nAL
tccc(II)=tccc(II)+tcc(II,J)
CONTINUE
tccm(II) =tcce(II)*X(L1+112)
3820 CONTINUE
C---
C BUILDING AND REPAINTING EXPENSES

```
```

Appendix D: Source Code of the Model
C RELEVANT EXPENSES TO OPERATION
C COST FOR MACHINE AND EQUIPMENT
C OTHERS
C--
DO 3860 II=1,IRD
brco(II) =X(L1+113)*(oom(II) +tcmt(II))+X(L1+114)
3860 CONTINUE
C--
C OPERATION BUREAU OVERHEAD
C---
DO 3890 II=1,IRD
obo(II) = reve(II) *X(L1+115)
3890 CONTINUE
C
C HEADQUARTERS OVERHEAD
C---
DO 3930 II=1,IRD
ho(II) =reve(II) *X(L1+116)
3930 CONTINUE
C---
C REVENUE
C
C This calculate annual revenue
C and
C maintenance and operation costs.
C--
CALL TRACE (3, 'RVSFIl', 'total costs calculation.')
C
C Calculate annual maintenance costs
C
CALL TRACE (3, 'RVSF11', 'annual maintenance costs.')
DO 4200 II=1,IRD
4200 maint (II) = mcrc + mcrm + mcl + mcbr + mcbpl (II) + mctm
+ +mcsc + mcoll (II) + mcot
C
C Calculate annual operation costs.
C
CALL TRACE (3, 'RVSF11', 'annual operation costs.')
DO 4300 II=1,IRD
oper(II) =000(II)+tccc(II) +tccm(II) +brco(II) +obo(II) +ho(II)
aoper(II)=maint(II)+oper(II)
4300
CONTINUE

```
```

Appendix D: Source Code of the Model
C-------------------------------------
C Calculate discounted net revenue.
c---
C--
C DO 4500 I = 1, 177
C 4500 PRINT *,'X(',I,') = ',X(I)
C---
CALL TRACE (3, 'RVSF11', 'discount NP.')
Y=0.00
DO 5100 II=1,IRD
CALL TRACE (3, 'RVSF11', 'calculating AZ.')
AZ=(DEXP(-DR*(rIBY+II)) -DEXP(-DR*(IIBY+II-1)))/(-DR)
CALL TRACE (3, 'RVSF11', 'calculating z.')
C--
C PRINT *,'X(L1+117)= ',X(L1+117)
C PRINT *,'DR= ',DR
C PRINT *,'Z= ',Z
C---
Z=X(L1+117)-DR
IF(DABS(Z).GT.0.001DO) GO TO 5020
BZ=1.00
GO TO 5030
C CALL TRACE (3, 'RVSF11', 'calculating BZ.')
5020 BZ=(DEXP(Z*(rIBY+II))-DEXP(Z*(rIBY+II-1)))/Z
CALL TRACE (3, 'RVSFII', 'calculating AY.')
5030 AY=(reve(II)*AZ)-(aoper(II)*BZ)
CALL TRACE (3, 'RVSF11', 'calculating Y.')
Y=Y+AY
5100 CONTINUE
C CALL TRACE (2, 'RVSF11', 'finishing.')
DEALLOCATE (cost, traf, tcc, tcm, cts)
RETURN
END

```
```

C RvSf12.INC
C 16mar94 TH
C
C Open System (Manual Collection)
C we ask nicely for the money from the motorist!
C
SUBROUTINE RVSF12 (KP, KT, DR, BOTTLE, I, X, Y)
IMPLICIT REAL*4 (A-H,O-Z)
INCLUDE 'DEBUG.CMN'
REAL*4 X (*), BOTTLE (NRS, *)
REAL*4 Y,AY,AZ,BZ,Z(5)
REAL*4 mcbpl(50),mcoll(50),ots(50)
REAL*4 000(50),oom(50),reve(50)
REAL*4 tcmt(50),tccc(50),tccm(50),brco(50),obo(50),ho(50)
REAL*4 maint(50), aoper(50)
REAL*4 X1(200), X2(200)
REAL*4 cost (:,:,:), traf(:,:,:,:), ttraf(:,:,:)
REAL*4 tcc (:,:), tcm(:,:), cts(:,:)
REAL*4 tgl (:)
ALLOCATABLE cost, traf, ttraf, tcc, tcm, cts, TGL
CALL TRACE (3, 'RVSF12', 'toll rate calculation starting.')
nAL = BOTTLE (I, 1)
nP = BOTTLE (I, 2)
nWC = BOTTLE (I, 3)
nTG = BOTTLE (I, 6)
nOL = BOTTLE (I, 4)
nBR = BOTTLE (I, 5)
ALLOCATE (tgl (nTG))
DO 10 J = 1, nTG
10 tgl (J) = BOTTLE (I, 6 + J)
IRD = NINT (X (2))
ALLOCATE (cost (IRD, nTG, nP))
ALLOCATE (traf (IRD, nAL, nAL, nP))
ALLOCATE (ttraf (IRD, nTG, nP))
ALLOCATE (tcc (IRD, nTG))
ALLOCATE (tCm (IRD, nTG))
ALLOCATE (cts (IRD, nTG))
DO 100 II=1,IRD
DO 100 J=1,nTG
DO 100 K=1,nP
cost(II,J,K)=X(2+J)*X(2+nTG+K)*X(2+nTG+nP+II)

```
```

 DO 1150 II=1,IRD
 M=0
 DO 1150 J=1,nAL-1
 DO 1150 K=J+1, nAL
 DO 1150 L=1,nP
 M=M+1
 1150
 traf (II,J,K,L) =
 X (2 + nTG + nP + 2 * IRD + M)
 * X (2 + nTG + nP + IRD + II)
 / X (3 + nTG + nP + IRD)
 DO 1500 II=1,IRD
 DO 1500 J=1,nTG
 DO 1500 K=1,nP
 ttraf(II,J,K)=0.0
 DO 1500 JJ=1,nAL
 XJJ=FLOAT(JJ)
 IF (TGL (J) == XJJ) THEN
 DO 1430 L=1,nAL-1
 DO 1440 LL=L+1,nAL
 IF (L == JJ .OR. LI == JJ) THEN
 ttraf(II,J,K)=ttraf(II,J,K)+traf(II,I,LI,K)
END IF
1430
CONTINUE
ELSE IF (JJ < TGL(J) .AND. TGL(J) < (JJ + 1)) THEN
DO 1450 L=1,nAL-1
DO 1450 LL=L+1, nAL
IF (L <= JJ .AND. JJ < LL) THEN
ttraf(II,J,K)=ttraf(II,J,K)+traf(II,L,LL,K)
ENDIF
1450
CONTINUE
ENDIF
1500 CONTINUE
DO 1510 II=1,IRD
reve(II) =0.00
DO 1510 J=1,nTG
DO 1510 K=1,nP
1510
reve(II) =reve(II) +ttraf(II,J,K)*cost(II,J,K)*365
C PRINT *, 'nTG = ', nTG
C PRINT *, ' IRD = ', IRD
C PRINT *, ' nAL = ', nAL
C PRINT *, ! nP = ', nP
L1=2+nTG+nP+2*IRD+nAL*(nAL-1)/2*nP
C PRINT *, ' LI = ', L1
C PRINT *,
mcrc = ! maintenance (road cleaning) costs...

```
```

$+x(L 1+13)$ *
$+(\mathrm{X}(\mathrm{L} 1+1)+\mathrm{X}(\mathrm{L} 1+4)+\mathrm{X}(\mathrm{L} 1+7) \quad+$
$+X(L 1+14)$ *
$+(X(L 1+2)+X(L 1+5)+X(L 1+8)+$
$+X(L 1+3)+X(L 1+6)+X(L 1+9))$

```
mcrm \(=\) ! road maintenance
\(+\mathrm{X}(L 1+15)\) * \(\mathrm{X}(L 1+7)+\)
\(+X(L 1+16) * X(L 1+8)+\)
\(+X(L 1+17) * X(L 1+9)\)
mcl = ! lighting
\(+\mathrm{X}(\mathrm{L} 1+18) *(\mathrm{X}(\mathrm{L} 1+1)+\mathrm{X}(\mathrm{L} 1+7))+\)
\(+X(L 1+19)\) *
\(+((X(L 1+2)+X(L 1+3))+(X(L 1+8)+X(L 1+9)))\)
mcbr \(=\) ! bridge repair
\(+\mathrm{X}(\mathrm{L} 1+20) * \mathrm{X}(\mathrm{L} 1+1)+\)
\(+x(L 1+21) * X(L I+2)+\)
\(+X(L 1+22) * X(L 1+3)\)
mcbp \(=\) ! bridge painting
\(+\mathrm{X}(\mathrm{L} 1+23)\) * \(\mathrm{X}(\mathrm{L} 1+1)+\)
\(+\mathrm{X}(\mathrm{L} 1+24) * \mathrm{X}(\mathrm{L} 1+2)+\)
\(+\mathrm{X}(\mathrm{L} 1+25) * \mathrm{X}(\mathrm{L} 1+3)\)
```

 mctm \(=\) ! tunnel maintenance
 $+\mathrm{X}(\mathrm{L} 1+10)$ * $\mathrm{X}(\mathrm{L} 1+26)+$
$+\mathrm{X}(\mathrm{L} 1+11) * \mathrm{X}(\mathrm{L} 1+27)+$
$+X(L 1+12) * X(L 1+28)$

```
```

 SELECT CASE (nWC) ! snow and ice control?
 CASE (1)
 mcsc=
 + X (L1 + 29)*((X (L1 + 1) + X (L1 + 4) + X (L1 + 7))
+ +2*(X (L1 + 2) + X (L1 + 5) + X (L1 + 8))
+ +3*(X (L1 + 3) + X (L1 + 6) + X (L1 + 9)))
CASE (2)
mcsc =
+ X(L1 + 30) * ((X (L1 + 1) + X (L1 + 4) + X (L1 + 7) (
+ CASE DEFAULT
mcsc = 0.0D0
END SELECT

```
```

mcol = ! overlay

+ X (L1 + 31) * (X (L1 + 1) + X (L1 + 4) + X (L1 + 7)) +
+ X(L1 + 32)* (X (L1 + 2) + X (L1 + 5) + X (L1 + 8)) +
+ X(L1 + 33)* (X (L1 + 3) + X (L1 + 6) + X (L1 + 9))

```
```

 pcot = x (L1 + 34)
 mcot = ! other neat stuff....
 + pcot * (mcrc + mcrm + mcl + mcbr + mctm + mcsc)
 DO 2295 II=1,IRD
 C bridge painting happens every 7 years.
IF (II.EQ.nBR .OR. II.EQ.(nBR+7) .OR. II.EQ.(nBR+14)
+ .OR. II.EQ.(nBR+21) .OR. II.EQ.(nBR+28) .OR.
+ II.EQ.(nBR+35) .OR. II.EQ.(nBR+42) .OR.
+ II.EQ.(nBR+49)) THEN
mcbp1 (II) = mcbp
ELSE
mcbp1 (II) = 0.00
END IF
C overlaying takes place every 12 years
IF (II.EQ.nOL .OR. II.EQ.(nOL+12) .OR. II.EQ.(nOL+24)
+ .OR. II.EQ.(nOL+36) .OR. II.EQ.(nOL+48)) THEN
mcoll (II) = mcol
ELSE
mcol1 (II) = 0.00
END IF
2295
CONTINUE
C OPERATION COSTS
C Operation office overhead
DO 2500 II=1,IRD
M=0
X2(II) = X(2+nTG+nP+IRD+II)
XOO=2+nTG+nP+IRD+II
DO 2500 J=1,nAL-1
DO 2500 K=J+1,nAL
DO 2500 L=1,nP
M=M+1
X0 = 2+nTG+nP+2*IRD +M
X1(M) = X(X0)
IF (KP == X0) THEN
IF (KT == 1) THEN
X1(M) = X(X0)/0.99
ELSE IF (KT == 3) THEN
X1(M) = X(X0)/1.01
END IF
ELSE IF (KP == XOO) THEN

```
```

Appendix D: Source Code of the Model
IF (KT == 1) THEN
X2(II) = X(XOO)/0.99
ELSE IF (KT == 3) THEN
X2(II) = X(X00)/1.01
END IF
END IF
2500
traf (II,J,K,L) = X1(M) * X2(II) / X2(1)
DO 2700 II=1,IRD
DO 2700 J=1,nTG
DO 2700 K=1,nP
ttraf(II,J,K)=0.0
DO 2700 JJ=1, nAL
XJJ=FLOAT(JJ)
IF (TGL (J) == XJJ) THEN
DO 2600 L=1, nAL-1
DO 2600 LL=L+1,nAL
IF (L == JJ .OR. LL == JJ) THEN
ttraf(II,J,K)=ttraf(II,J,K)+traf(II,I, LI,K)
END IF
2600
CONTINUE
ELSE IF (JJ < TGL(J) .AND. TGL(J) < (JJ + 1)) THEN
DO 2650 L=1,nAL-1
DO 2650 LL=L+1,nAL
IF (L <= JJ .AND. JJ < LL) THEN
ttraf(II,J,K)=ttraf(II,J,K)+traf(II,I,LL,K)
ENDIF
2650
CONTINUE
ENDIF
2700 CONTINUE
DO 3450 II=1,IRD
ots(II) =0.00
DO 3450 J=1,nTG
DO 3450 K=1,nP
3450 ots(II)=ots(II)+ttraf(II,J,K)
x3 = X(L1+40)
X4 = X(L1+46)
X5 = X(L1+52)
X6 = X(L1+58)
X7 = X(L1+64)
IF (KP == L1+40) THEN
IF (KT == 1) THEN
X3 = X(L1+40)/0.99
ELSE IF (KT == 3) THEN
X3 = X(LI+40)/1.01
END IF
ELSE IF (KP == L1+46) THEN
IF (KT == 1) THEN
X4 = X(L1+46)/0.99
ELSE IF (KT == 3) THEN

```
```

Appendix D: Source Code of the Model
X4 = X (L1+46)/1.01
END IF
ELSE IF (KP == L1+52) THEN
IF (KT == 1) THEN
X5 = X(L1+52)/0.99
ELSE IF (KT == 3) THEN
X5 = X(L1+52)/1.01
END IF
ELSE IF (KP == L1+58) THEN
IF (KT == 1) THEN
X6 = X(LI+58)/0.99
ELSE IF (KT == 3) THEN
X6 = X(L1+58)/1.01
END IF
ELSE IF (KP == L1+64) THEN
IF (KT == 1) THEN
X7 = X(L1+64)/0.99
ELSE IF (KT == 3) THEN
X7 = X(L1+64)/1.01
END IF
END IF
DO 3485 II=1,IRD
IF (ots (II) <= X3) THEN
CALL FOO1 (X, 41, 35, 000 (II), oom (II))
ELSE IF (Ots (II) <= X4) THEN
CALL FOO1 (X, 47, 35, 000 (II), OOm (II))
ELSE IF (Ots (II) <= X5) THEN
CALL FOOI (X, 53, 35, 000 (II), OOm (II))
ELSE IF (Ots (II) <= X6) THEN
CALL FOO1 (X, 59, 35, 000 (II), OOm (II))
ELSE IF (Ots (II) <= X7) THEN
CALL FOO1 (X, 65, 35, OOO (II), OOm (II))
ELSE
CALL FOOI (X, 70, 35,000 (II), OOm (II))
END IF
CONTINUE
C CONSIGNMENT COSTS OF TOLL COLLECTION
C Calculate traffic volume.

```
```

 DO 3550 II=1,IRD
    ```
    DO 3550 II=1,IRD
    DO 3550 M=1,nTG
    DO 3550 M=1,nTG
            cts(II,M)=0.00
            cts(II,M)=0.00
            DO 3550 L=1,nP
            DO 3550 L=1,nP
        cts(II,M)=cts(II,M)+ttraf(II,M,L)
        cts(II,M)=cts(II,M)+ttraf(II,M,L)
X8 = X (L1 + 75) * X (LI + 113)
DO 3790 II=1,nTG
    DO 3780 M=1,nAL
            Xg=0.0DO
            x10=0.0D0
```

$$
\begin{aligned}
& \mathbf{x 1 1}=\mathbf{x}(\mathrm{L} 1+76) \\
& \mathrm{X12}=\mathrm{X}(\mathrm{~L} 1+78) \\
& X 13=X(L 1+80) \\
& \mathrm{X14}=\mathrm{X}(\mathrm{~L} 1+82) \\
& \mathbf{X 1 5}=\mathbf{X}(\mathbf{L} 1+84) \\
& \mathrm{X16}=\mathrm{X}(\mathrm{~L} 1+86) \\
& \mathbf{x 1 7}=\mathbf{x}(\mathrm{L} 1+88) \\
& \mathbf{X 1 8}=\mathbf{X}(L 1+90) \\
& \text { X19 }=\mathbf{X}(L 1+92) \\
& \mathbf{X 2 0}=\mathbf{X}(\mathrm{L} 1+94) \\
& \mathbf{x} 21=x(L 1+96) \\
& \mathbf{x 2 2}=X(L 1+98) \\
& \mathrm{X} 23=\mathrm{X}(\mathrm{~L} 1+100) \\
& \mathrm{X} 24=\mathrm{x}(\mathrm{~L} 1+102) \\
& \mathrm{X} 25=\mathrm{X}(\mathrm{~L} 1+104) \\
& \mathrm{x} 26=\mathrm{x}(\mathrm{~L} 1+106) \\
& \mathbf{x 2 7}=X(L 1+108) \\
& \mathrm{X} 28=\mathrm{X}(\mathrm{~L} 1+110)
\end{aligned}
$$

 IF (KT == 1) THEN
 \(\mathrm{X11}=\mathrm{X}(\mathrm{L} 1+76) / 0.99\)
 ELSE IF (KT == 3) THEN
 \(\mathrm{X} 11=\mathrm{X}(\mathrm{L} 1+76) / 1.01\)
 END IF
 ELSE IF (KP = = L1 + 78) THEN
 IF (KT == 1) THEN
 \(\mathrm{X12}=\mathrm{X}(\mathrm{LI}+78) / 0.99\)
 ELSE IF (KT = = 3) THEN
 \(\mathrm{X} 12=\mathrm{X}(\mathrm{L} 1+78) / 1.01\)
 END IF
 ELSE IF (KP = = L1 + 80) THEN
 IF (KT = = 1) THEN
 \(\mathrm{X13}=\mathrm{X}(\mathrm{L} 1+80) / 0.99\)
 ELSE IF (KT == 3) THEN
 \(\mathrm{x} 13=\mathrm{X}(\mathrm{LI}+80) / 1.01\)
 END IF
 ELSE IF (KP = = L1 + 82) THEN
IF (KT == 1) THEN
$\mathrm{X14}=\mathrm{X}(\mathrm{LI}+82) / 0.99$
ELSE IF (KT == 3) THEN
$\mathrm{X} 14=\mathrm{X}(\mathrm{L} 1+82) / 1.01$
END IF
ELSE IF (KP = = LI + 84) THEN
IF (KT == 1) THEN
$\mathrm{X15}=\mathrm{X}(\mathrm{L} 1+84) / 0.99$
ELSE IF (KT == 3) THEN
$\mathrm{X15}=\mathrm{X}(\mathrm{L} 1+84) / 1.01$
END IF
ELSE IF (KP $==\mathrm{L} 1+86$) THEN
IF (KT == 1) THEN
$\mathrm{X16}=\mathrm{X}(\mathrm{L} 1+86) / 0.99$
ELSE IF (KT = = 3) THEN
$\mathbf{X 1 6}=\mathrm{X}(\mathrm{L} 1+86) / 1.01$
END IF
ELSE IF (KP = $=\mathrm{L} 1+88$) THEN
IF (KT = = 1) THEN
$\mathrm{X17}=\mathrm{X}(\mathrm{L} 1+88) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{X} 17=\mathrm{X}(\mathrm{L} 1+88) / 1.01$
END IF
ELSE IF (KP = = L1 + 90) THEN IF (KT = = 1) THEN $\mathbf{X 1 8}=\mathbf{X}(\mathrm{L} 1+90) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{X18}=\mathrm{X}(\mathrm{L} 1+90) / 1.01$
END IF
ELSE IF (KP = = L1 + 92) THEN
IF (KT ==1) THEN
$\mathrm{X} 19=\mathrm{X}(\mathrm{L} 1+92) / 0.99$
ELSE IF (KT == 3) THEN X19 = X (L1 + 92)/1.01
END IF
ELSE IF (KP == L1 + 94) THEN
IF (KT $==1$) THEN $\times 20=X(L 1+94) / 0.99$
ELSE IF (KT = = 3) THEN $\mathrm{X} 20=\mathrm{X}(\mathrm{L} 1+94) / 1.01$
END IF
ELSE IF (KP = = L1 + 96) THEN
IF (KT = = 1) THEN $\mathbf{X 2 1}=\mathbf{X}(L 1+96) / 0.99$
ELSE IF (KT == 3) THEN $\mathbf{X 2 1}=\mathrm{X}(\mathrm{L} 1+96) / 1.01$
END IF
ELSE IF (KP = = L1 + 98) THEN
IF (KT ==1) THEN $\mathrm{X} 22=\mathrm{X}(\mathrm{L} 1+98) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{X} 22=\mathrm{X}(\mathrm{L} 1+98) / 1.01$
END IF
ELSE IF (KP = = L1 + 100) THEN
IF (KT = = 1) THEN $\mathbf{x 2 3}=\mathrm{X}(\mathrm{L} 1+100) / 0.99$
ELSE IF (KT = = 3) THEN $\mathrm{x} 23=\mathrm{X}(\mathrm{L} 1+100) / 1.01$
END IF
ELSE IF (KP == LI + 102) THEN
IF (KT = = 1) THEN $\mathrm{X} 24=\mathrm{X}(\mathrm{L} 1+102) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{X} 24=\mathrm{X}(\mathrm{L} 1+102) / 1.01$
END IF
ELSE IF (KP == LI + 104) THEN
IF (KT = = 1) THEN $\mathrm{X} 25=\mathrm{X}(\mathrm{L} 1+104) / 0.99$
ELSE IF (KT = = 3) THEN $\mathbf{x} 25=\mathrm{X}(\mathrm{L} 1+104) / 1.01$
END IF
ELSE IF (KP = = LI + 106) THEN IF (KT == 1) THEN $\mathrm{X} 26=\mathrm{X}(\mathrm{L} 1+106) / 0.99$ ELSE IF (KT == 3) THEN $\mathbf{x} 26=\mathrm{x}(\mathrm{L} 1+106) / 1.01$

END IF
ELSE IF (KP == L1 + 108) THEN IF (KT = = 1) THEN $\mathrm{X} 27=\mathrm{X}(\mathrm{L} 1+108) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{X27}=\mathrm{X}(\mathrm{L} 1+108) / 1.01$
END IF
ELSE IF (KP = = L1 + 110) THEN
IF (KT == 1) THEN
$\mathbf{X 2 8}=\mathrm{X}(\mathrm{L} 1+110) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{X} 28=\mathrm{X}(\mathrm{L} 1+110) / 1.01$
END IF
END IF

IF (cts (II, M) $<=$ XII) THEN
$\operatorname{tcc}(I I, M)=X(L 1+77) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L 1+77)$
ELSE IF (cts (II, M) <= X12) THEN
$\operatorname{tcc}(I I, M)=X(L I+79) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L 1+79)$
ELSE IF (cts (II, M) <= X13) THEN
$\operatorname{tcc}(I I, M)=X(L 1+81) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L 1+81)$
ELSE IF (cts (II, M) <= X14) THEN
$\operatorname{tcc}(I I, M)=X(L 1+83) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L 1+83)$
ELSE IF (cts (II, M) $<=\mathrm{X} 15$) THEN
$\operatorname{tcc}(I I, M)=X(L 1+85) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L 1+85)$
ELSE IF (cts (II, M) <= X16) THEN
$\operatorname{tcc}(I I, M)=X(L 1+87) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L I+87)$
ELSE IF (Cts (II, M) <= X17) THEN
$\operatorname{tcc}(I I, M)=X(L 1+89) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L 1+89)$
ELSE IF (cts (II, M) $<=\mathrm{X} 18$) THEN
$\operatorname{tcc}(I I, M)=X(L 1+91) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L 1+91)$
ELSE IF (cts (II, M) <= X19) THEN
$\operatorname{tcc}(I I, M)=X(L 1+93) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L 1+93)$
ELSE IF (cts (II, M) $<=\mathbf{X 2 0)}$ THEN
$\operatorname{tcc}(I I, M)=X(L 1+95) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L 1+95)$
ELSE IF (cts (II, M) <= X21) THEN
$\operatorname{tcc}(I I, M)=X(L 1+97) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L 1+97)$
ELSE IF (cts (II, M) <= X22) THEN
$\operatorname{tcc}(I I, M)=X(L 1+99) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L 1+99)$
ELSE IF (Cts (II, M) <= X23) THEN
$\operatorname{tcc}(I I, M)=X(L 1+101) * X(L 1+75) * X(L 1+113)$
$\operatorname{tcm}(I I, M)=X(L 1+101)$
ELSE IF (cts (II, M) <= X24) THEN
$\operatorname{tcc}(I I, M)=X(L 1+103) * X(L 1+75) * X(L 1+113)$

```
Appendix D: Source Code of the Model
                            tcm (II, M) = X(L1+103)
    ELSE IF (cts (II, M) <= X25) THEN
        tcc (II, M) = X(L1+105) * X(L1+75) * X(L1+113)
        tcm (II, M) = X(L1+105)
    ELSE IF (cts (II, M) <= X26) THEN
        tcc (II, M) = X(L1+107) * X(L1+75) * X(L1+113)
        tcm (II, M) = X(L1+107)
    ELSE IF (cts (II, M) <= X27) THEN
        tcc (II, M) = X(L1+109) * X(L1+75) * X(L1+113)
        tcm (II, M) = X(L1+109)
    ELSE IF (cts (II, M) <= X28) THEN
        tcc (II, M) = X(LI+111) * X(L1+75) * X(LI+113)
        tcm (II, M) = X(LI+111)
    ELSE
        tcc (II, M) = X(L1+112) * X(L1+75) * X(L1+113)
        tcm (II, M) = X(LI+112)
            END IF
    3780 CONTINUE
    3790 CONTINUE
    DO 3794 II=1,IRD
        tcmt (II) = 0.ODO
        DO 3794 M=1,nTG
        tcmt (II) = tcmt (II) + tcm (II, M)
```



```
C TOLL COLLECTION MACHINE MAINTENANCE COSTS
```



```
    DO 3820 II=1,IRD
    tccc(II)=0
    DO 3812 J=1,nTG
    3812 tccc(II)=tccc(II)+tcc(II,J)
    3820 tccm (II) = tccc (II) * X (L1 + 114)
C
C BUILDING AND REPAINTING EXPENSES
C RELEVANT EXPENSES TO OPERATION
C COST FOR MACHINE AND EQUIPMENT
C OTHERS
C-----------------------------------------------------------
    DO 3860 II=1,IRD
3860 brco(II) =X(L1+115)*(oom(II)+tcmt(II))+X(L1+116)
C--------------------------------------------------------
C OPERATION BUREAU OVERHEAD
C-------------------------------------------------------------
    DO 3890 II=1,IRD
C
        PRINT *, II, reve (II), L1+117, X(LI+117)
    3890 obo(II)=reve(II)*X(I1+117)
```

```
Appendix D: Source Code of the Model
```



```
C HEADQUARTERS OVERHEAD
C----------------------------------------------------------
    DO 3930 II=1,IRD
    3930 ho(II)=reve(II)*X(L1+118)
C-----------------------------------------------------
C REVENUE
C
C This calculate annual revenue
C and
C maintenance and operation costs.
C-------------------------------------------------------
C PRINT *, 'total costs calculation starting.'
C--------------------------------------------
C Calculate annual maintenance costs
C-------------------------------------------
    DO 4200 II=1,IRD
4200 maint (II) = mcrc + mcrm + mcl + mcbr + mcbpl (II) +
                                    mctm + mcsc + mcoll (II) + mcot
C
C Calculate annual operation costs.
C----------------------------------------
        DO 4300 II=1,IRD
        aoper (II) =
        + maint (II) + 000 (II) + tccc(II) + tccm (II) +
        + brco(II) + obo(II) + ho (II)
C PRINT *, 'II = ', II
C PRINT *, ' maint', maint (II)
C PRINT *, ' 000', 000 (II)
C PRINT *, ' tcce', tcec (II)
C PRINT *, ' tccm', tccm (II)
C PRINT *, ' brco', brco (II)
C PRINT *, ' obo', obo (II)
C PRINT *, ' ho', ho (II)
C PRINT *,
    4300 CONTINUE
C------------------------------------
C Calculate discounted net revenue.
C PRINT *, 'NPV calculation starting.'
    Y = 0.0DO
    DO 5100 II=1,IRD
        AZ = (DEXP (-DR * (X (1) + II ) ) -
        DEXP (-DR * (X (1) + II - 1) ) ) / (- DR)
```

```
Appendix D: Source Code of the Model
            Z (1) = X (L1 + 119) - DR
        IF (DABS(Z (1)) <= 0.001D0) THEN
            BZ = 1.ODO
            GO TO 4400
        ELSE
            BZ = (DEXP (Z (1) * (X (1) + II )) -
    +
                                    DEXP (Z (1) * (X (1) + II - 1)) ) / Z (1)
    END IF
    4400 AY = (reve (II) * AZ) - (aoper (II) * BZ)
C PRINT *, 'II = ', II
C PRINT *, ' AZ = ', AZ
C PRINT *, ' Z (1) = ', Z (1)
C PRINT *, ' X (1) = ', X (1)
C PRINT *, " BZ = ', BZ
C PRINT *,' reve(II) = ', reve (II)
C PRINT *, ' aoper (II) = ', aoper (II)
C PRINT *, 'AY = ', AY
C PRINT *,
    5100 Y = Y + AY
    DEALLOCATE (TGL, cost, traf, ttraf, tcc, tcm, cts)
    RETURN
    END
C remove some redundant stuff to make the code nicer.
    SUBROUTINE FOO1 (X, OFF1, OFF2, 000, OOm)
    REAL*4 X (*)
    OOO = O.ODO
    oom = 0.0DO
    DO 10 I = 0,4
        000 = 000 + (X (OFF1 + I) * X (OFF2 + I))
    oom = oom + (X (OFFI))
        RETURN
        END
```

```
C RvSf13.INC
C
C Closed System (Manual Collection) : fixed rate
C we ask nicely for the money from the motorist!
```



```
    SUBROUTINE RVSF13 (KP, KT, DR, BOTTLE, I, X, Y)
```



```
    IMPLICIT REAL*4(A-H,O-Z)
    INCLUDE 'DEBUG.CMN'
    REAL*4 BOTTLE (NRS, *), X (*)
    REAL*4 Y,AY,AZ,BZ,Z
    REAL*4 mcbpl(0:50),mcoll(0:50),ots(0:50)
    REAL*4 000(0:50), oom(0:50),reve(0:50)
    REAL*4 tcmt(0:50),tccc(0:50),tccm(0:50),brco(0:50),obo(0:50)
    REAL*4 ho (0:50), maint (0:50),oper (0:50), aoper (0:50)
    REAL*4 X1 (0:200), X2(0:200)
    REAL*4 cost (:,:,:,:), traf (:,:,:,:)
    REAL*4 tcc (:,:), tcm (:,:), cts (:,:)
    ALLOCATABLE cost, traf, tcc, tcm, cts
    CALL TRACE (3, 'RVSF13', 'starting.')
    rIBY = X (1)
    IRD = NINT (X (2))
    nAL = BOTTLE (I, 1)
    nP = BOTTLE (I, 2)
    nWC = BOTTLE (I, 3)
    nOL = BOTTLE (I, 4)
    nBR = BOTTLE (I, 5)
    ALLOCATE (cost (0:IRD, 0:nAL, 0:nAL, 0:nP))
    ALLOCATE (traf (0:IRD, 0:nAL, 0:nAL, 0:nP))
    ALLOCATE (tcc (0:IRD, 0:nAL))
    ALLOCATE (tcm (0:IRD, 0:nAL))
    ALLOCATE (cts (0:IRD, 0:nAL))
    DO 90 II = 1, IRD
        M = 0
        XCONST = X (2 + nAL * (nAL - 1) / 2 * nP + II)
        DO 90 J = 1, nAL - 1
            DO 90 K = J + 1, nAL
            DO 90 L = 1, nP
                M = M + 1
                        cost (II, J, K, L) = X (2 + M) * XCONST
```

CALL TRACE (3, 'RVSF13', 'traffic volume calculation.')

C traf (1, is undefined, but accessed in the next loop....

```
    DO 1150 II=1,IRD
```

 \(\mathbf{M}=\mathbf{0}\)
 \(\mathrm{XCO}=2+\mathrm{nAL} *(\mathrm{nAL}-1) / 2 * \mathrm{nP}+2\) * IRD
 \(X C 1=X(2+n A L *(n A L-1) / 2 * n P+I R D+I I) /\)
 \(X(3+n A L *(n A L-1) / 2 * n P+I R D)\)
 DO \(1150 \mathrm{~J}=1\), \(\mathrm{nAL}-1\)
 DO \(1150 \mathrm{~K}=\mathrm{J}+1\), nAL
 DO \(1150 \mathrm{~L}=1\), nP
 \(M=M+1\)
 1150
$\operatorname{traf}(I I, J, K, L)=X(X C O+M) * X C 1$
CALL TRACE (3, 'RVSF13', 'annual toll revenue...')
DO 1480 II=1,IRD
temp $=0.00$
DO $1470 \mathrm{~J}=1$, nAL
DO $1470 \mathrm{~K}=\mathrm{J}+1$, nAL
DO $1470 \mathrm{~L}=1$, nP
temp $=$ temp +
$+\quad \operatorname{traf}(I I, J, K, L) * \operatorname{cost}(I I, J, K, L) * 365$
1470 CONTINUE
reve $(I I)=$ temp
1480 CONTINUE
$L 1=2+2 *(n A L *(n A L-1) / 2 * n P)+2 * I R D$
CALL TRACE (3, 'RVSF13', 'fixed costs...')
merc $=1$ road cleaning costs
$+X(L 1+13) *(X(L 1+1)+X(L 1+4)+X(L 1+7))+X(L 1+14) *(X(L 1+2)+$
$+X(L 1+5)+X(L 1+8)+X(L 1+3)+X(L 1+6)+X(L 1+9))$
morm $=$! road maintenance
$+X(L 1+15) * X(L 1+7)+X(L 1+16) * X(L 1+8)+X(L 1+17) * X(L 1+9)$
mcl $=$! lighting
$+\mathrm{X}(\mathrm{L} 1+18) *(\mathrm{X}(\mathrm{L} 1+1)+\mathrm{X}(\mathrm{L} 1+7))+$
$+X(L 1+19) *(X(L 1+2)+X(L 1+3))+(X(L 1+8)+X(L 1+9)))$
mcbr = ! bridge repair
$+X(L 1+20) * X(L 1+1)+X(L 1+21) * X(L 1+2)+X(L 1+22) * X(L 1+3)$
mcbp $=$! bridge painting
$+X(L 1+23) * X(L 1+1)+X(L 1+24) * X(L 1+2)+X(L 1+25) * X(L 1+3)$
mctm $=$! tunnel maintenance
$+X(L 1+10) * X(L 1+26)+X(L 1+11) * X(L 1+27)+X(L 1+12) * X(L 1+28)$

```
Appendix D: Source Code of the Model
    SELECT CASE (nWC) ! snow and ice control based on nWC
    CASE (1)
    mcsc =
    + X(L1+29)*( (X(L1+1) + X(L1+4) + X(L1+7))
    + +2*(X(L1+2) + X(L1+5) + X(L1+8))
    + +3*(X(L1+3) + X(L1+6) + X(L1+9)) )
    CASE (2)
    mcsc=
+ X(L1+30)*( (X(L1+1) + X(L1+4) + X(L1+7))
+ +2*(X(L1+2) + X(L1+5) + X(L1+8))
+ +3*(X(L1+3) + X(L1+6) + X(L1+9)) )
    CASE DEFAULT
    mcsc = 0.00
    END SELECT
    mcol = ! overlay
+ X(L1+31)*(X(L1+1) + X(L1+4) + X(L1+7) ) +
+ X(L1+32)*(X(L1+2) + X(L1+5) + X(L1+8) ) +
+ X(L1+33)*(X(L1+3) + X(L1+6) + X(L1+9) )
    mcot = X (L1 + 34) * (mcrc + mcrm + mcl + mcbr + mctm + mcsc)
    DO 2295 II=1,IRD
        IF (II.EQ.nBR .OR. II.EQ.(nBR+7) .OR. II.EQ.(nBR+14) .OR.
+ II.EQ.(nBR+2I) .OR. II.EQ.(nBR+28) .OR.
+ II.EQ.(nBR+35) .OR. II.EQ.(nBR+42) .OR.
+ II.EQ.(nBR+49)) THEN
    mcbp1(II) = mcbp
        ELSE
            mcbp1(II) = 0.00
        END IF
        IF (II.EQ.nOL .OR. II.EQ.(nOL+12) .OR. II.EQ.(nOL+24) .OR.
            II.EQ.(nOL+36) .OR. II.EQ.(nOL+48)) THEN
            mcol1(II) = mcol
        ELSE
            mcoll(II) = 0.00
        END IF
    2295 CONTINUE
C OPERATION COSTS
    CALL TRACE (3, 'RVSF13', 'operation costs...')
C--------------------------------
C Operation office overhead
C--------------------------------
DO 2500 II=1,IRD
```

```
M=0
```

M=0
X2 (II) = X (2 + nAL * (nAL - 1) / 2 * nP + IRD + II)
X2 (II) = X (2 + nAL * (nAL - 1) / 2 * nP + IRD + II)
XOO = 2 + nAL * (nAL - 1) / 2 * nP + IRD + II
XOO = 2 + nAL * (nAL - 1) / 2 * nP + IRD + II
DO 2500 J=1, nAL-1
DO 2500 J=1, nAL-1
DO 2500 K=J +1, nAL
DO 2500 K=J +1, nAL
DO 2500 L=1,nP

```
            DO 2500 L=1,nP
```

```
    M=M+1
    X0 = 2 + nAL * (nAL - 1) / 2 * nP + 2 * IRD + M
    X1 (M) = X (X0)
    IF (KP == X0) THEN
        IF (KT == 1) THEN
        X1(M) = X (X0) / 0.99
        ELSE IF (KT == 3) THEN
        X1(M) = X (X0) / 1.01
        END IF
    ELSE IF (KP == XOO) THEN
        IF (KT == 1) THEN
        X2(II) = X (X00) / 0.99
        ELSE IF (KT == 3) THEN
        X2(II) = X (X00) / 1.01
            END IF
END IF
traf (II,J,K,L) = X1 (M) * X2 (II) / X2 (1)
```


2500 CONTINUE

```
        DO 3450 II=1,IRD
        temp = 0.0D0
        DO 3440 J=1,nAL-1
            DO 3430 K=J+1,nAL
            DO 3420 L=1,nP
                        temp = temp + traf(II,J,K,L)
        3420
        3430
        3440
        CONTINUE
        ots(II) = temp
3450 CONTINUE
        DO 3485 II=1,IRD
    OOO(II)=0
C treated traffic is half of through traffic
    ots(II)=ots(II)*0.5
        x3 = x(L1+40)
            X4 = X(L1+46)
            X5 = X(L1+52)
            x6 = X(L1+58)
            X7 = X(L1+64)
    IF (KP == L1+40) THEN
        IF (KT == 1) THEN
            X3 = X(L1+40)/0.99
        ELSE IF (KT == 3) THEN
            X3 = X(L1+40)/1.01
        END IF
    ELSE IF (KP == L1+46) THEN
        IF (KT == 1) THEN
            X4 = X(L1+46)/0.99
        ELSE IF (KT == 3) THEN
```

$\mathbf{x 4}=\mathbf{x}(\mathrm{L} 1+46) / 1.01$
END IF
ELSE IF (KP = = L1+52) THEN
IF $(K T==1)$ THEN
$\mathrm{X} 5=\mathrm{X}(\mathrm{L} 1+52) / 0.99$
ELSE IF (KT == 3) THEN
$\mathrm{X} 5=\mathrm{X}(\mathrm{L} 1+52) / 1.01$
END IF
ELSE IF (KP = = LI+58) THEN
IF (KT ==1) THEN
$X 6=X(L 1+58) / 0.99$
ELSE IF (KT $==3$) THEN $X 6=X(L 1+58) / 1.01$
END IF
ELSE IF (KP == L1+64) THEN
IF (KT == I) THEN
$\mathrm{X7}=\mathrm{X}(\mathrm{L} 1+64) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{X7}=\mathrm{X}(\mathrm{L} 1+64) / 1.01$
END IF
END IF

IF (ots (II).LE.X3) THEN
○○○ (II) $=\mathrm{X}(\mathrm{L} 1+41) * \mathrm{X}(\mathrm{L} 1+35)+\mathrm{X}(\mathrm{L} 1+42) * \mathrm{X}(\mathrm{L} 1+36)+\mathrm{X}(\mathrm{L} 1+43)$

* $X(L 1+37)+X(L 1+44) * X(L 1+38)+X(L 1+45) * X(L 1+39)$
oom (II) $=\mathrm{X}(\mathrm{L} 1+41)+\mathrm{X}(\mathrm{L} 1+42)+\mathrm{X}(\mathrm{L} 1+43)+\mathrm{X}(\mathrm{L} 1+44)+\mathrm{X}(\mathrm{L} 1+45)$
ELSE IF (Ots (II).LE.X4) THEN
$000($ II $)=X(L 1+47) * X(L 1+35)+X(L 1+48) * X(L 1+36)+X(L 1+49)$
* $X(L 1+37)+X(L 1+50) * X(L 1+38)+X(L 1+51) * X(L 1+39)$

○om (II) $=\mathrm{X}(\mathrm{L} 1+47)+\mathrm{X}(\mathrm{L} 1+48)+\mathrm{X}(\mathrm{L} 1+49)+\mathrm{X}(\mathrm{L} 1+50)+\mathrm{X}(\mathrm{L} 1+51)$
ELSE IF (Ots (II).LE.X5) THEN
$000(\mathrm{II})=\mathrm{X}(\mathrm{L} 1+53) * \mathrm{X}(\mathrm{L} 1+35)+\mathrm{X}(\mathrm{L} 1+54) * \mathrm{X}(\mathrm{L} 1+36)+\mathrm{X}(\mathrm{L} 1+55)$

* $X(L 1+37)+X(L 1+56) * X(L 1+38)+X(L 1+57) * X(L 1+39)$
oom (II) $=\mathrm{X}(\mathrm{L} 1+53)+\mathrm{X}(\mathrm{L} 1+54)+\mathrm{X}(\mathrm{L} 1+55)+\mathrm{X}(\mathrm{L} 1+56)+\mathrm{X}(\mathrm{L} 1+57)$
ELSE IF (Ots (II).LE.X6) THEN
$00 \circ(\mathrm{II})=\mathrm{X}(\mathrm{L} 1+59) * \mathrm{X}(\mathrm{L} 1+35)+\mathrm{X}(\mathrm{L} 1+60) * \mathrm{X}(\mathrm{L} 1+36)+\mathrm{X}(\mathrm{L} 1+61)$
* $X(L 1+37)+X(L 1+62) * X(L 1+38)+X(L 1+63) * X(L 1+39)$
oom (II) $=\mathbf{X}(L 1+59)+X(L 1+60)+X(L 1+61)+X(L 1+62)+X(L 1+63)$
ELSE IF(Ots(II).LE.X7) THEN
○○○ (II) $=\mathrm{X}(\mathrm{L} 1+65) * X(L 1+35)+X(L 1+66) * X(L 1+36)+X(L 1+67)$
* $X(L 1+37)+X(L 1+68) * X(L 1+38)+X(L 1+69) * X(L 1+39)$
oom $(I I)=X(L 1+65)+X(L 1+66)+X(L 1+67)+X(L 1+68)+X(L 1+69)$
else
OOO(II) $=X(L 1+70)$ * $X(L 1+35)+X(L 1+71) * X(L 1+36)+X(L 1+72)$
* $\mathrm{X}(\mathrm{L} 1+37)+\mathrm{X}(\mathrm{L} 1+73) * \mathrm{X}(\mathrm{L} 1+38)+\mathrm{X}(\mathrm{L} 1+74) * \mathrm{X}(\mathrm{L} 1+39)$
oom $(I I)=X(L 1+70)+X(L 1+71)+X(L 1+72)+X(L 1+73)+X(L 1+74)$
END IF

3485
CONTINUE

C CONSIGNMENT COSTS OF TOLL COLLECTION

```
DO 3550 II=1,IRD
DO \(3540 \mathrm{M}=1\), nAL
temp \(=0.0 \mathrm{D} 0\)
```

```
    DO 3530 J=1,nAL-1
    IF (J == M) THEN
        DO 3520 K=J+1, nAL
                        DO 3510 L=1,nP
                            temp = temp + traf (II,J,K,L)
                            CONTINUE
        CONTINUE
        ELSE
        DO 3525 L=1,nP
                            temp = temp + traf (II,J,M,L)
3525
3530
CONTINUE
    cts(II,M) = temp
3540 CONTINUE
3550 CONTINUE
```

```
DO 3790 II=1,IRD
    DO 3780 M=1,nAL
        tcc(II,M)=0.0DO
```

C we could realize about a 5\% increase in speed
C by not ROCKing 'N ROLLing these variables at all.

```
            x8 = x(L1+76)
            X9 = X(L1+78)
            X10 = X(L1+80)
            X11 = X(L1+82)
            X12 = X(L1+84)
            X13 = X(L1+86)
            X14 = X(L1+88)
            X15 = X(L1+90)
            X16 = X(L1+92)
            X17 = X(L1+94)
            X18 = X(L1+96)
            X19 = X(L1+98)
            X20 = X(L1+100)
            X21 = X(L1+102)
            X22 = X(L1+104)
            X23 = X(L1+106)
            x24 = X(L1+108)
IF (KP == L1+76) THEN
            IF (KT == 1) THEN
            X8 = X(L1+76)/0.99
        ELSE IF (KT == 3) THEN
            X8 = X(L1+76)/1.01
        END IF
ELSE IF (KP == L1+78) THEN
    IF (KT == 1) THEN
            X9 = X(L1+78)/0.99
        ELSE IF (KT == 3) THEN
            X9 = X(L1+78)/1.01
        END IF
```

ELSE IF (KP == L1+80) THEN
IF (KT = = 1) THEN
$\mathrm{X} 10=\mathrm{X}(\mathrm{L} 1+80) / 0.99$
ELSE IF (KT $==3$) THEN $\mathrm{X} 10=\mathrm{X}(\mathrm{L} 1+80) / 1.01$
END IF
ELSE IF (KP == L1+82) THEN
IF (KT == 1) THEN $\mathrm{X11}=\mathrm{X}(\mathrm{L} 1+82) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{X11}=\mathrm{X}(\mathrm{L} 1+82) / 1.01$
END IF
ELSE IF (KP = = L $1+84$) THEN
IF (KT == 1) THEN $\mathrm{X12}=\mathrm{X}(\mathrm{L} 1+84) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{X} 12=\mathrm{X}(\mathrm{L} 1+84) / 1.01$
END IF
ELSE IF (KP == L1+86) THEN
IF (KT ==1) THEN $\mathrm{X} 13=\mathrm{X}(\mathrm{L} 1+86) / 0.99$
ELSE IF (KT = = 3) THEN $\mathrm{X} 13=\mathrm{X}(\mathrm{L} 1+86) / 1.01$
END IF
ELSE IF (KP = = LI +88) THEN
IF (KT == 1) THEN $\mathrm{X14}=\mathrm{X}(\mathrm{L} 1+88) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{x} 14=\mathrm{x}(\mathrm{L} 1+88) / 1.01$
END IF
ELSE IF (KP $==L 1+90$) THEN
IF (KT ==1) THEN $\mathbf{X 1 5}=\mathbf{x}(L 1+90) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{X} 15=\mathrm{X}(\mathrm{L} 1+90) / 1.01$
END IF
ELSE IF (KP = = L1+92) THEN
IF (KT == 1) THEN $\mathrm{X16}=\mathrm{x}(\mathrm{L} 1+92) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{X} 16=\mathrm{X}(\mathrm{L} 1+92) / 1.01$
END IF
ELSE IF (KP = = L1+94) THEN
IF (KT $==1$) THEN $\mathrm{X} 17=\mathrm{x}(\mathrm{L} 1+94) / 0.99$
ELSE IF (KT = = 3) THEN $\mathrm{X17}=\mathrm{X}(\mathrm{L} 1+94) / 1.01$
END IF
ELSE IF (KP == L1+96) THEN
IF (KT ==1) THEN $\mathrm{X18}=\mathrm{X}(\mathrm{L} 1+96) / 0.99$
ELSE IF (KT $==3$) THEN $\mathrm{X18}=\mathrm{X}(\mathrm{L} 1+96) / 1.01$
END IF
ELSE IF (KP = = L1+98) THEN
IF (KT = = 1) THEN
$\mathrm{X} 19=\mathbf{x}(\mathrm{L} 1+98) / 0.99$

ELSE TF (KT = = 3) THEN $\mathrm{X19}=\mathrm{X}(\mathrm{L} 1+98) / 1.01$
END IF
ELSE IF (KP = = L1+100) THEN
IF (KT ==1) THEN
$\mathrm{X} 20=\mathrm{X}(\mathrm{L} 1+100) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{X} 20=\mathrm{X}(\mathrm{L} 1+100) / 1.01$
END IF
ELSE IF (KP = = L1+102) THEN
IF (KT == 1) THEN $\mathrm{X21}=\mathrm{X}(\mathrm{L} 1+102) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{x} 21=\mathrm{x}(\mathrm{L} 1+102) / 1.01$
END IF
ELSE IF (KP == L1+104) THEN
IF (KT == 1) THEN $\mathrm{X} 22=\mathrm{X}(\mathrm{L} 1+104) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{x} 22=\mathrm{X}(\mathrm{L} 1+104) / 1.01$
END IF
ELSE IF (KP == L1+106) THEN IF (KT == 1) THEN $\mathbf{x 2 3}=\mathbf{x}(\mathrm{L} 1+106) / 0.99$ ELSE IF (KT == 3) THEN $\mathrm{X} 23=\mathrm{X}(\mathrm{L} 1+106) / 1.01$
END IF
ELSE IF (KP = = L1+108) THEN
IF (KT == 1) THEN $\mathrm{X} 24=\mathrm{X}(\mathrm{L} 1+108) / 0.99$
ELSE IF (KT == 3) THEN $\mathrm{x} 24=\mathrm{X}(\mathrm{L} 1+108) / 1.01$ END IF
END IF

IF (cts (II, M) .LE.X8) THEN $\operatorname{tcc}(I I, M)=X(L 1+77) * X(L 1+75) * X(L 1+111)$ $\operatorname{tcm}(I I, M)=X(L 1+77)$
ELSE IF(cts(II,M).LE.X9) THEN $\operatorname{tcc}(I I, M)=X(L 1+79) * X(L 1+75) * X(L 1+111)$ $\operatorname{tcm}(I I, M)=X(L 1+79)$
ELSE IF (cts(II, M).LE.X10) THEN $\operatorname{tcc}(I I, M)=X(L 1+81) * X(L 1+75) * X(L I+111)$ $\operatorname{tcm}(I I, M)=X(L 1+81)$
ELSE IF (cts(II, M).LE.X11) THEN $\operatorname{tcc}(I I, M)=X(L 1+83) * X(L 1+75) * X(L 1+111)$ $\operatorname{tcm}(I I, M)=X(L 1+83)$
ELSE IF(Cts(II, M).LE.X12) THEN $\operatorname{tcc}(I I, M)=X(L 1+85) * X(L 1+75) * X(L 1+111)$ $\operatorname{tcm}(I I, M)=X(L 1+85)$
ELSE IF(Cts(II,M).LE.X13) THEN $\operatorname{tcc}(I I, M)=X(L 1+87) * X(L 1+75) * X(L 1+111)$ $\operatorname{tcm}(I I, M)=X(L 1+87)$
ELSE IF (cts(II, M).LE.X14) THEN $\operatorname{tcc}(I I, M)=X(L 1+89) * X(L 1+75) * X(L 1+111)$ $\operatorname{tcm}(I I, M)=X(L 1+89)$
ELSE IF(Cts(II,M).LE.X15) THEN
$\operatorname{tcc}(I I, M)=X(L 1+91) * X(L 1+75) * X(L 1+111)$
$\operatorname{tcm}(I I, M)=X(L 1+91)$
ELSE IF(Cts(II,M).LE.X16) THEN
$\operatorname{tcc}(I I, M)=X(L 1+93) * X(L 1+75) * X(L 1+111)$
$\operatorname{tcm}(I I, M)=X(L 1+93)$
ELSE IF (cts(II, M).LE.X17) THEN
$\operatorname{tcc}(I I, M)=X(L 1+95) * X(L 1+75) * X(L 1+111)$
$\operatorname{tcm}(I I, M)=X(L 1+95)$
ELSE IF(cts(II, M).LE.X18) THEN
$\operatorname{tcc}(I I, M)=X(L 1+97) * X(L 1+75) * X(L 1+111)$
$\operatorname{tcm}(I I, M)=X(L 1+97)$
ELSE IF (Cts (II, M).LE.X19) THEN
$\operatorname{tcc}(I I, M)=X(L 1+99) * X(L 1+75) * X(L 1+111)$
$\operatorname{tcm}(I I, M)=X(L 1+99)$
ELSE IF(Cts (II, M).LE.X20) THEN
$\operatorname{tcc}(I I, M)=X(L 1+101) * X(L 1+75) * X(L 1+111)$
$\operatorname{tcm}(I I, M)=X(L 1+101)$
ELSE IF(Cts (II, M).LE.X21) THEN
$\operatorname{tcc}(I I, M)=X(L 1+103) * X(L 1+75) * X(L 1+111)$
$\operatorname{tcm}(I I, M)=X(L 1+103)$
ELSE IF (Cts (II, M).LE.X22) THEN
$\operatorname{tcc}(I I, M)=X(L 1+105) * X(L 1+75) * X(L 1+111)$
$\operatorname{tcm}(I I, M)=X(L 1+105)$
ELSE IF(Cts (II, M).LE.X23) THEN
$\operatorname{tcc}(I I, M)=X(L 1+107) * X(L 1+75) * X(L 1+111)$
$\operatorname{tcm}(I I, M)=X(L 1+107)$
ELSE IF (Cts (II, M).LE.X24) THEN
$\operatorname{tcc}(I I, M)=X(L 1+109) * X(L 1+75) * X(L 1+111)$
$\operatorname{tcm}(I I, M)=X(L 1+109)$
ELSE
$\operatorname{tcc}(I I, M)=X(L 1+110) * X(L 1+75) * X(L 1+111)$
$\operatorname{tcm}(I I, M)=X(L 1+110)$
END IF
3780 CONTINUE
3790 CONTINUE
DO 3797 II=1,IRD
temp $=0.0 \mathrm{D} 0$
DO $3794 \mathrm{M}=1$, nAL
temp $=$ temp $+\operatorname{tcm}$ (II, M)
3794 CONTINUE
tcmt $(I I)=$ temp
3797 CONTINUE

C

C TOLL COLLECTION MACHINE MAINTENANCE COSTS

DO 3820 II=1,IRD
temp $=0.0 \mathrm{DO}$
DO $3812 \mathrm{~J}=1$, nAL
temp $=$ temp $+\operatorname{tcc}(I I, J)$
3812
CONTINUE

```
    tccc (II) = temp
```

```
Appendix D: Source Code of the Model
            tccm (II) = temp * X(L1+112)
    3820 CONTINUE
C---------------------------------------------------------
C BUILDING AND REPAINTING EXPENSES
C RELEVANT EXPENSES TO OPERATION
C COST FOR MACHINE AND EQUIPMENT
C OTHERS
C---------------------------------------------------------------
    DO 3860 II=1,IRD
    brco(II) = X(LI+113)*(OOm(II) +tcmt(II))+X(L1+114)
    3860 CONTINUE
C----------------------------------------------------------
C OPERATION BUREAU OVERHEAD
C
    DO 3890 II=1,IRD
        obo(II) = reve(II) *X(L1+115)
    3890 CONTINUE
C------------------------------------------------------------
C HEADQUARTERS OVERHEAD
C-------------------------------------------------------------
    DO 3930 II=1,IRD
        ho(II) = reve(II)*X(L1+116)
    3930 CONTINUE
C------------------------------------------------------------
C REVENUE
C
C This calculate annual revenue
C and
C maintenance and operation costs.
```



```
    CALL TRACE (3, 'RVSF13', 'total costs calculation.')
C
C Calculate annual maintenance costs
c-------------------------------------------
    CALL TRACE (3, 'RVSF13', 'annual maintenance costs.')
    DO 4200 II=1,IRD
    4200 maint (II) = mcrc + mcrm + mcl + mcbr + mcbp1 (II) + mctm
        +
                                + mcsc + mcoll (II) + mcot
C
C Calculate annual operation costs.
c-----------------------------------------
    CALL TRACE (3, 'RVSF13', 'annual operation costs.')
```

```
Appendix D: Source Code of the Model
    DO 4300 II=1,IRD
        oper(II) = 000(II) +tccc(II) +tccm(II) +brco(II) +obo(II) +ho(II)
        aoper(II)=maint(II) +oper(II)
        CONTINUE
C
--
C save the values into the array
C IF (O<KP) THEN
C DO 4900 II= 1, IRD
C VCACHE (I, KT, KP, (II * 2) - 1) = reve (II)
C VCACHE (I, KT, KP, (II * 2) ) = aoper (II)
C 4900 CONTINUE
C ENDIF
C
C Calculate discounted net revenue.
c------------------------------------------
5000 CALL TRACE (3, 'RVSF13', 'discount NP.')
    Y=0.00
    DO 5100 II=1,IRD
        IF (DABS (DR) <= 0.001D0) THEN
            AZ = 1.00
            ELSE
                AZ = ( DEXP (-DR * (rIBY + II )) -
                        DEXP (-DR * (rIBY + II - 1)) ) / (-DR)
            END IF
            Z = X (LI + 117) - DR
            IF (DABS (Z) <= 0.001D0) THEN
            BZ = 1.00
            ELSE
                BZ = ( DEXP (Z * (rIBY + II )) -
                DEXP (Z * (rIBY + II - 1)) ) / Z
            END IF
            AY = (reve (II) * AZ) - (aoper (II) * BZ)
            Y = Y + AY
```

5100 CONTINUE
CALL TRACE (3, 'RVSF13', 'finishing.')
DEALLOCATE (cost, traf, tcc, tcm, cts)
RETURN

END

```
C IntPol.FOR
C modified by Toshiaki Hatakama in July, 1994.
C called only by CdFunc.FOR
C THIS ROUTINE INTERPOLATES THE BETA1 AND BETA2 VALUES OF THE
C PEARSON TABLE BY A METHOD OF LINEAR INTERPOLATION
```



```
    SUBROUTINE INTPOL (PEARSN, RSKW, RKRT,
```

 SUBROUTINE INTPOL (PEARSN, RSKW, RKRT,
 + IYI, IY2,
 + IYI, IY2,
 + IZ1, IZ2,
 + IZ1, IZ2,
 + IPEARS,
 + IPEARS,
 + SD, AM, RES)
    ```
    + SD, AM, RES)
```



```
    IMPLICIT REAL*4(A-H,O-Z)
    INCLUDE 'DEBUG.CMN'
    REAL*4 PEARSN (NPEARS, *)
    RYDIF = PEARSN (IY2, IPEARS) - PEARSN (IY1, IPEARS)
    RZDIF = PEARSN (IZ2, IPEARS) - PEARSN (IZ1, IPEARS)
    RES = PEARSN (IY1, IPEARS) + (RKRT / 0.1D0) * RYDIF
    RES = AM + SD *
    + ( RES + (RSKW / 0.1D0) *
    + (PEARSN (IZ1, IPEARS) + (RKRT / 0.1D0) * RZDIF - RES))
    RETURN
    END
```

```
C SPARSE.FOR
C "Sparse-Array" technology for super-large arrays
C
C initialize the size data (the first cell),
C and the dimension list (cell 2 and the rest),
C and the rest of the cells, just to be safe....
    SUBROUTINE SPA_INIT3 (THEARY, NSIZE, ND1, ND2, ND3)
    REAL*4 THEARY (*)
    INTEGER*4 NSIZE, ND1, ND2, ND3
    THEARY (1) = NSIZE ! how many elements in the array, really.
    THEARY (2) = 3 ! the number of dimensions.
    THEARY (3) = ND1 ! the 1st virtual dimension.
    THEARY (4) = ND2 ! the 2nd virtual dimension.
    THEARY (5) = ND3 ! the 3rd virtual dimension.
    DO 100 X = 6, NSIZE
    100 THEARY (X) = 0.0
    RETURN
    END
C for a given cell, set the value referenced by (x,y,z) to theVal...
C I wish FORTRAN supported Variable # of Parameters...
    SUBROUTINE SPA SET3 (THEARY, THEVAL, ND1, ND2, ND3)
    REAL*4 THEARY (*), THEVAL
    INTEGER*4 ND1, ND2, ND3, KEY, HASH
    KEY = ( (ND1 - 1) * INT (THEARY (4)) + (ND2 - 1) )
        + * INT (THEARY (5)) + ND3
    HASH = 6 + (MOD (KEY, INT ((THEARY (1) - 5) / 2)) * 2)
    100 IF (THEARY (HASH) == KEY) THEN
        THEARY (HASH + 1) = THEVAL
        RETURN
    ENDIF
    IF (THEARY (HASH) == 0.0) THEN
        IF (THEVAL == 0.0) THEN
C Never store a zero when just leaving it will dol
        ELSE
            THEARY (HASH) = KEY
            THEARY (HASH + 1) = THEVAL
        ENDIF
        RETURN
    ENDIF
    HASH = HASH + 2
    IF (INT (THEARY (1)) <= HASH) THEN
        HASH = 6
    END IF
```

```
Appendix D: Source Code of the Model
    GOTO 100
    END
C get a value from the sparse array....
    REAL*4 FUNCTION SPA_GET3 (THEARY, ND1, ND2, ND3)
    REAL*4 THEARY (*)
    INTEGER*4 ND1, ND2, ND3, KEY, HASH
    KEY = ( (ND1 - 1) * INT (THEARY (4)) + (ND2 - 1) )
        +
        HASH = 6 + (MOD (KEY, INT ((THEARY (1) - 5) / 2)) * 2)
    100 IF (THEARY (HASH) == KEY) THEN
        SPA_GET3 = THEARY (HASH + 1)
        RETURN
    ENDIF
    IF (THEARY (HASH) == 0.0) THEN
        SPA GET3 = 0.0
        RETURN
    ENDIF
    HASH = HASH + 2
    IF (INT (THEARY (1)) <= HASH) THEN
        HASH = 6
    END IF
    GOTO 100
    END
C get a check-sum of a sparse array... just to be sure.
    REAL*4 FUNCTION SPA_SUM (THEARY, NSIZE)
    REAL*4 THEARY (*)
    SPA SUM = O.ODO
    IF (THEARY (1) == NSIZE) THEN
        DO 100 I = 1, NSIZE
            SPA_SUM = (SPA_SUM + THEARY (I)) * 2
            IF (1.OD15 < SPA_SUM) THEN
                SPA_SUM = SPA_SUM / 1.OD14
            ENDIF
    100 CONTINUE
    ELSE
        PRINT *, 'Array size is different than defined!'
    ENDIF
    RETURN
    END
```

```
Appendix D: Source Code of the Model
C Trace.MJW
C 23mar94 MJW
C
C TRACE checks whether or not this particular call contains data
C which is desirable at this debug level, which is set in AMMA.INI
C If it is, then it displays the data on the console
    SUBROUTINE TRACE (NDEBUG, CPROC, MSG)
    CHARACTER CPROC*(*), MSG*(*)
    CHARACTER*8 THEDATE
    CHARACTER*11 THETIME
    INCLUDE 'DEBUG.CMN'
    CALL DATE (THEDATE)
    CALL TIME (THETIME)
    IF (IDEBUG .GE. NDEBUG) THEN
        WRITE (6, *) THEDATE, ' ', THETIME(1:5), ' ', CPROC, ': ',
    +
        WRITE (7, *) THEDATE, ' ', THETIME(1:5), ' ', CPROC, ': ',
    +
        ENDIF
        RETURN
    END
```

C DEBUG.CMN
C 25 mar94 MJW
C this is a blank common for keeping crucial info regarding the program

C NWP is Number of Work Packages
C NRS is Number of Revenue Streams
C MAXDV is the MAXimum number of Discrete Variables for certain arrays
C NPEARS is how many types of Pearson Distributions we know about C IDEBUG is what level of debug output we want generated
C IERR is the system state, $0=0 k, 1+=$ error->exit
COMMON NWP, NRS, MAXDVC, MAXDVR, NPEARS, IDEBUG, IERR

[^0]: Figure 2.3 Feasibility Study Components for a Toll Highway Project

[^1]: Table 4.33 Comparison of the Project Revenue
 (case-1 and case-7)

