THE DESIGN OF A ZERO-EFFLUENT DISCHARGE SYSTEM FOR WESTCOAST ENERGY INC.'S FORT NELSON GAS PLANT

by

JEAN-PHILIPPE BECHTOLD
B.Sc., The University Of Western Ontario, 1993

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES
(Department of Civil Engineering)

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

June 1996
(C) Jean-Philippe Bechtold, 1996

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of CIUSL ENS.
The University of British Columbia Vancouver, Canada

Date Jun

Abstract

This project was initiated by Westcoast Energy Inc. (Westcoast) to examine the feasibility of transforming their Fort Nelson Gas Plant (FNGP) into a zero-effluent discharge (ZED) facility. Water flow and water chemistry data were collected at the plant. The resulting data set was used to identify water leaks in the existing distribution network, as well as to identify methods of optimizing water use at this facility. Designs for implementing a ZED protocol at the FNGP were then developed and subsequently evaluated with a computer simulator.

A total of 18 ZED models were constructed using reverse osmosis (RO) membranes, nanofilters and other ZED technology. The final disposal mechanism in 10 of the 18 scenarios was a brine concentrator - spray dryer (BCS) assembly, which reduced all remaining wastewater into a solid waste. In the other 8 ZED designs, final concentrates were disposed of in a deep well. The best deep well configuration was a 1 -stage RO filter; the necessary equipment, excluding the deep well, would cost an estimated $\$ 101700$ US dollars. The best BCS scenarios were a 1 -stage RO and a BCS-only models; they would cost around $\$ 1.61$ and $\$ 1.79$ million US dollars, respectively. A step by step approach by which the FNGP can be transformed into a ZED facility is detailed in Chapter 8.0 of this report.

While it is possible to implement a ZED program at the FNGP, there are consequences to this course of action which need to be considered. The most important is final waste management. Regardless of whether a deep well or a BCS unit is used, either system will have to be built and operated in such a way that the final waste products produced by the ZED treatment train do not migrate off-site, as this action would violate the ZED principle. Once a ZED program is initiated, wastewater and/or waste solids produced at the FNGP will no longer disappear with the FNR; they will remain on-site indefinitely.

TABLE OF CONTENTS

Abstract ii
List of tables vi
List of figures viii
Acknowledgements ix
1.0 INTRODUCTION 1
2.0 BACKGROUND
2.1 Gas Plant Operations
2.1.1 General 7
2.1.2 Fort Nelson Gas Plant 7
2.2 FNGP Water System
2.2.1 Liquid phase 8
2.2.2 Vapour phase 11
3.0 AVAILABLE RECYCLING TECHNOLOGY
3.1 Distillation 18
3.2 Ion-exchange 18
3.3 Membrane Filtration
3.3.1 Ion selective separation 19
3.3.2 Water permeable membranes 21
3.3.3 Reverse osmosis vs. electrodialysis 23
3.3.4 RO membrane selection 32
3.4 Brine Disposal 33
3.5 Conclusion 35
4.0 METHODOLOGY
4.1 Analysis of the Existing Water Distribution System
4.1.1 Flow data 42
4.1.2 Chemical data 42
4.2 Selecting the Appropriate Recycling Technology for the FNGP 44
4.3 The Computer Simulator
4.3.1 Basic construction 45
4.3.2 ZED components 46
4.3.3 Parameter values 47
5.0 ANALYSIS OF THE EXISTING WATER SYSTEM
5.1 Results
5.1.1 Water balances 50
5.1.2 Mass balances 50

TOC (con't)

5.0 ANALYSIS OF THE EXISTING WATER SYSTEM (con't)
5.2 Discussion
5.2.1 Data quality 51
5.2.2 System optimization 54
5.3 Changing to a ZED System 59
5.4 Conclusion 60
6.0 RECYCLING TECHNOLOGY FOR THE FNGP
6.1 Re-evaluation of the Literature Review 88
6.2 Available Options 89
6.3 Conceptual ZED Designs
6.3.1 Back-end models 91
6.3.2 Composite discharge designs 92
7.0 DESIGN EVALUATION
7.1 Simulator Performance 95
7.2 BCS Designs
7.2.1 Composite discharge models 96
7.2.2 Back-end solutions: ion-exchange vs. nanofiltration 96
7.2.3 Best of the back-end ion-exchangers 98
7.2.4 Conclusion 101
7.3 Deep Well Configurations
7.3.1 Composite discharge designs 102
7.3.2 Back-end solutions: ion-exchange vs. nanofiltration 102
7.3.3 Best of the back-end ion-exchangers 102
7.3.4 Conclusion 103
7.4 Evaluation Summary 104
8.0 ZED IMPLEMENTATION AND IMPLICATIONS 125
9.0 POTENTIAL LIMITATIONS
9.1 Non-Representative numbers
9.1.1 Flow data 130
9.1.2 Chemical data 130
9.2 Sample Variability
9.2.1 Water data 131
9.2.2 Chemical data 131
9.3 Computer Model 132
9.4 ZED Evaluation Process 133
9.5 Conclusion 134

TOC (con't)

10.0 CONCLUSIONS 136
11.0 RECOMMENDATIONS 138
References 139
Appendix A - Water flow data 146
Appendix B - Water balance equations and assumptions 186
Appendix C - Water chemistry data 194
Appendix D - Mass balance equations and assumptions 207
Appendix E-Equations used in the computer simulator 213
Appendix F - Simulator summary sheets 268
Appendix G - Cost estimates 278

LIST OF TABLES

Table 3.1: A comparison of the inherent advantages and disadvantages of reverse osmosis (RO), electrodialysis (ED) and electrodialysis reversal (EDR) 36
Table 5.1: A water balance of the Fort Nelson Gas Plant based on its individual operating units 63
Table 5.2: A water balance of the Fort Nelson Gas Plant based on the different types of water used at the facility 70
Table 5.3 A summary of treated water losses from the Fort Nelson Gas Plant. 74
Table 5.4: A mass balance on the front-end softening system 75
Table 5.5: A mass balance on the lime ponds 76
Table 5.6: A mass balance on the boilers 77
Table 5.7: A mass balance on the sulphur plant 78
Table 5.8: A mass balance on the polishing pond 79
Table 5.9: A comparison between water flow readings from January 1995 and overall averages 80
Table 5.10: Water balances on the raw water storage tank and front-end softeners (FESs) using metered and calculated inflow and outflow volumes from the FESs 82
Table 5.11: Recalculated mass balance on the FNGP's front-end softening system 83
Table 5.12: Recalculated mass balance on the FNGP's lime ponds 84
Table 5.13: Changes that occurred in selected areas of the Fort Nelson Gas Plant's water system before and after water observed to be escaping from the effluent treatment plant was recovered 85
Table 5.14: Selected water flows in the Fort Nelson Gas Plant's water distribution network with and without 8 psi steam reuse 86
Table 5.15: The average inlet gas profile for January 1994 at the Fort Nelson Gas Plant 87
Table 6.1: A chemical comparison of the treated water and Fort Nelson River (FNR) discharge flows. 93
Table 7.1: Comparison of 10 selected BCS ZED designs 106
Table 7.2 Changes in RO and B/C feedwater flows, calcium pretreatment demands and product water quality, in the 1 -stage RO, 2-stage RO and BCS-only back-end, BCS, ion-exchange configurations, triggered by given alterations in raw water and effluent plant outflow chemistry 108

LIST OF TABLES (con't)

Table 7.4: Comparison of 8 selected deep well ZED designs113

Table 7.5: Changes in RO feedwater flow, calcium pretreatment demands and product water quality, in the 1 -stage and 2-stage RO back-end, deep well, ion-exchange configurations, triggered by given alterations in raw water and effluent plant outflow chemistry115

Table 7.6: Changes in treated water quality, in both the 1 -stage and 2-stage RO back-end,
deep well, ion-exchange configurations, triggered by given alterations in raw
water and effluent plant outflow chemistry 117

Table 9.1: Changes to the configuration of the back-end, BCS, 1-stage RO, ion-exchange
design with various flow alterations 135

LIST OF FIGURES

Figure 1.1: Water balance at the Fort Nelson Gas Plant before and after ZED implementation 5
Figure 1.2: Salt balance at the Fort Nelson Gas Plant before and after ZED implementation. 6
Figure 2.1: An illustration of Westcoast Energy Inc.'s operations in British Columbia 13
Figure 2.2: General layout of the Fort Nelson Gas Plant 14
Figure 2.3: An illustration of gas processing flows at the Fort Nelson Gas Plant 15
Figure 2.4: A simplified illustration of the Fort Nelson Gas Plant's water system 16
Figure 2.5: A simplified illustration of the Fort Nelson Gas Plant's steam system 17
Figure 3.1: Typical operating total dissolved solid (TDS) concentrations for different desalination technologies 37
Figure 3.2: An illustration of the electrodialysis process. 38
Figure 3.3a: Flows through an EDR stack when electricity travels from right to left 39
Figure 3.3b: Flows through an EDR stack when electricity travels from left to right 39
Figure 3.4: Pore size distribution in three types of water permeable membranes 40
Figure 3.5: An illustration of reverse osmosis (RO) filtration 41
Figure 4.1: A simplified diagram of the water distribution system at the Fort Nelson Gas Plant 49
Figure 6.1: A graphic representation of the available ZED options 94
Figure 7.1: An illustration of the projected flow patterns in a composite discharge, reverse osmosis ZED configuration 119
Figure 7.2: An illustration of the changes in equipment and flow patterns in a given ZED system using nanofiltration instead of ion-exchange softening. 120
Figure 7.3: An illustration of the projected flow patterns in a back-end, BCS-only ZED configuration 121
Figure 7.4: An illustration of the projected flow patterns in a back-end, reverse osmosis ZED configuration 122
Figure 7.5: A simplified illustration of a 1 -stage RO, BCS ZED system. 123
Figure 7.6: A simplified illustration of a 2-stage RO, BCS ZED system. 124

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Wayne Soper for first hiring me as a summer student and then later arranging for Westcoast Energy Inc. to sponsor my thesis. I am also indebted to Bruce Kosugi, Ed Lee, Shang Su and Lorraine Michot for their assistance. As for the staff at UBC, I would like to thank Jim Atwater for his guidance and insight, Don Mavinic for his helpful comments, and Pat Sheehan for making my time at UBC easier and more enjoyable.

On a more personal note, I owe a great deal to my family. They have always been very loving and supportive. A special mention to my father, if it were not for his generosity, I would never have been able to come out to Vancouver. He is an amazing individual, and I am honoured to have him as my dad, even if he does give me a little too much unsolicited advice. I am also grateful to Wayne Evans and Joanna McGrenere for providing me with a constant source of comic relief and inspiration, and to my step-mother, Raymonde Pommier-Bechtold, as well as to Steve Banks, Sheilah Marans and Elvira Latts, for typing up several sections of my thesis. I am eternally indebted to Belinda Fireman who helped me weather many a storm and guided me through to brighter days.

Finally, using words borrowed from Nelson Mandela, "...I have discovered the secret that after climbing a great hill, one only finds that there are many more hills to climb. I have taken a moment here to rest, to steal a view of the glorious vista that surrounds me, to look back on the distance I have come. But I can rest only for a moment ... for my long walk is not yet ended."

1.0 INTRODUCTION

A zero-effluent discharge (ZED) facility, as defined by some, should not release any waste products into the environment. There would be no wastewater discharges, no atmospheric emissions and no solid waste output. The plant would essentially exist as closed system. There are few such facilities in existence, due to the cost, complexity and possible impracticality of a completely closed system. ZED is, as a result, more commonly used to describe a facility which does not release any wastewater into its surroundings.

Incentives for implementing a ZED program can include a reduction in overall operating costs, improved environmental quality and/or regulatory compliance. Westcoast Energy Inc. (Westcoast) initiated the ZED project as a potential alternative to upgrading the current effluent treatment facilities at its Fort Nelson Gas Plant (FNGP), as will be required by stricter environmental guidelines. By eliminating the wastewater discharge stream now released to the Fort Nelson River (FNR), the FNGP will be able to operate independent of British Columbia's wastewater legislation.

The feasibility of implementing a ZED system at the FNGP is, however, bound by two initial conditions:

1) Westcoast has stipulated that while domestic wastewaters are part of the FNR discharge and will, as a result, have to be included in any ZED program, no recycled water will enter the domestic system; it will continue to draw fresh water from the plant's raw water reservoir.

and

2) Most of the water used in the operational sections of the plant is softened water.

By condition (1), domestic wastewater will become a source of water for the plant (Fig. 1.1). If operational water losses do not exceed domestic wastewater input, the ZED project is doomed to
fail. The surplus of domestic wastewater would necessitate a liquid discharge from this facility - a violation of the founding principle of a ZED system. It will therefore be impossible to eliminate the FNR discharge if the plant's domestic wastewater production proves to be greater than its operational water losses, so long as recycled water is not used in the domestic system.

While boundary condition (2) does not affect the FNGP's water balance, it will still have profound effects on the ZED project. All of the chemical contaminants stripped from raw water now used in the operational sections of this facility are currently discharged along with the plant's wastewater to the FNR. When this wastewater is recycled, as will be the case in a ZED program, these elements will be returned to the head of operations. Here, they will be joined by additional salts contained in the raw and domestic waters needed to replace process water losses. To maintain a chemical balance, some salts and other contaminants will have to be drained from the ZED treatment train (Fig. 1.2). Otherwise, these materials will accumulate within the water distribution network with destructive results. Although adopting a ZED framework will release the FNGP from some regulatory guidelines, the ability to implement such a program may be limited by both the size of this facility's domestic wastewater output and the continued production of a salt brine or solid waste from any ZED treatment system.

Optimizing the FNGP's water distribution network is likely to increase the viability of a ZED program, as it will minimize the limitations imposed on this project by both boundary conditions. For example, the amount of brine or solid waste ultimately produced by a ZED treatment train is directly proportional to the volume of softened water lost from the plant. Tightening up the distribution system and reducing process water losses will shrink the demand for make-up water. Less raw water will then need to be imported from the raw water reservoir and fed into the frontend softeners (FESs). As feedwater volumes to the FESs drop, so to will the mass of contaminants discharged from these vessels. Minimizing water loss in the operational sections of the plant will therefore limit ZED waste output by reducing incoming raw water flow and waste generation rates in the FESs.

Increasing the efficiency of the domestic system is similarly important to the success of the ZED project. As previously stated, domestic wastewater production rates must be smaller than operational water losses as a prerequisite to initiating a ZED program. On one hand, this condition restricts process system optimization, in that one does not want to reduce process water losses to the point where they are less than the domestic output. At the same time, it also implies that minimizing domestic wastewater production will theoretically permit a greater amount of process optimization and increase the probability of fulfilling the prerequisite flow regime (i.e. domestic wastewater production < operational water losses).

In addition to these benefits, network optimization, on the whole, will help to minimize the cost and complexity of the required ZED treatment train. Reducing process water losses will, as previously stated, reduce the mass of contaminants contained in the FNR discharge by limiting their production in the FESs. Similarly, reusing relatively uncontaminated wastewaters, instead of releasing them into the effluent system, will reduce the volume of FNR discharge. Since the goal of the ZED project is to eliminate the release of wastewater to the FNR, the FNGP's discharge stream will ultimately need to be cleaned and recycled back into the plant. Reducing the volume and level of contamination of this wastewater, as achieved through system optimization, can only help to simplify this task. Increasing the efficiency of the existing water network is, therefore, a key step in establishing a cost effective ZED program at the FNGP; it will lead to a smaller, less contaminated final plant outflow which will be easier to recycle and produce less final solid waste than the current FNR discharge stream.

In order to identify if operational water losses at the plant are greater than its domestic output, as well as where water is now lost from the facility, flow diagrams and water balances were constructed. Plant waters were then analyzed to determine which of the escaping streams could be directly reused and which others would require pretreatment before reuse. Conceptual ZED designs, which detail the configuration of the FNGP as a ZED facility, were developed by combining information from available literature with the assembled flow diagrams and collected
water chemistry data. Computer modeling was used to evaluate the efficiency of each design. The process by which all of this work occurred is discussed in the following report, starting with a brief description of the FNGP, a review of the current literature and an outline of the methodology used in this study. Later chapters detail an analysis of the plant's existing water distribution network, the appropriate recycling technology and the best ZED configurations available to this facility. How a ZED program should be implemented, together with this project's potential limitation, conclusions and recommendations, are all examined in the final sections of this document.

Before ZED implementation

After ZED implementation

Figure 1.1: Water balance at the Fort Nelson Gas Plant before and after ZED implementation.

Before ZED implementation

After ZED implementation

Figure 1.2: Salt balance at the Fort Nelson Gas Plant before and after ZED implementation

2.0 BACKGROUND

2.1 Gas Plant Operations

2.1.1 General

Natural gas reserves are rarely pure methane. They generally c̣ontain a mixture of water, carbon dioxide, hydrogen sulphide and methane (Medici 1974, Ikoku 1984). Natural gas containing high levels of carbon dioxide and hydrogen sulfide is referred to as "sour" or "high acid" gas (Medici 1974, Ikoku 1984). Conversely, "sweet" gas is virtually free of pollutants (Medici 1974, Ikoku 1984). Normally raw field or production gas is dehydrated close to the well head. The remaining contaminants are removed downstream at processing plants. Production gas may also contain various heavier hydrocarbons, including ethane, propane, and butane; such gas being referred to as wet gas (as opposed to dry gas) (Medici 1974, Ikoku 1984). Processing facilities remove these liquids in addition to other undesirables, producing dry sweet sales gas.

In British Columbia, most natural gas processing is undertaken at 5 major plants, including the FNGP (Fig. 2.1), all of which are owned and operated by Westcoast Energy Inc.. As shown in Figure 2.1, field production is moved through a myriad of gas gathering pipelines to these 5 major processing facilities, and sales gas is then transported via Westcoast's major trunk pipeline system to markets in British Columbia and the U.S.

2.1.2 Fort Nelson Gas Plant

As field gas enters the FNGP, which itself is illustrated in Figure 2.2, it first passes through a liquid separator where liquid hydrocarbons and the remaining water are isolated from the gas (Fig. 2.3). At this point, the gas stream typically contains 87% methane, 12% carbon dioxide and 1% hydrogen sulphide by volume (E/F Manual). The carbon dioxide and hydrogen sulphide are stripped from the gas using either diethanolamine (DEA), monoethanolamine (MEA), potassium carbonate $\left(\mathrm{KCO}_{3}\right)$ or combination thereof (E / F and C / D Manuals). The "scrubbed" gas, although free of carbon dioxide and hydrogen sulphide, is now saturated with water from the stripping
solutions. This water is removed in dehydrators, and the sweet dry gas is released into the sales pipeline. Water trapped by the dehydrators drains to the flare pits for disposal.

The DEA, MEA and KCO_{3} solutions are not used on a "once-through" basis. Contaminated liquids are regenerated by steam cleaning (E / F and C / D Manuals). Carbon dioxide and hydrogen sulphide are leached out of the spent stripping solutions by counter-current steam flows (Fig. 2.3). The contaminated steam exits the gas processing trains and travels to a sulphur recovery unit.

Hydrogen sulphide is a poisonous gas which cannot, under current government regulations, be freely released into the environment. Hydrogen sulphide extracted from sour gas is changed into elemental sulphur by reacting it with sulphur dioxide. This transformation, known as the "Claus" process, typically recovers 98% of the incoming hydrogen sulphide (S/P Manual). Remaining hydrogen sulphide is burnt to sulfur dioxide and released along with all of the carbon dioxide and water contained in the vapor stream evolved when regenerating the DEA, MEA and KCO_{3} solutions (Fig. 2.3).

In simple terms, gas processing at the FNGP consists primarily of stripping liquid and gaseous contaminants from incoming sour gas to produce sweet sales gas, the conversion of hydrogen sulphide to elemental sulphur, and the atmospheric release of carbon dioxide, low levels of sulphur dioxide and steam.

2.2 FNGP Water System

Water at the FNGP is used for processing and power generation, as well as for cleaning and domestic purposes. Depending on temperature and pressure, it exists as either a liquid or a gas.

2.2.1 Liquid Phase

All of the water required by the plant originates from either the Fort Nelson River (FNR) or Burger creek (a minor water flow used in the spring and summer months). Water from either source initially travels to the raw water reservoir. From the reservoir, it is pumped, as required, to
a storage tank closer to the facility (Fig. 2.4). Water passes into the plant in one of three different flow systems:
i) Cleaning water is drawn directly from the tank and travels through the plant's "raw water" piping.
ii) Water destined for domestic use moves from the tanks through two activated carbon filters; it is then chlorinated and dispersed throughout the plant in the domestic system.
iii) The remaining water by-passes the domestic treatment train and flows into a water softening system; it is henceforth called treated water.

Dirty cleaning and domestic waters are released into the effluent system, which transports them to the effluent treatment plant (Fig. 2.4). All of the surface drains within the FNGP also drain to the effluent facility. Rainwater, collected in a series of ditches and culverts, does not enter the plant's water network. It is directed off-site, unless it has been contaminated by an on-site spill (Plant Modifications 1994). If rainwater does become contaminated, then it is pumped to the effluent plant for treatment. Similarly, polluted groundwater around the facility is treated at the effluent plant (Plant Modifications 1994). In general, very little "outside" water (i.e. precipitation and/or groundwater) enters the FNGP's water network, and cleaning \& domestic waters travel through separated pipelines until they mix in the effluent system.

Treated water produced by the front-end softeners (FESs) similarly remains isolated from the other water systems. Most treated water is used as boiler-feed make-up or dilutant for the natural gas stripping solutions (Fig. 2.4). Remaining treated water is used to regenerate the FESs, backwash the domestic filters or for cleaning equipment too sensitive to be washed with raw water. Spent regeneration and backwash waters drain to the lime ponds, while dirty cleaning water goes to the effluent plant.

Four of the 6 natural gas processing trains at the FNGP use treated water to replace water lost from the natural gas stripping solutions (i.e. regeneration steam and flare water - Fig. 2.3) (E/F Manual). The other 2 processing trains replace their lost water with water from the condensate return line (Fig. 2.4). Regardless of their origins, waters headed to "Process" are, for the most part, lost from the water network upon arrival. They are either eventually released to the atmosphere via the thermo-oxidizer or vapourized in the flare pits (Fig. 2.4). A small volume of flare water may remain in the pits not having evaporated during flaring. This residue will drain into the effluent treatment plant. In general, water which comes into direct contact with natural gas does not cycle into any other part of the water network, except from the small volumes of flare water draining to the effluent treatment facility. Contaminants carried into the plant in the gas stream can, however, be transported down to the effluent plant in waters used to clean process vessels.

Boiler feedwater (BFW) is a combination of treated water and returned condensate (Fig. 2.4). It is pumped into the 3 boilers and various vessels within the sulphur plant. A small volume of BFW drains from the boilers and the sulphur plant to control contaminant concentrations within the steam system, while the remaining water is vapourized and released into the steam system. Blowdown waters collect in the lime ponds.

The lime ponds receive wastewater from, as indicated, the boilers and the sulphur plant, as well as from the domestic filters, the FESs and several treated water drains within the FNGP (Fig. 2.4). The effluent plant, on the other hand, mainly receives domestic sewage, dirty cleaning water and a tiny amount of water from the flare pits. While the lime ponds are nothing more than collection basins, the effluent plant is comprised of a 20 -day stabilization pond, a 5 -day activated sludge tank and 3 clarifiers (E/P Manual). Lime pond and effluent plant outflows are combined in a mixing tank, flow through a 1-day retention pond (referred to as the "polishing" pond), and are released to the FNR.

Raw water entering the FNGP is either directly used for cleaning, is filtered, chlorinated and used for domestic purposes, or is softened and called treated water. Spent cleaning and domestic waters are collected, treated and released to the FNR. Some treated water, following its use as either cleaning, regenerating or blowdown water, is also collected and discharged to the FNR. The rest of the treated water appears to be lost through the flare pits and thermo-oxidizer.

2.2.2 Vapour Phase

Some of the treated water produced by the FESs mixes, as previously indicated, with condensate, forming BFW. Most of the BFW is pumped into the boilers, although some of it goes into the sulphur plant (Fig. 2.4). All of the BFW is transformed into steam, regardless of its destination.

The boilers produce 450 psi steam, which is used to power electrical turbines, high pressure pumps and gas blowers (Fig. 2.5). BFW going to the sulphur plant changes to either 150, 45 or 15 psi steam, depending on where it was vapourized in the sulphur recovery train. Petrosul, a neighboring firm, purchases a small quantity of 150 psi steam. The rest of it is used to drive the sulphur plant's air intake blowers.

Gas blowers, electrical turbines and high pressure pumps all release 45 psi steam (Fig. 2.5). Combined with the 45 psi steam originally created in the sulphur plant, most of this water vapour travels to process train reboilers. Here it heats clean natural gas stripping solutions to their boiling point. Steam produced from the boiling stripping liquids is used for self-cleaning (i.e. steam from uncontaminated solution is used to clean spent liquor) and released to the sulphur plant. Treated water and/or condensate is imported into "Process", as previously described, to replace these water losses. With its heat energy transferred to the stripping liquors, the 45 psi steam condenses and leaves the reboilers as a liquid.

Forty-five psi steam not destined for process equipment is used for heating elsewhere in the plant. It eventually cools and condenses. Condensed steam is collected and returned to the BFW
tank (Fig. 2.5). The only exception is a small amount of 45 psi steam blown through the deaerators, wherein its pressure drops to 8 psi. The emerging 8 psi steam is vented to the atmosphere.

Five and 150 psi steam created in the sulphur plant are used therein and collected as condensate (Fig. 2.5). It is similarly returned to the head to the plant with the rest of the condensate.

The steam system at the FNGP is already quite efficient. As each steam loop remains isolated within the natural gas processing and sulphur plant equipment, there is no opportunity for contamination of these high quality waters. As a result, most of the water pumped through the steam system is reused. The need for BFW make-up, however, indicates the presence of steam leaks within the facility, possibly beyond the boiler and sulphur plant blowdowns and Petrosul outlet previously identified.

Overall, water, existing as either a liquid or a gas, is used for a number of purposes at the FNGP, ranging from cleaning to power generation. A large proportion of water in the system is reused. Never the less, the demand of treated water make-up suggests that there are leaks in the operational water loops. All of the missing water may be escaping through the thermo-oxidizer, the flare pits and the steam outlet to Petrosul. This premise can, however, only be evaluated with a more thorough investigation of the plant's water network, hence the inclusion of a system diagnostic in the ZED project.

Figure 2.1: An illustration of Westcoast Energy Inc.'s operations in British Columbia

$-$

Effluent Plant

Polishing Pond

$=-1-$

Figure 2.2: General layout of the Fort Nelson Gas Plant

Figure 2.3: An illustration of gas processing flows at the Fort Nelson Gas Plant.

Figure 2.4: A simplified illustration of the Fort Nelson Gas Plant's water system.

Figure 2.5: A simplified illustration of the Fort Nelson Gas Plant's steam system.

3.0 AVAILABLE RECYCLING TECHNOLOGY

Reusing process wastewaters and/or secondary domestic effluent is not an uncommon practice, even at power plants and other steam generating facilities (e.g. Abdullaev et. al. 1992, Pankratz \& Johanson 1992, Bowlin \& Ludlum 1992, Pierce \& Sbei 1993, Strauss 1994, Strauss 1995). The recycling systems tend to involve one or more of the following principles: distillation (Brew \& Blackwell 1991, Bowlin \& Ludlum 1992, Strauss 1994), ion exchange (Kalinske et. al. 1979, Egozy et. al. 1980, Abdullaev et. al. 1992, Bowlin \& Ludlum 1992), and/or membrane filtration (Pankratz \& Johanson 1992, Bowlin \& Ludlum 1992, Strauss 1994, Strauss 1995).

3.1 Distillation

Distillation uses heat energy to produce high quality steam from the contaminated wastewater (Kalinske et. al. 1979, Wood 1987, Parekh 1991). The steam can either be reused directly, or first cooled to a liquid. The volume of the remaining waste stream is significantly reduced, if not completely transformed to a solid. This relatively energy intensive process is generally most efficient and cost-effective for waters with total dissolved solid (TDS) levels above $10000 \mathrm{mg} / \mathrm{L}$ (Fig. 3.1).

3.2 Ion-exchange

Ion-selective resins are the backbone of the ion exchange process (Kalinske et. al. 1979, Hill \& Lorch 1987, Parekh 1991). These resins, or beads, are coated with relatively inert ions. As wastewater travels through an ion exchanger, unwanted ionic species are adsorbed, and replaced with more process friendly ions. The influent water is now clean and ready for reuse. The resins themselves eventually become saturated with contaminants. They are then regenerated, and the process starts anew. The optimal TDS range for ion exchanger is generally between 100 and 800 mg/L (Fig. 3.1).

3.3 Membrane Filtration

Unlike either of the previous techniques, membrane filtration involves neither heat energy nor ion replacement. As the name implies, undesirable elements in the wastewater are isolated using membrane filters (Kalinske et. al. 1979, Applegate 1984, AWWA 1989, Huang \& Koseoglu 1993). The configuration of the filter determines what elements are removed, and which others are not (Applegate 1984, AWWA 1989, Cartwright 1991). Membrane filtration has been found to work best with wastewater TDS concentrations between 100 and $10000 \mathrm{mg} / \mathrm{L}$ (Fig. 3.1).

There are, however, two general classes of membrane filters; those that are ion selective, and others which are water permeable (Kalinske et. al. 1979, Applegate 1984, AWWA 1989, Cartwright 1991, Huang \& Koseoglu 1993). Due to the specificity of their membranes, the two processes are fundamentally different from one another. Each one has its own inherent advantages and disadvantages.

3.3.1 Ion selective separation

Ion selective separation, more commonly referred to as electrodialysis (ED), uses filters which are designed to allow either only cation or only anion passage through the membrane (Kalinske et. al. 1979, Applegate 1984, Solt \& Foster 1987, AWWA 1989). In its most basic application, cationic and anionic filters are alternately stacked between an anode and a cathode (Fig. 3.2). Each cationic/anionic group is called a cell, and contained within each cell are two open areas bounded by the membranes. Water, flowing parallel to the filters, fills these spaces. When a direct current is applied to the system, cations and anions in solution move toward the cathode and anode, respectively (Fig. 3.2). With alternating cationic/anionic filters, water in one compartment will be drained of its ionic contaminants, while water in the neighbouring space will become increasingly contaminated. The clean and dirty waters are then collected separately as they exit the cells.

Several adaptations have been made to the basic ED configuration in attempts to either increase the robustness of the system or to improve effluent water quality. Sealed-cell electrodialysis,
which involves sealing each cationic/anionic membrane pair in a "bag", has shown some promise in bench-scale experiments (Schoeman \& van Staden 1991). It is, however, harder to clean and maintain, as compared to the "un-sealed" ED process described above (Schoeman \& van Staden 1991).

Similarly, continuous deionization, which includes ion exchange resins in the clean water compartments of an ED stack, has been shown to produce very high quality effluent (Parekh 1991, Ganzi et. al. 1992). It also appears to be rather complex and potentially difficult to operate, as well as expensive to build (Ganzi et. al. 1992). Given the drawbacks inherent in both systems, neither sealed-cell ED, nor continuous deionization, appears to be a better option than the simpler, unaltered ED stack.

One variation on the basic ED configuration which has significant benefits is electrodialysis reversal (EDR) (Applegate 1984, Schoeman 1985, Solt \& Foster 1987, AWWA 1989). EDR is almost identical to ED. The only alteration has been the installation of transformable cathodes and anodes. Rather than having the electrical current always travel in the same direction through the stacked filters (as it does in ED), EDR uses an alternating current. The relative position of the anode and cathode are then dependent on the direction of electron flow (Figs. 3.3a \& b). As the locations of anode and cathode change, so too does the direction of travel for ions in solution. Cations and anions previously moving one way are now traveling in the opposite directions (Figs. $3.3 \mathrm{a} \& \mathrm{~b}$). Similarly, the compartments previously producing clean water now contain more contaminated water. The great advantage of this system is that it is "self-cleaning" (Applegate 1984, Schoeman 1985, Solt \& Foster 1987, AWWA 1989).

While operating under a given current, ions concentrate in certain areas of the ED or EDR filters, or stacks as they are more commonly known (Figs. 3.2 \& 3.3a). Certain mineral salts, such as calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ or calcium sulfate $\left(\mathrm{CaSO}_{4}\right)$ have limited solubilities in water (Kotz \& Purcell 1987). If those solubilities are exceeded, then salts will start to precipitate. For example, if, as calcium and carbonate accumulate in the "contaminated" waters in the ED or EDR
stack, their combined ionic concentration is greater than the CaCO_{3} solubility limit, then CaCO_{3} will begin to precipitate out of solution and onto the surrounding membranes. Precipitation will continue until the combined abundance of calcium and carbonate ions is equivalent to the CaCO_{3} solubility limit of water. When the direction of electricity changes in EDR, ions accumulate in different parts of the stack (Fig. 3.3b). As the previously contaminated compartment are drained of their ionic constituents, the concentrations of calcium and carbonate drop below the CaCO_{3} solubility limit. Any precipitated CaCO_{3} then re-dissolves, leaving an essentially clean membrane. Precipitates formed in a normal ED stack have to be removed with acid or some other cleaning agent (Alsakari et. al. 1977, Schoeman 1985, Hughes et. al. 1992). Current reversal allows EDR to do this automatically and internally.

Of the 4 available ion-selective technologies, ED and EDR are the most promising. EDR does appear to have certain inherent advantages over the simpler ED alternative. A more detailed comparison of the two systems has, however, yet to be discussed.

3.3.2 Water permeable membranes

Unlike ion selective processes, water filtering systems are essentially sieves which capture and remove contaminants carried in the water as it passes through the membrane. Exactly which elements are removed is dependent upon filter pore size. As water slips through the pores, any particles or molecules larger than these spaces will be trapped above the membrane. Filters with smaller pores can, therefore, filter out a broader range of substances.

Tiny holed membranes do have certain restrictions. Water flow rates drop significantly as pores sizes shrink; it can reach a point where water has to forcibly pumped through the filter (Kalinske et. al. 1979, Applegate 1984, AWWA 1989, Cartwright 1991). Tighter membranes also have a higher probability of becoming clogged, as larger elements in the feedwater block pore spaces, or even cover up entire portions of the membrane wall (Applegate 1984, Parekh 1991). Although filters with tiny pores can strip a broader range of contaminants from a feed stream, using the tightest membrane is not always the best choice given the slower permeation rates and
higher clogging potentials associated with these filters. The success of a filtering system at the FNGP is, however, likely to depend on its ability to eliminate the smaller molecular contaminants found within the plant's wastewater. Using a very tight membrane would, in this case, be unavoidable.

There are several types of membranes designed for molecular sieving: ultrafilters (Applegate 1984, Jordain 1987, AWWA 1989, Ericsson \& Hallmans 1994a), nanofilters (Rohe et. al. 1990, Kopp et. al. 1993, Wiesner et. al. 1994, Turner \& Kadubandi 1994, Jacangelo et. al. 1995) and reverse osmosis filtration (Kalinske et. al. 1979, Applegate 1984, AWWA 1989, Parekh 1991, Morin 1994). Ultrafiltration is the least effective of the three options; it can only remove substances measuring more than $0.005 \mu \mathrm{~m}$ in diameter (Fig. 3.4). While bacteria, viruses and most suspended particles fall within these specifications (Applegate 1984, Jordain 1987, AWWA 1989, Ericsson \& Hallmans 1994a), calcium, sulfate and other ionic elements will pass unhindered through ultrafiltration membranes (Applegate 1984, AWWA 1989, Ericsson \& Hallmans 1994a). Ultrafilters are restricted to relatively large particle removal.

Nanofilters are slightly tighter membranes. They can screen out ions as small as $0.0009 \mu \mathrm{~m}$ (Fig. 3.4). This includes many divalent species, such as calcium, sulfate, phosphate and magnesium (Cluff 1992, Kopp et. al. 1993, Fu et. al. 1994, Ericsson \& Hallmans 1994b, Jacangelo et. al. 1995). Depending on their configuration, some monovalent ions, like sodium and chloride, can also be stripped out of solution using nanofiltration (Taylor et. al. 1989, Cluff 1992, Fu et. al. 1994). Nanofilters are not, however, very efficient at removing these singlely-charged elements (i.e. divalent removal rates can $=>95 \%$, monovalents rates are only around 35% Conlon \& McClellan 1989, Taylor et. al. 1989, Cluff 1992, Comb 1994, Fu et. al. 1994). While able to eliminate a broader range of contaminants than ultrafiltration systems, nanofilters are generally only effective at removing the larger multi-valent ions from a feedwater stream.

Reverse osmosis (RO) is the tightest membrane filter available. It can contain pores as small as $0.0001 \mu \mathrm{~m}$ (Fig. 3.4). As a result, it can efficiently strip monovalent ions (Hrubec et. al. 1979,

Osantowski \& Geinopolos 1979, Kosarek 1979, Morin 1994, Comb 1994, Page 1995) and even uncharged atoms (Kalinske et. al. 1979, Kosarek 1979, Applegate 1984, Eisenberg \& Middlebrooks 1986, AWWA 1989, Wethern et. al. 1991) out of water. Of the three molecular sieves, RO is the most effective one at removing a wide range of contaminants. It therefore seems to be the best of the water permeable membrane filters.

3.3.3 Reverse osmosis vs. electrodialysis

Within their respective groups, ED/EDR and RO are the most promising of the available filtering technologies. Each method has inherent advantages and limitation. Key factors include their respective water recovery ratios, cleaning ability and robustness, as well as the technical expertise required to operate each system.

Water recovery ratios

RO: Unlike ordinary paper filters where water flows perpendicular to the membrane surface, RO feedwater travels parallel to the filter (Fig. 3.5). By pressurizing the feed stream and limiting the exiting water flow, some water is forced through the RO membrane. The contaminants left on top of the filter are carried out of the unit in the remaining water. Therefore, two separate stream are produced by a RO membrane: a clean water, or permeate flow and a dirty water, or concentrate stream (Fig. 3.5). Permeate production is generally limited by 2 natural phenomena: osmotic pressure and particle diffusion (Applegate 1984, , Pohland 1987, Cartwright 1991).

Unless acted upon by an outside force, water moves from areas of low solute concentration to zones of higher molecular abundance (Applegate 1984, Pohland 1987, Kotz \& Purcell 1987, AWWA 1989). In RO, the reverse flow pattern is desired. High quality water is obtained by pushing liquid from the contaminated feed stream through to the relatively pure permeate side of the filter assembly (Pohland 1987, AWWA 1989, Parekh 1991). Feedwater pressure's must be greater than the osmotic pressure drawing clean water back across the membrane for there to be any permeate production (Applegate 1984, Pohland 1987, AWWA 1989, Parekh 1991).

As water moves across a RO membrane, contaminant concentrations in the waste stream increase. The more concentrated the waste becomes, the greater the osmotic force pulling permeate back through the filter. Consequently, larger pressures are needed to ensure that the net flow of water is from concentrate to permeate. Eventually, as concentrate volumes get smaller and smaller, the pressure needed to drive the system will exceed filter design, and the membrane will burst. Water recovery rates in RO are therefore limited by the increasing osmotic pressure associated with higher permeate flows.

Just as water naturally travels up the concentration gradient - from low concentrations to high ones, molecules diffuse down it - from areas of high concentration to those of low molecular abundance (Applegate 1984, Pohland 1987, Kotz \& Purcell 1987, Cartwright 1991). Travel rates are determined by the magnitude of the concentration gradient (Applegate 1984, Pohland 1987, Cartwright 1991). The larger the difference between the two zones, the greater the flow of molecules from one area to the other. So, as the concentrate stream in a RO filter gets more concentrated with higher permeate recovery rates, the gradient gets steeper. The flow of salts and other undesirable elements across the membrane subsequently increases and permeate quality decreases (Applegate 1984, Pohland 1987, Cartwright 1991). Due to the increases in salt passage and required feedwater pressures resulting from higher permeate production rates, individual RO units are typically restricted to recovering 50% of the incoming wastewater flow (Applegate 1984, Parekh 1991)

To increase overall wastewater recovery rates, RO vessels can be linked in series. The concentrate produced in the first is directed into the second and so on until the desired output flow is obtained (Applegate 1984, Parekh 1991). Total recoveries are, however, limited by feedwater chemistry.

Certain mineral salts are relatively insoluble in water (e.g. CaCO_{3}) (Kotz \& Purcell 1987). As a result, when ionic concentrations (e.g. Ca^{2+} and $\mathrm{CO}_{3}{ }^{2-}$) exceed solubility limits, these salts will begin to precipitate out of solution. This is relevant to RO when one considers that any feedwater
entering an RO unit contains a given volume of water and a given mass of solute. The produced permeate will be mainly water with few contaminants (if recovery rates $\leq 50 \%$). The concentrate will, on the other hand, consist of almost all of the influent contaminant mass dissolved in the remaining volume of water. Ionic concentrations in the RO waste stream are, therefore, higher than in the feed stream. If, at these "new" levels, the solubility of the sparingly soluble salts has been exceeded, then precipitation will occur. The amount of water that can be withdrawn prior to precipitation is dependent on feedwater quality. If a wastewater is initially already close to the solubility limits, then very little water can be recovered before solids start to form. Alternatively, a good deal of water could be reclaimed from a waste stream with very low scaling potential.

Once precipitation has started to occur, membrane efficiency will decrease rapidly, as portion of the membrane become coated with salt (Kosarek 1979, Pohland 1987, AWWA 1989, Huang \& Koseoglu 1993, Noshita 1994). Although some solids can be removed with adequate cleaning (Eisenberg \& Middlebrooks 1986, Pohland 1987), most filters will need to be replaced if salt precipitation has been extensive (Eisenberg \& Middlebrooks 1986, Pohland 1987).

RO water recovery rates are limited by osmotic pressure and molecular diffusion to around 50% per RO vessel. Greater recoveries can be achieved by running two or more units in series. Influent chemical characteristics will, however, restrict the success of multi-stage RO filtration. Permeate can only continue to be produced if the concentration of the sparingly soluble salts is low. Once solubility limits have been exceeded, system performance will fall, and costly repairs may be required.

ED/EDR: For ion-selective processes, such as ED and EDR, product water volumes are independent of feedwater quality. They are, instead, determined solely by the configuration of an ED or EDR stack. As indicated earlier, an ED or EDR unit consists of alternating cationic and anionic membranes grouped between a cathode and an anode, with water flowing through the spaces between the membranes (Figs. 3.2 \& 3.3a). When electricity is added to the system, ions will move out of certain compartments into the others (Figs. $8 \& 9 \mathrm{a}$). Clean water is produced in
areas drained of their ionic elements, while the waters in neighbouring spaces become increasingly contaminated. The ratio of clean to dirty water compartments is always $x: x-1$, where " x " is equal to the number of spaces in the stack producing clean water (e.g. Fig. 3.2). Water recovery ratios for individual ED and EDR units are, therefore, between 50 and 60% of the incoming flow (i.e. recovery rate $=$ number of clean spaces $/$ total spaces $=x /(x+x-1)=x /(2 x-1))$. To increase overall wastewater recoveries, concentrate can be reprocessed either by recycling it back through the same stack or treating it in one or more downstream units (Applegate 1984, Schoeman 1985, Solt \& Foster 1987).

Cleaning efficiency

RO: RO membranes contain extremely small pores. As a result, they are able to screen ions and other atomic particles from a liquid. RO filters have been found to have the following mean removal efficiencies: 94 \% for total dissolved solids (TDS) (Light et. al. 1984, Pohland 1987, Marquardt et. al. 1987, Shah et. al. 1993, Noshita 1994, Abdula'aly \& Chammem 1994), 96 \% divalent ions (Hrubec et. al. 1979, Kosarek 1979, Light et. al. 1984, Pohland 1987, Marquardt et. al. 1987, Shah et. al. 1993, Abdula'aly \& Chammem 1994, Noshita 1994), 94% - monovalents (Hrubec et. al. 1979, Kosarek 1979, Light et. al. 1984, Pohland 1987, Marquardt et. al. 1987, Shah et. al. 1993, Abdula'aly \& Chammem 1994, Noshita 1994), and 82% for total organic carbon (TOC) (Kosarek 1979, Marquardt et. al. 1987, Chin \& Ong 1991).

ED/EDR: ED and EDR systems, on the other hand, have much lower removal efficiencies. The product water from a given unit typically contains 53% of the TDS (Alsakari et. al. 1977, Kawanishi et. al. 1994, Kawahara 1994), as well as between 40 to 45% of the mono- \& divalent ions (Alsakari et. al. 1977, Hughes et. al. 1992, Kawanishi et. al. 1994, Kawahara 1994), found in the feedwater. Furthermore, these systems can only act on charged particles (Applegate 1984, Schoeman 1985, Solt \& Foster 1987, AWWA 1989, Huang \& Koseoglu 1993). The abundance of silica, natural organics and other inert materials in both product and concentrate streams will be identical and unchanged from feedwater concentrations.

Ionic diffusion is probably a key factor which restricts the cleaning ability of ED/EDR. As ions accumulate in the concentrate compartments, concentration gradients across the separating membranes would increase. This, in turn, should promote a greater flux of charged particles back into the product water. Given the average removal rates described in the literature (described above), the optimum balance between active ion displacement and passive diffusion appears to occur when product water concentrations are around 50% of those of the feedwater.

Feedwater quality will influence how close to this apparent 50% maximum ED/EDR processes can operate. The ability to concentrate ions within the dirty water spaces in an ED/EDR stack will be bound by the solubility limits of sparingly soluble salts (Schoeman 1985, AWWA 1989, Huang \& Koseoglu 1993). If a feedwater is rich in (say) carbonate and calcium, then few calcium and carbonate ions can be transferred into the contaminant compartments before calcium carbonate begins to precipitate onto the surrounding membranes. Given the ability of EDR units to periodically shed precipitated solids (see "Ion Selective Separation"), the performance of these systems will be less affected by salt scaling. They should, therefore, be able to operate closer to the 50% maximal removal rates. Just as overall RO water recovery ratios are restricted by feedwater scaling potential, so too is the cleaning ability of individual ED and, to a less extent, EDR stacks.

Product water quality from one ED/EDR unit can always be improved by putting it through other downstream stacks (e.g. Alsakari et. al. 1977, Hughes et. al. 1992, Kawahara 1994). There are, as one might expect, limits to this process. Finished water volumes will be reduced by 40 to 50 \% per ED/EDR unit (see "Water Recovery Ratios"). Recycling the resulting wastewater would minimize these water losses, but the larger feedwater flows (i.e. original water + recycled concentrate) would necessitate a larger ED/EDR system. More importantly, however, overall cleaning efficiencies are in themselves restricted by product water purity (Applegate 1984, Solt \& Foster 1987).

The driving force in this process is electricity. Water by itself is a relatively poor conductor of electricity. As a result, as ion concentrations in product water compartments decrease, the electrical resistance of these waters increases. More energy needs to be added to the system to maintain a current through the entire stack. Eventually, it becomes impossible to import enough electricity into the process to promote ionic displacement from product to concentrate waters. Finished water quality can no longer be improved, regardless of how many units it travels through (Applegate 1984, Solt \& Foster 1987).

ED and EDR systems can only influence charged particles. A single ED or EDR stack can remove approximately 50% of the ionic load of the feedwater stream. Although cleaning efficiencies appear to be limited by ionic diffusion, an abundance of sparingly soluble salts in the feedwater can further reduce the effectiveness of a ED or EDR system. Finished water quality can be improved by running it through additional ED/EDR units. The design of such a system would, however, have to balance cleaner water against the costs of obtaining \& maintaining the desired product water quality \& quantity.

Optimum TDS

RO: Reverse osmosis units tend to most effective when feedwater TDS concentrations are between 2000 and $3000 \mathrm{mg} / \mathrm{L}$ (Kalinske et. al. 1979, Morin 1994).

ED/EDR: Both electrodialysis and electrodialysis reversal are generally most effective when dealing with an inlet TDS of less than $2600 \mathrm{mg} / \mathrm{L}$ (Solt \& Foster 1987, Cluff 1992, Kawahara 1994).

Membrane fouling

RO: RO filters can be fouled by a number of substances. Some of these elements will affect any RO system, while others are membrane specific. The former category includes suspended and colloidal solids (Larson \& Argo 1976, Kalinske et. al. 1979, Kosarek 1979, Pohland 1987, AWWA 1989, Suemoto et. al. 1994), silicates (Marquardt et. al. 1987, Kawanishi et. al. 1994,

Noshita 1994, Abdula'aly \& Chammem 1994), salt scaling (Kalinske et. al. 1979, Kosarek 1979, Pohland 1987, AWWA 1989, Huang \& Koseoglu 1993, Comb 1994, Noshita 1994), and microbes (Pohland 1987, AWWA 1989, Chin \& Ong 1991, Noshita 1994, Abdula'aly \& Chammem 1994, Suemoto et. al. 1994). "Extreme" pH conditions (Applegate 1984, Eisenberg \& Middlebrooks 1986, AWWA 1989) and various oxidizing agents, such as oxygen \& chlorine (Applegate 1984, Eisenberg \& Middlebrooks 1986, Pohland 1987, AWWA 1989), are examples of the latter group.

To protect RO equipment, these contaminants are removed from the feed stream prior to its filtration. Pretreatment trains can include multi-media filters (Hrubec et. al. 1979, Osantowski \& Geinopolos 1979, Kaakinen \& Moody 1984, Wethern et. al. 1991, Pankratz \& Johanson 1992, Shah et. al. 1993), ultrafiltration (Kaakinen \& Moody 1984, Wethern et. al. 1991), activated carbon columns (Osantowski \& Geinopolos 1979, Kaakinen \& Moody 1984, Pohland 1987, Marquardt et. al. 1987, Wethern et. al. 1991), and chlorination (Larson \& Argo 1976, Kaakinen \& Moody 1984, Suemoto et. al. 1994) and/or dechlorination (Pohland 1987, AWWA 1989) stations all depending on the extent of feedwater contamination, as well as which elements are of concern. They also tend to be more extensive than systems used for ED and EDR protection, since RO filters, on the whole, are generally more sensitive to fouling than either ED or EDR (AWWA 1989).

ED/EDR: Similar contaminating agents affect ED and EDR membranes, including suspended and colloidal solids (Applegate 1984, Schoeman 1985, Solt \& Foster 1987, Huang \& Koseoglu 1993), oxidizers (Applegate 1984, Schoeman 1985), and microbes (Applegate 1984, Huang \& Koseoglu 1993). Silicates, on the other hand, pose no threat to ED or EDR (Kawahara 1994), but organics can (Kalinske et. al. 1979, Applegate 1984, Schoeman 1985, Solt \& Foster 1987, Huang \& Koseoglu 1993). ED systems can also be detrimentally affected by salt scaling (Schoeman 1985, AWWA 1989, Huang \& Koseoglu 1993). This is of less concern for EDR stacks, due to the self-cleaning mechanisms inherent in the process (see "Ion Selective Separation").

Pretreatment trains for ED and EDR contain similar elements as RO units; they are, however, generally simpler than RO systems, due to the greater robustness of ED and especially EDR membranes (AWWA 1989).

Technical operation \& maintenance

RO: Reverse osmosis is a relatively straight forward process. Pretreated feedwater flows into a RO vessel, and exits either as concentrate or permeate (Fig. 3.5). The whole process is controlled by flow meters, pumps and valves (e.g. Applegate 1984, Pohland 1987, Parekh 1991).

Though regular chemical cleaning will help to maintain optimal filter performance (Applegate 1984, Pohland 1987), RO membranes will eventually need to be replaced. They have an average life span of about 5 years (Pohland 1987). Inadequate pretreatment, highly contaminated feedwaters or harsh operating conditions will significantly reduce filter life (Applegate 1984, Light et. al. 1984, Pohland 1987). In any case, since RO membranes exist as individual units (e.g. Applegate 1984, Eisenberg \& Middlebrooks 1986, Pohland 1987, Parekh 1991), it is relatively easy to isolate and replace a faulty or spent filter.

ED/EDR: By their very configuration, ED and EDR units are complex and potentially hard to maintain. An ED/EDR stack contains between 100 and 600 membrane pairs sandwiched between a cathode and an anode (Applegate 1984, Solt \& Foster 1987). Bounded by each pair is a clean and dirty water compartment (Fig. 3.2). Water is carried to and from each opening in separate tubes. Fresh water is also continually traveling over the cathode and anode to keep them free of contaminants (Applegate 1984, Solt \& Foster 1987). This results in an extensive array of pipes and valves, in addition to the equipment controlling the flow of electricity to and from the stack.

EDR has the additional complications associated with periodic current changes. When the flow of electricity changes direction, product water compartments become filled with concentrate, and vice versa (Figs. 3.3a \& b). The stack has to be purged before product water can be collected from its new locations to prevent contamination with any remaining concentrate (Applegate 1984). As a
result, EDR units have even more complex valving systems than ED stacks (Applegate 1984, Schoeman 1985). Whicheyer process is used, ED or EDR, the operators will have to be familiar with both water flow and electrical instrumentation, and they must be able to identify potentially problematic situations before they disrupt the ED or EDR cleaning process.

As previously mentioned, there are between 100 and 600 cell pairs in a ED/EDR unit, and water travels to and from each membrane set in a separate tube. There are, as a result, hundreds of tiny pipes running into and out of a single stack! If one of these tubes were to become blocked, locating the problem could take some time. Similarly, if a membrane should fail or wear out, a good portion of the entire stack would have to be disassembled to find and replace the spent filter (Hughes et. al. 1992). Any time a stack is taken apart, be it for manual cleaning or membrane change, there is generally a high probability of membrane damage (Applegate 1984, Hughes et. al. 1992). Clearly, maintaining a ED or EDR system can be both time and labour intensive.

Where as RO technology offers simplicity and ease of operation, ED and EDR are complex, potentially time consuming reclamation processes. Technical personnel would require greater training to operate and maintain such systems; maintenance cost are also likely to be higher than those associated with RO.

The better system

RO is slightly more sensitive to fouling than either ED or EDR, and, as a result, generally requires more extensive pretreatment systems (Table 3.1). Even though average water recovery rates per operating unit are almost equivalent for ED, EDR and RO (Table 3.1), overall product water volumes also tend to be greater for ED and EDR. Product water quality is, on the other hand, likely to be better with RO, due to more efficient removal of a broader range of contaminants (Table 3.1). The best feature of reverse osmosis is its simplicity and operational ease, especially when compared to the more complex ED and EDR technologies (Table 3.1). In face of all of the above criteria, reverse osmosis appears to be the most effective membrane filtration system.

3.3.4 RO membranes selection

RO membranes are derived from either cellulose acetate (Applegate 1984, Eisenberg \& Middlebrooks 1986, Pohland 1987, AWWA 1989) or poly-organic compounds, such as polyamide (Applegate 1984, Eisenberg \& Middlebrooks 1986, Pohland 1987, AWWA 1989). Cellulose-based membranes (CAs) are generally cheaper than polyamides (PAs) (AWWA 1989). They are also more resistant to oxidizing agents, such as chlorine and dissolved oxygen, than PAs (Applegate 1984, Eisenberg \& Middlebrooks 1986, Pohland 1987, AWWA 1989). On the other hand, PAs can operate under broader temperature and pH conditions, (Eisenberg \& Middlebrooks 1986, AWWA 1989 for the former; Applegate 1984, Eisenberg \& Middlebrooks 1986, AWWA 1989, Abdula'aly \& Chammem 1994 for the latter). They are also resistant to biological degradation (Shields 1979, Applegate 1984, Pohland 1987), unlike CAs (Applegate 1984, Eisenberg \& Middlebrooks 1986, AWWA 1989), and PAs require lower water pressures than CAs to produce a given permeate flow (AWWA 1989). As both membrane types generally have the same filtering abilities, either one could be used in any treatment system; the RO pretreatment train would simply have to be designed to produce the required feedwater characteristics (e.g. proper pH , temperature, dissolved oxygen and chlorine levels...).

RO filters, regardless of their individual make-up, come in one of 4 different configuration: tubular (Eisenberg \& Middlebrooks 1986, Pohland 1987, AWWA 1989, Parekh 1991), plate-andframe (Pohland 1987, Eisenberg \& Middlebrooks 1986, AWWA 1989, Parekh 1991), hollowfibre (Eisenberg \& Middlebrooks 1986, Pohland 1987, AWWA 1989, Parekh 1991), and spiral wound (Eisenberg \& Middlebrooks 1986, Pohland 1987, AWWA 1989, Parekh 1991, Morin 1994). Plate-and-frame, as well as tubular designs, while effective, have limited applications. Their relatively small membrane surface area to unit volume ratios $\left(165 \& 335 \mathrm{~m}^{2} / \mathrm{m}^{3}\right.$, respectively - Pohland 1987) makes treating anything by very small feedwater flows extremely expensive (Pohland 1987, Parekh 1991).

Both spiral wound and hollow-fibre membranes have much larger area to volume ratios (1000 \& $16500 \mathrm{~m}^{2} / \mathrm{m}^{3}$, respectively - Pohland 1987). The use of hollow fibre systems has been restricted in the past by their relative sensitivity to fouling (Applegate 1984, Pohland 1987), and their need for higher feedwater pressures (Morin 1994). As a result, the operating costs associated with hollow fibres are greater than those for spiral would designs (Morin 1994). The dominance of spiral would membranes is also due in part to the ease with which recent advances in membrane technology have been incorporated into these designs as compared to hollow fibre configurations (AWWA 1989). Thus, although membrane type is a somewhat arbitrary choice based on feedwater characteristics, treatment system generally always use spiral-wound RO filters, because of the relative robustness and low cost of this configuration.

3.4 Brine Disposal

Regardless of whether distillation, ion-exchange or membrane filtration is used, each system will produce a final wastewater requiring further treatment; these waters could be either regeneration fluids from the ion-exchanges, very concentrated blowdown flows from the distillation vessels or RO membrane concentrates. As the goal of the ZED project is to completely eliminate the need for a wastewater discharge from the FNGP, none of the previously discussed technologies is, on its own, sufficient to fulfill this objective.

Power plants and other zero-effluent facilities described in the literature (e.g. Brew \& Blackwell 1991, Pankratz \& Johanson 1992, Bowlin \& Ludlum 1992, Pierce \& Sbei 1993, Strauss 1994) which have similar water demands as the FNGP (i.e. make-up water to replace boiler and other process losses) incorporate one of two systems into their wastewater treatment trains. Concentrated liquid wastes are either disposed of in evaporation ponds (Bowlin \& Ludlum 1992, Pierce \& Sbei 1993), or they are solidified prior to discharge and landfilled (Brew \& Blackwell 1991, Pankratz \& Johanson 1992, Bowlin \& Ludlum 1992). Evaporation ponds are rather self-explanatory. Wastewater drains into the holding ponds and evaporates. The remaining solids collect in the basins, which are eventually capped with earth.

Wastewater solidification, on the other hand, tends to be best carried out in two steps. Concentrate volumes are first reduced through forced evaporation using a brine concentrator (B/C) (Brew \& Blackwell 1991, Bowlin \& Ludlum 1992, Pankratz \& Johanson 1992). This robust piece equipment is specifically designed to handle very contaminated liquids. It is not affected by the precipitation of salts and other solids, typically formed during wastewater evaporation. Rather than coating the inner workings of the B / C, these substances precipitate onto seed elements added to the feed stream as it enters the unit (Pankratz \& Johanson 1992, Bowlin \& Ludlum 1992). B/Cs can recover up to 90% of the incoming wastewater (Brew \& Blackwell 1991, Strauss 1994), and product water quality is very high ($<10 \mathrm{mg} / \mathrm{L}$ TDS - Bowlin \& Ludlum 1992, Pankratz \& Johanson 1992). The remaining 10% exits the B/C and travels to the second part of the solidification process.

Brine concentrator wastes can go to either a spray dryer (Brew \& Blackwell 1991, Bowlin \& Ludlum 1992), or a crystallizer (Bowlin \& Ludlum 1992, Pankratz \& Johanson 1992). Wastewater entering a spray drying is atomized into tiny droplets, which then fall through a hot air chamber. Water evaporates, and the remaining solids fall into a collection basin at the bottom of the unit. The produced material tends to be very fine and powdery, because it forms from tiny water drops. It is completely dry, and can be directly landfilled (Brew \& Blackwell 1991, Bowlin \& Ludlum 1992).

Crystallizers work somewhat differently. Hot, pressurized wastewater is injected into a hollow-bodied vessel (Bowlin \& Ludlum 1992, Pankratz \& Johanson 1992). As the pressure in the tank is less than that of the feedwater, flash evaporation occurs. Not all of the feed stream vapourizes at once; some of it remains as a liquid. This water falls to the bottom of the vessel, along with any newly-formed solids. Some of this solution is recycled back through the process, while the remaining portion is drained from the system. This bleed stream is generally further dewatered with a filter press (Bowlin \& Ludlum 1992, Pankratz \& Johanson 1992). The resulting solid filter cake can then be landfilled.

About 75% of the feedwater flowing to a crystallizer will be turned to steam, which can be recovered and reused (Pankratz \& Johanson 1992, Bowlin \& Ludlum 1992). Spray dryers are not designed for steam recovery; any and all vapourized water is lost to the atmosphere (Brew \& Blackwell 1991, Bowlin \& Ludlum 1992). These units are, on the other hand, a final solution. Incoming wastewater is completely transformed to a dry solid. There is no need for additional dewatering equipment, as is the case with crystallizers. Capital and operating costs are, therefore, likely to be lower for ZED operations using spray dryers instead of crystallizers. The fine, powdery nature of the solids produced by a spray dryer can, however, make them difficult to handle (Brew \& Blackwell 1991).

In summary, the small volumes of wastewater draining from distillation, ion-exchange or membrane filtration processes can be disposed of either in evaporation ponds or by more energy intensive forced evaporation systems. Such a system is likely to include a brine concentrator and a crystallizer or spray dryer. Regardless of its configuration, any brine disposal technology will produce two outflows: relatively pure water, which either escapes to the atmosphere or is collected and reused, and a solid waste, either in the form of precipitates in an evaporation pond, fine powder from a spray dryer or a filter cake from a crystallizer/filter press assembly.

3.5 Conclusion

Current literature clearly indicates that the FNGP can become a ZED facility. The required technology exists, and other facilities with similar water demands as the FNGP already operate under a ZED framework. A wastewater recycling program at the FNGP is likely to use either distillation, ion-exchange or RO as the main treatment process. Remaining concentrates will be directed into either an evaporation pond or a brine concentrator - spray dryer or crystallizer assembly. Wastewater currently leaving the plant will be reduced to a solid waste.

Table 3.1: A comparison of the inherent advantages and disadvantages of reverse osmosis (RO), electrodialysis (ED) and electrodialysis reversal (EDR).

Parameter	RO	ED	EDR
Water recovery rate / vessel	50% max.	$50-60 \%$	$50-60 \%$
Removal rates:			
total dissolved solids (TDS)	94%	53%	53%
monovalent ions	94%	55%	55%
divalent ions	96%	60%	60%
total organic carbon	82%	-	-
Can it remove non-ionic particles?	Yes	No	No
Optimal TDS - mg/L	$2000-3000$	<2600	<2600
Fouling elements:	Yes	Yes	No
Salts	Yes	Yes	Yes
Microbes	Yes	No	No
Silica	No	Yes	Yes
Organics	Yes	Yes	Yes
Solids	High	Moderate	Low
Relative pretreatment needs	Simple	Complex	Highly complex
Operation \& maintenance			

Figure 3.1: Typical operating total dissolved solid (TDS) concentrations for different desalination technologies.

- adapted from AWWA 1989

$\begin{array}{ll}A=\text { Anion selective membrane } & A-=\text { Anion } \\ C=\text { Cation selective membrane } & C+=\text { Cation }\end{array}$

Figure 3.2: An illustration of the electrodialysis process.
adapted from Applegate 1984

Figure 3.3a: Flows through an EDR stack when electricity travels from right to left.

Figure 3.3b: Flows through an EDR stack when electricity travels from left to right.

- adapted from Applegate 1984

Figure 3.5: An illustration of reverse osmosis (RO) filtration.
- adapted from Applegate 1984

4.0 METHODOLOGY

4.1 Analysis of the Existing Water Distribution Network

4.1.1 Flow data

Data collection: Water flow data used herein are a collection of metered readings, derived values, and numbers provided by plant personnel. Metered measurements originated from a number of sources. Some of the information was available in operational reports and other hard copy documentation. Other readings were extracted from the facility's continual monitoring computer system. Only several months worth of data was retrievable from the computer network. January 1995 was one of the few months where a complete set of measured values was available. All of the metered numbers used in this study were average flow rates recorded over those 31 days.

Data analysis: Water balances were used in conjunction with flow diagrams to identify leak points in the FNGP's water distribution network. One set of balances was developed around the individual operating units within the plant (e.g. Powerhouse, E \& F Process Trains and the Sulphur Plant). A second group followed each water loop through the entire facility (e.g. 450 and 45 psi steam systems). If the difference between total input and total output in a given balance was less the 10%, the system was considered balanced.

4.1.2 Chemical data

Data collection: Water samples were collected by plant personnel from a number of different locations in the water distribution network (Fig. 4.1). A 1 L and a 200 or 250 mL acid-washed polyethylene bottle were filled at each sampling station. Nitric acid was added to the smaller container to lower its pH to $<2 \mathrm{pH}$ units; the acid was used as a preservative to stabilize metal concentrations within these samples (Greenberg et. al. 1992). No acid was added to the larger bottle, because this water was used to determine pH , alkalinity and a number of other "acid-
sensitive" parameters. Sampling generally occurred twice a week for three weeks in May $199{ }^{1}$. An additional set of samples was later collected in mid-July to evaluate developing trends in the data. At the completion of each round of sampling, full bottles were placed into a cooler with frozen ice packs, sent to the University of British Columbia's Environmental Engineering Lab, and, upon arrival, were stored at $4^{\circ} \mathrm{C}$ until they could be analyzed.

Upon removal from the refrigerator, the 1 L bottles were shaken and 80 mL of water was withdrawn from each for a total solids determination. The remaining waters were then filtered through $0.45 \mu \mathrm{~m}$ pore membranes and analyzed for acidity, conductivity, alkalinity, total carbon content (both organic and inorganic), and various inorganics (i.e. sulphate - SO_{4}, phosphate PO_{4}, chloride - Cl and silica - Si). Acidity and conductivity were measured with a Beckman Ø44 pH probe and a Fisher Scientific Accumet ${ }^{\circledR}$ conductivity meter, respectively. Alkalinity was tested by titration (Greenberg et. al. 1992). Inorganic concentrations were determined by a Lachat Quickchem Flow Injection Analyzer, while a Shimadzu TOC-500 (total organic carbon) analyzer was used to identify both inorganic and organic carbon content.

Acidified waters from the smaller 200 / 250 mL containers were also filtered prior to examination. These waters were analyzed for calcium (Ca), magnesium (Mg), sodium (Na) and iron (Fe) using AAS (atomic absorption spectrophotometry) following methods described in Thermo Jarrel Ash (1986).

All of the tested parameters were chosen based on their importance to boiler maintenance and operation (Jackson 1980, Robertson 1981, Schroeder 1991). A key part of the FNGP water network are the three boilers used to generate steam for the facility. They have the most stringent water quality requirements of all of the equipment in place at the plant (Shang Su , personal com.).

[^0]By identifying the abundance of the selected contaminants in different parts of the plant, ZED equipment can be designed to produce water clean enough to maintain current BFW quality, thereby ensuring a successful wastewater recycling program.

Data analysis: Some waters contained contaminant concentrations below detection limits. These samples were subsequently assigned the detection limit value. This value replacement procedure pertained only to the inorganics and the metals; the detection limits were $0.1 \mathrm{mg} / \mathrm{L}$ for $\mathrm{Cl}, 1.0 \mathrm{mg} / \mathrm{L}-\mathrm{SO}_{4}, 0.05 \mathrm{mg} / \mathrm{L}-\mathrm{PO}_{4}, 0.1 \mathrm{mg} / \mathrm{L}-\mathrm{Si}, 0.05 \mathrm{ppm}-\mathrm{Ca}, 0.10 \mathrm{mg} / \mathrm{L}-\mathrm{Mg}, 0.04$ $\mathrm{mg} / \mathrm{L}-\mathrm{Fe}$ and $0.02 \mathrm{mg} / \mathrm{L}$ for sodium.

Several individual observations were deemed non-representative and dropped from the data set, because they were either illogical (e.g. total carbon < organic carbon) or equal to $\pm 2 \mathrm{x}$ the average value of the remaining readings. Two entire samples were also tossed out of the study, since more than 50% of their defining parameters were found to be non-representative, as defined above. For example, discarded measurements included sodium and alkalinity readings from the May 24th treated water sample (Appendix C). The two completely omitted samples were the May 3rd reservoir and July 12th raw water samples (Appendix C).

The remaining data set was used in conjunction with water flow information to form mass balances of the water network. These balances were used to determine if all pertinent chemical and water flow paths had been accounted for, as well as to determine which of the plant's discharged waters could be directly reused, and which others would require treatment before being pumped back into the water system.

4.2 Select the Appropriate Recycling Technology for the FNGP

Components for the FNGP's ZED system were chosen based on their:

- ability to perform effectively at the plant
- relative capital and operating costs
- ease of operation
- associated safety risks

4.3 The Computer Simulator

4.3.1 Basic construction

A computer simulator was constructed to determine the "best method" of transforming the FNGP into a ZED facility. It was built in a 2-step process. All of the data collected at the plant was first imported into Microsoft Excel ${ }^{\circledR}$ to form a static image of the water distribution network. Sources and sinks identified in previously assembled mass balances were included to this model ${ }^{2}$. Most of the inputted data were then replaced with numerical formulas. The values displayed in one part of the simulator were now either directly or indirectly linked to the rest of the system. With the interlinking equations in place, changing the value of a given cell resulted in the recalculation of the whole worksheet.

The formulas themselves were derived from either assumption, information available in various FNGP training manuals (e.g. calcium concentrations in lime treater blowdown were calculated from data in the Water Treatment Manual), patterns in the collected data (e.g. chloride concentration in lime treater blowdown were the same as the raw inlet water) or a combination thereof. Every equation and its derivation is listed in Appendix E. Key assumptions used in building the simulator were:

- All identified sources and sinks were assumed to stay constant over time, and they were incorporated into the simulator as a percent increase or decrease, respectively.
- Regardless of influent characteristics, softened water leaving the ion-exchangers always had calcium and magnesium concentrations equal to those now found in the treated water used at the
${ }^{2}$ A source or sink was defined as a difference of $>15 \%$ between the total incoming and outgoing mass flux through a given system. The only source or sink that was not included in the simulator was a $>15 \%$ discrepancy in iron levels across the polishing pond. This observation was dismissed as an error; when the metal samples were acidified just after collection, bound iron was probably released from algae present in these waters.

FNGP (i.e. 1.4 mg of Ca / L and 0.5 mg of Mg / L - Appendix C). Changes in feedwater hardness would only influence the rate at which the ion-exchangers needed to be regenerated, and not product water quality.

- All treated water losses from the system, except for the boiler, sulphur plant and lime treater blowdowns, as well as the 8 psi steam and ion-exchanger regeneration flows, were constant over time.
- Raw water chemistry was also constant over time, as were the pH readings of the boiler, sulphur plant and lime treater blowdowns and the flow of domestic filter backwash and pump sealant to the lime pond.

These assumptions, combined with observable trends in the original data, were used to assemble formulas which transformed the static model into a predictive simulator. All of the worksheet cells were interlinked. A change in any part of the water network now either directly or indirectly affected the rest of the system.

4.3.2 ZED components

The different recycling technologies (e.g. RO, B/C and spray dryers) were themselves represented by equations. Contaminant loads in concentrate and product waters were derived from waste removal rates found in the literature. Maximal water recovery rates for RO, B/C and other ZED vessels were also taken from published work. Together, contaminant load and exiting flow calculations served to define the products leaving any of the ZED components. Building different ZED treatment trains was simply a matter of linking the pertinent recycling units together. The assembled systems were then individually connected to the water network. As each cell in each computer worksheet was influenced by all of the other cells, the model automatically re-adjusted itself to account for any changes induced by the different ZED designs.

4.3.2 Parameter values

Incorporated into the simulator are a number of variables which can be altered by a user. They include, for example, the volume of 8 psi steam lost through venting and the final waste disposal system. All told, there are between 16 and 44 variables open to manipulation, depending on the chosen ZED configuration.

During testing, the values of certain parameters, such as the number of RO stages incorporated into a treatment train and the presence or absence of a brine concentrator, were automatically determined by the nature of the simulation. If the selected ZED design was a 1 -stage RO with a B / C, then clearly only 1 RO stage was used and a B / C was included in the simulation. Each ZED configuration therefore imposed certain restrictions on a user's freedom to further manipulate the simulator.

Of the independent variables not affected by a given ZED design, a few were kept constant throughout the evaluation process to maintain comparability between different scenarios. They included:

- RO and B / C contaminant removal efficiencies
- 8 psi steam losses, which were kept at zero
- a continual flow of $171 \mathrm{~m}^{3} /$ day of condensed 8 psi steam to the hot lime treater
- water temperatures of $35^{\circ} \mathrm{C}$ within the RO filters
- water pH values of 5.8 at the entrance of every RO filter stage
- water recovery rates of 50% on the first RO unit
- B / C water recovery rates of 90%

The specific values were selected based on either current conditions at the plant (i.e. 171 $\mathrm{m}^{3} /$ day of 8 psi steam to the lime treater), opportunities for system optimization (i.e. closing the 8 psi steam vents), or information in the available literature (e.g. previous research indicates that membrane filters tend to work most effectively when feedwater temperature and pH are between 30
to $50^{\circ} \mathrm{C}$ (Kalinske et. al. 1979, Applegate 1984, AWWA 1989) and 4 to 7 (Applegate 1984, AWWA 1989, Suemoto et. al. 1994), respectively).

The remaining parameters were changed during each simulation to provide a realistic, yet optimal view of the water distribution network under a ZED framework. For example, literature indicates that maximal wastewater recovery rates for RO filtration are 50% per stage (Applegate 1984, Parekh 1991). Ideally, the FNR discharge could be filtered through a 2 -stage RO, with each unit operating at 50% recovery. The waste stream would then be reduced to 25% of its original volume. Calcium, carbonate and sulfate concentrations in the composite wastewater are, however, high enough that at this level of treatment the RO membranes would quickly become contaminated with precipitated calcium salts. The process, while appearing to be very effective in terms of waste reduction and water recovery, would be unrealistic, due to the high salt content of the wastewater. A balance was therefore maintained between calcium pretreatment and water recovery rates to maximize the rate of wastewater reclamation while ensuring filter integrity. The final configuration of every tested ZED design was recorded, and the inputted parameter values are listed in Appendix F.

Figure 4.1: A simplified diagram of the water distribution system at the Fort Nelson Gas Plant

5.0 ANALYSIS OF THE EXISTING WATER DISTRIBUTION NETWORK

5.1 Results

5.1.1 Water balances

All of the individual operating units were in balance (Table 5.1), as was each water loop (Table 5.2). The only exception was the effluent plant. Almost $1 / 3$ of the wastewater collected at the effluent plant seemingly disappeared during treatment (Table 5.1). Plant personnel have indicated that this discrepancy may have resulted from faulty or inaccurate flow meters, as opposed to actual water losses (Bruce Kosugi, personal com.). The general balance of the water system seemed to indicate that all major flow paths had been identified and accounted for.

Numerous steam leaks and/or water discharges were discovered in the water system. Obviously, the effluent plant was one area of potentially significant water loss, should the flow meters prove to be accurate. Other pathways by which water escapes from the plant are listed in Table 5.3. While some of these flows were quite large (i.e. $>150 \mathrm{~m} 3 /$ day), others were relatively insignificant (i.e. $<5.0 \mathrm{~m}^{3} /$ day $)$ (Table 5.3). All in all, the water distribution network seems to have been properly detailed, and the presence of leaks and other drainage points within the plant's flow network may indicate that the existing system can be optimized.

5.1.2 Mass balances

Mass balances were performed on 5 areas of the plant: the front-end softeners, the lime and polishing ponds, the sulphur plant and the boilers. There were large inequalities in each balance. The front-end softener (FES) and lime pond mass balances were perhaps the worst of the bunch. Significant amount of mass (i.e. $>15 \%$ of the total incoming flux) were missing from the FES balance for all but 2 parameters (Table 5.4). Similarly, the lime pond appeared to be a source of calcium, chloride, magnesium and a number of other chemicals, while also acting as a carbon, iron and phosphate sink (Table 5.5). Generally fewer than half of the 16 monitored parameters were significantly skewed in the remaining three mass balances (Tables 5.6, $5.7 \& 5.8$). In any case,
the presence of so many large discrepancies calls into questions the quality of the collected chemical data.

5.2 Discussion

5.2.1 Data quality

Water flow numbers: The representative value of the water flow data set may at first seem somewhat suspect considering that it contains a number of readings averaged over only 1 month of the year. The January 1995 averages were, however, generally within 10% of mean flow volumes derived over longer periods of time (Table 5.9). Even when the difference between the 2 average values was greater that 10%, it was rarely a significant difference $\left(\mathrm{t}_{\text {statistic }}>1.96, \mathrm{p}<\right.$ 0.05) (Table 5.9). The January 1995 data should, therefore, be representative of general flow patterns at the plant.

Although the January 1995 metered data may be representative of longer term trends, several of the flow meters from which these numbers originate may not in themselves be accurate. As previously mentioned, plant personnel have indicated that the observed water leak at the effluent plant may have been the result of faulty flow meters. Furthermore, according to the inlet and outlet flow meters on the front-end softening system, about 538 and $725 \mathrm{~m}^{3} /$ day entered and exited the FESs, respectively (Table 5.9). At these flow rates, there would appear to be a major hole in the incoming raw water pipeline, as well as insufficient treated water make-up to replace all of the treated water now lost from the plant (Table 5.10). If one calculates the raw and treated water flow rates by a heat balance on the 8 psi steam loop (Appendix B), then the volumes of incoming raw water and outgoing treated water increase and the pipeline leak and treated water deficit disappear (Table 5.10). This discrepancy between the metered values and the calculated flows indicates that there may be, or at least have been, inaccurate flow meters at the plant, and that part of the collected data set may contain inaccurate numbers.

If incorrect information was used to analyze the water distribution network, the resulting water and mass balances could be wrong. Individual flow paths could have been missed, and/or leak
points may have been overlooked or underestimated. Yet, considering that plant personnel have repeatedly examined the resulting water balances (hence the discovery of the apparently inaccurate flow meters on the FESs), it is unlikely that the flow data continue to contain any serious flaws. It is, therefore, reasonable to conclude that the plant's water distribution network has been adequately defined by the collected data to proceed with the ZED project.

Chemical data: The large number of inequalities found in the 5 mass balances performed on different areas of this facility seemed to indicate that plant waters were either mis-sampled and/or improperly analyzed, or that additional flow paths remained unaccounted for. With respect to the FES balance, it was concluded that given the amount of chloride and sodium missing from the balance (Table 5.4) the regeneration waters from the ion-exchangers were never correctly sampled. Information in the Water Treatment Manual also indicates that the description of the hot lime treater blowdown waters was probably incorrect

The hot lime treater removes calcium, magnesium, silica and inorganic carbon from incoming raw water by causing these substances to precipitate. The resulting solids are then carried to the lime ponds within this vessel's blowdown stream. As previously discussed, filtered non-acidified water was used for silica and alkalinity measurements. Any solidified silica and/or carbonate within the collected blowdown waters would not have been detected. Similarly, the low recorded concentrations of calcium and magnesium in these waters (Appendix C) suggests that not all of the solidified calcium and magnesium was available for observation in the acidified metal samples. As a result, the large discrepancies in the FES mass balance were likely due to incorrect sampling of the ion-exchangers' regeneration brine and underestimated contaminant concentrations in the hot lime blowdown sample, rather than unidentified outflows from the softening system.

Using information from the Water Treatment Manual, it was possible to estimate what the ionexchange and hot lime treater wastewaters should have looked like (Appendix D). Recalculating the mass balance with these altered outflows showed the front-end softening system to be in near
perfect balance; there were significant differences in only 4 ,-instead of 10 , parameters (Table 5.11).

Problems with the original characterization of the front-end softening system was also responsible a large number of the inequalities found across the lime pond. For example, the lime pond appeared to be a source of calcium, magnesium, sodium and chloride (Table 5.5), because the influx of these elements from the hot lime treater and ion-exchangers was underestimated. When the lime pond mass balance was reworked with the calculated FES outflows, these chemical surpluses disappeared (Table 5.12). Yet, rather than resulting in an even balance for all 4 elements, the lime pond turned from a source of calcium and magnesium to a sink for these 2 chemicals (Table 5.12). It also continued to be a sink for silica and inorganic carbon (Table 5.12). Considering that these contaminants are flushed from the hot lime treater as precipitates, these findings are, in retrospect, hardly surprising. The calcium, magnesium, silica and inorganic carbon flowing into the lime pond from the hot lime treater were part of the suspended solids which settled out of solution within the lime pond, hence its appearance as a sink for these chemicals. By the same logic, it is not unreasonable to assume that the iron, organic carbon and phosphates missing from the lime pond outflow also precipitated out of solution, either on their own or as part of larger settlable solids.

The 3 remaining mass balances were unaffected by the problems with the ion-exchanger and hot lime treater samples. Discrepancies in these systems can, however, be attributed to other causes. Conditioning chemicals added to the boiler feedwater used in the both the boilers and the sulphur plant, while having very little effect on flow volumes, alter the chemical characteristics of this water (Nalco Chemical Program). They are, as a result, responsible for several of the inconsistencies observed across these 2 systems (Tables $5.6 \& 5.7$). Similarly, water samples taken from the polishing pond always contained algae. These organisms were likely the cause of the significant differences between total incoming and outgoing suspended solids, phosphate, dissolved organic carbon and iron (Table 5.8). For example, their mere presence would have
increased the level of suspended solids within these waters, and iron bound within the algae was also probably released into solution when the metal samples were acidified just after collection.

The results from the initial mass balances suggested that there were major problems within the assembled chemical data set. Further investigation showed that several areas of the FNGP had indeed been mis-sampled. There was, however, information available at the plant which was used to more accurate characterize of these flows. Reworking the mass balances with these new estimates eliminated a large number of the originally observed inconsistencies. Some of the remaining problems were attributed to other previously overlooked factors, including the addition of conditioning chemicals to the boiler feedwater tanks and the presence of algae in the polishing pond. Since many of the discrepancies observed in the original mass balances can be explained or completely eliminated, the chemical data collected at the plant, including that contained in several operation manuals, provided sufficient information to indicate that all pertinent water flows had been identified and characterized, and that one could now proceed with the design of a ZED system for the FNGP.

5.2.2 System optimization

As previously discussed in the introduction of this report, optimizing the plant's water distribution network will not only reduce the demand for treated water make-up, which can lead to subsequent reductions in a ZED system's final waste output, it will also limit the size, complexity and cost of the required ZED treatment train by limiting the volume of wastewater requiring purification prior to reuse. Increasing the efficiency of the existing water network can be achieved by closing off leaks in the system and by reusing relatively uncontaminated waste streams currently released from this facility.

Water leaks: The FNGP already appears to have quite a tight distribution network, as only 2 leak points were uncovered while compiling the water balances. They consisted of steam escaping from the plant's steam tracing pipes and wastewater lost from the effluent plant during treatment (Tables $5.3 \& 5.1$, respectively). While sealing up holes in the steam tracing network will
theoretically reduce the demand for treated water make-up, the actual benefits of such action may be somewhat inconsequential. The volume of escaping steam was estimated at $5 \mathrm{~m}^{3} /$ day (Table 5.3). This is less than 1% of the total volume of treated water now produced by the FESs (Table 5.1). Clearly, altering the state of the steam tracing system will have very little, if any, affect on the rest of the water network and/or the success of a ZED program at the plant.

The leak at the effluent plant was somewhat larger than the one in the steam tracing pipes. It was estimated at $50 \mathrm{~m}^{3} /$ day, almost $1 / 3$ of the effluent plant's total incoming water flow (Table 5.1). Despite its apparent size, the disappearance of wastewater from the effluent plant does not affect the treated water system. The effluent plant mainly receives domestic sewage and dirty raw water. If more or less water were to escape from the effluent plant, treated water make-up demands would remain unaffected. Recovering the lost effluent plant wastewater is not, therefore, going to affect a ZED system's waste output in the classic sense of increasing or decreasing waste production at the FESs. It will, however, alter the size of the required ZED treatment train and the volume of waste drained from this system, as indicated by tests with the computer simulator.

When the leak was initially sealed, the volume of the FNR discharge jumped from 282 to 332 $\mathrm{m}^{3} /$ day (Table 5.13). Similarly, the mass of solid waste leaving the ZED system increased from 415 to $483 \mathrm{~kg} /$ day (Table 5.13). Although both the volume of wastewater going into the ZED treatment train and the mass of solid waste leaving said system dropped when reclaimed wastewater was recycled back through the plant, they still remained at higher levels than when the leak at the effluent plant was left untouched (i.e. 285 vs. $240 \mathrm{~m} 3 /$ day and $294 \mathrm{vs} .233 \mathrm{~kg} /$ day, respectively - Table 5.13). The reason for the sustained increase in both measurements is the abundance of contaminants in the effluent plant outflow relative to the FNGP's raw water inflow (e.g. TDS readings of $2850 \mathrm{vs} .400 \mathrm{mg} / \mathrm{L}$, respectively - Appendix C). When the leak at the effluent plant was sealed, all of the contaminants previously escaping through this "hole" were added to the water system, and, although the flow of raw water into the FNGP did decrease below "open leak" levels once wastewater recycling was initiated, this flow reduction was insufficient to
prevent a-net increase in the flux of contaminants through the plant's water network. As a result, the plant produced a larger waste flow containing more contaminant mass than when the leak was left untouched.

Eliminating possible wastewater losses from the effluent plant will not, however, outright abolish the opportunity to initiate a ZED program at the FNGP. Operational water losses were found to be in excess of $600 \mathrm{~m}^{3} /$ day (Table 5.3). Effluent plant outflows were only $109 \mathrm{~m}^{3} /$ day (Table 5.1). Even if all of the wastewater lost from the effluent plant were recovered, effluent plant outflow would still be far less than current operational losses (i.e. $160 \mathrm{~m}^{3} /$ day vs. >600 $\mathrm{m}^{3} /$ day - Tables $5.1 \& 5.3$, respectively). The limits imposed by this project's first boundary condition have not been violated; the FNGP's domestic wastewater production rates are smaller than their operational water losses, and they would continue to remain so even if all of the wastewater observed to be escaping from the effluent plant were recovered. A ZED program can therefore be implemented at the FNGP without recycling any reclaimed wastewater through the domestic water system.

It is was initially suggested that sealing off all of the leaks present in the FNGP's water distribution network would increase the success of a ZED program by reducing both the size of the required ZED treatment train and the waste flow generated by said system. Given the nature of the 2 leak points identified in the water network, this assumption may not completely be valid. The loss of water from the steam tracing lines was so minute that eliminating these leaks would have virtually no affect on a ZED program. On the other hand, recovering wastewater apparently lost from the effluent plant, while not violating this project's boundary conditions, is likely to increase both the size of the required ZED treatment system and its final waste output. From the prospective of implementing a cost effective wastewater recycling program at the FNGP, there appears to be few benefits to closing off the 2 leak point identified in the water distribution network. Yet for the FNGP to be recognized as a ZED facility, the leak at the effluent plant will have to be sealed, regardless of the economical consequences of this action.

As indicated in the introduction, a.true ZED operation would not release any waste products into its surroundings. Given the cost, complexity and possible impracticality of such a process, the term ZED has been somewhat watered down to indicate that no wastewater is expelled from a ZED facility. By this definition, the FNGP will have to seal off the leak at the effluent plant as part of its transformation into a ZED operation. As for the steam escaping from the steam tracing lines, this water was not considered wastewater, because of its purity. Considering that evaporation ponds, spray dryers and other systems used to achieve ZED also release water vapour, this assumption appears to be the industry norm. Therefore, while attempts to recapture steam venting off of the steam tracing lines is relatively inconsequential to the ZED project, eliminating the leak at the effluent plant is a fundamental step, albeit an uneconomical one, in establishing a ZED program at the FNGP.

Water reuse: One of the FNGP's process engineers, Shang Su, has indicated that only high quality wastewater can be directly reused, because most of the process vessels have relatively stringent water quality requirements. As a result, identifying opportunities for wastewater reuse was limited to an examination of the plant's waste steam flows. Unfortunately, most of the uncovered steam vents were small leaks ($<5.0 \mathrm{~m}^{3} /$ day) (Table 5.3). Cost associated with collecting and reusing this steam overshadow the possible benefits (Shang Su, personal com.). One obvious exception was the loss of steam from the deaerators. Approximately $376 \mathrm{~m}^{3} /$ day of 8 psi steam was released from these vessels (Table 5.3). Given the quantity and quality of water involved, the 8 psi steam should be condensed and reused. To evaluate the potential benefits of reusing this water, a simulation was run wherein the 8 psi steam currently venting off the deaerators was condensed and returned to the boiler feedwater hotwells. No other changes were made, and no ZED equipment was used.

When the $376 \mathrm{~m}^{3} /$ day of steam was initially returned to the water system, the ratio of raw water to 8 psi steam entering the hot lime treater fell from 855:171 to $479: 171$. The increased dilution of raw water with high quality condensed steam led to improved treated water quality.

Cleaner treated water meant cleaner boiler feedwater, which, in turn, translated into less wastewater from the boilers and the sulphur plant (Table 5.14). At the same time, with less raw water traveling through the FESs, softener blowdown and regeneration rates also dropped. Reduction in all of these waste flows culminated in an additional saving of $72.1 \mathrm{~m}^{3} /$ day of raw water (Table 5.14). Overall, reusing the $376 \mathrm{~m}^{3} /$ day of 8 psi steam triggered changes throughout the water system, which ultimately resulted in a total raw water savings of the $448 \mathrm{~m}^{3} / \mathrm{day}$.

Aside from affecting raw water flows, reusing the 8 psi steam also influenced the FNR discharge. Wastewater volumes leaving the polishing pond fell in response to smaller incoming blowdowns, and, with less raw water being softened, the mass of contaminants stripped out by the softeners, traveling through the distribution network, and eventually exiting the plant similarly decreased (Table 5.14). Therefore, reusing the $376 \mathrm{~m}^{3} /$ day of 8 psi steam no only resulted in a total water savings of $448 \mathrm{~m}^{3} / \mathrm{day}$, it also led to a smaller, less contaminated plant outflow. Clearly reusing the 8 psi steam currently discharge from the deaerators is a key step to optimizing the existing water distribution system.

Vapour traveling to the thermo-oxidizer and later released to the atmosphere may be another potential water source ready for direct reuse (Table 5.3). Originally leached from natural gas stripping solutions, the vapour stream contains significant levels of hydrogen sulphide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ and carbon dioxide $\left(\mathrm{CO}_{2}\right)\left(\mathrm{S} / \mathrm{P}\right.$ Manual). Most of the $\mathrm{H}_{2} \mathrm{~S}$ is removed as elemental sulphur in the sulphur plant, while the steam, CO_{2} and remaining $\mathrm{H}_{2} \mathrm{~S}$ move onto the thermo-oxidizer and are eventually released to the atmosphere (Fig. 2.3). If this gaseous mixture was cooled prior to its arrival at the thermo-oxidizer, condensed steam could be collected and returned to the stripping liquors.

The role of the thermo-oxidizer is to transform remaining $\mathrm{H}_{2} \mathrm{~S}$ into sulfur dioxide $\left(\mathrm{SO}_{2}\right)$. This process is temperature dependent; good rates of conversion only occur under extremely hot conditions (i.e. $>500^{\circ} \mathrm{C}$) (S/P Manual). Although the vapour stream could theoretically be cooled
and the condensing water collected, it is unclear how a drop in feed temperature might affect-the $\mathrm{H}_{2} \mathrm{~S}-\mathrm{SO}_{2}$ conversion within the thermo-oxidizer. Furthermore, significant levels of CO_{2} and $\mathrm{H}_{2} \mathrm{~S}$ may return with the condensed water. Contaminated reflux may reduce the effectiveness of the stripping liquids. Further research would be required to assess if water can indeed be recovered from the thermo-oxidizer feed stream without affecting the performance of either the thermo-oxidizer or the stripping solutions. Reusing this water may also pose a problem to the entire ZED project. If all of the water released through the thermo-oxidizer was reused, together with the 8 psi steam venting off of the deaerators, operational water losses would fall dangerously close to domestic wastewater production rates (i.e. $55.3 \mathrm{~m}^{3} /$ day vs. $68.5 \mathrm{~m}^{3} /$ day - assuming that domestic outflow is equal to half of the dirty water reaching the effluent plant - Tables $5.1 \& 5.3$).

Most of the FNGP's steam discharges are too small to be effectively recaptured and reused. The 8 psi steam vent off of the deaerators is the obvious exception. Reusing this water-should greatly reduce raw water flows and lead to a smaller, less contaminated final plant outflow: Although the vapour stream traveling from process, through the sulphur plant and eventually to the thermo-oxidizer may be another potential source of reusable water, further research is needed to be sure that reusing this water will not negatively affect other parts of the FNGP, or that reusing this steam in conjunction with the aforementioned 8 psi steam will not jeopardize the whole ZED project by lowering operational water losses below domestic system output.

5.3 Changing to a ZED System

To establish a ZED program at the FNGP, wastewater generated at this facility which cannot be directly reused will have to be treated and recycled either individually or as a combined flow. There are inherent problems to dealing with each waste stream individually, as illustrated by the mechanisms needed to recycle process waters currently drained to the flare pits. Flare water, originally part of the natural gas stripping solution (Fig. 2.3), contains various hydrocarbons leached from the gas stream during processing. As a result, plant personnel have expressed strong apprehension about reusing any flare water for fear of a hydrocarbon build up within the
processing system, which could eventually have explosive results (Shang Su, personal com.). Installing a hydrocarbon separator would provide a means of removing the worrisome elements from the flare water. This wastewater could then be cleaned and safely poured back into the stripping solutions.

Flare water flow is, however, inconsistent. It does not, as suggested in Table 5.3, continually drain to the flare pits (Shang Su, personal com.). The hydrocarbon characteristics of this water still remain to be defined. Judging by the inlet gas profile (Table 5.15), it is bound to contain a number of different contaminants, all of which are too dilute to visibly separate out of solution (personal observation). Inconsistent flow and the potential abundance of low level hydrocarbons complicate the design of a hydrocarbon separator, and cast doubts on the benefits of recycling flare water.

According to plant schematics, water not vapourized during flaring travels out of the flare pits and into the effluent treatment plant. (Fig. 4.1). The effluent plant produces a relatively constant outflow (Table 5.9). The chemistry of this discharge stream has also been defined (Appendix C). The objective of optimizing the FNGP water network is to reduce the complexity of the required ZED system by limiting the size of the FNR discharge and the demand for raw water. Although recycling the flare water back into process would help to accomplish this goal, the inconsistent production of, and (to a lesser extent) the small concentration of hydrocarbons in the flare water make this option difficult. It would be more effective to simply deal with it as part of the effluent plant outflow. Since the other wastewater discharges listed in Table 5.3 similarly suffer from inconsistent flow rates (Shang Su, personal com.), the ZED treatment system will be designed around the combined FNR discharge.

5.4. Conclusion

The water flow and water chemistry data collected at the FNGP initially appeared to be of rather limited value in terms of their representative strength. Metered flow readings were average values derived from only one month's worth of data, and the mass balances were riddled with
inconsistencies. The January 1995 flow data were, however, generally representative of longer term trends, even if the accuracy of some flow meters remains in question (i.e. those surrounding the FESs and effluent plant). Similarly, although the regeneration wastes from the ion-exchangers were never properly sampled, calculations based on information from several of the plant's operating manuals provided a rough characterization of the blowdown waters leaving the FESs. When the mass balances were reconstructed, most of the original discrepancies either disappeared or could be attributed to contaminants in the sampled waters (e.g.. algae in the polishing pond samples) or conditioning chemicals added to the water system. In the end, the assembled data base provided sufficient detail to continue on with the ZED project.

Opportunities for optimizing the existing water network were limited. Only two water leaks were detected; one was in the steam tracing lines, while the other appeared to be a significant loss of wastewater from the effluent plant. It is unlikely that tightening the steam tracing system will have any impact on the plant's water flows, because only about $5 \mathrm{~m}^{3} /$ day of steam escapes through these vents. This represents less that 1% of current treated water production. Recovering the wastewater lost from the effluent plant, while not violating the first boundary condition limiting this project, will ultimately necessitate a larger ZED treatment system. Waste production from this system will also be larger than it would be with the current FNR discharge. Clearly, the original premise that minimizing the amount of water leaking out of the FNGP's water network would simplify the required ZED program does not apply in this case; closing off the 2 observed leaks is unlikely to benefit the ZED project, but the FNGP can only become a ZED facility if the leak at the effluent plant is eliminated.

The same cannot be said for reusing some of the relatively uncontaminated steam now discharged from this facility. Although most of the steam vents are too small to warrant their recapture, the 8 psi deaerator vent is an obvious exception. Reusing the $376 \mathrm{~m}^{3} /$ day of lost 8 psi steam would result in a net raw water savings of $448 \mathrm{~m}^{3} / \mathrm{day}$. Computer simulations also indicate that the FNR discharge will fall by $72 \mathrm{~m}^{3} /$ day, and that its incumbent contaminant mass will be
reduced by $291 \mathrm{~kg} /$ day when this water is reused. The only other steam vent which could offer similar savings is the vapour stream released through the thermo-oxidizer. Further research is first needed to investigate if this water can be reused without compromising either the plant's gas processing efficiency or the ability to install a ZED system at the FNGP.

Given the stringent water quality requirements of the process equipment, none of the wastewater discharged into the effluent system can be directly reused. Individually, these waters suffer from inconsistent flow rates. As a result, it is more efficient to focus on treating and recycling these water after they combine to form the FNR discharge. A ZED program for the FNGP was therefore designed around recycling the FNR discharge wherein no other changes were made to the water distribution network, except that the 8 psi steam now venting from the deaerators was condensed and returned, along with other condensate, to the boiler feedwater hotwells. The apparent effluent plant leak was not altered as the only further research will show if the observed water loss actually occurred, or if it. was a simple manifestation caused by faulty flow meters.
Table 5.1: A water balance of the Fort Nelson Gas Plant based on its individual operating units.

Input ($\mathrm{m}^{3} /$ day)		Operation	Output (m³/day)	
Powerhouse				
- Treater system				
Raw water	859a	Production of soft water	Treated water (T.W.)	$1.01 \times 10^{3 \mathrm{a}}$
8 psi steam	$547{ }^{\text {a }}$		\#3 Hot lime treater blowdown	$16.3^{\text {a }}$
			Venting off \#3 treater	$376^{\text {a }}$
Brine solution	$39.1{ }^{\text {a }}$	Softener regeneration	Used brine to lime pond	$39.1{ }^{\text {a }}$
T.W. from \#3 treater	$17.7{ }^{\text {a }}$		Dirty T.W. back to \#3 treater	$11.9{ }^{\text {a }}$
Raw water	$6.8{ }^{\text {b }}$	\#3 treater recirc. pump	Seal water to lime pond	$6.8{ }^{\text {b }}$
Raw water	866	Net flows	Treated water	1.01×10^{3}
8 psi steam	547		Discharge to lime pond	62.2
Brine solution	39.1		Venting	376
	1.45×10^{3}			1.45×10^{3}
Input - output $=0.0 \quad$ System in balance				
- Treated water tanks				
Treated water	1.01×10^{3}	T.W. collection	T.W. to Process	$151{ }^{\text {a }}$
			Domestic filter backwash	$16.3^{\text {a }}$
			Softener regeneration brine	$39.1^{\mathrm{a}}-$
			T.W. to deaerators	808
- Deaerators				
T.W. from T.W. tanks	808	Boiler feedwater formation	Boiler feedwater (BFW) to E/F/G/H	$296{ }^{\text {c }}$
Condensate return	1.15×10^{4}		BFW to sulphur plant	$1.74 \times 10^{3 \mathrm{~d}}$
45 psi steam	$546{ }^{\text {e }}$	Purge non-condensible gases	8 psi venting	$546{ }^{\text {d }}$
			. BFW to boilers	1.02×10^{4}

Table 5.1 (con't)

Input ($\mathrm{m}^{3} /$ day)		Operation	Output ($\mathrm{m}^{3} /$ day $)$	
Boilers				
BFW from deaerators	1.02×10^{4}	450 psi steam production	450 psi steam	$9.76 \times 10^{3 \mathrm{c}}$
			Blowdown to lime pond	81.6^{c}.
Raw water	$6.8{ }^{\text {b }}$	\#5 boiler uniloc cooler	Spent cooling water	$6.8{ }^{\text {b }}$
	$\overline{1.02 \times 10^{4}}$			$\overline{9.85 \times 10^{3}}$
Input - output $=402$ Difference $<\mathbf{1 0 \%}$ of the input - System balances				
- Power generation				
450 psi steam	$2.97 \times 10^{3 \mathrm{~d}}$	Turbines	45 psi steam	$2.97 \times 10^{3 \mathrm{a}}$
			Venting	$3.0{ }^{\text {a }}$
45 psi steam	$\underline{610^{\mathrm{e}}}$	Preheaters	Condensate	$610^{\text {d }}$
	3.58×10^{3}			$\overline{3.58 \times 10^{3}}$
Input - output $=1.0 \quad$ Difference $<\mathbf{1 0 \%}$ of the input - System balances				
- Other				
45 psi steam	$501{ }^{\text {d }}$	Steam tracing	Condensate	$496^{\text {a }}$
			Leaks	$5.0^{\text {a }}$
45 psi steam	$1.09 \times 10^{3 \mathrm{c}}$	Excess 45 psi condenser	Condensate	$1.09 \times 10^{3 \mathrm{c}}$
Raw \& Dom. water Water into P / H lab	q	Cleaning, Showers.... Water quality monitoring	Dirty R \& D water	q
	$8.3{ }^{\text {b }}$		Discharge to lime pond	$8.3{ }^{\text {b }}$
	1.60×10^{3}			1.60×10^{3}
Input -output $=0.0 \quad$ System in balance				

Table 5.1 (con't)

Input ($\mathrm{m}^{3} /$ day)		Operation	Output (m³/day)	
Process - C/D Trains				
450 psi steam	$1.76 \times 10^{3 \mathrm{~d}}$	Turbines	45 psi steam for reboilers	$1.76 \times 10^{3 \mathrm{a}}$
			Venting	$1.8{ }^{\text {a }}$
45 psi steam	$3.06 \times 10^{3 \mathrm{c}}$	Reboilers	Condensate	$3.06 \mathrm{e} 3^{\text {d }}$
T.W.	$10.9{ }^{\text {a }}$	T.W. cleaning	Dirty T.W. to effluent plant	$10.9{ }^{\text {a }}$
Raw \& Dom. water	y	Cleaning, Showers....	Dirty R \& D water	y
Condensate	$70.6^{\text {a }}$	MEA/Carbonate make-up	Water in sweet gas	$0.4{ }^{\text {a }}$
Sour water	v		Lost to flare pits	$7.3{ }^{\text {a }}$
			Vapour in wet acid gas	$62.9{ }^{\text {a }}$
			Liquid in wet acid gas	v
450 psi steam	1.76×10^{3}	Net flows	Venting	1.8
45 psi steam	1.30×10^{3}		Condensate	2.99×10^{3}
T.W.	10.9		Dirty water to effluent plant	$10.9+y$
Raw \& Dom. water	y		Water in sweet gas	0.4
Sour water	v		Lost to flare pits	7.3
			Vapour in wet acid gas	62.9
			Liquid in wet acid gas	v
	3.07×10^{3}			3.07×10^{3}
Input - output $=0.0 \quad$ System in balance				
- E/F/G/H Trains				
450 psi steam	$2.17 \times 10^{3 \mathrm{~d}}$		Turbines 45 psi steam for reboilers	$2.17 \times 10^{3 \mathrm{a}}$
			Venting	$2.2{ }^{\text {a }}$

Table 5.1 (con't)

Input ($\mathrm{m}^{3} /$ day)		Operation	Output (m³/day)	
- E/F/G/H Trains (con't)				
45 psi steam	$5.47 \times 10^{3 \mathrm{c}}$	Reboilers	Condensate	$5.47 \times 10^{3 \mathrm{c}}$
T.W.	$10.9{ }^{\text {a }}$	T.W. cleaning	Dirty T.W. to effluent plant	$10.9{ }^{\text {a }}$
Raw \& Dom. water	f	Cleaning, Showers....	Dirty R \& D water	f
450 psi steam	$208{ }^{\text {c }}$	450 psi steam breakdown	45 psi steam	$208{ }^{\text {c }}$
BFW	$269{ }^{\text {c }}$	Cooling superheated steam	45 psi steam	$269{ }^{\text {c }}$
T.W.	129b	DEA make-up	Water in sweet gas	$0.7{ }^{\text {a }}$
Sour water	w		Lost to flare pits	$13.3{ }^{\text {a }}$
			Vapour in wet acid gas	$115^{\text {a }}$
			Liquid in wet acid gas	w
450 psi steam	2.38×10^{3}	Net flows	Venting	2.2
45 psi steam	2.80×10^{3}		Condensate	5.47×10^{3}
BFW	296		Dirty water to effluent plant	$10.9+\mathrm{f}$
T.W.	140		Water in sweet gas	0.7
Raw \& Dom. water	f		Lost to flare pits	13.3
Sour water	w		Vapour in wet acid gas	115
			Liquid in wet acid gas	w
	$\overline{5.61 \times 10^{3}}$			$\overline{5.61 \times 10^{3}}$
Input - output $=0.0 \quad$ System in balance				
Booster Station 12				
450 psi steam	$1.89 \times 10^{3 \mathrm{~d}}$	Gas compression	45 psi steam to header	$1.89 \times 10^{3 \mathrm{a}}$
			Venting	$1.9{ }^{\text {a }}$
	1.89×10^{3}	System in balance		1.89×10^{3}

Table 5.1 (con't)

Input ($\mathrm{m}^{3} /$ day)		Operation	Output ($\mathrm{m}^{3} /$ day)	
Sulphur Plant				
450 psi steam	$686{ }^{\text {d }}$	Gas blowers	45 psi steam	685 ${ }^{\text {a }}$
			Venting	$0.7{ }^{\text {a }}$
BFW	$447{ }^{\text {a }}$	Reaction furnace	150 psi steam	425a
			Blowdown to lime pond	$21.8{ }^{\text {a }}$
150 psi steam	$405{ }^{\text {d }}$	Air blowers	5 psi steam	405 ${ }^{\text {d }}$
			Venting	$0.4{ }^{\text {a }}$
-	-	-	150 psi steam to Petrosul	$19.6{ }^{\text {c }}$
BFW	$438{ }^{\text {a }}$	\#1 condensers	45 psi steam	$422^{\text {a }}$
			Blowdown to lime pond	$16.3^{\text {a }}$
BFW	$857{ }^{\text {a }}$	\#2 condensers	45 psi steam	$446{ }^{\text {d }}$
			15 psi steam	$378{ }^{\text {d }}$
			Blowdown to lime pond	$32.7{ }^{\text {a }}$
15 psi steam	$378{ }^{\text {d }}$	15 psi condenser	Condensate	$378{ }^{\text {d }}$
5 psi steam	405 ${ }^{\text {d }}$	5 psi condenser	Condensate	405 ${ }^{\text {d }}$
Sour water	v+w	Wet acid gas purification	Sour water	v+w
T.W./Condensate	$178{ }^{\text {a }}$		T.W./Condensate lost to T/O	$178{ }^{\text {a }}$
			Water formed in S formation	$260^{\text {a }}$
450 psi steam	686	Net flows	150 psi steam	19.6
BFW	1.74×10^{3}		45 psi steam	1.55×10^{3}
Sour water	$\mathrm{v}+\mathrm{w}$		Condensate	783
T.W./Condensate	178		Blowdown to lime pond	70.8
			Venting	1.1
			Sour water	v+w
			Water lost in acid gas to T/O	438

Table 5.1 (con't)

Input ($\mathrm{m}^{3} /$ day)		Operation	Output (m³/day)	
Sulphur Plant (con't)				
	2.61×10^{3}			$\overline{2.87 \times 10^{3}}$
Input - output $=$	-260 D	Difference $<10 \%$ of the inpu	m balances	
Thermo-oxidizer				
450 psi steam	$280{ }^{\text {d }}$	Blowers	45 psi steam	$280{ }^{\text {a }}$
			Venting	$0.3{ }^{\text {a }}$
45 psi steam	$43.5{ }^{\text {d }}$	Preheaters	Condensate	$43.5{ }^{\text {d }}$
Water in acid gas	$438{ }^{\text {a }}$	Burn \& release of acid gas	Water released out the stack	$438{ }^{\text {a }}$
450 psi steam	280	Net flows	45 psi steam	236
Water in acid gas	438		Venting	0.3
			Condensate	43.5
			Water released out the stack	438
	718			718
Input - output=	0.0 S	System in balance		
Lime Pond				
S/P blowdown	$70.8{ }^{\text {a }}$	Blowdown collection	Discharge to polishing pond	$238{ }^{\text {c }}$
\#3 Hot lime treater	$16.3^{\text {a }}$			
Used softerner brine	$39.1{ }^{\text {a }}$			
Boiler blowdown	$81.6{ }^{\text {c }}$			
Dom. filter backwash	$16.3^{\text {a }}$			
P / H lab sample lines	$8.3{ }^{\text {b }}$			
\#3 pump water seal	$6.8{ }^{\text {b }}$			

Table 5.1 (con't)
Lime Pond (con't)

8	0			
0				
0			$\stackrel{\sim}{n}$	
:---:	:---:			
$\underset{n}{n}$				

a Calculated or assumed value - see Appendix B for description of its derivation b Number supplied by John Martin - FNGP employee
c Metered reading = average from January 1995 data
${ }^{\mathrm{d}}$ Number supplied by Shang Su - Process Engineer at FNGP
Table 5.2: A water balance of the Fort Nelson Gas Plant based on the different types of water used at the facility

Origin (m³/day)	Used in/as ($\mathrm{m}^{3} /$ day $)$			Becomes
Raw water				
Reservoir inflow	$1.00 \times 10^{3 \mathrm{a}}$	\#5 uniloc cooling water	$6.8{ }^{\text {b }}$	Wastewater to lime pond
		\#3 recir. pump seal	$6.8{ }^{\text {b }}$	Wastewater to lime pond
		Cleaning \& Domestic water	$137{ }^{\text {a }}$	Wastewater to E/P
		Treater system	$859{ }^{\text {a }}$	Treated water
		Export to Petrosul	$32.7{ }^{\text {c }}$	-
	$\overline{1.00 \times 10^{3}}$		$\overline{1.04 \times 10^{3}}$	
Input - output $=-38.7$ Difference $>\mathbf{1 0 \%}$ input				
Treated water				
Raw water	$859{ }^{\text {a }}$	\#3 treater blowdn.	$16.3{ }^{\text {a }}$	Wastewater to lime pond
Condensed 8 psi steam	547 a	\#3 treater venting	$376{ }^{\text {a }}$	Lost to atmosphere
		Softener regeneration	$39.1{ }^{\text {a }}$	Wastewater to lime pond
		Domestic filter backwash	$16.3^{\text {a }}$	Wastewater to lime pond
		Cleaning water	$21.8{ }^{\text {a }}$	Wastewater to E/P
		DEA make-up water in E/F/G/H process trains	129a	Lost through: - Stack, Flare \& Sweet gas
	1.41×10^{3}		598	
Going to hotwells $=808$				
Boiler feedwater				
Treated water	808	Cooling water for 45 psi	$269{ }^{\text {c }}$	45 psi steam
Condensate return	1.15×10^{3}	steam in $\mathrm{E} / \mathrm{F} / \mathrm{G} / \mathrm{H}$ Steam production in S/P	$1.74 \times 10^{3 \mathrm{~d}}$	150 psi \& 45 psi steam

Table 5.2 (con't)

Table 5.2 (con't)

Origin ($\mathrm{m}^{3} /$ day $)$		Used in/as ($\mathrm{m}^{3} /$ day)		Becomes
150 psi steam (con't)				
	425	Shipped to Petrosul	$\frac{19.6^{\mathrm{c}}}{425}-$	-
Input -output $=0.0 \quad$ System in balance				
45 psi steam				
P / H turbines	$2.96 \times 10^{3 \mathrm{a}}$	C/D reboilers	$3.06 \times 10^{3 \mathrm{c}}$	Condensate
C/D turbines	$1.76 \times 10^{3 \mathrm{a}}$	E/F/G/H/ reboilers	$5.47 \times 10^{3 \mathrm{c}}$	Condensate
E/F/G/H turbines	$2.17 \times 10^{3 \mathrm{a}}$	P / H preheaters	$610^{\text {d }}$	Condensate
S/P gas blowers	$685{ }^{\text {a }}$	T/O preheaters	$43.5{ }^{\text {d }}$	Condensate
T/O blowers	$279{ }^{\text {a }}$	Steam tracing	$501{ }^{\text {d }}$	Condensate
Booster St. 12 turbines	$1.89 \times 10^{3 \mathrm{a}}$	Venting on steam tracing	$5.0{ }^{\text {a }}$	Lost to atmosphere
Breakdn. stations	$208{ }^{\text {c }}$	X-cess 45 psi condenser	$1.09 \times 10^{3 \mathrm{c}}$	Condensate
S/P - Condensers	$868{ }^{\text {d }}$	Purge steam to deaerators	$547{ }^{\text {d }}$	8 psi steam
B.F.W. to E/F/G/H	${ }^{2988}{ }^{\text {c }}$			
	1.11×10^{4}		1.13×10^{4}	
Input - output	-198	ence $<10 \%$ of the input	ystem bala	
15 psi steam				
S/P - \#2 condensers	$380^{\text {a }}$	15 psi condensers	$380^{\text {a }}$	Condensate
Input - output	0.0 S	m in balance		
8 psi steam				
Vented from deaerators	547a	\#3 hot lime treater	$171{ }^{\text {a }}$	Treated water

Table 5.2 (con't)

a Calculated or assumed value - see Appendix B for description of its derivation b Number supplied by John Martin - FNGP employee
c Metered reading $=$ average from January 1995 data
${ }^{\text {d Number supplied by Shang Su - Process Engineer at FNGP }}$

Table 5.3: A summary of treated water losses from the Fort Nelson Gas Plant.

Source	Rate of loss ($\mathrm{m}^{3} /$ day $)$	Destination
Venting		
8 psi steam off the deaerators	376	Atmosphere
Turbine vents:		
Powerhouse	3.0	Atmosphere
Process	3.9	Atmosphere
Sulphur plant	1.1	Atmosphere
Thermo-oxidizer	0.3	Atmosphere
Booster Station 12	1.9	Atmosphere
Steam tracing	$\begin{array}{r} 5.0 \\ \mathbf{3 9 1} \end{array}$	Atmosphere
Export		
150 psi steam	$\frac{19.6}{19.6}$	Petrosul
Discharge		
Blowdown		
- Boilers	81.6	Lime pond
Sulphur plant	70.8	Lime pond
Hot lime treater	16.3	Lime pond
Domestic backwash	16.3	Lime pond
Softener regeneration	39.1	Lime pond
Filter cleaning	21.8	Effluent plant
Process water	20.7	Flare pits
	178	Thermo-oxidizer
	1.0	Sweet gas
	445	
Tota Treated wate	$\begin{array}{lc} \text { oss }= & \mathbf{8 5 6} \\ \text { put }= & 808 \\ \hline-47.9 \end{array}$	

Table 5.4: A mass balance on the front-end softening system.

Parameter	Total in ${ }^{\text {a }}$	Total out ${ }^{\text {a }}$	Difference	\% diff.	Explanation
Water flow ($\mathrm{m}^{3} /$ day)	1.45×10^{3}	1.45×10^{3}	0	0	
Total Alkalinity (kg/day)	162	43.1	118	73	mis-sampled
Solids (kg/day)					
Total	-	-	-	-	
Suspended	-	-	-	-	
Dissolved	-	-	-	-	
Carbon content (kg/day)					
Total	54.8	26.1	28.7	52	mis-sampled
Inorganic	44.4	17.5	26.9	61	mis-sampled
Organic	10.4	8.7	1.7	16	mis-sampled
Metals (kg/day)					
Calcium	70.0	2.8	67.1	96	mis-sampled
Magnesium	15.8	0.7	15.1	95	mis-sampled
Sodium	154	59.6	94.1	61	mis-sampled
Iron	0.5	0.7	-0.2	-50	mis-sampled
Inorganics (kg/day)					
Phosphates	0.1	0.1	0.0	-13	mis-sampled
Chlorides	217	3.0	214	99	mis-sampled
Sulfates	78.6	88.3	-9.6	-12	mis-sampled
Silica	4.6	1.0	3.6	78	mis-sampled

[^1]Table 5.5: A mass balance on the lime ponds.

Parameter	Total in ${ }^{\text {a }}$	Total out ${ }^{\text {a }}$	Difference	\% diff.	Explanation ${ }^{\text {c }}$
Water flow ($\mathrm{m}^{3} /$ day $)$	246	238	8.0	3	
Total Alkalinity (kg/day)	51.3	17.3	34.0	66	precipitated
Solids (kg/day)					
Total	218	610	-393	-180	FESs error
Suspended	2.2	1.6	0.5	25	precipitated
Dissolved	134	609	-475	-354	FESs error
Carbon content (kg/day)					
Total	12.7	6.4	6.3	50	precipitated
Inorganic	5.2	2.5	2.7	53	precipitated
Organic	7.6	3.9	3.7	49	precipitated
Metals (kg/day)					
Calcium	2.5	52.7	-50.1	-1.97×10^{3}	FESs error
Magnesium	0.5	4.7	-4.2	-808	FESs error
Sodium	64.6	149	-84.6	-131	FESs error
Iron	0.2	0.0	0.2	82	precipitated
Inorganics (kg/day)					
Phosphates	1.1	0.0	1.1	98	precipitated
Chlorides	2.7	217	-214	-7.90×10^{3}	FESs error
Sulfates	97.0	148	-50.5	-52	FESs error
Silica	1.0	0.9	0.1	6	insig. difference
a Refer to Appendix D for calculations					
${ }^{\mathrm{b}}$ precipitated $=$ missing mass settled out of solution within the lime ponds; FESs error $=$ front end softeners mis-sampled; insig. difference $=$ insignificant difference					

Table 5.6: A mass balance on the boilers.

Parameter	Total in ${ }^{\text {a }}$	Total out ${ }^{\text {a }}$	Difference	\% diff.	Explanation ${ }^{\text {b }}$
Water flow ($\mathrm{m}^{3} /$ day)	1.03×10^{4}	9.85×10^{3}	402	4	
Total Alkalinity (kg/day)	104	75.5	28.2	28	?
Solids (kg/day)					
Total	840	828	12.5	1	insig. difference
Suspended	7.6	3.1	4.5	59	?
Dissolved	832	824	8.0	1	insig. difference
Carbon content (kg/day)					
Total	67.7	63.0	4.6	7	insig. difference
Inorganic	26.9	20.1	6.8	25	?
Organic	40.7	42.9	-2.2	-5	insig. difference
Metals (kg/day)					
Calcium	3.0	2.3	0.7	22	?
Magnesium	1.8	1.6	0.2	9	insig. difference
Sodium	61.7	53.1	8.7	14	chemical add'n
Iron	2.2	2.1	0.2	8	insig. difference
Inorganics (kg/day)					
Phosphates	0.5	1.1	-0.6	-126	chemical add'n
Chlorides	2.5	2.5	0.0	0	
Sulfates	67.7	79.4	-11.7	-17	chemical add'n
Silica	1.5	1.6	-0.1	-3	insig. difference

a Refer to Appendix D for calculations
b chemical add' $\mathrm{n}=$ changes induced by addition BFW polishing chemicals; ? = unknown source or sink; insig. difference $=$ insignificant difference

Table 5.7: A mass balance on the sulphur plant.

Parameter	Total in ${ }^{\text {a }}$	Total out ${ }^{\text {a }}$	Difference	\% diff.	Explanation ${ }^{\text {b }}$
Water flow ($\mathrm{m}^{3} /$ day)	2.61×10^{3}	2.87×10^{3}	260	10	
Total Alkalinity (kg/day)	22.0	22.9	-0.9	-4	insig. difference
Solids (kg/day)					
Total	197	224	-26.2	-13	insig. difference
Suspended	1.5	0.5	1.0	65	?
Dissolved	196	223	-27.2	-14	insig. difference
Carbon content (kg/day)					
Total	16.0	17.1	-1.1	-7	insig. difference
Inorganic	6.1	5.3	0.8	13	chemical add'n
Organic	10.0	11.9	-1.9	-19	?
Metals (kg/day)					
Calcium	0.7	0.6	0.1	17	?
Magnesium	0.4	0.4	0.0	4	insig. difference
Sodium	11.8	18.7	-6.8	-58	chemical add'n
Iron	0.5	0.5	0.0	8	insig. difference
Inorganics (kg/day)					
Phosphates	0.1	0.5	-0.4	-333	chemical add'n
Chlorides	0.5	0.9	-0.4	-70	?
Sulfates	13.1	29.8	-16.8	-128	chemical add'n
Silica	0.3	0.5	-0.1	-45	?
a Refer to Appendix D for calculations					
b chemical add' $\mathrm{n}=$ changes induced by addition BFW polishing chemicals; ? = unknown source or sink; insig. difference $=$ insignificant difference					

Table 5.8: A mass balance on the polishing pond.

Parameter	Total in ${ }^{\text {a }}$	Total out ${ }^{\text {a }}$	Difference	\% diff.	Explanation ${ }^{\text {b }}$
Water flow (m³/day)	347	352	5	1	
Total Alkalinity (kg/day)	36.7	35.3	1.4	4	insig. difference
Solids (kg/day)					
Total	922	973	-51.0	-6	insig. difference
Suspended	2.9	9.5	-6.6	-232	algae
Dissolved	919	964	-44.3	-5	insig. difference
Carbon content (kg/day)					
Total	28.4	34.3	-5.9	-21	algae
Inorganic	8.9	10.1	-1.2	-13	insig. difference
Organic	19.5	24.2	-4.8	-25	algae
Metals (kg/day)					
Calcium	58.7	51.3	7.4	13	insig. difference
Magnesium	6.6	7.2	-0.6	-9	insig. difference
Sodium	210	205	4.9	2	insig. difference
Iron	0.4	0.6	-0.2	-41	algae
Inorganics (kg/day)					
Phosphates	0.0	0.1	-0.1	-130	algae
Chlorides	239	220	18.9	8	insig. difference
Sulfates	183	191	-7.6	-4	insig. difference
Silica	1.7	1.8	-0.2	-10	insig. difference

a Refer to Appendix D for calculations
b algae $=$ changes induced by algae in polishing pond; insig. difference $=$ insignificant difference

Table 5.9: A comparison between water flow readings from January 1995 and overall averages.

Flow Path	January		Overall			\% Difference
	Avg.	C.V. ${ }^{\text {a }}$	Avg.	C.V. ${ }^{\text {a }}$	Months ${ }^{\text {b }}$	
Reservoir - m³/day	1.0×10^{3}	0.44	1.1×10^{3}	0.39	14	9
Raw water inlet - $\mathrm{m}^{3} /$ day	538	0.62	623	0.52	14	14
Treated water $-\mathrm{m}^{3} /$ day	724	0.61	854	0.50	14	15
Boiler \#5 - KLBH						
Steam production	297	0.04	285	0.13	14	-4
Blowdown	1.8	0.40	2.1	0.38	2	14
Boiler \#6-KLBH						
Steam production	301	0.02	276	0.23	14	-9
Blowdown	3.1	0.19	3.1	0.21	2	0
Boiler \#7 - KLBH						
Steam production	299	0.02	281	0.12	14	-6
Blowdown	2.6	0.25	2.7	0.25	2	4
450 psi steam breakdn. - KLBH						
E / F trains	0.2	1.37	0.5	1.39	2	60*
G/H trains	18.9	0.56	17.0	0.53	2	-11
Reboiler steam - KLBH						
C train - carbonate	103	0.05	106	0.18	5	3
C train - MEA	33.7	0.04	32.0	0.18	5	5
D train - carbonate	109	0.05	107	0.14	5	2
D train - MEA	35.0	0.03	33.1	0.12	5	6
E train - DEA	125	0.06	128	0.08	5	2
F train - DEA	120	0.04	126	0.08	5	5
G train - DEA	131	0.03	129	0.08	5	2
H train - DEA	127	0.05	128	0.07	5	1
Processed gas - mmscfd	569	0.03	569	0.04	5	
Stack emissions - mmscfd	6.2	0.16	7.3	0.18	14	15^{*}

Table 5.9 (con't)

| | January
 Flow Path | | C.V.a | Avg. | Overall
 C.V.a | Months ${ }^{\text {b }}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | \% |
| :---: |
| Difference |

${ }^{\text {a C.V. }}$ = Coefficient of variation $=$ standard deviation $/$ average
b Number of months over which flow readings were recorded and averaged

* Significant difference between the January 1995 and overall averages ($\mathrm{t}_{\text {statistic }}>1.96, \mathrm{p}<$ 0.05)

Table 5.10: Water balances on the raw water storage tank and front-end softeners (FESs) using metered and calculated inflow and ouflow volumes from the FESs.

Flow path	Metered values ($\mathrm{m}^{3} /$ day)	Calculated values ($\mathrm{m}^{3} /$ day)
Raw water storage tank		
Inflow		
Reservoir pipline	1.00×10^{3}	1.00×10^{3}
Outflows		
\#5 unlioc cooling water	6.8	6.8
Pump sealant	6.8	6.8
Cleaning \& domestic systems	137	137
Treated water system	538	859
Export to Petrosul	32.7	32.7
Inflow - outflow =	$=282$	-38.7
Front-end softeners		
Inflow		
Raw water storage tank	538	859
8 psi steam	547	547
	1.08×10^{3}	1.41×10^{3}
Outflows		
Hot lime treater blowdown	16.3	16.3
Ion-exchanger regeneration	39.1	39.1
Cleaning water	21.8	21.8
Stripping solution make-up	129	129
Steam venting off lime treater	360	376
Domestic filter backwash	16.3	16.3
	583	599
Product water volume =	$=503$	808
Total treated water losses ${ }^{\text {a }}=$	$=\quad 856$	856
	-353	-47.9

[^2]Table 5.11: Recalculated mass balance on the FNGP's front-end softening system.

Parameter	Total in ${ }^{\text {a }}$	Total out ${ }^{\text {a }}$	Difference	\% diff.	Explanation ${ }^{\text {b }}$
Water flow ($\mathrm{m}^{3} /$ day)	1.0×10^{3}	1.0×10^{3}	0.0	0	
Carbon content					
Inorganic (mol/day)	3.2×10^{3}	3.3×10^{3}	-95	-3	insig. difference
Organic (kg/day)	8.7	6.6	2.0	23	?
Metals (kg/day)					
Calcium	69.9	69.8	0.1	0	
Magnesium	15.7	15.7	0.1	0	
Sodium	11.0	141	-130	-1181	Ion-x regeneration
Iron	0.4	0.6	-0.3	-69	?
Inorganics (kg/day)					
Phosphates	0.1	0.1	0.0	0	
Chlorides	2.5	217	-215	-8554	Ion-x regeneration
Sulfates	74.8	84.2	-9.4	-13	insig. difference
Silica	4.5	4.5	0.0	0	

[^3]Table 5.12: Recalculated mass balance on the FNGP's lime ponds.

Parameter	Total in ${ }^{\text {a }}$	Total out ${ }^{\text {a }}$	Difference	\% diff.	Explanation ${ }^{\text {b }}$
Water flow ($\mathrm{m}^{3} /$ day $)$	246	238	7.6	3	insig. difference
Carbon content					
Inorganic (mol/day)	3.2×10^{3}	2.4×10^{2}	2.9×10^{2}	93	precipitated
Organic (kg/day)	7.3	3.9	3.4	47	precipitated
Metals (kg/day)					
Calcium	69.6	52.6	17.0	24	precipitated
Magnesium	15.6	4.7	10.9	70	precipitated
Sodium	148	149	-1.0	0	
Iron	0.2	0.0	0.2	100	precipitated
Inorganics (kg/day)					
Phosphates	1.1	0.0	1.1	100	precipitated
Chlorides	217	217	0.0	0	
Sulfates	97.6	148	-49.9	-51	?
Silica	4.5	0.9	3.6	80	precipitated

[^4]Table 5.13: Changes that occurred in selected areas of the Fort Nelson Gas Plant's water system before and after water observed to escaping from the effluent treatment plant (E / P) was recovered.

Parameter	E/P leak untouched	E/P leak closed
Raw water flow ($\mathrm{m}^{3} /$ day $)$		
- initial	407	407
- with wastewater recycling	138	90.1
FNR discharge flow ($\mathrm{m}^{3} /$ day)		
- initial	282	332
- with wastewater recycling	240	285
ZED solid waste output (kg/day)		
- initial	415	483
- with wastewater recycling	233	294

Table 5.14: Selected water flows in the Fort Nelson Gas Plant's water distribution network with and without 8 psi steam reuse.

	Current system $\left(\mathrm{m}^{3} / \mathrm{day}\right)$	$\mathbf{8}$ psi steam reused $\left(\mathrm{m}^{3} / \mathrm{day}\right)$	Difference $\left(\mathrm{m}^{3} / \mathrm{day}\right)$
Flow path	855	407	$\mathbf{4 4 8}$
Raw water inflow	171		
8 psi steam flow to lime treater	171	0.0	$\mathbf{3 7 6}$
Lost 8 psi steam	376	13.9	3.1
Lime treater blowdown	17.0	19.0	19.9
Ion-exchange blowdown	38.9	54.6	26.0
Boiler blowdown	80.6	46.8	23.1
Sulphur plant blowdown	69.9	173	72.0
Lime pond outflow	245	109	
Effluent plant outflow	109	282	$\mathbf{7 2 . 0}$
Polishing pond	354	422	$\mathbf{2 9 1}$
Discharged contaminant mass (kg/day)	713		

Table 5.15: The average inlet gas profile for January 1994 at the Fort Nelson Gas Plant.

Substance	Relative abundance
Nitrogen $\left(\mathrm{N}_{2}\right)$	0.0103
Hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$	0.0168
Carbon dioxide $\left(\mathrm{CO}_{2}\right)$	0.1241
Organic carbon compounds:	0.8456
1 - carbon elements (C1)	0.0023
2 - carbon elements (C2)	0.0004
3 - carbon elements (C3)	0.0002
4 - carbon elements (C4)	0.0001
5 - carbon elements (C5)	0.0002
$6+$ - carbon elements (C6+)	
	Average gas volume $=18707000 \mathrm{~m}^{3} / \mathrm{day}$

6.0 RECYCLING TECHNOLOGY FOR THE FNGP

6.1 Re-evaluation of the Literature Review

Three principle treatment technologies are available to the FNGP: distillation, ion-exchange and membrane filtration. Each systems functions optimally within a given total dissolved solids (TDS) range (Fig. 3.1). The FNR discharge had a TDS concentration of $2700 \mathrm{mg} / \mathrm{L}$ (Table 6.1). According to Figure 3.1, this level of contamination would be best treated with membrane filtration.

As previously discussed, there are two types of membrane filters: ion-selective and water permeable. ED and EDR are the best ion-selective units. RO is the most suitable water permeable membrane for the FNGP, considering the large amounts mono- and divalent ions which need to be removed from the FNR discharge before it can be reused (Table 6.1). A preliminary comparison between the 3 alternatives indicated that RO, while more sensitive to fouling than both ED and EDR, generally produces the cleanest permeate of the 3 alternatives. Furthermore, despite the higher product water output with ED and EDR, RO units are simpler and easier to operate than ED and EDR. As a result, RO was chosen to be the best membrane filtration system.

A further argument to support the use of RO at the FNGP instead of ED or EDR concerns personal safety. As most of the equipment used in RO is already in use at this facility, plant personnel are already familiar with the potential dangers associated with RO (e.g. moving parts on pumps and valves, weakened pipes bursting...). On the other hand, the driving force in electrodialysis is electricity. The abundance of electrical current and highly conductive waters in, and potentially around, ED/EDR stacks is a definite health hazard, one that does not currently exist at the plant. So, while installing a RO filter is unlikely to introduce any new hazards into the FNGP, incorporating an ED or EDR unit into the ZED program would open plant personnel up to increased heath risks. Given the inherent advantages of RO over ED and EDR, it was selected as the most suitable treatment technology for the FNGP.

The RO membranes should themselves be of a spiral wound design, as this is the best of the available configurations (see Section 3.3.4). At this stage, it makes little difference if cellulose acetate of polyamide filters are used; they both provided the same level of treatment. When the final ZED treatment train is developed, filter type will become important, because it may influence the layout of the RO pretreatment system (see Section 3.3.4).

According to the literature, ZED plants generally dispose of RO concentrates in either evaporation ponds of by solidification (see Section 3.4). Evaporation ponds are only effective in climates where ambient air conditions encourage water evaporation. This is clearly not the case in Fort Nelson ($58^{\circ} \mathrm{N} \times 124^{\circ} \mathrm{W}$) for a better part of the year. Winter temperature are generally well below $0^{\circ} \mathrm{C}$, and winter can last from October to May. RO concentrates will have to be disposed of by a more active approach.

A brine concentrator followed up with a spray dryer or crystallizer seems to be the proven method for solidifying RO concentrates (see Section 3.4). Spray dryers produce a solid effluent, while waste products from a crystallizer still require some processing before they can be landfilled. The fine, powdery solids exiting a spray dryer can, however, be difficult to handle. Given the reassurance of manufacturers that this is not likely to be a problem in a properly designed system (RCC - personal com.), and their lower costs, spray dryers appear to be the more appropriate technology to follow-up a brine concentrator as part of the ZED program at the FNGP.

Instead of using a BCS (brine concentrator - spray dryer) assembly, RO concentrates can, as suggested by some Westcoast personnel, be disposed of in a deep well. In any case, re-evaluating the available literature reveals that the most appropriate technology from the FNGP would be a reverse osmosis filtration unit followed up with a BCS assembly or a deep well.

6.2 Available Options

The most suitable ZED technology for the FNGP has been previously identified as an RO filtration unit paired up with a waste disposal system consisting of either a BCS assembly or a deep
well. There are, however, a number of different ways of applying this technology. The available options include:

- using a 1,2 or multi-stage RO filtration system
andlor
- disposing of RO concentrates in a deep well
andlor
- disposing of RO concentrates with a BCS assembly
andlor
- replacing the ion-exchangers in the front-end softening system with nanofilters (NF) to reduce solid waste production (i.e. no longer adding the large quantities of sodium chloride used to regenerate the ion-exchangers into the water network)

Preliminary work with the computer simulator has also indicated that calcium, carbonate and sulphate concentrations in the FNR discharge flow are so high that, without adequate pretreatment, solids will precipitate onto the RO membranes. Furthermore, regardless of the extent of pretreatment, solids will continue to form in a RO system containing more than 2 successive filtering units. These findings led to the inclusion of a calcium-removal pretreatment step into the computer model, as well as the development of two additional ZED alternatives:

1) placing the RO filters and associated disposal equipment between the hot lime treater and the ion-exchangers, rather than downstream of the polishing pond.
and/or
2) RO technology is completely excluded from the ZED system, and only a BCS unit is used

With configuration (1), effluent from the polishing pond would flow directly into the hot lime treater, which is currently in operation only 1 out of every 2 or 3 days (Shang Su, personal com.).

Here it would mix with incoming raw water, and the combined mixture would pass into the RO assembly. The inherent advantage of this design is the use of the lime treater to partially soften the RO feedwaters, rather than building a new calcium removal process for this task.

As for option (2), the performance of a brine concentrator (B/C) is unaffected by the precipitation of calcium and magnesium salts. Instead of attaching to the sides of the vessel, solids precipitate onto seed particles introduced into the feed stream as it enters the B/C (Pankratz \& Johanson 1992, Bowlin \& Ludlum 1992). As a result, a B/C can operate effectively even with highly concentrated wastewaters, hence the original intention of using a B / C to treat RO concentrates.

Given the abundance of potential options, there are numerous ZED combinations available to the plant. Initial work with the simulator indicated that any RO filtration system would be limited to two stages and that calcium pretreatment would be necessary to prevent membrane fouling even in a 1-stage set-up. With these restrictions in mind, a variety of conceptual ZED-designs were developed.

6.3 Conceptual ZED Designs

Each ZED design was developed around the FNGP's water network as it is expected to perform when the 8 psi steam released from the deaerators is recaptured and reused. Eighteen different configurations were built, and they can be classified into one of two groups based on the relative position of the ZED equipment.

6.3.1 Back-end models

In these scenarios, the required ZED equipment was attached to the polishing pond. Recovered wastewater re-entered the water network through the front-end softening system. Ten back-end models were tested with the simulator. Four of them used 1-stage RO units, while another 4 simulations incorporated 2 -stage RO filtration. The remaining 2 designs did not contain any RO
membranes; they relied solely on a BCS assembly. All 10 scenarios can be loosely represented by the formula:
$\mathrm{I}-\mathrm{X}$ (ion-exchange) or NF softening +x -stage $\mathrm{RO}+\mathrm{BCS}$ or deep well disposal

6.3.2 Composite discharge designs

As opposed to the back-end models, composite discharge from the polishing pond now flowed directly into the hot lime treater, and then into downstream RO filters. Eight composite discharge solutions were developed. Four of them used 1 -stage RO filtration, while the other 4 contained a 2-stage RO process. The following equation symbolizes the different composite discharge options:

I-X or NF softening + direct effluent reuse +x -stage $\mathrm{RO}+\mathrm{BCS}$ or deep well disposal

No composite discharge/BCS-only configurations were built, since the basis for directly reusing polishing pond effluent was to circumvent the need for an external RO pretreatment train. As no RO technology was used in the BCS-only models, this premise became irrelevant. Figure 6.1 summarizes the basic structure of all 18 ZED designs.

Table 6.1: A chemical comparison of the treated water and Fort Nelson River (FNR) discharge flows.

Parameter	FNR discharge	Treated water
Total dissolved solids - mg / L	2744	279
Total organic carbon - mg / L	97.7	20.7
Inorganics:		
Chlorides - mg / L	627	2.4
Sulfates - $\mathrm{mg} \mathrm{SO} 4 / \mathrm{L}$	543	81.9
Silica - mg SiO $2 / \mathrm{L}$	5.2	0.9
Metals:		
Calcium $-\mathrm{mg} / \mathrm{L}$	146	1.4
Magnesium $-\mathrm{mg} / \mathrm{L}$	20.6	0.5
Sodium $-\mathrm{mg} / \mathrm{L}$	584	50.5

Softening technology

$$
=\text { not evaluated }
$$

$=$ brine concentrator + spray dryer
Figure 6.1: A graphic representation of the available ZED options

7.0 DESIGN EVALUATION

The 18 proposed ZED designs were previously described as either back-end or composite discharge models depending on the relative position of the installed ZED equipment. The presence or absence of a brine concentrator - spray dryer (BCS) assembly is, however, a more significant difference between the various conceptual configurations. Those solutions with a deep well in place of a BCS assembly can only transform the FNGP into a ZED facility in the strict sense that there will no longer a surface discharge from the plant to the FNR; the water network will, however, continue to generate a liquid waste, which will be disposed of as a liquid. The water loop will never be completely closed, unlike the BCS models which will generate a solid waste. The only water that will escape from a BCS design will be waste steam vented from the spray dryer. Given this fundamental difference between the 18 ZED solutions, they were evaluated separately as either BCS or deep well designs. Factors used to determine which are the most effective ZED programs included cost, complexity, waste generation rates and calcium pretreatment requirements.

7.1 Simulator Performance

The computer simulator was, as previously detailed, originally constructed from the water flow and water chemistry data collected at the plant. The inputted data were then replaced with formulas, transforming the static model into a predictive tool. Preliminary work with the simulator identified various bugs in the system; it occasionally crashed or did not respond as expected. All of the equations and the layout of the model were reviewed and, if necessary corrected. The simulator was then repeatedly run through a series of simulations to examine if the problems had been properly addressed. This exercise was also used to ensure that the computer's projected image of the FNGP as a ZED facility was consistent over time and independent of previous simulations. Once the simulator passed through these tests without error, it was used to evaluate the 18 proposed ZED configurations summarized in Figure 6.1. At no time during the design evaluations were any major problems encountered. The program appeared to be bug free.

7,2 BCS Designs

7.2.1 Composite discharge models

The hot lime treater successfully removed enough calcium in all four composite discharge scenarios to circumvent the need to build a calcium removal process upstream of the RO filters (Table 7.1). Product water quality from each ZED assembly was such that, when all four systems were in full recycle, downstream softeners were no longer required. The ion-exchangers were subsequently dropped from their respective simulations (Table 7.1). The nanofilters remained in place, since they removed more than just calcium and magnesium.

Using in-situ equipment to pretreat RO feedwaters required significant alterations to the existing water network (e.g. Fig. 7.1). Much larger RO and BCS units were used in all 4 composite discharge solutions compared to the simpler back-end models (Table 7.1). They were, as a result, among the most expensive of the available scenarios (Table 7.1). The composite discharge simulations also produced more waste steam than many of the other designs and roughly equivalent amounts of solid waste (Table 7.1). As there are no significant cost or waste savings inherent in any of the 4 complex composite discharge configurations, compared to the other available options, none of them appear to be particularly well suited for the FNGP.

7.2.2 Back-end solutions: Ion-exchange vs. nanofiltration

In all 3 back-end categories (i.e. 1-stage RO, 2-stage RO and BCS-only), the scenarios containing nanofilter (NF) were at times almost identical to their respective ion-exchange (I-X) counterparts. Both models generally possessed the same size RO and/or BCS systems and produced equal volumes of waste steam, regardless of whether the ZED equipment had just been attached or reclaimed wastewater was being recycled (Table 7.1). Calcium pretreatment demands of the 1 -stage $\mathrm{RO} / \mathrm{NF}$ configuration were also equivalent to those of the 1 -stage $\mathrm{RO} / \mathrm{I}-\mathrm{X}$ option (Table 7.1). This was not the case in the 2 -stage RO designs; the "NF" scenario continually required more calcium to be removed from RO feedwaters than its "I-X" alternative (Table 7.1).

There were other trends in the "I-X" and "NF" solutions which were common to all 3 groups. The "NF" options were always more expensive than the opposing "I-X" designs, due to the capital costs associated with replacing the existing ion-exchangers with nanofilters (Table 7.1). Because the front-end treatment network had to be altered to install the NF vessels (Fig. 7.2), the "NF" configurations would in reality be harder to assemble and slightly more complex to operate than their respective "I-X" alternatives. The "NF" simulations did, on the other hand, generate less solid waste than the "I-X" systems (Table 7.1).

Before reclaimed wastewater was recirculated back through the plant, the difference in solid waste generation rates were significant. The "NF" models initially produced less than $2 / 3$ of the total waste output of their respective "I-X" counterparts (Table 7.1). These savings dropped to around 13% in both of the RO simulations after the water loops were closed (Table 7.1). The difference between the BCS-only scenarios remained above 28% (Table 7.1).

With respect to the 4 RO designs, neither "NF" configuration illustrated.significant, sustained gains which would have suggested that they were more suitable to the FNGP than their respective "I-X" alternatives. Both "NF" systems were more expensive, more complex and, at least in the case of the 2-stage RO/NF simulations, more delicate (as illustrated by higher pretreatment demands) than either RO/I-X option (Table 7.1). Their respective BCS units produced near identical amounts of waste steam (Table 7.1). Initial solid waste savings quickly fell to only a 13 \% margin of difference once wastewater recycling had started (Table 7.1). Neither RO/NF model is the best ZED design available to the FNGP.

All of the finding summarized in the last paragraph also apply to the BCS/NF scenario, except for solid waste output. This configuration, as stated above, continually generated less solid waste than the BCS/I-X option. Until disposal costs are properly assessed, the value of reduced wasting rates remains unclear. As such, all 3 "I-X" solutions were still deemed to be more efficient that their "NF" counterparts.

7.2.3 Best of the back-end ion-exchangers

Cost and complexity: The BCS-only model was the simplest of the available configurations (Table 7.1). It contained the shortest ZED treatment system; wastewater reclamation occurred in a single vessel (Fig. 7.3), rather than in a series of separate units (Fig. 7.4), and pretreatment will likely be limited to deaeration and pH adjustments (Fig. 7.3), instead of multiple pre-filters, pH adjustments, anti-scalant addition and possibly chlorination and/or dechlorination (Fig. 7.4). The brine concentrator (B / C) was, however, the most expensive component of any BCS design (Appendix G). The BCS-only scenario contained the largest B / C of the three "I-X" options (Table 7.1). As a result, the simplest ZED configuration was also the most expensive (Table 7.1).

Using a 2-stage RO unit in place of a "1-stage" process increased the complexity of the overall water network. Additional pumps, pipes and pH adjustment stations were required to support the second set of membrane filters (Fig. 7.5 vs . Fig. 7.6). The resulting wastewater flow path was longer and more complicated than in either the 1 -stage RO or BCS-only configurations. On the other hand, adding the second stage cut the flow of RO concentrates to the B / C by 10% (Table 7.1). The monetary savings of using a smaller B / C were such that the 2 -stage $R O$ design was slightly cheaper than its "1-stage" counterpart (Table 7.1).

It appears that the more complex the option, the cheaper its overall capital cost. Both RO designs were cheaper than the simplest ZED scenario, the BCS-only/I-X model. The more complex 2 -stage RO simulation was similarly cheaper than the simpler RO alternative.

Waste generation rates: Steam losses from the ZED equipment were proportional to the size of the B/C. As such, the BCS-only model generated the most waste steam, while the 2 -stage RO simulations produced the least (Table 7.1).

Solid waste production followed a similar trend. The BCS-only scenario had the highest generation rates of the back-end/I-X solutions (Table 7.1). The 2 -stage RO design produced less solid waste than its "1-stage" counterpart, although the difference between the two configurations
was less than 5% (Table 7.1). While the BCS-only scenario continually generated the most solid and steam waste, and the two RO models had near identical solid waste production rates, the 2stage RO design always vented less steam than the 1 -stage RO alternative.

Robustness and treated water quality: Although the robustness of a B / C has already been discussed as it pertains to pretreatment requirements, it is the cleaning ability of each ZED system that is now being evaluated. Robustness, within this context, was assessed by observing fluctuation in product and treated water quality that occurred when given contaminant concentrations in either the raw water inflow or effluent plant outflow were changed; product water, or reclaimed wastewater, refers to water produced by the ZED equipment, while treated water is softened water leaving the FESs. Prior to any alterations, the BCS model contained the cleanest product and treated waters, followed, in order, by the 1 -stage and 2 -stage RO scenarios (Tables $7.2 \& 7.3$).

When different contaminant concentrations were doubled, reclaimed wastewater and treated water quality in the BCS-only configuration generally changed the least (Tables $7.2 \& 7.3$). The cleaning ability of this process was perhaps best demonstrated when chloride and dissolved organic carbon (DOC) levels were increased. Although these changes resulted in significant increases in the abundance of both chloride and DOC in both RO designs, there was no observed deterioration in treated water quality in the BCS-only scenario (Table 7.3). Not only did the BCSonly system initially produce the cleanest water, it also proved to be the most robust of the three back-end/I-X options.

The fragility of the 2 -stage RO model was illustrated by its calcium pretreatment requirements. Whenever calcium, sulfate or alkalinity levels were raised, the risk of membrane fouling increased, so more calcium had to be removed in the pretreatment train (Table 7.2). The 1-stage RO design did not show the same susceptibility to salt precipitation. When the water loop was first closed, calcium pretreatment was no longer necessary (Table 7.1). An observation not mirrored in the 2stage alternative (Table 7.1). Subsequent changes to raw water or effluent plant chemistry rarely
resulted in the reinstatement of a calcium removal step (Table 7.2). The probability of salt precipitating in the 2 -stage RO membranes was much higher than in the 1 -stage RO vessels, illustrating the relative fragility of this system compared to its more resilient "1-stage" counterpart.

Aside from being more delicate than the 1 -stage RO system, the 2 -stage RO configuration tended to produce the lowest quality recycled and treated waters of the three ZED options (Tables $7.2 \& 7.3$). Chloride and DOC levels in the treated water were, even before any chemical alterations were made, well above current concentrations (Table 7.3). Furthermore, although some chemical manipulations caused larger relative shifts in the "1-stage RO" waters, the 1 -stage RO solution always contained product and treated waters of equal or better quality than its 2-stage RO alternative (Tables $7.2 \& 7.3$). While the BCS-only design continually produced the highest quality waters regardless of changing water chemistry, the 1 -stage RO configuration was more resilient, and generated cleaner waters, than its " 2 -stage" counterpart.

Best design: The 1 -stage RO design was less complex and more robust than the 2 -stage RO. scenario (Tables 7.1, $7.2 \& 7.3$). Treated and recycled water quality were similarly better in the $1-$ stage RO simulation (Tables $7.2 \& 7.3$). The two RO systems generated roughly equivalent amounts of solid waste, although steam losses were higher in the 1 -stage RO solution (Table 7.1). The 2-stage RO option was also found to be $\$ 40000$ cheaper that the 1 -stage RO alternative, since it used a smaller BCS unit (Table 7.1). This was an odd finding as one would have expected a two stage RO unit to cost substantially more than a single stage RO filter. In light of the possibly questionable monetary savings associated with the more delicate and complex 2-stage RO simulation, the 1 -stage RO model seems to be the better RO design.

Choosing the "best" ZED design for the FNGP thus comes down to the relative importance of cost, as both the 1 -stage RO and BCS-only configurations performed successfully. The BCS-only scenario had the higher capital costs (Table 7.1). It was, on the other hand, simpler and more robust than the 1 -stage RO simulation (Tables $7.1,7.2 \& 7.3$). The BCS-only solution also produced better quality recycled water than the 1 -stage RO alternative (Table 7.2), which lead to
the observed larger solid waste generation rates (i.e. all contaminants stripped from reclaimed wastewater were released as a solid, so the cleaner the product water, the larger the mass of removed solids) (Table 7.1). It was impossible to predict how solid waste output and recycled water quality might affect the operating costs of these two ZED options. Therefore, within the limits of this study, it was impossible to determine which of the two configurations is the best ZED system for the FNGP. Only further research, encompassing both bench-scale and pilot plant experiments, will reveal which is the better design.

7.2.4 Conclusion

Ten BCS ZED scenarios were originally developed and evaluated. The 4 composite discharge configurations proved to be extremely bulky and complex. They were more expensive and less effective that the other 6 back-end models. None of these options were deemed to be appropriate for the FNGP.

In 3 of the back-end designs, the existing ion-exchangers were replaced with nanofilters. Due to the installation costs of these new softeners, all of the "NF" scenarios were more.expensive than their respective "I-X" counterparts. There were few, if any, benefits incurred from changing softeners that justified their relatively high costs. They were subsequently eliminated from the selection process.

Comparisons between the 3 remaining ion-exchange solutions revealed that the 2 -stage RO configurations was complex, fragile and produced relatively poor quality recycled water. The 1stage RO scenario, while a better choice than its " 2 -stage" counterpart, was less robust and more complicated than the BCS-only simulation. On the other hand, it was cheaper than the BCS-only system, and, with adequate pretreatment, would be just as successful at closing off the plant as the BCS-only design. Further research is needed to determine which of the two configurations, the 1 stage RO or the BCS-only option, is the best ZED system for the FNGP.

7.3 Deep Well Configurations

7.3.1 Composite discharge designs

Similar to the trends observed in the BCS designs, the deep well composite discharge configurations used much larger ZED equipment than any of the back-end scenarios (Table 7.4). They were more complex than the back-end systems, and they produced far more wastewater than their back-end counterparts (Table 7.4). The sole advantage of directly reusing the polishing pond outflow waters was the elimination of an external calcium removal process (Table 7.4). Using insitu equipment for RO pretreatment did not, however, translate into substantial cost reductions. Due to the size of the RO units required by these designs, the composite discharge solutions were far more expensive than either back-end/I-X option (Table 7.4). Even though the two composite discharge/I-X scenarios were cheaper than the back-end/NF alternatives (Table 7.4), all 4 composite discharge models were dismissed as possible ZED designs for the FNGP.

7.3.2 Back-end solutions: Ion-exchange vs. nanofiltration

RO feedwater and concentrate flows differed by at most 7% between the back-end/NF configurations and their respective "I-X" counterparts (Table 7.4). The "NF" models were more complex and expensive than either "I-X" solution (Table 7.4). As there were no immediate benefits to replacing the existing ion-exchangers with nanofilters, neither back-end/NF design appeared to be the best ZED solution available to the FNGP.

7.3.3 Best of the back-end ion-exchangers

Cost and complexity: The 1 -stage RO design was cheaper than its " 2 -stage" counterpart (Table 7.4). As previously indicated, expanding a RO unit to include a second set of filters increased the complexity of the resulting water network. The 2 -stage RO solution was, therefore, the more complicated and expensive of the two options (Table 7.4).

It is important to note that this price comparison was, as were all deep well cost analyses, limited to the capital costs of the RO membranes and associated supportive equipment (Appendix G). The cost of a deep well was assumed to be independent of the ZED configuration.

Waste generation rates: The 2 -stage RO simulation operated at a wastewater recovery rate of 60%, while the 1 -stage RO solution was limited to 50% (Appendix F). Not surprisingly, the 1stage RO system discharged more liquid waste to the deep well than the 2 -stage RO model (Table 7.4).

Robustness: A ZED system's robustness was tested, as explained earlier, by doubling the concentrations of different constituents in the raw and effluent plant outflow waters, and observing the resulting changes in recycled and treated water quality. Prior to any alterations, the 1 -stage RO simulation contained the better quality product and treated waters (Tables $7.5 \& 7.6$). It continued to contain the cleaner waters when contaminant levels were changed (Tables $7.5 \& 7.6$). The 1 stage RO option was the more robust of the two deep well solutions; it produced better quality recycled and treated waters than its " 2 -stage" counterpart regardless of the changes in water chemistry elsewhere in the system.

Best design: The 1 -stage RO design was the better of the two ion-exchange scenarios. It was not only cheaper and simpler than the 2-stage RO option (Table 7.4), it was also produced higher quality treated and recycled water than the " 2 -stage" alternative (Tables $7.5 \& 7.6$). The only disadvantage of the 1 -stage RO system was its higher wastewater production rates (Table 7.4), yet, given its many inherent advantages over the other deep well ZED simulations, the 1 -stage RO configuration is felt to be the best deep well solution for the FNGP.

7.3.4 Conclusion

Eight deep well models were developed and evaluated with the computer simulator. The 4 composite discharge configurations were too bulky, complex and expensive compared to the other available options. The back-end simulations with nanofilters in place of existing ion-exchangers
were similarly eliminated as possible ZED solutions, as they were more complex, costly and had higher pretreatment demands than the " $\mathrm{I}-\mathrm{X}$ " alternatives.

Of the two remaining scenarios, the 1 -stage back-end RO system was cheaper, more robust and simpler than its "2-stage" counterpart. The 1 -stage RO simulation also produced the higher quality recycled and treated waters of the two models. The only advantage of the 2 -stage RO configurations was its smaller wastewater stream. In any case, the 1 -stage back-end RO design appears to be the best of the deep well options available to FNGP.

7.4 Evaluation Summary

Information from the available literature, combined with suggestions from Westcoast personnel and the data collected from the plant, indicated that the FNGP could achieve ZED by a number of different treatment configurations. A computer simulator was built to evaluate the effectiveness of each option. The 18 original scenarios were sub-divided into 2 categories based on their final disposal technology. Each ZED program was then tested, and the resulting output compared to that from the other designs within the group.

The best BCS systems were the back-end, 1-stage RO and BCS-only models, which maintained an ion-exchanger in the plant's front-end softening system. They were both more robust, cost effective and simpler than the alternatives. The 1-stage RO scenario would cost around $\$ 1.61$ million US dollars, while the BCS-only configuration has a price tag of around $\$ 1.79$ million US dollars.

As for the deep well designs, the best option was the back-end, 1-stage RO unit with an ionexchanger in the raw water softening system. This model was more efficient and less complex than the other deep well configurations. The 1 -stage RO system would cost approximately \$101 700 US dollars, excluding the cost of the deep well.

It is important to note that within every test run, it was assumed that the 8 psi steam now venting off of the deaerators was recaptured and reused elsewhere in the water system. The cost
analyses reported herein were also very rudimentary in nature. They were developed from RO, NF, BCS, multi-media filter and ion-exchange unit capital costs (Appendix G); operating costs were not assessed. Given the preliminary nature of this study, the reported cost estimates should be sufficient for Westcoast personnel to decide if a ZED program for the FNGP is economically viable and which of the evaluated design to pursue.
Table 7.1: Comparison of the 10 selected BCS ZED designs. Values are shown for both initial conditions and full wastewater recycling, with the latter in parentheses.

Evaluation criteria	Back-end models						Composite discharge			
	$\underset{\mathrm{I}-\mathrm{X}}{\text { 1-stage RO }} \underset{\mathrm{NF}}{\text { R }}$		$\underset{\text { I-X }}{\text { 2-stage RO }}$		$\underset{\mathrm{I}-\mathrm{X}}{\mathrm{BCS}-o n l y} \underset{\mathrm{NF}}{ }$		$\underset{I-X^{\mathrm{a}}}{\text { 1-stage RO }} \underset{\mathrm{NF}}{\mathrm{~N}}$		2-stage RO	
Feedwater flows ($\mathrm{m}^{3} /$ day)										
RO	$\begin{gathered} 282 \\ (240) \end{gathered}$	$\begin{gathered} 279 \\ (225) \end{gathered}$	$\begin{gathered} 282 \\ (244) \end{gathered}$	$\begin{gathered} 279 \\ (225) \end{gathered}$	-	-	$\begin{gathered} 539 \\ (538) \end{gathered}$	$\begin{gathered} 517 \\ (514) \end{gathered}$	$\begin{gathered} 546 \\ (529) \end{gathered}$	$\begin{gathered} 520 \\ (509) \end{gathered}$
B/C	$\begin{gathered} 141 \\ (120) \end{gathered}$	$\begin{gathered} 140 \\ (112) \end{gathered}$	$\begin{gathered} 113 \\ (97.6) \end{gathered}$	$\begin{gathered} 112 \\ (90.0) \end{gathered}$	$\begin{gathered} 282 \\ (235) \end{gathered}$	$\begin{gathered} 279 \\ (238) \end{gathered}$	$\begin{gathered} 269 \\ (269) \end{gathered}$	$\begin{gathered} 259 \\ (257) \end{gathered}$	$\begin{gathered} 219 \\ (132) \end{gathered}$	$\begin{gathered} 208 \\ (127) \end{gathered}$
Waste generation rates										
Steam ($\mathrm{m}^{3} /$ day)	$\begin{gathered} 14.1 \\ (12.0) \end{gathered}$	$\begin{gathered} 14.0 \\ (11.2) \end{gathered}$	$\begin{aligned} & 11.3 \\ & (9.8) \end{aligned}$	$\begin{aligned} & 11.2 \\ & (9.0) \end{aligned}$	$\begin{gathered} 28.2 \\ (23.5) \end{gathered}$	$\begin{gathered} 27.9 \\ (23.8) \end{gathered}$	$\begin{gathered} 26.9 \\ (26.9) \end{gathered}$	$\begin{gathered} 25.7 \\ (25.7) \end{gathered}$	$\begin{gathered} 21.9 \\ (13.2) \end{gathered}$	$\begin{gathered} 20.8 \\ (12.7) \end{gathered}$
Soilds (kg/day)	$\begin{gathered} 415 \\ (233) \end{gathered}$	$\begin{gathered} 256 \\ (203) \end{gathered}$	$\begin{gathered} 398 \\ (230) \end{gathered}$	$\begin{gathered} 246 \\ (200) \end{gathered}$	$\begin{gathered} 453 \\ (313) \end{gathered}$	$\begin{gathered} 287 \\ (225) \end{gathered}$	$\begin{gathered} 411 \\ (200) \end{gathered}$	$\begin{gathered} 407 \\ (200) \end{gathered}$	$\begin{gathered} 397 \\ (195) \end{gathered}$	$\begin{gathered} 393 \\ (196) \end{gathered}$
Calcium pretreatment (mg / L)										
	$\begin{aligned} & 53 \\ & (0) \end{aligned}$	$\begin{aligned} & 50 \\ & (0) \end{aligned}$	$\begin{aligned} & 68 \\ & (6) \end{aligned}$	$\begin{gathered} 75 \\ (17) \end{gathered}$	-	-	$\begin{gathered} 0 \\ (0) \end{gathered}$			
Cost (million US dollars) ${ }^{\text {b }}$										
	1.61	1.73	1.57	1.69	1.79	1.91	1.85	1.95	1.77	1.87

Table 7.1 (con't)

a When reclaimed wastewater was recycing, ion-exchangers dropped from simulation
b see Appendix G for calculations
Table 7.2: Changes in RO and B / C feedwater flows, calcium pretreatment demands and product water quality, in the 1 -stage RO, 2 stage RO and BCS-only back-end, BCS, ion-exchange configurations, triggered by given alterations in raw water and effluent plant outflow chemistry.

Chemical change	Model	Calcium pretreat (mg/L)	$\underset{\substack{\text { ROed flow } \\\left(\mathrm{m}^{3} / \mathrm{day}\right)}}{\substack{\text { fay }}}$	$\begin{gathered} \text { B/C } \\ \text { feed flow } \\ \left(\mathrm{m}^{3} / \mathrm{day}\right) \end{gathered}$	Calcium (mg / L)	Recove Magnesium (mg/L)	ed water ch Sulphate (mg / L)	mistry Chloride (mg / L)	$\begin{gathered} \text { DOC } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$
No changes									
	1 -stage RO	0.0	240	120	1.3	0.2	5.8	7.9	9.7
	2-stage RO	5.6	244	97.6	2.3	0.5	11.4	15.7	19.0
	BCS-only			232	7.2×10^{-3}	1.3×10^{-3}	3.1×10^{-2}	3.7×10^{-2}	9.9×10^{-3}
Raw water									
- doubled Ca \& $\mathrm{Mg}^{\text {a }}$									
	1 -stage RO	0.0	$\begin{aligned} & 266 \\ & 11 \% \end{aligned}$	$\begin{gathered} 132 \\ 11 \% \end{gathered}$	$\begin{gathered} 1.9 \\ 47 \% \end{gathered}$	$\begin{gathered} 41 \% \end{gathered}$	$\begin{aligned} & 5.3 \\ & -9 \% \end{aligned}$	$\begin{aligned} & 20.3 \\ & 157 \% \end{aligned}$	$\begin{aligned} & 8.8 \\ & -9 \% \end{aligned}$
	2-stage RO	$\begin{aligned} & 27.6 \\ & 392 \% \end{aligned}$	$\begin{aligned} & 271 \\ & 11 \% \end{aligned}$	$\begin{aligned} & 108 \\ & 11 \% \end{aligned}$	$\begin{aligned} & 2.5 \\ & .8 \% \end{aligned}$	$\begin{aligned} & 0.5 \\ & 8 \% \end{aligned}$	${ }_{-9 \%}^{10.3}$	$\begin{aligned} & 38.3 \\ & 144 \% \end{aligned}$	$\begin{gathered} 17.2 \\ -10 \% \end{gathered}$
	BCS only	-	-	$\begin{aligned} & 255 \\ & 10 \% \end{aligned}$	$\begin{gathered} 1.1 \times 10^{-2} \\ 51 \% \end{gathered}$	$\begin{gathered} 1.6 \times 10^{-3} \\ 23 \% \end{gathered}$	$\begin{gathered} 2.8 \times 10^{-2} \\ -8 \% \end{gathered}$	$\begin{gathered} 7.1 \times 10^{-2} \\ 92 \% \end{gathered}$	9.1×10^{-3}
- doubled SO_{4} \& T. Alk. ${ }^{\text {a }}$									
	1 -stage RO	0.0	$\begin{gathered} 24 \% \\ 3 \% \end{gathered}$	$\begin{aligned} & 123 \\ & 3 \% \end{aligned}$	$\begin{aligned} & 1.3 \\ & -2 \% \end{aligned}$	$\begin{aligned} & 0.2 \\ & 16 \% \end{aligned}$	$\begin{aligned} & 7.2 \\ & 24 \% \end{aligned}$	$\begin{aligned} & 7.8 \\ & -1 \% \end{aligned}$	$\begin{aligned} & 9.5 \\ & -2 \% \end{aligned}$
	2-stage RO	$\begin{aligned} & 13.8 \\ & 147 \% \end{aligned}$	$\begin{aligned} & 250 \\ & 3 \% \end{aligned}$	$\begin{aligned} & 100 \\ & 3 \% \end{aligned}$	$\begin{gathered} 1.9 \\ -19 \% \end{gathered}$	$\begin{gathered} 0.4 \\ -11 \% \end{gathered}$	$\begin{aligned} & 14.1 \\ & 24 \% \end{aligned}$	$\begin{aligned} & 15.4 \\ & -2 \% \end{aligned}$	$\begin{aligned} & 18.6 \\ & -2 \% \end{aligned}$
	BCS only	-	-	$\begin{gathered} 232 \\ 0 \% \end{gathered}$	$\underset{2 \%}{7.3 \times 10^{-3}}$	$\underset{1 \%}{1.3 \times 10^{-3}}$	$\begin{gathered} 4.0 \times 10^{-2} \\ 31 \% \end{gathered}$	$\begin{gathered} 2.1 \times 10^{-2} \\ 44 \% \end{gathered}$	$\begin{gathered} 1.0 \times 10^{-2} \\ 1 \% \end{gathered}$

Table 7.2 (con't)

Chemical change	Model	Calcium pretreat $(\mathrm{mg} / \mathrm{L})$	RO feed flow $\left(\mathrm{m}^{3} / \mathrm{day}\right)$	B/C feed flow $(\mathrm{m} 3 / \mathrm{day})$	Calcium $(\mathrm{mg} / \mathrm{L})$	Recovered water chemistry Magnesium $(\mathrm{mg} / \mathrm{L})$	Sulphate $(\mathrm{mg} / \mathrm{L})$	Chloride $(\mathrm{mg} / \mathrm{L})$
E/P outflow								
- doubled Ca \& Mga								
(mg/L)								

Table 7.2 (con't)

Chemical change	Model	Calcium pretreat (mg / L)	$\begin{gathered} \text { RO } \\ \text { feed flow } \\ \left(\mathrm{m}^{3} / \text { day }\right) \end{gathered}$	$\begin{gathered} B / C \\ \text { feed flow } \\ \left(\mathrm{m}^{3} / \text { day }\right) \end{gathered}$	Calcium (mg/L)	Recove Magnesium (mg/L)	d water ch Sulphate (mg / L)	mistry Chloride (mg/L)	$\begin{gathered} \mathrm{DOC} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$
E/P outflow									
- doubled Cla									
	1-stage RO	0.0	$\begin{gathered} 240 \\ 0 \% \end{gathered}$	$\begin{gathered} 120 \\ 0 \% \end{gathered}$	1.3	$\begin{aligned} & 0.2 \\ & 19 \% \end{aligned}$	$\begin{aligned} & 5.8 \\ & 0 \% \end{aligned}$	12.0	$\begin{gathered} 9.8 \\ 1 \% \end{gathered}$
	2-stage RO	$\begin{aligned} & 5.4 \\ & -4 \% \end{aligned}$	$\begin{gathered} 245 \\ 0 \% \end{gathered}$	$\begin{gathered} 98.0 \\ 0 \% \end{gathered}$	$\begin{gathered} 2.3 \\ -1 \% \end{gathered}$	$\begin{aligned} & 0.5 \\ & -9 \% \end{aligned}$	$\begin{gathered} 11.4 \\ 0 \% \end{gathered}$	$\begin{gathered} 23.5 \\ 50 \% \end{gathered}$	$\begin{gathered} 19.0 \\ 0 \% \end{gathered}$
	BCS only	-	-	$\begin{gathered} 232 \\ 0 \% \end{gathered}$	$\begin{gathered} 7.3 \times 10^{-3} \\ 2 \% \end{gathered}$	$\begin{gathered} 1.3 \times 10^{-3} \\ 2 \% \end{gathered}$	$\begin{gathered} 3.1 \times 10^{-2} \\ 2 \% \end{gathered}$	$\begin{gathered} 4.8 \times 10^{-2} \\ 30 \% \end{gathered}$	$\begin{gathered} 1.0 \times 10^{-2} \\ 1 \% \end{gathered}$

${ }^{\mathrm{a}} \mathrm{Ca}=$ calcium, $\mathrm{Mg}=$ magnesium, $\mathrm{SO}_{4}=$ sulphate, $\mathrm{T} . \mathrm{Alk} .=$ total alkalinity, $\mathrm{Cl}=$ cloride, $\mathrm{DOC}=$ dissolved organic carbon

Table 7.3: Changes in treated water quality, in the 1 -stage RO, 2 -stage RO and BCS-only backend, BCS, ion-exchange configurations, triggered by given alterations in raw water and effluent plant outflow chemistry.

| Chemical
 change | Model | Sulphate
 $(\mathrm{mg} / \mathrm{L})$ | Treated water chemistrya
 Sodium
 $(\mathrm{mg} / \mathrm{L})$ | Chloride
 $(\mathrm{mg} / \mathrm{L})$ | DOC
 $(\mathrm{mg} / \mathrm{L})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | | Total CO3 |
| :---: |
| $(\mathrm{mol} / \mathrm{L})$ |

Raw water

- doubled $\mathrm{Ca} \& \mathrm{Mg}^{\text {b }}$

1-stage RO	24.3	52.6	9.9	5.8	4.7×10^{-4}
	-4%	217%	135%	-4%	30%
2-stage RO	26.1	59.6	18.3	8.7	4.7×10^{-4}
	-4%	162%	140%	-4%	13%
BCS-only	24.3	60.6	0.9	2.6	4.7×10^{-4}
	-3%	134%	-5%	-4%	0%

- doubled $\mathrm{SO}_{4} \& ~ T . ~ A l k .{ }^{\text {b }}$

1-stage RO	47.8	16.5	4.1	6.0	1.3×10^{-3}
	89%	-1%	-2%	-1%	256%
2-stage RO	49.8	22.7	7.5	9.0	1.3×10^{-3}
	83%	0%	-1%	-1%	220%
BCS-only	49.5	10.7	0.9	2.7	7.5×10^{-4}
	98%	-59%	-5%	0%	57%

E/P outflow

- doubled $\mathrm{Ca} \& \mathrm{Mg}^{\text {b }}$

1-stage RO	25.3	16.6	4.1	6.0	3.45×10^{-4}
	0%	0%	-1%	0%	-4%
2-stage RO	27.2	22.8	7.6	9.1	4.1×10^{-4}
	0%	0%	-1%	0%	-2%
BCS-only	25.0	25.9	0.9	2.7	4.7×10^{-4}
	0%	0%	-4%	0%	0%

Table 7.3 (con't)
$\left.\begin{array}{cccccc}\hline \begin{array}{c}\text { Chemical } \\ \text { change }\end{array} & \text { Model } & \begin{array}{c}\text { Sulphate } \\ (\mathrm{mg} / \mathrm{L})\end{array} & \begin{array}{c}\text { Sodium } \\ (\mathrm{mg} / \mathrm{L})\end{array} & \begin{array}{c}\text { Treated water chemistrya } \\ \text { Chloride } \\ (\mathrm{mg} / \mathrm{L})\end{array} & \begin{array}{c}\text { DOC } \\ (\mathrm{mg} / \mathrm{L})\end{array}\end{array} \begin{array}{c}\text { Total CO} \\ (\mathrm{mol} / \mathrm{L})\end{array}\right]$
${ }^{\text {a }}$ Calcium and magnesium treated water concentrations not shown since they were held at <1.4 and $0.5 \mathrm{mg} / \mathrm{L}$, repectively.
${ }^{\mathrm{b}} \mathrm{Ca}=$ calcium, $\mathrm{Mg}=$ magnesium, $\mathrm{SO}_{4}=$ sulphate, $\mathrm{T} . \mathrm{Alk} .=$ total alkalinity, $\mathrm{Cl}=$ cloride, Total $\mathrm{CO}_{3}=$ total carbonate content, $\mathrm{DOC}=$ dissolved organic carbon
Table 7.4: Comparison of the 8 selected deep well ZED designs. Values are shown for both initial conditions and full wastewater
recycling, with the latter in parentheses.

Evaluation criteria	Back-end models				Composite discharge			
	1-stage RO		2-stage RO		1-stage R O		2-stage RO	\mathbf{O}_{NF}
RO feedwater flows ($\mathrm{m}^{3} /$ day)								
	$\begin{aligned} & 282 \\ & (263) \end{aligned}$	$\begin{gathered} 279 \\ (246) \end{gathered}$	$\begin{gathered} 282 \\ (263) \end{gathered}$	$\begin{gathered} 279 \\ (246) \end{gathered}$	$\begin{gathered} 1.04 \times 10^{3} \\ \left(1.03 \times 10^{3}\right) \end{gathered}$	$\begin{gathered} 983 \\ (979) \end{gathered}$	$\begin{gathered} 780 \\ (691) \end{gathered}$	$\begin{gathered} 741 \\ (662) \end{gathered}$
Wastewater generation rates ($\mathrm{m}^{3} / \mathrm{day}$)								
	$\begin{gathered} 141 \\ (131) \end{gathered}$	$\begin{gathered} 140 \\ (123) \end{gathered}$	$\begin{gathered} 113 \\ (105) \end{gathered}$	$\begin{gathered} 112 \\ (98.4) \end{gathered}$	$\begin{gathered} 518 \\ (514) \end{gathered}$	$\begin{gathered} 491 \\ (490) \end{gathered}$	$\begin{gathered} 253 \\ (173) \end{gathered}$	$\begin{gathered} 241 \\ (166) \end{gathered}$
Calcium pretreatment (mg / L)								
	$\begin{gathered} 53 \\ (11) \end{gathered}$	$\begin{gathered} 50 \\ (21) \end{gathered}$	$\begin{gathered} 68 \\ (29) \end{gathered}$	$\begin{gathered} 75 \\ (40) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$			
	1.01	2.27	1.12	2.37	1.61	2.81	1.64	2.86

Table 7.4 (con't)

Evaluation criteria	Back-end models				Composite discharge			
	$\mathrm{I}-\mathrm{X}$	$\mathbf{R O}_{\mathbf{N F}}$	$\mathrm{I}-\mathrm{X}$	$\mathbf{R O}_{\mathbf{N F}}$	$\mathrm{I}-\mathrm{X}^{\text {-sta }}$	$\mathrm{RO}_{\mathrm{N}}^{\mathrm{F}}$	$I-X^{2-s t a g}$	$\mathrm{RO}_{\mathrm{NF}}$
Complexity								
	Simple	Relatively simple	Relatively simple	Moderate	Moderately complex	Complex	Moderately complex	Complex
	add	add	add	add	major	major	major	major
	1-stage RO	NF +	2-stage RO	NF +	changes to	changes to	changes to	changes to
	+	1-stage RO	+	2-stage RO	flow paths	flow paths	flow paths	flow paths
	deep well	\&	deep well	\&	+	+	+	+
		deep well		deep well	1 -stage RO \& deep well	1-RO, NF \& deep well	2-stage RO \& deep well	$\begin{gathered} \text { 2-RO, NF \& } \\ \text { deep well } \end{gathered}$

[^5]Table 7.5: Changes in RO feedwater flows, calcium pretreatment demands and product water quality, in both the 1 -stage and 2 -stage

Chemical change	Model	Calcium pretreat (mg/L)	$\begin{gathered} \text { RO } \\ \text { feed flow } \\ \left(\mathrm{m}^{3} / \text { day }\right) \end{gathered}$	Calcium (mg/L)	$\begin{aligned} & \text { Recove } \\ & \text { Magnesium } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	ed water Sulphate (mg/L)	mistry Chloride (mg/L)	$\begin{gathered} \text { DOC } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$
No changes								
	1-stage RO	10.8	131	3.0	0.5	12.4	26.3	17.5
	2-stage RO	29.5	105	3.3	0.8	20.1	40.0	28.9
Raw water								
- doubled Ca \& Mga								
	1-stage RO	49.4	158	3.4	0.7	10.8	64.6	14.6
		357\%	21\%	13\%	34\%	-13\%	146\%	-17\%
	2-stage RO	66.9	127	3.6	1.0	17.5	97.4	24.2
		127\%	20\%	10\%	29\%	-13\%	144\%	-16\%
- doubled SO_{4} \& T. Alk. ${ }^{\text {a }}$								
	1-stage RO	29.7	133	2.2	0.5	17.3	13.9	17.2
		175\%	1\%	-27\%	3\%	40\%	-47\%	-2\%
	2-stage RO	43.3	107	2.3	0.8	27.6	23.4	28.5
		47\%	1\%	-30\%	2\%	37\%	-41\%	-1\%
E/P outflow								
- doubled Ca \& Mga								
1-stage RO		34.0	131	3.0	0.8	12.4	26.4	17.5
		214\%	0\%	0\%	62\%	0\%	0\%	0\%

Table 7.5 (con't)

Chemical change	Model	Calcium pretreat (mg/L)	$\begin{gathered} \text { RO } \\ \substack{\text { feed flow } \\ \left(\mathrm{m}^{3} / \text { day }\right)} \end{gathered}$	Calcium (mg/L)	Recove Magnesium (mg / L)	ed water c Sulphate (mg/L)	mistry Chloride (mg/L)	$\begin{gathered} \text { DOC } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$
E/P outflow								
- doubled $\mathrm{Ca} \& \mathrm{Mg}\left(\right.$ con't) ${ }^{\text {a }}$								
	2-stage RO	$\begin{aligned} & 52.6 \\ & 78 \% \end{aligned}$	105	$\begin{aligned} & 3.3 \\ & 0 \% \end{aligned}$	$\begin{aligned} & 1.3 \\ & 62 \% \end{aligned}$	$\begin{gathered} 20.1 \\ 0 \% \end{gathered}$	$\begin{gathered} 40.3 \\ 1 \% \end{gathered}$	$\begin{gathered} 28.9 \\ 0 \% \end{gathered}$
- doubled SO_{4} \& T. Alk. ${ }^{\text {a }}$								
	1 -stage RO	$\begin{aligned} & 36.1 \\ & 235 \% \end{aligned}$	$\begin{aligned} & 129 \\ & -1 \% \end{aligned}$	$\begin{gathered} 2.0 \\ -33 \% \end{gathered}$	$\begin{gathered} 0.5 \\ 5 \% \end{gathered}$	$\begin{aligned} & 18.2 \\ & 46 \% \end{aligned}$	$\begin{aligned} & 20.8 \\ & -21 \% \end{aligned}$	$\begin{gathered} 17.7 \\ 1 \% \end{gathered}$
	2-stage RO	$\begin{aligned} & 50.4 \\ & 71 \% \end{aligned}$	$\begin{aligned} & 103 \\ & -3 \% \end{aligned}$	$\begin{gathered} 2.0 \\ -40 \% \end{gathered}$	$\begin{gathered} 0.8 \\ 5 \% \end{gathered}$	$\begin{aligned} & 30.3 \\ & 51 \% \end{aligned}$	$\begin{gathered} 24.1 \\ -40 \% \end{gathered}$	$\begin{gathered} 29.7 \\ 3 \% \end{gathered}$
- doubled DOC ${ }^{\text {a }}$								
	1-stage RO	$\begin{gathered} 10.8 \\ 0 \% \end{gathered}$	$\begin{gathered} 132 \\ 0 \% \end{gathered}$	$\begin{aligned} & 3.0 \\ & 0 \% \end{aligned}$	$\begin{aligned} & 0.5 \\ & 4 \% \end{aligned}$	$\begin{gathered} 12.4 \\ 0 \% \end{gathered}$	$\begin{gathered} 26.3 \\ 0 \% \end{gathered}$	$\begin{aligned} & 33.1 \\ & 89 \% \end{aligned}$
	2-stage RO	$\begin{gathered} 29.5 \\ 0 \% \end{gathered}$	$\begin{gathered} 106 \\ 1 \% \end{gathered}$	$\begin{aligned} & 3.3 \\ & 0 \% \end{aligned}$	$\begin{gathered} 0.8 \\ 2 \% \end{gathered}$	$\begin{gathered} 20.0 \\ 0 \% \end{gathered}$	$\begin{gathered} 39.8 \\ 0 \% \end{gathered}$	$\begin{aligned} & 54.7 \\ & 89 \% \end{aligned}$
- doubled $\mathrm{Cl}^{\text {a }}$								
	1-stage RO	$\begin{gathered} 10.8 \\ 0 \% \end{gathered}$	$\begin{gathered} 132 \\ 0 \% \end{gathered}$	3.0	$\begin{gathered} 0.5 \\ 4 \% \end{gathered}$	$\begin{gathered} 12.4 \\ 0 \% \end{gathered}$	$\begin{aligned} & 33.3 \\ & 27 \% \end{aligned}$	$\begin{gathered} 17.4 \\ 0 \% \end{gathered}$
	2-stage RO	$\begin{gathered} 29.5 \\ 0 \% \end{gathered}$	106	$\begin{gathered} 3.3 \\ 0 \% \end{gathered}$	$\begin{gathered} 0.8 \\ 3 \% \end{gathered}$	$\begin{gathered} 20.1 \\ 0 \% \end{gathered}$	$\begin{aligned} & 51.6 \\ & 29 \% \end{aligned}$	$\begin{gathered} 28.8 \\ 0 \% \end{gathered}$

[^6]Table 7.6: Changes in treated water quality, in both the 1 -stage and 2 -stage back-end RO, deepwell, ion-exchange configurations, triggered by given alterations in raw water and effluent plant outflow chemistry.

Chemical change	Model	Sulphate $(\mathrm{mg} / \mathrm{L})$	Sodium $(\mathrm{mg} / \mathrm{L})$	Chloride $(\mathrm{mg} / \mathrm{L})$		DOC
:---:						
$(\mathrm{mg} / \mathrm{L})$	\quad	Total CO				
:---:						
$(\mathrm{mol} / \mathrm{L})$						

No changes

Current system	$\mathbf{8 1 . 9}$	$\mathbf{5 0 . 5}$	$\mathbf{2 . 4}$	$\mathbf{6 . 1}$	$\mathbf{3 . 1} \times \mathbf{1 0}^{-4}$
1-stage RO	43.3	37.1	7.5	7.4	4.7×10^{-4}
2-stage RO	42.0	40.5	12.5	10.2	4.7×10^{-4}

Raw water

- doubled $\mathrm{Ca} \& \mathrm{Mg}^{\mathrm{b}}$

1-stage RO
2-stage RO

43.4	104
0%	180%

18.0

$$
\begin{aligned}
& 7.1 \\
& -4 \% \\
& 9.6 \\
& -6 \%
\end{aligned}
$$

141%
31.4 151\%
4.7×10^{-4}
4.7×10^{-4}
0%

- doubled $\mathrm{SO}_{4} \&$ T. Alk. ${ }^{\text {b }}$

1-stage RO	84.4	18.9	4.6	7.4	1.4×10^{-3}
	95%	-49%	-38%	0%	190%
2-stage RO	80.0	24.6	7.9	10.1	1.4×10^{-3}
	90%	-39%	-37%	-1%	187%

E/P outflow

- doubled $\mathrm{Ca} \& \mathrm{Mg}^{\mathrm{b}}$
1-stage RO
2-stage RO
$\mathrm{O}_{4} \&$ T. Alk.b

1-stage RO	44.6	28.8	6.2	7.4	4.7×10^{-4}
	3%	-22%	-17%	0%	0%
2-stage RO	44.7	24.8	7.9	10.3	2.5×10^{-4}
	7%	-39%	-37%	1%	-48%

37.3
0%
40.8
1%
7.6
1%
12.6
1%
7.4
0%
10.2
0%
4.7×10^{-4} 0%
4.7×10^{-4}

- doubled $\mathrm{SO}_{4} \&$ T. Alk. ${ }^{\text {b }}$
- doubled DOCb
1-stage RO
43.3
37.2
7.5
10.2
4.7×10^{-4}

Table 7.6 (con't)
$\left.\begin{array}{lccccc}\hline \begin{array}{c}\text { Chemical } \\ \text { change }\end{array} & \text { Model } & \begin{array}{c}\text { Sulphate } \\ (\mathrm{mg} / \mathrm{L})\end{array} & \begin{array}{c}\text { Sodium } \\ (\mathrm{mg} / \mathrm{L})\end{array} & \begin{array}{c}\text { Treated water chemistrya } \\ \text { Chloride } \\ (\mathrm{mg} / \mathrm{L})\end{array} & \begin{array}{c}\text { DOC } \\ (\mathrm{mg} / \mathrm{L})\end{array}\end{array} \begin{array}{c}\text { Total CO3 } \\ (\mathrm{mol} / \mathrm{L})\end{array}\right]$
a Calcium and magnesium treated water concentrations not shown since they were held at <1.4 and $0.5 \mathrm{mg} / \mathrm{L}$, repectively.
${ }^{\mathrm{b}} \mathrm{Ca}=$ calcium, $\mathrm{Mg}=$ magnesium, $\mathrm{SO}_{4}=$ sulphate, $\mathrm{T} . \mathrm{Alk} .=$ total alkalinity, $\mathrm{Cl}=$ cloride, Total $\mathrm{CO}_{3}=$ total carbonate content, $\mathrm{DOC}=$ dissolved organic carbon

Figure 7.1: An illustration of the projected flow patterns in a composite discharge, reverse osmosis

ZED system with nanofiltration softening

Figure 7.2: An illustration of the changes in equipment and flow patterns in a given ZED system using nanofiltration instead of ion-exchange softening.

Figure 7.3: An illustration of the projected flow patterns in a back-end, BCS-only ZED configuration.

Figure 7.4: An illustration of the projected flow patterns in a back-end, reverse osmosis

Figure 7.5: A simplified illustration of a 1-stage RO, BCS ZED system.

Figure 7.6: A simplified illustration of a 2-stage RO, BCS ZED system.

8.0 ZED IMPLEMENTATION AND IMPLICATIONS

The purpose of this section is to describe the sequential changes required at the FNGP to transform it into a ZED facility, and the rationale for, and/or consequences of, each step.

STEP 1: Check the accuracy of existing flow meters

The accuracy of some of the FNGP's flow meters has been called into question several times in this report. Specifically, the raw water inflow and treated water outflow meters on the FESs appeared to be mis-calibrated (see Section 5.2.1). Several Westcoast personnel have also indicated that the leak detected at the effluent plant may have been caused by incorrect flow readings instead of actual water losses (Bruce Kosugi, personal com.) These problems need to be investigated and, if necessary, corrected. An accurate and precise water monitoring system is vital to the ZED project. Only with such a system can the validity of the findings described herein be authenticated. Furthermore, one has to be able to properly assess water flow changes predicted to occur in Steps 2 through 7.

STEP 2: Reuse the 8 psi steam venting off of the deaerators

All of the 8 psi steam generated in the deaerators should be captured at its point of origin. If the hot lime treater is on, then the trapped 8 psi steam should be cooled with a counter-current heat exchanger using raw water heading into the hot lime treater. Using a heat exchanger to cool the 8 psi vapor will ensure that raw water temperatures reach required levels without having to inject 8 psi steam directly into the lime treater. When the lime treater is "off-line", the 8 psi steam should be converted to liquid in an air-cooled condenser; the same type that is already in place at the plant (E/F Manual). To maintain current raw water dilution rates, approximately $170 \mathrm{~m}^{3} /$ day of condensed 8 psi steam should flow into the hot lime treater when it is in operation. Remaining water should be returned to the hotwells for reuse as boiler feedwater.

Reusing the 8 psi steam will substantially reduce both the flow of wastewater and the flux of contaminants through the lime ponds, as well as the demand for treated water make-up (see Section
5.2.2). If this action were carried out in isolation and the plant's wastewater continued to be discharged to the FNR, the former result may cause permit non-compliance problems. Effluent from the lime pond is used to dilute outflow waters from the effluent plant. As the volume of available dilutant drops with 8 psi steam reuse, wastewater released to the FNR may no longer satisfy regulatory guidelines. Sealing the 8 psi steam leaks will reduce raw water demands and improve the efficiency of the existing water network, hence its importance to the ZED project. On its own, this action also has the potential to disrupt current discharge practices should the expected decrease in lime pond effluent trigger non-compliance of the plant's wastewater flow, should it continue to be discharged to the FNR.

STEP 3: Collect water flow and water chemistry data

Once the 8 psi vents have been sealed, plant personnel should collect water flow and chemical data to evaluate the validity of the simulator's predictions. If. the water network changes as expected, the system should continue to respond accordingly as ZED equipment is added. On the other hand, if the resulting flow patterns are significantly different from those predicted by the simulator, the model should be corrected and reworked to reassess the benefits of a ZED program.

STEP 4: Bench-scale and pilot-plant testing of pertinent ZED equipment

Small scale testing of ZED equipment, specifically RO membranes and a B/C, will allow for a true evaluation of the robustness and resilience of the available technology to produce clean water under field conditions. These experiments will also provide a better understanding of the required pretreatment trains and energy demands of each ZED process. The resulting data can then be used to evaluate the feasibility of proceeding to full scale ZED implementation.

STEP 5: Installation of a separate domestic feed pipe on the raw water pipeline

To prevent cross-contamination of domestic feedwaters with recycled wastewater a separate pipeline should be attached to the incoming raw water line. Raw water will then travel directly into the domestic system without contacting reclaimed effluent. Plant personnel have already identified
a connection valve on the existing system where the new feedline could be connected and the equipment necessary to set-up an independent domestic feed pipe (ZED Report).

STEP 6: Attach RO filters to the water network (if applicable)

Regardless of whether the chosen ZED design is a BCS or deep well RO configuration, it may be desirable to install the RO filtration system before either a deep well or BCS assembly is purchased or installed, and to operate the plant with only the RO units attached. RO technology is cheaper than the BCS and possibly a deep well. By running the plant with only the RO vessels attached, the plant can examine the potential effectiveness of a full-scale ZED program before larger amounts of capital are invested in the project. Furthermore, as indicated by the deep well ZED simulations, a smaller waste disposal system will be required if wastewater recycling starts with only the RO filters in place, since wastewater production rates will drop as soon as reclaimed wastewater begins to cycle back through the plant (Tables $7.1 \& 7.4$). . Starting the ZED process after installing only the RO technology should, therefore, highlight any potential limitations of a full-scale ZED program prior to purchasing the more costly final disposal equipment, as well as reduce the size and cost of these expensive systems.

Operating the FNGP without a means of disposing of RO concentrates on site will necessitate their discharge to the FNR. As the RO waste stream will be more concentrated than the current FNR discharge wastewater, a special temporary discharge permit may be required. Alternatively, RO concentrates could be diluted with raw water to meet current regulations, if they indeed prove to be too contaminated to be released on their own. The advantages of beginning the ZED program with only the RO equipment in place must be considered with due respect to potential RO concentrate disposal problems.

STEP 7: Install a BCS or deep well (whichever is appropriate)

Constructing a deep well will complete the transformation of the FNGP to a ZED system. Concerns about wastewater disposal now shift from the FNR to subsurface migration. ZED implies that no liquid waste will leave the FNGP. The deep well, therefore, has to be built to
ensure that contaminants transferred to the subsurface do not migrate off-site, a difficult and potentially expensive task.

Similarly, although a BCS assembly will produce a solid, rather than a liquid, waste, the waste stream will still require appropriate disposal. The generated solids will be water soluble; if they are left exposed to the elements, they will readily re-dissolve. Should the solid waste liquefy and drain into the FNR, the primary objective of the ZED project (to eliminate the flow of contaminants from the FNGP into the FNR) will not have been met. Furthermore, the discharge of previously solidified contaminants into the FNR may prove to be more harmful to the river's ecosystem than the plant's current, relatively inert outflow, since the collected waste would be carried into the river during infrequent rainfalls or snow melts. The flux of material entering the river would be much higher during these storm events than it is now. For these reasons, solid waste produced from a BCS ZED program cannot be stored in exposed above ground stock-piles.

Burying the solid waste may not, on its own, constitute a sufficient disposal mechanism. Water percolating through the cover layer will cause some of the underlying solids to dissolve. Unless the disposal pit has been adequately lined with an impermeable barrier, the nowcontaminated water will continue its downward migration until it encounters a groundwater flow and subsequently migrates off-site. As previously indicated, off-site migration of wastewater violates the principal of a ZED facility. Although, by regulatory standards, the solid waste generated in a BCS ZED system would not be a hazardous or special waste, it clearly must be handled and disposed of correctly because, if it re-dissolves and exits the FNGP compound, none of the original objectives of the ZED project will have been met.

Transforming the FNGP to a ZED facility is a relatively straight forward process. There are, however, consequences associated with such a conversion which must be considered. Final waste management is a critical issue. All the plant's wastewater is currently treated on-site and released to the FNR. Waste products from either a BCS or deep well ZED design would, on the other hand, need a far more stringent disposal system. Waste management would require the constant
attention of plant personnel as these wastes would be retained on site indefinitely, unlike currently treated wastewater.

9.0 POTENTIAL LIMITATIONS

The analyses described herein, from constructing water balances and identifying opportunities for optimization to developing a computer model and choosing the most suitable ZED design from the resulting simulations, are all ultimately based on the original water flow and water chemistry data collected at the plant. There are potential limitations to these data and the way in which they have been used which need to be considered. First and foremost, the data may not be totally representative of the true situation at the FNGP. Some of the data were derived from assumptions and calculations rather that from actual measurements. Furthermore, only average values were utilized in this investigation. These limitations, as well as those associated with the computer simulator and the ZED design selection process, are discussed below.

2.1 Non-Representative Numbers

9.1.1 Flow data

The flow data used to characterize the FNGP initially appeared to contain some unrealistic or non-representative values, as illustrated by large discrepancies between some metered and calculated flow numbers (e.g. Table 5.10). Replacing problematic metered data with calculated values eliminated most of the inconsistencies. Plant personnel have repeatedly reviewed the constructed water balances, and it is unlikely that any serious flaws continue to exist.

9.1.2 Chemical data

The inclusion of non-representative chemical values within this study is possible considering that several areas of the plant were incorrectly sampled or described by only one or two samples. A large number of inconsistencies were indeed observed in the initial mass balances (Tables 5.4 through 5.8). A re-examination of the water system indicated that water additives and other contaminating agents had been overlooked and that the characteristics of the mis-sampled waters could be estimated from information in several operational manuals at the plant. When the mass balances were reworked with this new data, a number of the earlier discrepancies disappeared.

The corrected data set seemed to adequately detail this facility's water chemistry. Further sampling and subsequent analyses will, however, be required to fully test this hypothesis.

9.2 Sample Variability

9.2.1 Water data

All water flows were expressed as daily averages, including inconsistent pathways such as blowdowns from the boilers, ion-exchangers and hot lime treater. This transformation was necessary for the construction of the water and mass balances. Flow variability does, however, become important in sizing the required ZED equipment. The treatment system has to be designed to handle the largest expected flows. One reason for focusing the ZED program around the FNR discharge, instead of individual drainage points, was to avoid using costly, over designed, cleaning processes which would have to be big enough to treat large, but infrequent, feedwater volumes. The lime ponds and effluent plant produce much more consistent outflows. Nevertheless, the volume of wastewater discharged from the plant is not constant (Table 5.9), nor, according to plant personnel, is the amount of treated water lost from the thermo-oxidizer (Shang Su , personal com.). To assess the potential impact flow variation may have on a ZED configuration, a sensitivity analysis was performed using the back-end, 1 -stage RO, BCS/I-X design.

Some flow changes, such as increased treated water losses to the stack, did not significantly alter the size of the required ZED equipment (Table 9.1), although they produced large changes elsewhere in the system (e.g. increased raw water demands and/or solid waste output). On the other hand, increasing other flow paths to account for observed variability did indeed necessitate a bigger ZED treatment train (Table 9.1). As illustrated by these findings, the chosen ZED scenario will have to be designed appropriately to account for water flow variability.

9.2.2 Chemical data

Varying contaminant concentration will similarly change ZED equipment sizing requirements. Doubling raw water calcium and magnesium content, for example, resulted in an 11% increase in

RO feedwater flows in the back-end, RO, BCS/I-X models (Table 7.2). The higher calcium and magnesium levels triggered increased softener and boiler blowdowns, which then had to be treated in larger ZED vessels.

Clearly fluctuations in both water flow and water chemistry must be considered when designing the final ZED program, as they will likely affect the sizing of the required equipment. Apart from some testing on the effects of variability, this study was, in the main, restricted to initial design and comparison work, and, as such, did not incorporate actual plant variability into the analyses.

2.3 Computer Model

Although all bugs appeared to have been removed from the computer simulator prior to its use in evaluating the proposed ZED designs, there are numerous assumptions built into the simulator. They range from the obvious (e.g: chloride levels in the lime treater product waters equal those in the raw water) to the potentially erroneous (e.g. treated water from the ion-exchangers will always have a calcium concentration of $1.4 \mathrm{mg} / \mathrm{L}$). The value of the model's output is dependent on its ability to mirror the real water system; if the simulator does not react to change the same way the actual water network would, then it has no predictive value. The realism of the model is therefore dependent on the assumptions and calculations used in its construction. If these "building blocks" are valid, then the results are valuable. The validity of the model, its output, and the resulting conclusions remain unproven at this point. In other words, although the simulator reacted as expected to given changes in the virtual water system, there is no way to know if this is how the plant's actual water network will react until the same changes are made at the plant. The predictive ability of the simulator should therefore be further examined after the 8 psi steam vents are closed.

A more obvious limitation of the computer model is that there is no time lag incorporated into the system. The lime ponds, effluent plant and polishing pond have hydraulic retention times of 5, 20, and 1 day(s), respectively (E/P Manual). Changes in the water distribution network would not occur as rapidly as they appear to in the model. Calcium pretreatment systems were also never
fully incorporated into the model. The extent of included pretreatment was the removal of calcium from RO feedwaters, and its inclusion in the RO concentrate stream. Other influences from the removal process were ignored. For example, regeneration wastes from (say) an ion-exchanger or chemical changes resulting from the use of an anti-scalant to immobilize the problematic calcium were not accounted for in the simulator. Although their absence undoubtedly alters the absolute precision of the model, it is unlikely that the inclusion of these small missing flows, and/or chemical changes, would have changed the overall conclusions of this project.

2.4 ZED Design Evaluation

The ZED design selection process included a general discussion of system price. The cost of a particular ZED program was limited to the capital investment required to purchase the key pieces of equipment, including the RO, BCS and/or NF units. RO pretreatment costs were limited to mixedmedia filters and ion-exchange softeners (Appendix G.). Although cartridge filters, chlorination and dechlorination stations, as well as pH adjustment stations were included in several ZED diagrams (i.e. Figs. 7.1 \& 7.4), it is unclear at this stage what pretreatment systems will be needed at the FNGP beyond a mixed-media filter and inlet softener ${ }^{1}$. As a result, no cost estimates were made for these other units. They were, however, included in the illustrations to indicate that an RO pretreatment train is likely to include several different processes as suggested by Applegate (1984), Pohland (1987) and Suemoto et. al. (1994).

Aside from certain parts of the hypothesized RO pretreatment trains, deep well installation, solid waste disposal and general system operating costs were never evaluated. Given that this study was initiated as a "first look" into transforming the FNGP into a ŻED facility, the reported costs should be sufficient to allow Westcoast personnel to decide if a ZED program is feasible and which particular option to pursue.

[^7]
9.5. Conclusion

There are potential limitations inherent in this investigation. The data base on which this report is founded may contain non-representative information. The computer simulator used to test the 18 proposed ZED designs is a yet untested model of the FNGP's water distribution network which instantaneously adjusts to any change, and a very rudimentary cost analysis was incorporated into the ZED design selection process. On the other hand, plant personnel have reviewed the collected data and seems satisfied with the reported values. The simulator continued to respond as expected to changes in the plant's configuration; the pricing system used herein was sufficient to fulfill the primary objective of this project, which was to show that the FNGP can be transformed into a ZED facility for a given amount of money. Finally, sample variability, although not taken into account during this study for previously mentioned reasons, is bound to be important in ZED equipment sizing, as demonstrated in sensitivity analyses described above. Further research should therefore be performed prior to installing a ZED system at the FNGP to better define water flow and water chemistry fluctuations, as well as to better assess ZED pretreatment requirements.

Table 9.1: Changes to the configuration of the back-end, BCS, 1-stage RO, ion-exchange design with various flow alterations.

Flow change	$\begin{aligned} & \text { R.W. } \\ & \text { flow } \\ & \left(\mathrm{m}^{3} / \mathrm{day}\right) \end{aligned}$	Calcium pretreat ${ }^{\text {a }}$ (mg / L)	$\begin{gathered} \text { RO } \\ \substack{\text { f.water } \\ \left(\mathrm{m}^{3} / \mathrm{day}\right)} \end{gathered}$	$\begin{gathered} \text { B/C } \\ \text { f.watera } \\ \left(\mathrm{m}^{3} / \text { day }\right) \end{gathered}$	$\begin{gathered} \text { Waste } \\ \text { water } \\ \left(\mathrm{m}^{3} / \text { day }\right) \end{gathered}$	oducts solids (kg/day)
Initial outlay						
No change	407	48.2	282	141	14.1	415
No 8 psi steam reuse	110\%	146\%	26\%	26\%	25\%	68\%
Double T/O losses ${ }^{\text {b }}$	48\%	79\%	7\%	7\%	7\%	24\%
Double E/P ouflow ${ }^{\text {b }}$	0\%	-44\%	39\%	39\%	39\%	36\%
Double lime pond	47\%	-	81\%	81\%	81\%	77\%
Full recycle						
No change	138	0.0	240	120	12.0	234
No 8 psi steam reuse	275\%	71.0	27\%	27\%	27\%	103\%
Double T/O losses ${ }^{\text {b }}$	130\%	23.9	9\%	10\%	9\%	42\%
Double E/P ouflow ${ }^{\text {b }}$	-76\%	0\%	41\%	41\%	41\%	55\%
Double lime pond	-23\%	0\%	53\%	53\%	53\%	16\%

[^8]
10.0 CONCLUSIONS

Data collected from the FNGP indicated that operational water losses are greater than domestic wastewater production rates, so the plant can theoretically become a ZED facility. The data also showed that there are 2 leak points in the plant's water distribution network. One was in the steam tracing lines, and the second one was within the effluent plant. It is doubtful that closing off either escape route will be of economic benefit to the ZED project; the leak in the steam tracing pipes is too small to be of any consequence, and recovering wastewater lost from the effluent plant will only increase the flow of domestic wastewater into a ZED system. The increased domestic flow will not jeopardize the success of a ZED program at the plant, but it will necessitate a larger treatment system to purify the water and generate a larger final waste stream than the current FNR discharge flow. Unfortunately the FNGP will only be recognized as a ZED facility once the leak at the effluent plant has been eliminated.

Direct wastewater reuse is limited to the 8 psi steam currently discharged from the deaerators. Collecting, condensing and reusing this water should significantly reduce raw water inflow and wastewater outflow rates, which will simplify the design of the ultimate ZED treatment train. There is, however, an inherent risk that reusing this steam may lead to the non-compliance of the FNR discharge stream, as detailed in Section 9.0-Step 2. Due caution must be exercised if the 8 psi steam is reused while continuing to discharge the plant's wastewaters to the FNR. Although water escaping from the thermo-oxidizer is another potentially reusable waste stream, further research is needed to determine if reusing this water will compromise the plant's gas processing efficiency or the ability to transform this facility over to ZED framework. Rather than tackling the remaining wastewater flows at their points of origin, the ZED project focused on recycling the FNR discharge.

Eighteen prospective ZED designs were developed and subsequently tested with a computer simulator. The best deep well configuration was a back-end, 1 -stage RO unit with an ion-
exchange softener in the plant's front-end softening system. This design was estimated to cost $\$ 101700$ US dollars, excluding the cost of a deep well. The best BCS models were the back-end, 1 -stage RO and BCS-only options, both of which maintained an ion-exchanger in the front-end softening system. They were estimated to cost approximately $\$ 1.61 \& \$ 1.79$ million US dollars, respectively.

Transforming the FNGP into a ZED facility is, on its own, a simple process; the appropriate equipment just needs to be incorporated into the water system. There are, however, consequences to a ZED program. The most important is final waste management. If a deep well solution is used, the well itself will have to be build to prevent off-site migration of disposal wastes, a potentially expensive endeavor. Similarly, the solid waste generated by a BCS assembly will have to be disposed of properly to prevent any of it from resolubilizing and migrating off-site. Once a ZED protocol is initiated, wastewater or waste solids produced at the FNGP will no longer disappear with the FNR; they will remain on-site indefinitely.

11.0 RECOMMENDATIONS

1) Close the 8 psi steam loop regardless of whether or not a ZED program is adopted at the plant, so long as this process can occur without disrupting current wastewater disposal practices.
2) Westcoast Energy Inc. needs to assess the viability of transforming the FNGP into a ZED facility in light of the involved costs and final waste disposal requirements.
3) If the plant is to be transformed into a ZED facility, implement the ZED program as specified in Chapter 8.0.

REFERENCES

Abdula'aly, A.I. and A.A. Chammem. 1994. Groundwater treatment in the central region of Saudi Arabia. Desalination 96: 203-214.

Abdullaev, K.M., I.A. Malakhov, L.N. Poletaev and A.S. Sobol. 1992. Urban Waste Waters: treatment for use in steam and power generation. Ellis Horwood, Toronto, Ont., Canada. 254pp.

Alsakari, S., F. Kawamata, N. Matsumoto, H. Saeki and Y. Terada. 1977. Electrodialysis plant at Hatsushima. Desalination 21: 45-50.

Applegate, L.E. 1984. Membrane separation processes. Chemical Engineering 64:64-89.
'AWWA Water Desalting and Reuse Committee. 1989. Committee report: membrane desalting technologies. Journal of the American Water Works Association 81(11): 30-37.

Benefield, L.D., J.F. Judkins and B.L. Weand. 1982. Process Chemistry for Water and Wastewater Treatment. Prentice-Hall, Englewood Cliffs, NJ, USA. 510pp.

Bowlin, D. and R. Ludlum. 1992. Case studies: zero liquid discharge systems at three gas-fired power plants. Pages 443-447 in Cooke, D.H, S.H. Borglin, H.W. Holland and L.S. Langston. 6th International Conference on Gas Turbines in Cogeneration and Utility, Industrial and Independent Power Generation - Houston, TX. ASME, New York, NY, USA.

Brew, C. and C. Blackwell. 1991. Ten years of "real life" operational experience of a zero discharge power plant in Florida. Pages 479-488 in 4th International Power Generation Exhibition and Conference - Tampa, Fl. - Parts 3 \& 4. Power-Gen, Houston, TX, USA.

Cartwright, P.S. 1991. Zero discharge/water reuse - the opportunities for membrane technologies in pollution control. Desalination 83: 225-241.

C/D Manual - C and D Process Trains Operating Manual prepared by Westcoast Energy Inc. for the Fort Nelson Gas Plant.

Chin, K.K. and S.L. Ong. 1991. A study of reclamation of sewage for industrial waters. Water Science and Technology 23: 2181-2187.

Cluff, C.B. 1992. Slow sand/nanofiltration treatment for secondary treated wastewater. Desalination 88: 53-67.

Comb, L.F. 1994. Membrane technology for water treatment. Filtration \& Separation 31: 223225.

Conlon, W.J. and S.A. McClellan. 1989. Membrane softening: a treatment process comes of age. Journal of the American Water Works Association 81(11): 47-51.

E/F Manual - E and F Process Trains Operating Manual prepared by Westcoast Energy Inc. for the Fort Nelson Gas Plant.

E/P Manual - Effluent Treatment Plant Operating Manual prepared by Westcoast Energy Inc. for the Fort Nelson Gas Plant.

Egozy, Y., E. Korngold and N.C. Daltrophe. 1980. Waste water recycling by ion-exchange: 1. complete desalination. Desalination 33: 123-137.

Eisenberg, T.N. and E.J. Middlebrooks. 1986. Reverse Osmosis Treatment of Drinking Water. Butterworth Publishers, Stoneham, MA, USA. 271pp.

Ericsson, B. and B. Hallmans. 1994a. Membrane applications in raw water treatment with and without reverse osmosis desalination. Desalination 98: 3-16.

Ericsson, B. and B. Hallmans. 1994b. Treatment and disposal of saline wastewater from coal mines in Poland. Desalination 98: 239-248.

Fu, P, H. Ruiz, K. Thompson and C. Spangenberg. 1994. Selecting membranes for removing NOM and DBP precursors. Journal of the American Water Works Association 86(12): 55-72.

Ganzi, G.C., J.H. Wood and C.S. Griffin. 1992. Water purification and recycling using the CDI process. Environmental Progress 11: 49-53.

Greenberg, A.E., L.S. Clescerl and A.D. Eaton, eds. 1992. Standard Methods, 18 th ed. American Public Health Association, Washington D.C., USA.

Hill, R. and W. Lorćh. 1987. Ion exchange. Pages 226-300 in W. Lorch. Handbook of Water Purification, 2nd ed. Ellis Horwood, Toronto, Ont, Canada.

Hrubec, J., J.C. Shippers and B.C.J. Zoeteman. 1979. Studies on water reuse in the Netherlands. Pages 785-807 in Proceedings from Water Reuse Symposium - Washington, D.C. - Volume 2. AWWA Research Foundation, Denver, CO, USA.

Huang, Y.C. and S.S. Koseoglu. 1993. Separation of heavy metals from industrial waste streams by membrane separation technology. Waste Management 13: 481-501.

Hughes, M., A.E. Raubenheimer and A.J. Viljoen. 1992. Electrodialysis reversal at Tutuka Power Station, RSA-seven years' design and operating experience. Water, Science and Technology 25: 277-289.

Ikoku, C.U. 1984. Natural Gas Production Engineering. Wiley, New York, USA. 517pp.
Jacangelo, J.G., J. DeMarco, D.M. Owen and S.J. Randtke. 1995. Selected processes for removing NOM: an overview. Journal of the American Water Works Association 87(1): 64-77.

Jackson, J.J. 1980. Steam Boiler Operation: Principles and Practice. Prentice-Hill Inc., Englewood Cliffs, New Jersey, USA.

Jordain, P. 1987. Ultrafiltration. Pages 373-398 in W. Lorch. Handbook of Water Purification, 2nd ed. Ellis Horwood, Toronto, Ont, Canada.

Kaakinen, J.W. and C.D. Moody. 1984. Characteristics of RO membrane fouling at the Yuma Desalting Test Facility. Pages 359-382 in S. Sourirajan and T. Matsuura, eds. Symposium of the American Chemical Society - Philadelphia, PA. ACS, Washington D.C., USA.

Kalinske, A.A., J.F. Willis and S.R. Martin. 1979. Reclamation of wastewater treatment plant effluent for high quality industrial reuse. Pages 958-992 in Proceedings from Water Reuse Symposium - Washington, D.C. - Volume 1. AWWA Research Foundation, Denver, CO, USA.

Kawahara, T. 1994. Construction and operation experience of a large-scale electrodialysis water desalination plant. Desalination 96: 341-348.

Kawanishi, T., S. Matsumoto, Y. Horii and M. Masuzaki. 1994. Desalination for landfill leachates containing condensed inorganic salts. Desalination 97: 415-425.

Kopp, V., N. Tanghe and M. Faivre. 1993. Tertiary refining by nanofiltration of surface water in the Paris region. Water Supply 11: 271-280.

Kosarek, L.J. 1979. Water reclamation and reuse in the power, petrochemical processing and mining industries. Pages 421-432 in Proceedings from Water Reuse Symposium Washington, D.C. - Volume 1. AWWA Research Foundation, Denver, CO, USA.

Kotz, J.C. and K.F. Purcell. 1987. Chemistry \& Chemical Reactivity. Saunders College Publishing, Toronto, Ont., Canada. 1020pp.

Larson, T.J. and D.G. Argo. 1976. Large scale water reclamation by reverse osmosis. Desalination 19: 421-432.

Light, W.G., Z.B. Taylor and A.B. Riedinger. 1984. Single-stage seawater desalting with thinfilm composite membrane element. Pages 247-260 in S. Sourirajan and T. Matsuura, eds. Symposium of the American Chemical Society - Philadelphia, PA. ACS, Washington D.C., USA.

Marquardt, K., H. Dengler and H. Hoffmann. 1987. Demineralization: ten years experience in producing high purity water by reverse osmosis, part II - operating and performance data. Ultrapure Water 4: 31-39.

Medici, M. 1974. Natural Gas Industry; A Review of World Resources and Industrial Applications. Newnes-Butterworths, London, England.

Morin, O.J. 1994. Membrane plants in North America. Journal of the American Water Works Association 86(12): 42-54.

Nalco Chemical Program - Section 1 of the Program Administration Manual prepared by Nalco Canada Inc for the Fort Nelson Gas Plant.

Noshita, M. 1994. Reverse osmosis seawater desalination for power plant. Desalination 96:359368.

Osmonics. 1993. The Filtration Spectrum - Chart of pore size distributions for different membrane filters.

Osantowski, R.A. and A. Geinopolos. 1979. AWT evaluation in 2 selected industries. Pages 283294 in Proceedings from Water Reuse Symposium - Washington, D.C. - Volume 1. AWWA Research Foundation, Denver, CO, USA.

Page, J. 1995. Economic recycling with aqueous cleaning. Electric Production 24: 34-36.

Pankratz, T. and K. Johanson. 1992 A hybrid zero liquid discharge treatment system. Pages 455461 in Cooke, D.H, S.H. Borglin, H.W. Holland and L.S. Langston. 6th International Conference on Gas Turbines in Cogeneration and Utility, Industrial and Independent Power Generation - Houston, TX. ASME, New York, NY, USA.

Parekh, B.S. 1991. Get your process water to come clean. Chemical Engineering 98: 70-85.
Pierce, J.L. and S.M. Sbei. 1993. Zero discharge wastewater management at a 31 mw agricultural waste fired power plant. Pages 49-57 in Proceedings of the 1993 Industrial Power Conference - Denver, CO. ASME, New York, NY, USA.

Plant Modifications 1994 - Westcoast Energy Inc. internal memo prepared by Gordon Pink, Febuary 22, 1994.

Pohland, H.W. 1987. Reverse osmosis. Pages 316-372 in W. Lorch. Handbook of Water Purification, 2nd ed. Ellis Horwood, Toronto, Ont, Canada.

Robertson, W.S., ed. 1981. Boiler Efficiency and Safety: a guide for managers, engineers and operators responsible for small steam boilers. The MacMillan Press Ltd., London, England. 140pp.

Rohe, D.L., T.C. Blanton and B.J. Marinas. 1990. Drinking water treatment by nanofiltration. Pages 707-716 in O'Melia, C.R., ed. Proceedings of the 1990 Specialty Conference on Environmental Engineering - Arlington, VA. ASCE, New York, NY, USA.

Sawyer, C.N. and P.L. McCarty. 1978. Chemistry for Environmental Engineering, 3rd edition. McGraw-Hill, Inc., Montreal, Quebec, Canada. 532pp.

Schoeman, J.J. and J.F. van Staden. 1991. Evaluation of sealed-cell electrodialysis for industrial effluent treatment. Water SA 17: 307-320.

Schoeman, J.J. 1984. The status of electrodialysis technology for brackish and industrial water treatment. Water SA 11: 79-86.

Schroeder, C.D. 1991. Solutions to Boiler and Cooling Water Problems. Van Nostrand Reinhold, New York, NY, USA. 221pp.

Shah, V.J., R.M. Kava, C.V. Devmurari and A.V. Rao. 1993. Performance of reverse osmosis desalination plant in a rural area. Research and Industry 38: 27-31.

Shields, C.P. 1979. Five years experience with reverse osmosis systems using DuPont "Permasep" permeators. Desalination 28: 157-179

Solt, G. and P. Foster. 1987. Electrodialysis. Pages 399-424 in W. Lorch. Handbook of Water Purification, 2nd ed. Ellis Horwood, Toronto, Ont, Canada.

Strauss, S.D. 1994. Zero discharge firmly entrenched as a power plant design strategy. Power 130: 41-48.

Strauss, S.D. 1995. Optimize water-treatment economics at your power plant. Power 139: 29-34.

S/P Manual - Sulphur Plant Operating Manual prepared by Westcoast Energy Inc. for the Fort Nelson Gas Plant.

Suemoto, S.H. L.A. Haugseth and C.D. Moody. 1994. Research experiences from operational difficulties Yuma Desalting Plant, USA. Desalination 96: 43-50.

Taylor, J.S., L.A. Mulford, S.J. Duranceau and W.M. Barrett. 1989. Cost and performance of a membrane pilot plant. Journal of the American Water Works Association 81(11): 52-60.

Turner, C.D. and S.R. Kadubandi. 1994. DBP and hardness control by membrane filtration. Pages 344-351 in Ryan, J.N. and M. Edwards, eds. Critical Issues in Water and Wastewater Treatment - National Conference on Environmental Engineering - Boulder, CO. ASCE, New York, NY, USA.

Water Treatment Manual - Front-end Softening System Operating Manual prepared by Nalco Canada Inc. for the Fort Nelson Gas Plant.

Wethern, M.J., D.H. Stone and S.S. Whipple. 1991. A method for increased wastewater reuse/recycle at a coal fired electrical power station. Pages 521-530 in 4th International Power Generation Exhibition and Conference - Tampa Fl. - Parts $3 \& 4$. Power-Gen, Houston, TX, USA.

Wiesner, M.R., J. Hackney, S. Sethi, J.G. Jacangelo and J.M. Laine. 1994. Cost estimates for membrane filtration and conventional treatment. Journal of the American Water Works Association 86(12): 33-41.

Wood, F.C. 1987. Saline distillation. Pages 467-487 in W. Lorch. Handbook of Water Purification, 2nd ed. Ellis Horwood, Toronto, Ont, Canada.

ZED Report - Summary report compiled by Lloyd Scrimshaw (Westcoast Energy Inc. employee) detailing an "in-house" investigation into transforming the Fort Nelson Gas Plant into a zeroeffluent discharge facility.

APPENDIX A

WATER FLOW DATA
Effluent Plant Flows

	Date	$\begin{gathered} \text { Oil } \\ \text { pond } \end{gathered}$	Treated wastewater	Lime pond	Composite discharge	Nov	Date	$\begin{gathered} \text { Oil } \\ \text { pond } \end{gathered}$	Treated wastewater	Lime pond	Composite discharge
1993	1	104	110	157	277		1	175	113	175	288
Oct	2	107	118	124	251		2	175	119	238	357
	3	147	104	144	257		3	174	160	219	387
	4	169	109	212	330		4	162	135	190	334
	5	191	129	162	300		5	154	121	204	334
	6	147	124	143	276		6	150	110	175	294
	7	145	144	145	299		7	175	175	175	351
	8	191	175	119	294		8	189	113	160	282
	9	206	142	141	292		9	242	122	160	291
	10	208	171	167	349		10	213	111	257	371
	11	120	179	186	373		11	248	95	251	352
	12						12	287	101	218	328
	13	180	160	211	381		13	280	100	130	239
	14	206	147	206	353		14	215	99	158	265
	15	222	133	147	280		15	207	112	158	280
	16	191	119	107	226		16	228	143	210	361
	17	191	133	119	313		17	90	163	114	271
	18	191	138	196	342		18	92	172	88	259
	19	201	129	176	310		19	120	157	106	259
	20	176	123	198	329		20	121	164	99	262
	21	177	169	156	336		21	121	164	99	262
	22	178	113	189	337		22	171	150	183	333
	23	67	120	170	301		23	199	159	144	303
	24	74	123	133	264		24	222	153	170	322
	25	131	92	169	268		25	234	151	196	346
	26	125	109	163			26	156	165	168	332
	27	199	99	227	335		27	136	169	216	385
	28	119	110	210	338		28	99	158	201	359
	29	197	98	183	290		29	96	158	184	340
	30	191	107	107	214		30	97	174	166	340
	31	175	100	238	338						

Effluent Plant Flows

Effluent Plant Flows

Effluent Plant Flows

Date	$\begin{gathered} \text { Oil } \\ \text { pond } \end{gathered}$	Treated wastewater	Lime pond	Composite discharge		Date	Oil pond	Treated wastewater	Lime pond	Composite discharge
1	146	119	206	325	1995	1	175	83	175	258
2	146	119	272	391	Jan	2	175	94	175	269
3	160	119	206	325		3	175	94	206	300
4	136	92	223	315		4	94	94	175	269
5	140	82	222	304		5	94.3	94.3	238	332
6	161	94	290	384		6	83	94	308	402
7	154	147	206	353		7	161	107	206	313
8	118	129	221	350		8	100	119	176	295
9	99	109	233	342		9	94	94	206	345
10	119	119	235	239		10	94	94	205	349
11	94	147	272	419		11	119	119	147	266
12	94	146	206	352		12	169	107	175	275
13	94	133	238	371		13	206	119	222	341
14	94	139	190	329		14	206	119	272	391
15	94	139	307	446		15	238	119	206	354
16	120	133	272	408		16	206	119	222	341
17	120	133	272	405		17	191	119	272	391
18	175	133	222	355		18	175	107	308	415
19	146	146	175	322		19	147	107	326	433
20	119	119	206	325		20	147	107	308	415
21	94	119	272	391		21	94	133	281	414
22	146	94	287	332		22	147	133	383	516
23	140	119	238	357		23	175	133	238	371
24	140	113	206	319		24	175	133	308	441
25	119	113	238	351		25	208	107	206	313
26	94	113	255	368		26	308	94	238	332
27	83	133	238	371		27	272	72	308	380
28	238	133	206	339		28	238	94	206	300
29	147	107	222	329		29	94	94	272	366
30	146	107	206	3.13		30	94	146	214	360
31	175	83	175	258		31	83	133	206	339

Data from Fort Nelson Gas Plant Powerhouse Morning Reports
 홍
Data from Fort Nelson Gas Plant Powerhouse Morning Reports

Date	Steam Generation			Boiler feedwater			Excess 45 psi steam KLBH	Raw Water IGPH	Treated Water IGPH	Stack Emissions MMSCFD
	Boiler 5	Boilér 6	Boiler 7	Boiler 5	Boiler 6	Boiler 7				
	KLBH	KLBH	KLBH	KLBH	KLBH	KLBH				
1	266.0	268.0	266.0	261.0	260.6	260.6	64.2	5005	7088	6.8
2	261.0	264.0	261.0	239.0	239.3	246.4	64.8	5783	7875	6.2
3	249.0	251.0	251.5	252.0	244.8	247.2	40.1	4475	5700	6.3
4	270.0	288.0	250.0	287.0	261.8	272.0	38.2	9820	12600	7.5
5	286.0	276.0	276.0	301.0	285.1	294.8	34.9	9589	12600	7.5
6	319.0	215.5	307.0	320.0	205.2	312.4	29.8	9944	12600	7.0
7	318.0	216.0	304.0	315.0	209.5	300.3	29.2	7078	1750	7.0
8	294.0	217.0	294.0	291.0	207.8	289.2	43.1	0	0	7.3
9	256.0	271.0	283.0	269.0	265.5	279.5	51.6	6194	8400	7.3
10	290.0	286.0	291.0	287.0	277.9	294.5	58.5	10235	12600	7.0
11	292.0	288.0	292.0	291.0	287.8	293.3	61.3	9900	12600	7.0
12	293.0	288.0	291.0	295.0	287.0	296.2	62.3	807	600	7.3
13	294.0	291.0	294.0	285.0	281.9	293.6	61.7	4490	6300	7.0
14	298.0	289.0	289.0	316.0	295.0	306.6	61.4	7692	12300	7.0
15	311.0	298.0	296.0	308.0	290.5	296.8	74.0	8768	12300	7.4
16	311.0	297.0	296.0	314.0	292.0	299.0	82.1	177	256	7.1
17	311.0	297.0	296.0	315.0	290.5	295.0	83.5	4635	5638	7.0
18	311.0	298.0	296.0	310.0	288.8	296.0	88.9	8908	12300	7.1
19	309.0	287.0	295.0	313.0	300.3	300.2	85.7	8702	12300	7.1
20	308.0	295.0	293.0	296.0	275.5	291.6	84.4	588	513	6.6
21	313.0	299.0	297.0	317.0	296.4	301.6	86.3	6414	9450	7.1
22	325.0	312.0	309.0	320.0	302.6	311.1	88.3	9023	12600	7.4
23	323.0	309.0	307.0	315.0	292.0	305.7	82.8	9481	12600	7.3
24	321.0	308.0	306.0	322.0	298.3	305.5	80.8	4171	5513	7.3
25	322.0	308.0	306.0	322.0	303.1	310.5	80.9	3200	4200	7.5
26	323.0	310.0	308.0	326.0	306.0	309.2	88.3	8779	12600	7.4
27	316.0	303.0	301.0	309.0	292.6	291.7	87.9	10022	12600	7.0
28	308.0	296.0	293.0	319.0	303.6	310.8	81.4	6862	8925	7.4

Data from Fort Nelson Gas Plant Powerhouse Morning Reports

| | Steam Generation | | | | Boiler feedwater | | | Excess 45 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Raw 를

Data from Fort Nèlson Gas Plant Powerhouse Morning Reports

高售菏	
	 0000000000000000000000000000
	000000000000000000000000000000 응ㅇㅇㅇㅇㅇㅇㅇ0000000000000000000 000000000000000000000000000000

Data from Fort Nelson Gas Plant Powerhouse Morning Reports

	ふু N ふ ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇOㅇOOOO

Data from Fort Nelson Gas Plant Powerhouse Morning Reports

Date	Steam Generation			Boiler feedwater			Excess 45 psi steam KLBH	Raw Water IGPH	Treated Water IGPH	Stack Emissions MMSCFD
	Boiler 5 KLBH	Boiler 6 KLBH	Boiler 7 KLBH	Boiler 5 KLBH	Boiler 6 KLBH	Boiler 7 KLBH				
1	287.0	286.0	281.0	295.0	290.3	294.3	88.0	3835	7222	7.4
2	298.0	300.0	295.0	295.0	287.6	294.8	97.8	5375	9269	7.3
3	298.0	300.0	294.0	299.0	290.9	291.0	107.1			6.9
4	292.0	296.0	289.0	295.0	285.3	287.6	104.0	5427	8700	7.2
5	297.0	299.0	293.0	293.0	287.6	295.0	109.2	5671	8400	7.4
6	296.0	299.0	293.0	291.0	281.9	291.0	110.1	5265	8400	7.3
7	293.0	296.0	293.0	300.0	282.7	290.0	106.8	6931	8400	7.4
8	298.0	295.0	298.0	294.0	283.8	287.3	108.4	5850	8400	7.2
9	298.0	295.0	290.0	298.0	281.1	293.9	111.3	5828	8400	7.3
10	298.0	296.0	294.0	290.0	297.0	282.2	289.8	5124	8400	7.2
11	299.0	296.0	288.0	297.0	282.4	288.1	113.6	4363	9000	7.3
12	295.0	293.0	284.0	293.0	281.3	287.1	114.4	3765	6600	7.1
13	296.0	293.0	285.0	295.0	285.3	280.9	115.9		6600	7.2
14	300.0	296.0	288.0	306.0	286.6	292.1	112.5	3999	6900	7.4
15	303.0	299.0	291.0	299.0	292.9	288.2	110.7	3679	6600	6.8
16	302.0	299.0	291.0	304.0	281.2	288.3	125.2			7.1
17	291.0	288.0	279.0	280.0	265.9	277.2	125.1	7977	11400	7.2
18	288.0	284.0	276.0	285.0	272.3	269.4	122.0	5199	6563	7.2
19	296.0	291.0	283.0	278.0	261.9	263.1	115.0	8484	11400	7.2
20	286.0	283.0	274.0	285.0	64.2	268.7	114.7	7784	10200	7.4
21	286.0	282.0	274.0	285.0	271.3	274.1	94.2	7550	10500	7.4
22	292.0	291.0	281.0	285.0	269.6	268.5	78.3	8747	11700	7.1
23	296.0	293.0	285.0	286.0	280.2	279.6	81.1	8591	12000	7.5
24	295.0	293.0	284.0	283.0	269.6	274.1	78.6	9261	12000	7.6
25	283.0	284:0	273.0	281.0	282.1	286.9	65.9	8952	11850	8.0
26	289.0	293.0	292.0	286.0	281.9	287.5	57.7	8182	10500	7.8
27	283.0	290.0	288.0	288.0	273.8	285.9	68.4	8854	12000	7.5
28	286.0	293.0	291.0	281.0	281.1	287.5	79.9	7392	10200	7.5
29	289.0	295.0	293.0	283.0	276.2	287.2	89.0	7321	9600	7.5
30	290.0	296.0	293.0	293.0	290.2	297.8	89.3	7255	9600	7.9

Data from Fort Nelson Gas Plant Powerhouse Morning Reports

July	Date	Steam Generation			Boiler feedwater			Excess 45 psi steam KLBH	Raw Water IGPH	Treated Water IGPH	Stack Emissions MMSCFD
		Boiler 5 KLBH	Boiler 6 KLBH	Boiler 7 KLBH	Boiler 5 KLBH	Boiler 6 KLBH	Boiler 7 KLBH				
	1	302.0	306.0	304.0	299.0	288.2	304.1	87.9	8321	10800	5.5
	2	226.0	156.5	231.5	278.0	0.0	282.6	71.1	6000	8400	5.7
	3	279.0	0.0	285.0	282.0	0.0	276.5	52.3	7851	11100	5.6
	4	277.0	9.6	283.0	282.0	0.0	290.7	39.7	7496	10200	5.5
	5	256.0	6.4	264.0	246.0	0.0	251.4	68.2	4402	5850	3.7
	6	255.0	0.0	262.0	256.0	0.0	258.0	88.7	0	0	4.5
	7	268.0	0.0	271.0	260.0	0.0	263.3	66.7	6281	9000	5.7
	8	261.0	0.0	265.0	262.0	0.0	266.5	42.7	7592	10200	5.7
	9	260.0	0.9	268.0	252.0	0.0	261.1	29.8	6656	8400	5.7
	10	258.0	0.0	265.0	264.0	0.0	263.3	23.1			5.6
	11	261.0	0.0	268.0	251.0	0.0	264.3	19.1	7500	6307	5.8
	12	255.5	0.0	263.0	251.0	0.0	255.3	15.6	4675	6900	5.7
	13	240.0	6.1	247.5	243.0	0.0	253.4	36.6	3477	7248	4.1
	14	224.0	16.1	232.0	220.0	0.0	223.2	50.5	4770	6669	3.1
	15	216.0	14.7	224.0	229.0	0.0	234.2	76.9			3.4
	16	234.0	21.3	241.0	232.0	0.0	237.7	88.3	1458	2479	3.7
	17	232.5	6.9	239.5	230.0	0.0	237.1	93.2	8396	11400	4.0
	18	223.0	8.5	230.5	221.0	0.0	222.2	102.0	7153	9600	3.9
	19	229.5	8.8	237.0	267.0	0.0	271.2	104.2	2343	6750	4.7
	20	243.0	85.8	249.5	206.0	175.5	207.6	93.6	3668	6900	5.3
	21	241.0	235.5	237.5	260.0	246.9	245.4	64.9	5710	8100	5.9
	22	276.0	269.0	266.0	286.0	271.6	275.8	42.9	6591	9000	7.3
	23	264.0	260.0	256.0	246.0	236.7	239.0	32.1	9215	12000	7.4
	24	240.0	239.0	236.0	245.0	236.4	241.8	64.2	9770	12600	6.4
	25	239.5	238.0	234.5	237.0	227.4	223.8	79.4	9686	12600	7.1
	26	254.5	251.5	249.0	250.0	236.8	239.8	77.3	9770	12600	7.3
	27	253.0	249.5	248.0	273.0	258.4	257.4	78.4	8186	10800	7.0
	28	260.0	254.5	252.5	249.0	247.4	238.5	568.0	7500	10200	7.1
	29	253.5	249.5	247.5	249.0	245.0	243.0	38.1	8680	10800	7.1
	30	248.0	244.0	241.0	240.0	231.8	236.0	27.6	8443	10800	7.0
	31	244.5	240.0	238.0	237.0	226.8	227.2	25.5	6965	8400	7.1

Data from Fort Nelson Gas Plant Powerhouse Morning Reports

Data from Fort Nelson Gas Plant Powerhouse Morning Reports

Date	Steam Generation			Boiler feedwater			Excess 45 psi steam KLBH	Raw Water IGPH	Treated Water IGPH	Stack Emissions MMSCFD
	Boiler 5 KLBH	Boiler 6 KLBH	Boiler 7 KLBH	Boiler 5 KLBH	Boiler 6 KLBH	Boiler 7 KLBH				
1	249.0	249.5	249.0	237.0	235.4	233.6	23.5	7672	8900	6.9
2	244.5	245.0	246.5	236.0	225.8	236.3	27.2	2195	3125	7.0
3	271.0	273.0	272.0	292.0	292.8	297.3	37.1	5333	6200	7.3
4	296.0	298.0	298.0	287.0	284.5	292.7	60.4	7926	10500	7.4
5	293.0	297.0	296.0	288.0	291.0	290.9	86.1	8117	10500	7.3
6	293.0	296.0	296.0	289.0	287.5	290.7	104.5	4503	9600	7.3
7	293.0	296.0	295.0	289.0	286.0	292.6	113.0			7.4
8	293.0	296.0	296.0	287.0	285.9	296.7	113.2	2600	3400	7.4
9	294.0	297.0	296.0	294.0	294.3	296.8	105.2	7161	9000	7.6
10	296.0	299.0	299.0	292.0	290.3	293.2	108.8	2983	7200	7.2
11	296.0	299.0	299.0	288.0	290.1	290.8	110.7	4007	6731	7.4
12	293.0	296.0	295.0	289.0	289.3	297.8	109.7			7.4
13	294.0	296.0	296.0	284.0	285.6	294.1	114.9	4411	5638	7.1
14	291.0	295.0	294.0	284.0	289.4	289.1	126.7	8942	12063	7.0
15	288.0	293.0	291.0	286.0	287.9	292.3	126.9	422	513	7.0
16	291.0	296.0	295.0	282.0	288.4	289.8	125.8	3944	5250	7.1
17	294.0	300.0	298.0	285.0	290.5	296.1	120.5	6066	8700	7.1
18	293.0	298.0	297.0	284.0	294.7	292.0	115.2	5053	8700	7.1
19	298.0	302.0	301.0	301.0	300.3	303.7	105.2	5540	7688	7.2
20	299.0	301.0	299.0	221.0	217.6	212.2	94.5	3339	4800	5.1
21	219.0	220.5	216.0	280.0	277.8	278.2	66.8	4645	7288	6.0
22	283.0	285.0	283.0	273.0	270.2	273.0	43.5	8483	12413	7.1
23	275.0	276.0	274.0	276.0	272.4	277.0	56.3	2130	3000	7.0
24	274.0	276.0	275.0	269.0	269.2	268.0	65.1	0	0	6.9
25	263.0	265.0	264.0	246.0	242.4	244.2	61.9	0	0	6.7
26	261.0	241.5	260.0	242.0	239.6	241.5	51.8	5966	7800	6.8
27	246.5	248.0	246.0	237.0	239.5	242.3	37.1	5282	5900	7.0
28	256.0	259.0	256.0	245.0	237.7	244.9	35.1	1030	1200	6.8
29	246.5	248.0	246.0	243.0	246.5	247.0	25.3	6551	8719	7.1
30	249.0	250.0	249.0	240.0	244.7	245.1	19.8	2374	3200	6.9

Data from Fort Nelson Gas Plant Powerhouse Morning Reports

Oct		Steam Generation			Boiler feedwater			Excess 45 psi steam KLBH	Raw Water IGPH	Treated Water IGPH	Stack Emissions MMSCFD
	Date	Boiler 5 KLBH	Boiler 6 KLBH	Boiler 7 KLBH	Boiler 5 KLBH	Boiler 6 KLBH	Boiler 7 KLBH				
	1	247.5	249.0	247.5	236.0	233.5	236.8	16.3	5296	8450	6.7
	2	241.0	242.5	241.0	232.0	231.7	237.3	14.4	9018	11700	6.9
	3	245.0	246.0	244.5	246.0	243.9	246.1	12.8	7583	10800	7.1
	4	250.0	250.0	249.0	243.0	241.8	245.2	11.5	400	625	6.5
	5	247.0	248.0	246.5	245.0	245.3	250.0	10.7	5389	6800	6.3
	6	259.0	259.0	258.0	244.0	245.3	251.2	10.8	9480	10200	6.2
	7	248.0	249.5	246.5	231.0	230.1	233.4	12.5	3766	5250	12.5
	8	243.0	241.5	239.5	237.0	226.3	233.7	13.6	7580	10200	7.1
	9	248.0	236.0	234.0				<<sos	§\%\%\%	\%\#\#\#\#\#\#	7.1
	10	252.0	239.0	241.0							7.1
	11	252.0	241.0	241.0							7.1
	12	333.0	320.0	320.0							8.1
	13	288.0	279.0	277.0	308.0	288.5	296.1	43.6			7.8
	14	308.0	298.0	297.0	315.0	291.0	298.7	46.2	8836	9900	7.6
	15	228.0	333.0	328.0	186.0	337.5	3431.0	42.8	7161	7500	7.4
	16	197.5	340.0	333.0	186.0	346.0	342.5	48.2	4266	3300	7.5
	17	197.0	338.0	332.0	194.0	320.6	334.1	54.6	2121	0	7.4
	18	201.0	355.0	347.0	190.0	373.9	375.9	76.5	0	10500	7.6
	19	199.5	354.0	350.0	199.0	335.0	343.3	84.4	10600	12400	7.5
	20	208.0	350.0	345.0	194.0	358.0	361.4	89.1	9898	11700	7.3
	21	202.0	350.0	343.0	189.0	336.1	337.6	94.2	9280	9900	7.2
	22	185.5	341.0	333.0	128.0	329.2	330.8	81.0	2450	2370	7.2
	23	136.0	352.0	345.0	0.0	414.4	403.9	54.5			7.2
	24	45.1	412.0	405.0	0.0	395.8	392.0	36.0	10464	11200	7.3
	25	57.9	387.0	381.0	288.0	280.5	279.7	26.0	10231	11400	7.4
	26	301.0	301.0	296.0	298.0	301.9	289.5	44.7	9783	10800	7.4
	27	299.0	298.0	293.0	297.0	290.6	290.1	57.8	5400	5542	7.5
	28	298.0	292.0	291.0	290.0	281.1	290.8	65.1	10079	10200	7.4
	29	298.0	293.0	291.0	300.0	282.7	290.5	73.3	9881	11181	7.4
	30	295.0	291.0	288.0	290.0	279.8	284.7	75.2	10311	11100	7.2
	31	295.0	291.0	88.0	290.0	280.6	289.0	75.6	8881	9637	7.3

Data from Fort Nelson Gas Plant Powerhouse Morning Reports

	Date	Steam Generation			Boiler feedwater			Excess 45 psi steam KLBH	Raw Water IGPH	Treated Water IGPH	Stack Emissions MMSCFD
		Boiler 5 KLBH	Boiler 6 KLBH	Boiler 7 KLBH	Boiler 5 KLBH	Boiler 6 KLBH	Boiler 7 KLBH				
Nov	1	291.0	287.0	284.0	288.0	281.2	283.5	71.8	6973	6587	7.2
	2	282.0	276.0	274.0	297.0	289.0	294.9	66.0	0	0	6.9
	3	302.0	295.0	293.0	11: m	\%\%\% 1	MataM	4	5799	6012	7.5
	4	300.0	293.0	292.0					8330	9300	7.4
	5	303.0	296.0	296.0					7804	9375	7.2
	6	303.0	296.0	296.0	288.0	292.2	289.1	102.1	7198	9000	7.6
	7	304.0	298.0	297.0	302.0	290.3	294.1	108.9	5526	5950	7.4
	8	306.0	297.0	296.0	302.0	281.4	289.3	109.4	0	0	7.6
	9	305.0	298.0	297.0	298.0	293.5	293.9	105.4	6547	7315	7.4
	10	307.0	301.0	300.0	314.0	300.9	306.7	110.0			7.5
	11	302.0	298.0	297.0	302.0	290.8	300.3	108.0			7.5
	12	299.0	296.0	295.0	288.0	286.7	290.7	101.5			7.5
	13	299.0	296.0	295.0	299.0	289.3	293.0	99.3			7.4
	14	299.0	295.0	293.0	293.0	291.2	296.4	95.2	5605	6574	7.5
	15	299.0	295.0	295.0	290.0	284.0	290.9	94.1	0	0	7.6
	16	301.0	297.0	296.0	299.0	288.8	294.8	92.3	6538	7500	7.4
	17	306.0	285.0	301.0	305.0	264.4	304.8	91.5	8486	11181	7.4
	18	303.0	289.0	293.0	300.0	288.4	298.5	88.8	6064	8250	7.3
	19	296.0	298.0	291.0	292.0	291.5	288.0	86.0	6673	8475	7.3
	20	295.0	291.0	290.0	291.0	280.6	297.8	77.4	0	0	7.1
	21	297.0	293.0	292.0	299.0	290.7	291.2	79.4	3142	4937	7.2
	22	298.0	291.0	293.0	285.0	283.0	283.3	79.8	8269	9900	7.4
	23	296.0	288.0	290.0	गи:Min	\%10:M	:	זer:	7236	9300	7.2
	24	295.0	291.0	291.0					0	0	7.3
	25	291.0	287.0	286.0		.			6042	5037	7.2
	26	300.0	296.0	295.0					7359	9600	6.9
	27	296.0	291.0	290.0					6365	9600	7.0
	28	297.0	292.0	291.0					1954	2800	7.1
	29	301.0	296.0	291.0					530	850	7.2
	30	308.0	303.0	300.0					8435	11100	7.2

Data from Fort Nelson Gas Plant Powerhouse Morning Reports

ceam Generatio				$$			$\begin{gathered} \text { Excess } 45 \\ \text { psi steam } \\ \text { KLBH } \end{gathered}$	RawWaterIGPH	$\begin{gathered} \substack{\text { Treaededed } \\ \text { Wacer } \\ \text { che }} \end{gathered}$	$\begin{gathered} \text { Stack } \\ \text { Emissions } \\ \text { MMSCFD } \\ \hline \end{gathered}$
Date	Boiler 5	$\begin{gathered} \text { Boiler } 6 \\ \text { KLBH } \\ \hline \end{gathered}$	$\underset{\substack{\text { Boile } 7 \\ \text { K183 }}}{\substack{\text { a }}}$							
1		300.0	298.0							
${ }^{2}$	3060	301.0	298.0					4940	7400	${ }^{7} 3$
3	306.0	301.0	${ }_{290}^{2980}$					0	0	72
5	304.0	$\xrightarrow{299.0} \mathbf{\substack { 2 9 0 . 0 }}$	${ }_{2930}^{2900}$					${ }_{7774}^{4174}$	${ }_{1081}^{6090}$	${ }_{7}^{7.0}$
6	300.0	29.0	292.0					7889	10500	7.1
7	301.0	294.0	29.10					1717	1800	${ }^{73}$
8	33660	${ }^{300.0}$	296.0					${ }^{7489}$	9500	${ }^{7.3}$
	3010	$\underset{\substack{2950 \\ 2900}}{ }$	${ }_{20}^{29.0}$					${ }^{3480}$	${ }^{5230}$	-6.8
11	${ }^{399} 0$	${ }_{2940}$	${ }_{290.0}^{29.0}$					7044	10200	${ }^{6.1}$
12	299.0	296.0	292.0						10200	${ }^{7} .0$
11 14 14	年迆,	-	$\underset{\substack{2950 \\ 2950}}{ }$						10200 6600	7.1 70 7
15	302.0	298.0	${ }_{293.0}^{293.0}$					${ }^{30} 0$	${ }^{600}$	7.0
16	298.0	294.0	291.0					4554	4325	${ }_{6} 6$
	296.0	229.0	${ }^{288.0}$						10200	
${ }_{19}^{18}$	2990.0	${ }_{294.0}^{29.0}$	${ }_{291.0}^{288.0}$					${ }_{\substack{1168 \\ 1190}}^{7}$	10200 1700	${ }_{7}^{6} 7$
20	3090	305.0	29.0					${ }^{1495}$	3000	7.5
21	301.0	296.0	280.0					${ }^{8596}$	11400	${ }_{6}^{6.8}$
${ }^{22}$	295.0	${ }^{2889.0}$	${ }^{274.0}$					${ }_{8821} 8$	12000	7.1
${ }_{24}^{23}$	5050	30.0)	${ }_{288}^{290}$					807	11900	${ }_{6} .5$
${ }_{25}^{24}$	300.0	${ }_{299.0}$	${ }_{294.0}^{288.0}$					4168	6662	6.9 6.9
26	303.0	298.0	295.0					${ }_{8841}$	12300	${ }^{7.0}$
27	304.0	297.0	294.0					4679	6300	7.0
${ }_{29}^{28}$	306.0	${ }_{297.0}^{298.0}$	${ }_{2950}^{29.0}$					${ }_{8}^{1335}$	2100 11400	${ }_{6}^{6.9}$
30	304.0	297.0	29.0					6099	8750	${ }_{6} 6$

Data from Fort Nelson Gas Plant Powerhouse Morning Reports

Data from Fort Nelson Gas Plant Powerhouse Morning Reports

Data from Fort Nelson Gas Plant Process Morning Reports

	 が
	$\stackrel{\text { g }}{\stackrel{\circ}{\circ}}$

Data from Fort Nelson Gas Plant Process Morning Reports

	N－
出荡	
$\begin{aligned} & \text { 首畀 } \\ & \text { 号解 } \end{aligned}$	
$\begin{aligned} & \text { 흘 } \\ & \text { 号 } \\ & 0 \\ & 0 \end{aligned}$	
	$\stackrel{3}{2}$

Data from Fort Nelson Gas Plant Process Morning Reports

$$	
$\begin{aligned} & \text { 兽 } \\ & \text { 品 } \\ & \text { 号 } \\ & \text { B } \end{aligned}$	
$$	
	が
	－

Data from Fort Nelson Gas Plant Process Morning Reports

	オ N N N
吕思	
号年	
¢ั๊	
	$\stackrel{\sim}{\circ}$

Data from Fort Nelson Gas Plant Process Morning Reports

	윤

Data from Fort Nelson Gas Plant Process Morning Reports

Date	Train C				Train D				Train E	
	Carb unit KLBH	MEA KLBH	Total steam KLBH	Gas prod MMSCFD	Carb unit KLBH	MEA KLBH	Total Steam KLBH	Gas prod MMSCFD	$\begin{aligned} & \text { DEA } \\ & \text { KLBH } \\ & \hline \end{aligned}$	Gas prod MMSCFD
Overall trend:										
Average	105.59	31.95	137.54	100.51	107.02	33.08	140.09	105.01	127.66	89.89
Maximum	144	46	185	145	146	42	187	146	155	114
Minimum	0	0	0	0	0	0	0	0	93	56
Standard dev.	18.77	5.68	23.58	19.19	14.47	4.05	17.36	14.36	10.18	7.29
Coef. of var.	0.18	0.18	0.17	0.19	0.14	0.12	0.12	0.14	0.08	0.08
Count	151	151	151	151	151	151	151	151	151	151

Data from Fort Nelson Gas Plant Process Morning Reports

Data from Fort Nelson Gas Plant Process Morning Reports

Data from Fort Nelson Gas Plant Process Morning Reports

Data from Fort Nelson Gas Plant Process Morning Reports

Data from Fort Nelson Gas Plant Process Morning Reports

Data from Fort Nelson Gas Plant Process Morning Reports

	Train F		Train G		Train H		Total	Total
	DEA	Gas prod	DEA	Gas prod	DEA	Gas prod	Steam Use	Gas prod Date
KLBH	MMSCFD	KLBH	MMSCFD	KLBH	MMSCFD	KLBH	MMSCFD	
Overall trends								
Average	126.39	91.72	129.17	91.55	127.65	90.35	788.50	569.02
Maximum	157	116	151	109	157	106	880	625
Minimum	93	60	88	0	90	45	703	430
Standard dev.	10.28	6.77	10.06	10.62	8.80	6.20	28.39	23.27
Coef. of var.	0.08	0.07	0.08	0.12	0.07	0.07	0.04	0.04
Count	151	151	151	151	151	151	151	151

Data from Fort Nelson Gas Plant Computer monitoring system

			0 psi st	ransfer		450 to 45	reakdo		d Water		Conti	Boiler	down	X-cess 45\#
		C/D	E/F	G/H	S/P	E/F	G/H	C/D	EFGH	S/P	Blr. 5	Blr. 6	Blr. 7	steam-S/P
	Date	KLBH	KLBH	KLBH	KLBH	KLBH	KLBH	IGPM	IGPM	IGPM	LBH	LBH	LBH	KLBH
1994	1													
Dec	2	169.9	124.2	100.9	56.1	2.1	11.8	50.8	0.0	132.6	779	2761	2549	59.1
	3	167.1	123.9	99.1	57.6	2.5	14.2	50.9	0.0	150.4	2301	2478	2549	61.8
	4	167.8	122.1	0.0	58.3	1.9	16.8	50.7	0.0	152.5	2265	2478	. 2655	60.9
	5	165.0	120.7	0.0	55.6	1.6	14.4	50.5	0.0	142.0	2761	2690	2195	57.3
	6	167.8	119.3	99.1	58.3	0.3	13.0	51.4	0.0	138.9	3080	2619	1947	57.3
	7	166.4	116.1	99.5	57.9	2.4	13.5	50.2	0.0	110.7	2973	2655	2124	62.7
	8	172.7	117.5	99.1	54.8	0.6	28.6	51.7	0.0	137.8	2832	2655	2336	73.0
	9	172.7	114.3	97.0	54.8	0.9	16.1	52.7	0.0	142.0	. 2478	2301	2301	72.1
	10	175.6	114.0	99.1	55.4	0.4	8.8	52.5	0.0	142.0	2832	1770	2478	73.0
	11	177.7	112.2	0.0	55.0	0.8	9.7	54.1	0.0	137.8	2655	2478	2478	69.4
	12	179.1	110.8	0.0	55.9	0.0	11.1	53.7	0.0	143.1	2814	2938	2655	73.0
	13	183.4	115.4	0.0	54.5	0.5	15.3	53.7	0.0	148.3	2832	3009	2655	72.1
	14	178.4	117.2	98.2	54.5	0.0	14.0	53.8	0.0	146.2	2230	2832	2442	72.1
	15	165.7	127.1	104.4	54.8	0.2	12.1	55.2	0.0	149.3	885	2832	2301	71.2
	16	153.6	123.9	102.7	56.4	0.1	17.5	56.3	0.0	148.3	1593	1274	2088	67.2
	17	152.2	118.9	98.4	57.6	0.6	11.3	54.7	27.7	145.2	2124	2832	2832	73.4
	18	154.3	117.9	95.6	57.0	0.4	7.8	54.7	0.0	144.1	2053	3858	2549	78.8
	19	155.0	120.7	99.8	56.7	0.0	12.3	54.6	0.0	138.9	1947	3858	2655	83.3
	20	164.2	121.4	102.7	56.7	0.4	7.8	57.3	0.0	147.2	1947	3363	2655	91.8
	21	145.8	122.5	103.0	55.4	2.8	40.8	58.8	13.2	135.8	2230	3363	2655	133.4
	22	118.9	122.5	103.7	49.5	2.2	29.1	54.6	28.9	129.5	3080	3009	2761	88.2
	23	184.8	121.8	100.5	54.2	0.1	18.2	51.5	0.0	138.9	3469	3575	4319	83.7
	24	177.0	117.2	93.8	54.8	0.2	9.9	51.8	0.0	144.1	3363	4425	4460	89.6
	25	172.7	114.0	98.4	53.4	1.1	12.0	50.8	0.0	142.0	3469	3929	3681	99.0
	26	167.8	116.1	98.4	53.4	0.3	15.8	50.1	0.0	142.0	3327	3965	4000	109.7
	27	169.9	116.8	97.7	53.0	0.7	12.1	49.9	0.0	145.2	3150	3717	'3965	115.5
	28	171.3	117.5	98.8	53.4	0.4	13.2	50.8	0.0	147.2	2938	3752	3575	124.5
	29	164.2	118.2	97.0	54.4	0.1	21.9	50.8	0.0	138.9	2407	3257	2478	125.8
	30	166.4	118.6	97.7	55.3	1.4	12.5	46.9	0.0	139.9	1027	2619	2301	118.2
	31	155.8	121.4	100.5	54.2	0.1	15.3	45.3	0.0	117.0	1416	2655	2478	110.2

Data from Fort Nelson Gas Plant Computer monitoring system

Date	. 450 pris seam tansfered t				450 to 45 pib traakdow		$\underset{\text { cop }}{\substack{\text { cid }}}{ }^{\text {Th}}$	$\begin{aligned} & \text { Watarer } \\ & \text { EFFFH} \end{aligned}$ IGPM	$\underset{\substack{\text { SRP } \\ \text { IGPM }}}{ }$	$\begin{gathered} \text { contin } \\ \text { cint } \\ \text { Lir } \\ \hline \end{gathered}$		$\begin{gathered} \text { divn } \\ \text { Brr } \end{gathered}$	
$\begin{array}{ll}1995 \\ \text { Jan } & 1 \\ 2\end{array}$	174.2	118.2	94.5	54.8	0.87	17.9	42.7	0.00	144.1	1062	3080	3186	101.2
	169.9	117.9	95.9	55.4	0.92	10.8	493	0.00	1420	1062	3327	3363	1025
5	172.0	117.9	100.2	59.3	0.01	19.4	48.6	0.00	150.4	1062	2832	2513	90.5
6	173.5	116.5	95.6	58.4	0.00	10.9	48.8	0.00	151.4	1062	3611	2407	87.3
	165.7	1129	95.6	57.5	0.06	17.7	49.2	9.63	144.1	1593	3434	3346	${ }^{87.8}$
8	.164.2	113.6	19.5	58.6	0.00	15.4	50.1	0.00	141.0	1558	3009	2301	87.3
9	163.5	113.6	0.0	49.1	0.09	21.9	49.3	0.00	${ }^{133.8}$	${ }^{1168}$	${ }^{2832}$	${ }^{2195}$	86.0
10	160.0	114.0	0.0	${ }^{53,0}$	0.12	10.9	49.3	0.00	138.9	1062	2832	${ }^{2124}$	90.9 1021
11	163.5	111.2	0.0	48.9	0.09	12.0	49.3	0.00	${ }_{13,14}^{14.0}$	${ }_{1062}^{1062}$	2655	2124 1286 18	20.1
12	162.1	112.6	0.0	${ }^{48,3}$	0.06	14.2	48.3	0.00	${ }_{1}^{13,9}$	1062	${ }_{2}^{2478}$	${ }^{1827}$	${ }^{8.4} 8$
13	16.9	113.3	-0.0	${ }_{4}^{48,0}$	0.00	-11.3	48.6	0.00	13.9	2832	2055	3009 2832 1	${ }_{1113.7}^{112.8}$
14	16.1	1112.9	34.7 623	${ }_{475}^{47.9}$	-0.16	11.4 12.5	${ }_{425}^{42.1}$	${ }_{0} 0.00$	134.1 14.1 14.1	2790 2655	${ }_{2478}^{2796}$	$\underset{\substack{2832 \\ 2832}}{ }$	111.9
16		115.0	101.6	48.3	0.05	19.8	425	0.00	${ }_{146.2}$	${ }^{2584}$	2655	${ }_{2938}$	
17	172.0	113.3	96.3	48.8	0.01	32.4	42.8	0.00	15.2	2513	2655	3363	
18	6		98.4	49.1	0.42	32.1	43.5	7.22	${ }^{148.3}$	2478		3504	1.2
19	169.9	121.1	99.1	49.2	0.04	40.1	43.5	0.00	137.8	2301	3292	3363	16.6
20	165.0	116.8	98.1	49.2	0.17	54.3	43.5	0.00	133.7	2195	4071	2832	13.7
21	170.6	118.9	97.	49.5	0.07	38.0	43.5	0.00	${ }^{132.6}$	1487	3752	1841	6.0
22	173.5	119.6	99.8	49.1	0.43	10.2	42.8	7.22	138.9	1274	3150	1912	20.1
	174.2	118.6	100.9	48.9	0.13	19.3	42.4	0.00	${ }^{13226}$	1841	3398	2249	4.9
	177.0	117.2	99.8	49.2	0.22	17.2	43.4	0.00	129.5	2033	3292	${ }^{2372}$	94.5
25	172.0	118.6	99.1	${ }^{50.3}$	0.34	12.2	44.1	0.00	${ }_{12136}^{131.6}$	${ }_{2}^{2301}$		2301	91.8
${ }_{27}^{26}$	177.0	116.8	99.8	49.5	0.11	11.2	44.3	0.00	${ }_{13,5}^{133.8}$	${ }^{2336}$	2195	1912	${ }^{95.8}$
27	174.9	114.7	-99.8	49.5	0.05	15.6	44.0	0.00	${ }^{133.6}$	2301	7487	2263	
28	相	14.0	97.3	50.2	0.20	14.3	42.8	0.00			595	退	\%
	7	2	9,96	488	0.00	13,	4.4	0.00	S358	2088	S300	1953	
31	1777	1115.0	94.5	${ }_{49.5}^{49.8}$	${ }_{0}^{0.00}$	11.9 11.8	${ }_{44.3}^{44.1}$	${ }_{0} 0.00$	${ }_{123.8}^{129.5}$	0	${ }_{3065}$	1064 2159	${ }_{918}^{96.1}$

APPENDIX B

WATER BALANCE EQUATIONS AND ASSUMPTIONS

GENERAL

8 psị steam balance:

Given: Amount of 8 psi steam condensed in Hot Lime Treater $=20 \%$ of raw water volume
Volume of 8 psi steam generated by deaerators $=50.2 \mathrm{KLBH}$ or $547 \mathrm{~m}^{3} /$ day
Treated water losses from plant (excluding 8 psi steam) $=44.1 \mathrm{KLBH}$ or $480 \mathrm{~m}^{3} /$ day
Hot Lime Treater blowdown $=1.5 \mathrm{KLBH}$ or $16.3 \mathrm{~m}^{3} /$ day
$\mathrm{x}=$ volume of 8 psi steam condensing in teh Hot Lime Treater
Then:

$$
\begin{aligned}
\text { Raw water flow } & =44.1+(50.2-\mathrm{x}) \\
\text { Venting } & =50.2-\mathrm{x} \\
\text { Treated water flow } & =(44.1+(50.2-\mathrm{x})) * 1.2-1.5
\end{aligned}
$$

Since,
Total incoming flow $=$ Total outgoing flow

$$
\begin{aligned}
(44.1+50.2-x)+50.2 & =(50.2-x)+((44.1+50.2-x) * 1.2-1.5)+1.5 \\
94.3 & =(94.3-x) * 1.2 \\
1.2 x & =18.9 \\
x & =15.7
\end{aligned}
$$

So,

$$
\begin{aligned}
& 8 \text { psi condensate }=15.7 \mathrm{KLBH} \text { or } \mathbf{1 7 1} \mathbf{~ m}^{3} / \text { day } \\
& \text { Raw water flow }=78.9 \mathrm{KLBH} \text { or } \mathbf{8 5 9} \mathbf{~ m}{ }^{3} / \text { day } \\
& \text { Treated water flow }=93.2 \mathrm{KLBH} \text { or } 1.01 \mathrm{e} 3 \mathrm{~m}^{3} / \text { day } \\
& \text { Venting } 8 \text { psi steam }=34.5 \mathrm{KLBH} \text { or } \mathbf{3 7 6} \mathbf{~ m}^{3 /} \text { day }
\end{aligned}
$$

\#3 Hot Lime Treater blowdown:

The Water Treatment Manual (WTM) indicates that the blowdown rate $=8-10 \%$ of the recirculating sludge. By design, the sludge should be recycled at a rate of 30 gpm. Blowdown from the treater $=10 \%$ of $30 \mathrm{gpm}=3 \mathrm{gpm}$ or $\mathbf{1 6 . 3} \mathbf{~ m}{ }^{3} /$ day .

Softener regeneration brine:

Regenerating a zeolite softener requires the following water volumes (from WTM):

Operation	Flow rates (gpm)	Time (minutes)	Total flow (gallons)
Backwash	495	10	4950
Brine injection	26	12	312
- dilution water	36.5		438
Brine displacement	36.5	20	730
Fast Rinse	200	30	6000
Service Rinse	200	15	$\underline{3000}$
		Grand total:	15430

These waters are discharged to the lime pond and the \#3 Hot Lime Treater as detailed below:
Given: Capacity of each softener $=20000$ grains $/ \mathrm{ft}^{3}$
Volume of each softener $=132 \mathrm{ft}^{3}$
1 grain is = equivalent to 17.1 ppm of hardness*US gal
Inlet water contains $40.5 \mathrm{mg} / \mathrm{L}$ of $\mathrm{Ca} \& 1.2 \mathrm{mg} / \mathrm{L}$ of Mg
Flow through all three filters $=9.31 \mathrm{e} 3 \mathrm{Igal} / \mathrm{h}$.
Each unit can filter:
$=\left(20000\right.$ grains $\left./ \mathrm{ft}^{3} \times 132 \mathrm{ft}^{3}\right) \times 17.1 \mathrm{ppm}^{*} \mathrm{US}$ gal/grain $\times 106 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
$=4.25 \mathrm{e} 5 \mathrm{USgal}$ of water before regeneration
Time until softener needs regenerating:

$$
\begin{aligned}
& =4.25 \mathrm{e} 5 \mathrm{USgal} /\left(9.31 \mathrm{e} 3 \mathrm{Igal} / \mathrm{h} \mathrm{x} 1.2 \mathrm{USgal} / \mathrm{Igal} \times 1 / 2^{*}\right) \\
& =76.1 \text { hours } \\
& (* \text { assuming only } 2 \text { filters running at any given time) }
\end{aligned}
$$

Assuming:

- backwash water returned to \#3 treater
- all other regeneration water (listed above) discharge to lime pond

Amount of water going back to \#3 treater:

$$
\begin{aligned}
& =4950 \mathrm{USgal} / \text { regeneration } / \text { exchanger } \\
& =65.0 \mathrm{USgal} / \mathrm{h} / \text { exchanger } \\
& =195 \mathrm{USgal} / \mathrm{h} \text { or } \mathbf{1 7 . 7} \mathbf{~ m}^{3} / \mathrm{day}
\end{aligned}
$$

Amount of water to lime pond:

$$
\begin{aligned}
& =10480 \mathrm{USgal} / \text { regeneration/exchanger } \\
& =138 \mathrm{USgal} / \mathrm{h} / \text { exchanger } \\
& =413 \mathrm{USgal} / \mathrm{h} \text { or } 37.6 \mathbf{~ m}^{3} / \mathbf{d a y}
\end{aligned}
$$

But using a sodium and chloride balance on the lime pond:

brine concentration $=$	Chloride	Sodium	
5.49 e 3	3.56 e 3	$\mathrm{mg} / \mathrm{L}($ see Appendix D)	
brine mass needed balance $=$	$\underline{2.15 \mathrm{e} 8}$	$\underline{1.39 \mathrm{e} 8}$	$\mathrm{mg} / \mathrm{day}$
require flow $=$	3.91 e 4	3.91 e 4	$\mathrm{~L} /$ day
		$\mathbf{3 9 . 1}$	$\mathbf{m}^{3 / \mathbf{d a y}}$

Domestic filter backwash:

It was assumed that the equivalent of 3 volumes of treated water are used to backwash each of the 2 domestic filters. They measure $30^{\prime \prime}$ (ID) by $60^{\prime \prime}$ (height), and are cleaned every 24 hours.

Turbines:

It was assumed that all of the turbines within the FNGP were loosing 0.1% of their incoming steam through venting.

Steam tracing:

It was assumed that 1% of the steam used for steam tracing escaped through leaks in the piping.

Treated water cleaning:

Assumed that a total of 2 KLBH or $21.8 \mathrm{~m}^{3} /$ day of treated water were used for cleaning vessels, floors ... in the 6 process trains.

Water lost in sweet gas:

Assumed a loss of 4 lb of water $/ \mathrm{mmscf}$ of processed gas. The average gas production for January 1995 was 201.4 and $367.8 \mathrm{mmscf} /$ day for the C/D \& E/F/G/H trains, respectively.

Flare water:

Assumed a loss of 80 lb of water/mmscf of processed gas. The average gas production for January 1995 was 201.4 and $367.8 \mathrm{mmscf} /$ day for the $\mathrm{C} / \mathrm{D} \& \mathrm{E} / \mathrm{F} / \mathrm{G} / \mathrm{H}$ trains, respectively.

Water vapour lost with the acid gas:

Given: acid gas mixture contains $\mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}_{2}$ and water

$$
\% \text { of } \mathrm{H}_{2} \mathrm{~S} \text { in acid gas from process }=11.2 \%
$$

Gas law:

$$
\mathrm{P}_{\mathrm{AG}} \times \mathrm{V}=\left(\mathrm{n}_{\mathrm{H} 2 \mathrm{~S}}+\mathrm{n}_{\mathrm{CO} 2}+\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}\right) \times \mathrm{R} \times \mathrm{T}
$$

where: $\quad \mathrm{P}_{\mathrm{AG}}=$ acid gas pressure (atm)
$\mathrm{V}=\operatorname{acid}$ gas volume (L)
$\mathrm{n}=$ moles of gas
$\mathrm{R}=$ gas constant
$=0.08206(\mathrm{~L} * \mathrm{~atm}) /(\mathrm{mol} * \mathrm{~K})$
$\mathrm{T}=$ temperature (Kelvins)

So

$$
\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}=\left(\mathrm{P}_{\mathrm{AG}} \mathrm{~V} / \mathrm{RT}\right)-\left(\mathrm{n}_{\mathrm{H} 2 \mathrm{~S}}+\mathrm{n}_{\mathrm{CO} 2}\right)
$$

But

$$
\mathrm{n}_{\mathrm{H} 2 \mathrm{~S}} / \mathrm{n}_{\mathrm{AG}}=\% \mathrm{H}_{2} \mathrm{~S} \text { content }
$$

and

$$
\mathrm{n}_{\mathrm{AG}}=\mathrm{P}_{\mathrm{AG}} \mathrm{~V} / \mathrm{RT}
$$

So

$$
\mathrm{n}_{\mathrm{H} 2 \mathrm{~S}}=\left(\% \mathrm{H}_{2} \mathrm{~S}\right)\left(\mathrm{P}_{\mathrm{AG}} \mathrm{~V} / \mathrm{RT}\right)
$$

Since V is measured in scf - actual volume has been transformed into equivalent volume at 1 atm. of pressure and a temperature $=293$ kelvins.

$$
\begin{aligned}
\mathrm{n}_{\mathrm{H} 2 \mathrm{~S}} & =11.2 \% \times\left(1 \mathrm{~atm} . \times 113.2 \mathrm{mmscfd} \times 28.3168 \mathrm{ft}^{3} / \mathrm{L}\right) / \\
& \left(0.08206 \mathrm{~L} * \mathrm{~atm} / \mathrm{mol}^{*} \mathrm{~K} \times 293 \mathrm{~K}\right) \\
& =1.47 \mathrm{e} 7 \mathrm{~mol} / \mathrm{day}
\end{aligned}
$$

Assuming:

- CO_{2} content in raw gas $=13.5 \%$ (as indicated in Sulphur Plant Operating Manual)
- All of the CO_{2} in the raw gas ends up on the acid gas stream

By similar steps:

$$
\begin{aligned}
\mathrm{n}_{\mathrm{CO} 2} & =\% \mathrm{CO}_{2} \times\left(\mathrm{P}_{\mathrm{RG}} \mathrm{~V}_{\mathrm{RG}} / \mathrm{RT}\right) \\
& =13.5 \% \times\left(1 \mathrm{~atm} . \times 682.5 \mathrm{mmscfd} \times 28.3168 \mathrm{ft}^{3} / \mathrm{L}\right) / \\
& (0.08206 \mathrm{~L} * \mathrm{~atm} / \mathrm{mol} * \mathrm{~K} \times 293 \mathrm{~K}) \\
& =1.09 \mathrm{e} 8 \mathrm{~mol} / \mathrm{d}
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{n}_{\mathrm{H} 2 \mathrm{O}} & =\left[\left(1 \mathrm{~atm} . \times 113.2 \mathrm{mmscfd} \times 28.3168 \mathrm{ft}^{3} / \mathrm{L}\right) /\left(0.08206 \mathrm{~L}^{*} \mathrm{~atm} / \mathrm{mol}^{*} \mathrm{~K} \mathrm{x}\right.\right. \\
& 293 \mathrm{~K})]-(1.47 \mathrm{e} 7 \mathrm{~mol} / \mathrm{d}+1.09 \mathrm{e} 8 \mathrm{~mol} / \mathrm{d}) \\
& =9.87 \mathrm{e} 6 \mathrm{~mol} / \mathrm{d}
\end{aligned}
$$

Mass of water:

$$
\begin{aligned}
& =\mathrm{n}_{\mathrm{H} 2 \mathrm{O}} \times 18 \mathrm{~g} / \mathrm{mol} \times \mathrm{kg} / 1000 \mathrm{~g} \times 2.2046 \mathrm{lb} / \mathrm{kg} \times \text { day } / 24 \mathrm{~h} \\
& =16300 \mathrm{lb} / \mathrm{h} \text { or } \mathbf{1 7 8} \mathbf{~ m}^{3} / \text { day }
\end{aligned}
$$

Water formed within the Sulphur Plant:

Given: mol of incoming $\mathrm{H}_{2} \mathrm{~S}=1.49 \mathrm{e} 7 \mathrm{~mol} / \mathrm{d}$
(see "water vapour in acid gas")
average mass of sulphur leaving stack $=15.4$ tonnes $/ \mathrm{d}$
Mol of sulphur leaving the stack:

$$
\begin{aligned}
& =\text { mass } S \times 1000 \mathrm{~kg} / \text { tonne } \times 1000 \mathrm{~g} / \mathrm{kg} \times 1 / 32 \mathrm{~mol} / \mathrm{g} \\
& =15.4 \times 1000 \times 1000 \times 1 / 32 \\
& =4.81 \mathrm{e} 5 \mathrm{~mol} / \mathrm{d}
\end{aligned}
$$

Mol of $\mathrm{H}_{2} \mathrm{~S}$ converted into elemental sulphur:

$$
\begin{aligned}
& =\text { incoming mol }- \text { outgoing mol } \\
& =1.49 \mathrm{e} 7 \mathrm{~mol} / \mathrm{d}-4.81 \mathrm{e} 5 \mathrm{~mol} / \mathrm{d} \\
& =1.45 \mathrm{e} 7 \mathrm{~mol} / \mathrm{d}
\end{aligned}
$$

Conversion reaction:

$$
2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2}=3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}
$$

So:

$$
\begin{aligned}
\mathrm{mol} \mathrm{H}_{2} \mathrm{O} & =\mathrm{mol} \mathrm{H}_{2} \mathrm{~S} \\
& =1.45 \mathrm{e} 7 \mathrm{~mol} / \mathrm{d}
\end{aligned}
$$

Mass of water formed:
$=1.45 \mathrm{e} 7 \mathrm{~mol} / \mathrm{d} \mathrm{x} 18 \mathrm{~g} / \mathrm{mol} \mathrm{x} \mathrm{kg} / 1000 \mathrm{~g} \times 2.2046$
lbs/kg x klb/1000lb
$=23.9 \mathrm{KLBH}$ or $\mathbf{2 6 0} \mathrm{m}^{3} /$ day

UNIT SPECIFIC

Powerhouse

Treated water to process:

This value is the sum of all of the treated water demands from the 6 process trains.

Process

Cleaning solution make-up:
Sum of water lost in sweet gas, acid gas and to the flare pits

Sulphur Plant

Individual blowdowns:
Values taken off of a schematic diagram

Boiler feedwater distribution:

The volumes of BFW going to the individual condensers and the reaction furnace were calculated as follows:

Given: \quad Total volume of BFW to Sulphur Plant $=160 \mathrm{KLBH}$ or $1.74 \mathrm{e} 3 \mathrm{~m}^{3} /$ day 5 condensers produce 37.2 KLBH or $378 \mathrm{~m}^{3} /$ day of condensate
15 psi condensers produce 34.7 KLBH or $378 \mathrm{~m}^{3} /$ day of condensate
Reaction furnace blowdown $=2.0 \mathrm{KLBH}$ or $21.8 \mathrm{~m}^{3} /$ day
Blowdown from \#1 condensers $=1.5 \mathrm{KLBH}$ or $16.3 \mathrm{~m}^{3} /$ day
Blowdown from \#2 condensers $=3.0 \mathrm{KLBH}$ or $32.7 \mathrm{~m}^{3} /$ day
150 psi steam to Petrosul $=1.8 \mathrm{KLBH}$ or $19.7 \mathrm{~m}^{3} /$ day
45 psi steam from \#2 condenser $=41.0 \mathrm{KLBH}$ or $446 \mathrm{~m}^{3} /$ day
BFW to reaction furnace:

$$
\begin{aligned}
& =5 \text { psi condensate }+ \text { Petrosul }+ \text { blowdown }+ \text { venting } \\
& =37.2+2.0+1.8 \\
& =41.0 \mathrm{KLBH} \text { or } \mathbf{4 4 6} \mathbf{~ m}^{3} / \mathbf{d a y}
\end{aligned}
$$

BFW to \#2 condensers:

$$
\begin{aligned}
& =15 \mathrm{psi} \text { condensate }+ \text { blowdown }+45 \mathrm{psi} \text { steam } \\
& =34.7+3.0+41.0 \\
& =78.7 \mathrm{KLBH} \text { or } \mathbf{8 5 7} \mathbf{~ m}^{3} / \mathbf{d a y}
\end{aligned}
$$

BFW to \#1 condensers:

$$
=160-\text { (B.F.W. to \#2 condensers }+ \text { B.F.W. to reaction }
$$

furnace)

$$
=160-(78.7+41.0)
$$

$=40.3 \mathrm{KLBH}$ or $\mathbf{4 3 8} \mathbf{~ m}^{3} / \mathbf{d a y}$

45 psi steam from \#1 condensers:

$$
\begin{aligned}
& =\text { B.F.W. to \#1 condensers - blowdown } \\
& =40.3-1.5 \\
& =38.8 \mathrm{KLBH} \text { or } \mathbf{4 2 2} \mathbf{~ m}^{3} / \mathbf{d a y}
\end{aligned}
$$

Effluent Plant:

Dirty raw water:
Assumed that 137 of the 159 incoming units was dirty raw water used either for cleaning or within the domestic system.
Sour water:
Assumed that the amount of sour water traveling to the effluent plant is negligible

APPENDIX C

WATER CHEMISTRY DATA

Parameter	Date of sample collection							
	March	May	June *	July	Avg.	April	July	Avg.
General								
pH	7.8	7.3	7.6	7.7	7.6	7.6	7.8	7.7
Conductivity	571	300	430	358	415	393	405	399
Alkalinity								
P	-	-	-	-		-	-	
M	141	76.0	114	106		93.0	155	
Total	141	76.0	114	106	109	93.0	155	116
Solids								
Total	380	266	5365	734	1686	659	442	880
Suspended	1.25	174	4316	512	1251	395	206	591
Dissolved	379	92.2	1049	222	435	265	236	289
Carbon content								
Total	35.9	30.9	32.8	34.4	33.5	28.4	63.7	40.0
Organic	0.5	12.1	3.8	8.3	6.2	5.5	25.2	11.3
Inorganic	35.4	18.8	29.0	26.1	27.3	22.9	38.5	28.7
Metals								
Calcium	73.8	38.2	114	54.9	70.1	45.0	61.1	57.8
Magnesium	23.6	8.2	29.5	13.6	18.7	10.8	14.2	14.4
Sodium	11.4	7.6	6.1	5.1	7.6	9.0	5.4	6.8
Iron	0.13	2.46	28.0	5.03	8.90	6.36	3.14	5.86
Inorganics								
Phosphates	0.05	0.05	0.07	0.08	0.06	0.05	0.05	0.06
Chlorides	2.2	1.7	1.0	1.3	1.6	1.6	2.4	1.7
Sulphates	129	43.6	82.8	49.0	76.0	62.9	21.0	52.2
Silica	4.1	2.8	3.8	3.6	3.6	0.6	7.5	3.8
Units : $\mathrm{pH}=\mathrm{pH}$ units					Phosphates $=\mathrm{mg}$ of P / L			
Conductivity $=\mu \mathrm{S} / \mathrm{cm}$ @ 25 C					Chlorides $=\mathrm{mg}$ of Cl / L			
Alkalinity $=\mathrm{mg} / \mathrm{L}$ as CaCO 3					Sulphates $=\mathrm{mg}$ of SO4/L			
	Solids Carbon c Metals	tent	- mg/L		Silica $=$	of SiO		

Raw water header

Sample dropped from final data set
Date of sample collection

Parameter	3-May	8-May	10-May	15-May	17-May	24-May	12 ll	Avg.
General								
pH	8.0	7.8	8.0	7.9	7.9	8.0	76	7.9
Conductivity	571	666	658	476	489	518	792	563

Alkalinity

P	-	-	-		-		
M	202	201	200	169	158	155	139
Total	202	201	200	169	158	155	139

Solids

Total	452	419	241	564	345	354	709	396
Suspended	9.88	4.02	4.67	4.60	14.33	0.56	1.91	6.34
Dissolved	443	414	237	559	331	353	707	389

Carbon content
Tota
$60.1 \quad 61.3 \quad 62$
$62.0 \quad 4$
46.4
72.0
52.6

170
59.1

Organic	9.2	9.1	9.8	8.3	9.5	9.8	135	9.3

Inorganic	50.9	52.2	52.2	38.1	62.5	42.8	\cong	350	$\mathbf{4 9 . 8}$

Metals

Calcium	97.3	90.3	92.2	70.9	68.4	68.4	66.7	81.3
Magnesium	21.4	21.0	20.0	16.7	15.1	15.5	16.9	18.3
Sodium	17.7	12.1	11.6	10.6	11.2	11.8	37.4	12.5
Iron	0.39	0.40	0.38	0.31	0.67	0.21	0.42	0.39

Inorganics

Phosphates	0.05	0.05	0.05	0.05	0.05	0.05	0.11	0.05
Chlorides	3.5	2.1	2.0	3.6	3.9	2.1	82.7	2.9
Sulphates	81.6	100.3	100.8	81.1	77.5	79.3	85.9	86.8
Silica	5.3	5.3	5.9	5.0	5.3	4.5	3.1	5.2

Units: $\mathrm{pH}=\mathrm{pH}$ units
Conductivity $=\mu \mathrm{S} / \mathrm{cm} @ 25 \mathrm{C}$
Alkalinity $=\mathrm{mg} / \mathrm{L}$ as CaCO 3
Solids
$\begin{array}{lll}\text { Carbon content } \\ \text { Metals } & \\ & \end{array}$
Phosphates $=m g$ of P / L
Chlorides $=\mathrm{mg}$ of Cl / L
Sulphates $=\mathrm{mg}$ of SO4/L
Silica $=m g$ of $\mathrm{SiO} 2 / \mathrm{L}$

Reservoir water

Sample dropped from final data set								
Parameter	3 May	8-May	10-May	15-May	17-May	24-May	12-Jul	Avg.
General								
pH	7.5	No	No	No	No	8.2	7.9	8.1
Conductivity	896	Sample	Sample	Sample	Sample	504	523	514
Alkalinity								
	»					-	-	
M	370					151	136	
Total	370					151	136	144
Solids								
Total	92.5					331	297	314
Suspended	1.27					4.79	1.85	3.32
Dissolved:	91.2					327	296	311
Carbon content								
Total	10.6					51.3	45.1	48.2
Organic	2.8					10.4	11.2	10.8
Inorganic	78					40.9	33.9	37.4
Metals								
Calcium:	15.4.					65.2	62.6	63.9
Magnesium)	28					15.2	16.3	15.8
Sodium	2.6					12.0	11.1	11.5
Iron»	010					0.14	0.20	0.17
Inorganics								
Phosphates)	005					0.05	0.08	0.06
Chlorides	0.5					2.3	1.3	1.8
Sulphates	13.2					87.8	69.8	78.8
Silica	1.0					4.5	3.6	4.0

Units: $\mathrm{pH}=\mathrm{pH}$ units
Conductivity $=\mu \mathrm{S} / \mathrm{cm} @ 25 \mathrm{C}$
Alkalinity $=\mathrm{mg} / \mathrm{L}$ as CaCO 3
Solids
Carbon content $-\mathrm{mg} / \mathrm{L}$ Metals

Phosphates $=\mathrm{mg}$ of P / L
Chlorides $=\mathrm{mg}$ of Cl / L
Sulphates $=\mathrm{mg}$ of SO4/L
Silica $=\mathrm{mg}$ of $\mathrm{SiO} 2 / \mathrm{L}$

Treater system outlet

Parameter	Date of sample collection					24-May	Avg.
	3-May	8-May	10-May	15-May	17-May		
General							
pH	9.4	10.1	9.8	10.4	No	11.0	9.9
Conductivity	229	365	324	327	Sample	1124	311
Alkalinity							
P	7.0	16.5	10.5	23.5		186	
M	14.5	7.5	20.5	11.0		140	
Total	21.5	24.0	31.0	34.5		326	27.8
Solids							
Total	222	201	54	420		541	288
Suspended	23.4	3.14	1.52	2.19		14.5	8.95
Dissolved	199	198	52	418		527	279
Carbon content							
Total	9.8	8.8	11.4	24.4.		52.8	20.7
Organic	5.8	5.2	5.4	5.3		8.1	6.1
Inorganic	4.0	3.6	6.0	٪.		44.7	14.6
Metals							
Calcium	1.5	0.2	0.1	0.1		5.0	1.4
Magnesium	1.2	0.3	0.1	0.3		0.5	0.5
Sodium	45.2	51.5	54.8	50.6		180 .	50.5
Iron	0.04	1.78	0.35	0.86		0.04	0.61
Inorganics							
Phosphates	0.05	0.11	0.05	0.06		0.06	0.07
Chlorides	1.7	2.1	2.1	2.4		3.7	2.4
Sulphates	102	84.0	79.6	68.8		74.9	81.9
Silica	0.5	0.2	1.8	0.2		1.8	0.9

$$
\begin{aligned}
\text { Units : } & \mathrm{pH}=\mathrm{pH} \text { units } \\
& \text { Conductivity }=\mu \mathrm{S} / \mathrm{cm} @ 25 \mathrm{C} \\
& \text { Alkalinity }=\mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO} 3 \\
& \text { Solids } \\
& \text { Carbon content }-\mathrm{mg} / \mathrm{L} \\
& \text { Metals } \quad \text { and }
\end{aligned}
$$

Phosphates $=\mathrm{mg}$ of P / L
Chlorides $=\mathrm{mg}$ of Cl / L
Sulphates $=\mathrm{mg}$ of $\mathrm{SO} 4 / \mathrm{L}$
Silica $=\mathrm{mg}$ of $\mathrm{SiO} 2 / \mathrm{L}$
٪. = dropped samples

Softener regeneration brine

Hot Lime Treater

Condensate return

Date of sample collection

Parameter	3-May	8-May	10-May	15-May	17-May	24-May	Avg.
General							
pH	8.9	8.0	8.9	9.0	9.2	8.1	8.7
Conductivity	13.0	12.4	18.0	18.3	22.4	11.8	16.0

Alkalinity

P	1.1	-	0.7	1.5	1.8	-	
M	4.4	4.0	4.0	4.3	4.5	4.8	
Total	5.5	4.0	4.8	5.8	6.3	4.8	$\mathbf{5 . 2}$

Solids

Total	66.3	27.5	0.0	238.4	63.8	30.5	$\mathbf{7 1 . 1}$
Suspended	0.17	0.00	0.00	0.40	0.63	0.00	$\mathbf{0 . 2 0}$
Dissolved	66.1	27.5	0.0	238.0	63.1	30.5	$\mathbf{7 0 . 9}$

Carbon content

Total	5.8	5.7	4.2	0.0	8.4	5.6
Organic	4.3	4.3	3.2	4.3	4.2	4.2
Inorganic	1.5	1.4	1.0	-	4.2	1.4
$\mathbf{4 . 1}$						

Metals

Calcium	0.4	0.3	0.3	0.3	0.1	0.2	$\mathbf{0 . 2}$
Magnesium	0.3	0.2	0.1	0.2	0.1	0.1	$\mathbf{0 . 2}$
Sodium	1.1	0.0	3.1	1.5	0.7	1.6	$\mathbf{1 . 3}$
Iron	0.04	0.22	0.59	0.15	0.18	0.04	$\mathbf{0 . 2 0}$

Inorganics

Phosphates	0.05	0.05	0.05	0.05	0.05	0.05	$\mathbf{0 . 0 5}$
Chlorides	0.1	0.1	0.1	0.1	0.1	0.1	$\mathbf{0 . 1}$
Sulphates	2.1	1.9	1.7	1.0	1.9	1.0	$\mathbf{1 . 6}$
Silica	0.1	0.1	0.1	0.1	0.1	0.1	$\mathbf{0 . 1}$

Units : $\mathrm{pH}=\mathrm{pH}$ units
Conductivity $=\mu \mathrm{S} / \mathrm{cm}$ @ 25 C
Alkalinity $=\mathrm{mg} / \mathrm{L}$ as CaCO 3
Solids
Carbon content
Metals $\quad \mathrm{mg} / \mathrm{L}$

Phosphates $=\mathrm{mg}$ of P / L
Chlorides $=\mathrm{mg}$ of Cl / L
Sulphates $=\mathrm{mg}$ of SO / L
Silica $=\mathrm{mg}$ of $\mathrm{SiO} 2 / \mathrm{L}$

Boiler blowdown

Date of sample collection

Parameter	3-May	8-May	10-May	15-May	17-May	24-May	Avg.
General							
	pH	11.4	11.5	11.6	11.5	11.6	11.4
Conductivity	2084	3853	4724	2666	3602	2799	$\mathbf{3 2 8 8}$

Alkalinity

P	167	230	306	222	292	224
M	45.0	78.0	72.0	58.0	68.0	64.0
Total	212	308	378	280	360	288

304

Solids

Total	1265	1910	2080	1558	1702	1320	$\mathbf{1 6 3 9}$
Suspended	4.29	19.6	43.9	1.18	0.30	18.5	$\mathbf{1 4 . 6}$
Dissolved	1261	1890	2036	1557	1702	1301	$\mathbf{1 6 2 5}$

Carbon content

Total	48.2	77.8	93.4	44.2	73.8	63.5	$\mathbf{6 6 . 8}$
Organic	37.8	57.6	60.9	37.6	46.6	44.5	$\mathbf{4 7 . 5}$
Inorganic	10.4	20.2	32.5	6.6	27.2	19.0	$\mathbf{1 9 . 3}$

Metals

Calcium	2.9	1.2	2.0	0.1	0.1	1.0	$\mathbf{1 . 2}$
Magnesium	1.0	1.0	1.2	0.4	0.2	0.7	$\mathbf{0 . 8}$
Sodium	358	603	676	417	503	397	$\mathbf{4 9 2}$
Iron	0.95	1.08	5.55	0.08	0.17	0.48	$\mathbf{1 . 3 9}$

Inorganics

Phosphates	6.24	10.4	7.02	7.65	8.32	8.59	$\mathbf{8 . 0 4}$
Chlorides	15.5	21.8	24.5	15.1	17.8	15.6	$\mathbf{1 8 . 4}$
Sulphates	613	963	1134	656	756	579	$\mathbf{7 8 3}$
Silica	5.5	6.7	8.0	7.2	8.6	6.5	$\mathbf{7 . 1}$

Units : $\mathrm{pH}=\mathrm{pH}$ units
Conductivity= $\mu \mathrm{S} / \mathrm{cm}$ @ 25 C
Alkalinity $=\mathrm{mg} / \mathrm{L}$ as CaCO 3
Solids
Carbon content
Metals

Phosphates $=\mathrm{mg}$ of P / L Chlorides $=\mathrm{mg}$ of Cl / L Sulphates $=\mathrm{mg}$ of $\mathrm{SO} 4 / \mathrm{L}$ Silica $=m g$ of $\mathrm{SiO} 2 / \mathrm{L}$

Sulphur Plant blowdown

Parameter	Date of sample collection						
	3-May	8-May	10-May	15-May	17-May	24-May	Avg.
General							
pH	11.0	11.0	11.0	11.2	11.2	11.1	11.1
Conductivity	1120	1665	1451	1399	1466	1478	1430
Alkalinity							
P	94.5	106	105	128	127	122	
M	34.5	35.0	36.0	38.0	39.0	40.0	
Total	129	141	141	166	166	162	151
$\underline{\text { Solids }}$							
Total	849	843	609	1013	764	679	793
Suspended	0.33	0.00	0.89	1.21	1.41	0.32	0.69
Dissolved	848	843	608	1011	762	678	792
Carbon content							
Total	40.5	48.9	49.3	40.7	46.3	48.5	45.7
Organic	33.0	36.3	32.9	35.2	35.1	34.5	34.5
Inorganic	7.5	12.6	16.4	5.5	11.2	14.0	11.2
Metals							
Calcium	1.3	0.3	0.3	0.3	0.3	0.2	0.4
Magnesium	0.5	0.4	0.3	0.4	0.4	0.5	0.4
Sodium	207	241	223	234	218	194	219
Iron	0.31	0.25	0.68	0.23	0.17	0.07	0.29
Inorganics							
Phosphates	4.88	5.47	4.95	6.52	6.57	7.09	5.91
Chlorides	8.8	8.7	8.3	9.6	8.9	8.2	8.8
Sulphates	360	441	418	362	355	276	369
Silica	3.1	3.4	3.4	4.0	3.5	3.7	3.5
Units : $\mathrm{pH}=\mathrm{pH}$ units					Phosphates $=\mathrm{mg}$ of P / L		
Conductivity $=\mu \mathrm{S} / \mathrm{cm}$ @ 25 C					Chlorides $=\mathrm{mg}$ of Cl / L		
Alkalinity $=\mathrm{mg} / \mathrm{L}$ as CaCO 3					Sulphates	$=\mathrm{mg}$ of S	
	Solids Carbon cont Metals		- mg/L		Silica $=\mathrm{m}$	$\mathrm{g} \text { of } \mathrm{SiO} 2 /$	

Lime Pond discharge

Date of sample collection

Parameter	3-May	8-May	10-May	15-May	17-May	24-May	Avg.
General							
	pH	9.6	9.9	9.9	10.1	10.4	10.4
Conductivity	4256	431	5327	4652	4478	5543	$\mathbf{4 1 1 4}$

Alkalinity

P	21.8	33.0	27.5	35.5	36.0	46.0	
M	45.5	50.0	33.0	41.0	30.0	35.5	
Total	67.3	83.0	60.5	76.5	66.0	81.5	$\mathbf{7 2 . 5}$

Solids

Total	2663	2205	2515	2896	2343	2739	$\mathbf{2 5 6 0}$
Suspended	2.44	4.67	12.5	2.65	11.4	7.84	$\mathbf{6 . 9 1}$
Dissolved	2660	2200	2503	2894	2331	2731	$\mathbf{2 5 5 3}$

Carbon content
$\begin{array}{llllllll}\text { Total } & 24.9 & 31.8 & 26.5 & 20.4 & 25.7 & 30.7 & \mathbf{2 6 . 7}\end{array}$
$\begin{array}{llllllll}\text { Organic } & 13.7 & 15.7 & 15.2 & 15.2 & 18.2 & 19.4 & \mathbf{1 6 . 2}\end{array}$
$\begin{array}{llllllll}\text { Inorganic } & 11.2 & 16.1 & 11.3 & 5.2 & 7.5 & 11.3 & \mathbf{1 0 . 4}\end{array}$
Metals

Calcium	260	159	261	241	198	207	$\mathbf{2 2 1}$
Magnesium	22.2	17.5	19.5	26.5	17.8	15.8	$\mathbf{1 9 . 9}$
Sodium	622	570	672	639	568	683	$\mathbf{6 2 6}$
Iron	0.17	0.16	0.40	0.04	0.20	0.04	$\mathbf{0 . 1 7}$

Inorganics

Phosphates	0.16	0.24	0.05	0.05	0.05	0.05	$\mathbf{0 . 1 0}$
Chlorides	918	682	914	1034	898	1017	$\mathbf{9 1 1}$
Sulphates	792	615	601	578	579	550	$\mathbf{6 1 9}$
Silica	4.3	4.5	4.4	3.5	3.0	2.8	$\mathbf{3 . 8}$

Units: $\mathrm{pH}=\mathrm{pH}$ units
Conductivity $=\mu \mathrm{S} / \mathrm{cm} @ 25 \mathrm{C}$
Alkalinity $=\mathrm{mg} / \mathrm{L}$ as CaCO 3
Solids
Carbon content $-\mathrm{mg} / \mathrm{L}$
Metals

Phosphates $=\mathrm{mg}$ of P / L
Chlorides $=\mathrm{mg}$ of Cl / L
Sulphates $=\mathrm{mg}$ of $\mathrm{SO} 4 / \mathrm{L}$
Silica $=\mathrm{mg}$ of $\mathrm{SiO} 2 / \mathrm{L}$

Effluent Plant discharge

Date of sample collection

	Date of sample collection						
Parameter	3-May	8-May	10-May	15-May	17-May	24-May	Avg.
General							
PH	7.4	7.9	7.8	7.7	7.5	6.0	$\mathbf{7 . 4}$
Conductivity	3316	4456	4390	3999	4513	4694	$\mathbf{4 2 2 8}$
Alkalinity							
P	-	-	-	-	-	-	
M	121	274	249	241	161	23.0	
Total	121	274	249	241	161	23.0	$\mathbf{1 7 8}$
Solids							
Total	2003	2849	2828	3280	3009	3201	$\mathbf{2 8 6 2}$
Suspended	14.9	6.15	8.55	5.96	6.44	24.7	$\mathbf{1 1 . 1}$
Dissolved	1988	2843	2819	3274	3002	3177	$\mathbf{2 8 5 0}$
Carbon content							
Total	197	220	212	192	182	209	$\mathbf{2 0 2}$
Organic	156	131	128	123	129	192	$\mathbf{1 4 3}$
Inorganic	41.3	89.1	84.5	69.7	53.0	17.0	$\mathbf{5 9 . 1}$
Metals							
Calcium	56.6	53.4	54.4	54.9	53.4	62.7	$\mathbf{5 5 . 9}$
Magnesium	17.5	16.8	16.7	17.1	16.8	18.0	$\mathbf{1 7 . 2}$
Sodium	499	596	599	580	561	516	$\mathbf{5 5 8}$
Iron	3.14	3.11	3.31	3.28	3.42	4.88	$\mathbf{3 . 5 2}$
Inorganics							
Phosphates	0.69	0.05	0.05	0.05	0.05	0.05	$\mathbf{0 . 1 6}$
Chlorides	209	194	187	217	199	211	$\mathbf{2 0 3}$
Sulphates	323	309	340	326	326	326	$\mathbf{3 2 5}$
Silica	7.3	6.9	7.5	7.2	6.6	5.8	$\mathbf{6 . 9}$

Units : $\mathrm{pH}=\mathrm{pH}$ units
Conductivity $=\mu \mathrm{S} / \mathrm{cm} @ 25 \mathrm{C}$
Alkalinity $=\mathrm{mg} / \mathrm{L}$ as CaCO 3
Solids
Carbon content
Metals $\quad \mathrm{mg} / \mathrm{L}$

Phosphates $=\mathrm{mg}$ of P / L
Chlorides $=\mathrm{mg}$ of Cl / L Sulphates $=\mathrm{mg}$ of SO4/L Silica $=\mathrm{mg}$ of $\mathrm{SiO} 2 / \mathrm{L}$

Polishing Pond discharge

Date of sample collection							
Parameter	3-May	8-May	10-May	15-May	17-May	24-May	Avg.
General							
pH	7.3	7.8	7.9	7.8	7.6	7.1	7.6
Conductivity	3846	4471	4519	4341	4868	4985	4505
Alkalinity							
P	-	-	-	-	-	-	
M	73.0	119	125	119	116	51.0	
Total	73.0	119	125	119	116	51.0	101
Solids							
Total	2655	2585	2480	3074	2919	2914	2771
Suspended	18.0	10.3	33.0	41.7	12.2	47.1	27.1
Dissolved	2637	2575	2447	3032	2907	2867	2744
Carbon content							
Total	95.6	105	107	90.6	93.3	94.8	97.7
Organic	73.7	74.7	69.3	61.3	59.2	75.5	69.0
Inorganic	21.9	30.7	37.3	29.3	34.1	19.3	28.8
Metals							
Calcium	146	134	137	157	157	146	146
Magnesium	21.7	19.9	19.0	22.2	21.5	19.1	20.6
Sodium	567	578	580	604	596	578	584
Iron	1.89	1.66	1.68	1.51	1.48	1.98	1.70
Inorganics							
Phosphates	0.51	0.47	0.35	0.11	0.11	0.06	0.27
Chlorides	606	?	538	703	686	602	627
Sulfates	539	515	526	558	574	546	543
Silica	5.2	5.5	5.8	5.4	5.2	4.4	5.2

Units: $\mathrm{pH}=\mathrm{pH}$ units
Conductivity $=\mu \mathrm{S} / \mathrm{cm} @ 25 \mathrm{C}$
Alkalinity $=\mathrm{mg} / \mathrm{L}$ as CaCO 3
$\begin{aligned} & \text { Solids } \\ & \text { Carbon content } \\ & \text { Metals }\end{aligned} \quad \mathrm{mg} / \mathrm{L}, ~$

Phosphates $=\mathrm{mg}$ of P / L
Chlorides $=\mathrm{mg}$ of Cl / L Sulphates $=\mathrm{mg}$ of $\mathrm{SO} 4 / \mathrm{L}$ Silica $=\mathrm{mg}$ of $\mathrm{SiO} 2 / \mathrm{L}$

Flared water

Date of sample collection							
Parameter	3-May	8-May	10-May	15-May	17-May	24-May	Avg.
General							
pH	6.0	5.4	5.4	5.2	4.8	No	5.4
Conductivity	60.2	Not measured				Sample	60.2
Alkalinity							
P	-	-	-	-	-		
M	3.9	1.5	1.8	1.8	1.8		
Total	3.9	1.5	1.8	1.8	1.8		2.1
Solids							
Total	125	12.5	\square	301	22.8		115
Suspended	8.75	0.00	7.31	58.3	1.68		68.8
Dissolved	116	12.5	?	243	21.1		98
Carbon content							
Total	94.0	1481	433	187	205		700
Organic	97.7	1255	330	91.5	211		559
Inorganic	\%	226	103	95.5	$\stackrel{ }{ }$		142
Metals							
Calcium No		0.3	0.2	2.8	0.1		0.9
Magnesium	Sample	0.1	0.1	0.3	0.1		0.1
Sodium		0.9	0.1	4.6	0.6		1.5
Iron		1.93	2.05	7.14	4.51		3.91
Inorganics							
Phosphates	0.05	0.05	0.05	0.05	0.05		0.05
Chlorides	3.2	1.9	0.8	1.2	1.8		1.8
Sulphates	4.1	3.8	6.4	5.6	2.0		4.4
Silica	0.7	0.6	0.4	17.2	1.8		4.1
Units : $\mathrm{pH}=\mathrm{pH}$ units					Phosphates $=\mathrm{mg}$ of P / L		
Conductivity $=\mu \mathrm{S} / \mathrm{cm}$ @ 25 C					Chlorides $=\mathrm{mg}$ of Cl / L		
Alkalinity = mg/L as CaCO 3					Sulphates $=\mathrm{mg}$ of SO4/L		
SolidsCarbon content					Silica $=\mathrm{mg}$ of $\mathrm{SiO} 2 / \mathrm{L}$		
Carbon content			- mg/L		\%... dropped samples		

APPENDIX D

MASS BALANCE EQUATIONS AND ASSUMPTIONS

Treater System:

The following streams were used in the mass balance:
Incoming
-Raw water header
-Fresh brine solution
-8 psi steam

The fresh brine solution was never sampled. It was assumed to be identical in chemical composition to the treated water, except for sodium and chloride levels. These values were calculated independently from figures given in the Water Treatment Manual:

Use 792 lb . of NaCl
\& 10480 USgal of water to regenerate 1 softener
Concentration of:

$$
\begin{aligned}
\mathrm{NaCl}= & (792 \mathrm{lb} \times 0.4536 \mathrm{lb} / \mathrm{kg} \times 1000000 \mathrm{mg} / \mathrm{kg}) /(10480 \mathrm{USgal} \mathrm{x} \\
& 3.7854 \mathrm{~L} / \mathrm{gal}) \\
= & 9055.8 \mathrm{mg} / \mathrm{L} \\
\mathrm{Na}= & {[\mathrm{NaCl}] \times 23 / 58.45 } \\
= & 3563 \mathrm{mg} / \mathrm{L} \\
\mathrm{Cl}= & {[\mathrm{NaCl}]-[\mathrm{Na}] } \\
= & 5492 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

The 8 psi steam entering the system and the vented vapour leaving it were assumed to be identical not only to one another, but also to the condensate sampled elsewhere in the FNGP (see Appendix C).

Boiler System

The following streams were used in the mass balance:

Incoming	Outgoing
- Boiler feedwater	-450 psi steam
	- Boiler blowdown

Chemical characteristics of the boiler feedwater (BFW) were derived from the treated water and condensate return flows, which mix in the deaerators prior to entry into the boilers. A sample calculation is shown below:

Total solids in BFW:

$$
\begin{aligned}
& =\left(\left(\text { Concentration }_{\mathrm{TW}} \times \text { Flow }_{\mathrm{TW}}\right)+\left(\text { Concentration }_{\text {Cond }} \times \text { Flow }_{\text {Cond }}\right)\right) / \\
& \left(\text { Flow }_{\mathrm{TW}}+\text { Flow }_{\text {Cond }}\right)
\end{aligned}
$$

The 450 psi steam leaving the boilers was assumed to have the same chemistry as the condensate return samples collected elsewhere in the FNGP.

The flow of boiler feedwater into the boilers was assumed to be $=$ to the flow of 450 psi steam and blowdown exiting the boiler.

Lime Pond

The following streams were used in the mass balance:

Incoming	Outgoing
-\#3 Hot lime treater blowdown	-Lime pond discharge
-Boiler blowdown	
-Softener regeneration blowdown	
-Sulphur plant blowdown	

Water samples were collected from each of these streams, so it was simply a case of multiplying know concentrations by the respective flow rates.

Composite Discharge:

The following streams were used in the mass balance:

Incoming
-Effluent plant discharge

Outgoing
-Polishing pond discharge
-Lime pond discharge

Water samples were collected from each of these streams, so it was simply a case of multiplying know concentrations by the respective flow rates.

ESTIMATED HOT LIME TREATER AND ION-EXCHANGER BLOWDOWN CHARACTERISTICS

Hot Lime Treater Blowdown:

The water treatment manual stipulates that the hot lime treater removes calcium, magnesium, silica and carbonate. It also indicates that if the total hardness of the inlet water is larger than the inlet M alkalinity, the lime treater effluent will have the following characteristics:

$$
\mathrm{CO}_{3} \quad=25 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3}
$$

$$
\begin{array}{ll}
\mathrm{OH} & =5 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3} \\
\text { Total alk. } & =30 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3} \\
\mathrm{Mg} & =5 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3} \\
\mathrm{Ca} & =\text { (raw water hardness - hardness reduction) - final }[\mathrm{Mg}], \\
& \text { where hardness reduction = alkalinity reduction }
\end{array}
$$

Given that the inlet and outlet waters from the front-end softening system were observed to contain:

	Influent Flow (m3/day)	Outlet $\mathrm{Ca}(\mathrm{mg} / \mathrm{L})$
$\mathrm{Mg}(\mathrm{mg} / \mathrm{L})$	1030	975
$\mathrm{Fe}(\mathrm{mg} / \mathrm{L})$	67.8	1.4
$\mathrm{SO}_{4}(\mathrm{mg} / \mathrm{L})$	15.3	0.5
$\mathrm{SiO}_{2}(\mathrm{mg} / \mathrm{L})$	0.4	0.6
$\mathrm{PO}_{4}(\mathrm{mg} / \mathrm{L})$	72.7	81.9
$\mathrm{Cl}(\mathrm{mg} / \mathrm{L})$	4.4	0.9
$\mathrm{Na}(\mathrm{mg} / \mathrm{L})$	0.06	0.07
$\mathrm{DOC}(\mathrm{mg} / \mathrm{L})$	2.4	2.4
pH	10.6	50.5
$\mathrm{M} . \mathrm{Alk}\left(\mathrm{mg} / \mathrm{L}\right.$ as $\left.\mathrm{CaCO}_{3}\right)$	133	6.1
$\mathrm{~T} . \mathrm{Alk}\left(\mathrm{mg} / \mathrm{L}\right.$ as $\left.\mathrm{CaCO}_{3}\right)$	133	9.9
$\mathrm{CO}(\mathrm{mol} / \mathrm{L})$	$1.6 \times 10-5$	18.4
$\mathrm{C}_{\mathrm{T}}(\mathrm{mol} / \mathrm{L})$	3.1	27.8

Product water from the hot lime treater should have contained:

Ca	$=42.5 \mathrm{mg} / \mathrm{L}$	- hardness - alk. reduction $-[\mathrm{Mg}]$
Mg	$=1.2 \mathrm{mg} / \mathrm{L}$	$-5 \mathrm{mg} / \mathrm{L}$ as $\mathrm{CaCO}_{3}=1.2 \mathrm{mg} / \mathrm{L}$
Fe	$=0.6 \mathrm{mg} / \mathrm{L}$	- assumed to be identical to the outlet water
$\mathrm{SO}_{4}=81.9 \mathrm{mg} / \mathrm{L}$	- assumed to be identical to the outlet water	
$\mathrm{SiO}_{2}=0.9 \mathrm{mg} / \mathrm{L}$	- assumed to be identical to the outlet water	
$\mathrm{PO}_{4}=0.07 \mathrm{mg} / \mathrm{L}$	- assumed to be identical to the outlet water	
Cl	$=2.4 \mathrm{mg} / \mathrm{L}$	- assumed to be identical to the outlet water
Na	$=10.1 \mathrm{mg} / \mathrm{L}$	- assumed to be identical to the [Na] observed in the single
		blowdown sample
DOC	$=6.1 \mathrm{mg} / \mathrm{L}$	- assumed to be identical to the outlet water

$$
\begin{array}{lll}
\mathrm{pH} & =10.0 & -[\mathrm{OH}] \text { of } 5 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3}=\mathrm{pH} \text { of } 10.0 \\
\mathrm{~T} . \text { alk. } & =30 \mathrm{mg} / \mathrm{L} \mathrm{CaCO}_{3} & - \text { as stipulated by water treatment manual } \\
\mathrm{CO}_{3} & =1.2 \times 10^{-4} \mathrm{~mol} / \mathrm{L} & -25 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3}=1.2 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \\
\mathrm{C}_{\mathrm{T}} & =3.8 \times 10^{-4} \mathrm{~mol} / \mathrm{L} & \text { - calculated from total alkalinity and } \mathrm{pH}
\end{array}
$$

And the blowdown stream which flowed at $16.3 \mathrm{~m}^{3} /$ day, would have had the following characteristics:

Ca	$=1640 \mathrm{mg} / \mathrm{L}$	- (1030 m3/day x $67.8 \mathrm{mg} / \mathrm{L}-42.5 \mathrm{mg} / \mathrm{L} \times 1014 \mathrm{~m} 3 /$ day $)$
Mg	$=887 \mathrm{mg} / \mathrm{L}$	- (1030 m³/day x $15.3 \mathrm{mg} / \mathrm{L}-1.2 \mathrm{mg} / \mathrm{L} \times 1014 \mathrm{~m} 3 /$ day $)$
Fe	$=0.3 \mathrm{mg} / \mathrm{L}$	- observed [] in single blowdown sample
SO_{4}	$=74.2 \mathrm{mg} / \mathrm{L}$	- observed [] in single blowdown sample
SiO_{2}	$=219 \mathrm{mg} / \mathrm{L}$	- ($1030 \mathrm{~m} 3 /$ day $\times 4.4 \mathrm{mg} / \mathrm{L}-1014 \mathrm{~m} /$ day x $0.9 \mathrm{mg} / \mathrm{L}$)
PO_{4}	$=0.05 \mathrm{mg} / \mathrm{L}$	- observed [] in single blowdown sample
Cl	$=2.8 \mathrm{mg} / \mathrm{L}$	- observed [] in single blowdown sample
Na	$=10.1 \mathrm{mg} / \mathrm{L}$	- observed [] in single blowdown sample
DOC	$=28.5 \mathrm{mg} / \mathrm{L}$	- ($1030 \mathrm{~m} 3 /$ day $\times 8.4 \mathrm{mg} / \mathrm{L}-1014 \mathrm{~m} 3 /$ day $\times 6.1 \mathrm{mg} / \mathrm{L}$)
pH	$=10.0$	- assumed to be the same as the lime treater effluent
C_{T}	$=1.7 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$	$\begin{aligned} & -\left(1030 \mathrm{~m}^{3} / \mathrm{day} \times 3.1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}-1014 \mathrm{~m}^{3} / \text { day } \times 3.8 \times\right. \\ & \left.\quad 10^{-4} \mathrm{~mol} / \mathrm{L}\right) \end{aligned}$
CO_{3}	$=1.7 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$	$-\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}\right] \lll\left[\mathrm{CO}_{3}\right]$, so $\left[\mathrm{C}_{\mathrm{T}}\right]=\left[\mathrm{CO}_{3}\right]$

Ion-exchange blowdown:

Given the following data:

	Lime treater effluent	Outlet water
Flow (m3/day)	1014	975
$\mathrm{Ca}(\mathrm{mg} / \mathrm{L})$	42.5	1.4
$\mathrm{Mg}(\mathrm{mg} / \mathrm{L})$	1.2	0.5
$\mathrm{Fe}(\mathrm{mg} / \mathrm{L})$	0.6	0.6
$\mathrm{SO}_{4}(\mathrm{mg} / \mathrm{L})$	81.9	81.9
$\mathrm{SiO}_{2}(\mathrm{mg} / \mathrm{L})$	0.9	0.9
$\mathrm{PO}_{4}(\mathrm{mg} / \mathrm{L})$	0.07	0.07
$\mathrm{Cl}(\mathrm{mg} / \mathrm{L})$	2.4	2.4
$\mathrm{Na}(\mathrm{mg} / \mathrm{L})$	10.1	50.5
$\mathrm{DOC}(\mathrm{mg} / \mathrm{L})$	6.1	6.1
$\mathrm{pH}(\mathrm{mg} / \mathrm{L})$	10.0	10.1
$\mathrm{~T} . \mathrm{Alk}\left(\mathrm{mg} / \mathrm{L}\right.$ as $\left.\mathrm{CaCO}_{3}\right)$	30	27.8

$\mathrm{CO}_{3}(\mathrm{~mol} / \mathrm{L})$	1.2×10^{-4}	1.0×10^{-4}
$\mathrm{C}_{\mathrm{T}}(\mathrm{mol} / \mathrm{L})$	3.8×10^{-4}	3.7×10^{-4}

And that the brine used to regenerate the ion-exchangers consisted of 792 lbs of NaCl dissolved in 10480 USgal of treated/outlet water.

The ion-exchanger blowdown should have had the following characteristics:

Ca	$=1070 \mathrm{mg} / \mathrm{L}$	- ($1014 \mathrm{~m} 3 /$ day $\times 42.5 \mathrm{mg} / \mathrm{L}-975 \mathrm{~m} 3 /$ day $\times 1.4 \mathrm{mg} / \mathrm{L})$
Mg	$=19.9 \mathrm{mg} / \mathrm{L}$	- ($1014 \mathrm{~m}^{3} /$ day $\times 1.2 \mathrm{mg} / \mathrm{L}-975 \mathrm{~m}^{3} /$ day $\left.\times 0.5 \mathrm{mg} / \mathrm{L}\right)$
Fe	$=0.6 \mathrm{mg} / \mathrm{L}$	- assumed to be identical to the outlet water
SO_{4}	$=81.9 \mathrm{mg} / \mathrm{L}$	- assumed to be identical to the outlet water
SiO_{2}	$=0.9 \mathrm{mg} / \mathrm{L}$	- assumed to be identical to the outlet water
PO_{4}	$=0.07 \mathrm{mg} / \mathrm{L}$	- assumed to be identical to the outlet water
Cl	$=5490 \mathrm{mg} / \mathrm{L}$	- [Cl] in brine used to regenerate the ion-exchangers
Na	$=2331 \mathrm{mg} / \mathrm{L}$	$-[\mathrm{Na}]$ in brine used to regenerate the ion-exchanger $+2 x$ (equivalent mass of calcium magnesium removed by the ion-exchangers)
DOC	$=6.1 \mathrm{mg} / \mathrm{L}$	- assumed to be identical to the outlet water
pH	$=11.0$	- average value from 5 blowdown samples
T. alk.	$=318 \mathrm{mg} / \mathrm{L} \mathrm{CaCO}_{3}$	- average value from 5 blowdown samples
CO_{3}	$=2.4 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$	- calculated from pH and total alkalinity readings
C_{T}	$=2.9 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$	- calculated from pH and total alkalinity readings.

APPENDIX E

EQUATIONS USED IN THE COMPUTER SIMULATOR

FNGP WATER SYSTEM OVERVIEW SPREADSHEET

Cell(s)	Equations / values and explanation thereof
C16	$=\mathrm{IF}$ (D14="Composite", IF (K9 $=$ "no", $(273+\mathrm{H} 7+\mathrm{I} 16+\mathrm{C} 39+\mathrm{D} 39+$ 'Reverse Osmosis'!\$P\$43)-D16,(273+H7+I16+N16+C39+D39+Reverse Osmosis'!\$P\$43)-D16),(273+H7+I16+N16+C39+D39)-D16) $=$ Structure of if/then statements indicates that raw water flow into the process system has one of three possible values depending on the configuration of the ZED system: i - if using a direct composite recycle scenario without a softener, then raw water flow $=273$ (unrecoverable losses) + boiler, sulphur plant, hot lime treater and RO filter blowdowns +8 psi steam loss (kept at 0 in this study) - recycled water ii - if a softener is added to the direct composite discharge scenario, then raw water flow is the same as in (i) + softener blowdown flow iii - if using a back-end model, then raw water flow is = same as (i) + softener blowdown + without RO blowdown
C18-C28	$=$ specific values from original data set
C29	$\begin{aligned} & =\left(50000^{*}\left(\mathrm{C} 28 / 50000+\left(10^{\wedge}-\mathrm{C} 27\right)-\left(10^{\wedge}-14 / 10^{\wedge}-\mathrm{C} 27\right)\right) /\left(1+\left(10^{\wedge}-\mathrm{C} 27 /\left(2^{*} 4.7^{*} 10^{\wedge}-\right.\right.\right.\right. \\ & 11)))) * 0.6 / 61000 \\ & =50000 \times\left(\mathrm{T} . \text { Alk } / 50000+10-\mathrm{pH}-10^{-14} / 10-\mathrm{pH}\right) /\left(1+10-\mathrm{pH} /\left(2 \times \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}\right.\right. \\ & \quad \text { equilibrium constant })) \times 0.6 / 60000 \\ & - \text { from Sawyer \& McCarty } 1978 \end{aligned}$
C30	$\begin{aligned} &=\left(50000 *\left(\mathrm{C} 28 / 50000+\left(10^{\wedge}-\mathrm{C} 27\right)-\left(10^{\wedge}-14 / 10^{\wedge}-\mathrm{C} 27\right)\right) /\left(1+\left(\left(2 * 4.7^{*} 10^{\wedge}-11\right) / 10^{\wedge}-\right.\right.\right. \\ &\mathrm{C} 27)))^{*} 1.22 / 61000 \\ &= 50000 \times\left(\mathrm{T} . \mathrm{Alk} / 50000+10^{-} \mathrm{pH}-10^{-14} / 10^{-}-\mathrm{pH}\right) /\left(1+\left(2 \mathrm{xH}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}\right.\right. \\ &\quad \text { equilibrium constant }) / 10-\mathrm{pH}) \times 1.22 / 61000 \\ & \text { from Sawyer \& McCarty } 1978 \end{aligned}$
C31	$\begin{aligned} & =\left(\left(10^{\wedge}-\mathrm{C} 27\right)^{*} \mathrm{C} 30\right) /\left(4.2^{*} 10^{\wedge}-7\right) \\ & =\left(10^{-} \mathrm{pH}\right) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3} \text { equilibrium constant } \end{aligned}$
C32	$\begin{aligned} & =\text { Sum (C29:C31) } \\ & =\text { Sum of Cell C29 through C31 } \end{aligned}$

FNGP WATER SYSTEM OVERVIEW SPREADSHEET
D16-D32
號
Equations/values and explanation thereof
$=\mathrm{IF}(\mathrm{F} 4=$ "no", 0 , 'Reverse Osmosis'! $\$ \mathrm{~N} \$ 43 \$ \mathrm{~N} \$ 62$)
= If reclaimed wastewater collected from the RO and BCS units is recycled through
the system, then these cells have the same values as cells N43 through N62,
respectively, in the "reverse osmosis" spreadsheet

[^9]
FNGP WATER SYSTEM OVERVIEW SPREADSHEET (con't)
Cell(s)
F18-F27
F29 \& F30
F32
G16
G18-G27

FNGP WATER SYSTEM OVERVIEW SPREADSHEET (con't)

Cell(s)	Equations / values and explanation thereof
I16	$=\mathrm{IF}((\mathrm{G} 18 * 50 / 20+\mathrm{G} 19 * 50 / 12.2)<25,0$, ' $[$ FNGP water system] Lime treater calc.'!\$K\$81) = This cell has the same value as cell H81 in the "Lime Treater Calc." spreadsheet, unless total incoming hardness is less than $25 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}. At below $25 \mathrm{mg} / \mathrm{L}$, the lime treater goes off-line, as it cannot lower water hardness below this level (water treatment manual)
I18, I29 \& I27	$=$ If the lime treater is on-line (i.e. blowdown flow is $>0.001 \mathrm{~m}^{3} /$ day $)$, then these cells have the same value of cells K83, K84 \& G78 in the "Lime Treater Calc." spreadsheet. Otherwise, they have no value (0 is displayed) (e.g. $=\mathrm{IF}(\mathrm{I} 16<0.001$, 0 , '[FNGP water system]Lime treater calc.'! $\$ \mathrm{~K} \$ 83$))
I20 \& I23	$\begin{aligned} & =\text { Incoming mass } x(1+\% \text { gain or loss across the lime treater }) / \text { blowdown flow, } \\ & \text { unless lime treater is off-line, in which case cell value }=0(e . g .=\operatorname{IF}(\mathrm{I} 16<0.001, \\ & \left.0, \mathrm{G} 20^{*}(1+\mathrm{H} 20)\right) \end{aligned}$
I21, I24 \& I 25	$=$ Values in cells G21, G24 and G25, respectively, if lime treater is on-line. If it is off-line, these cells have a value $=0$ (e.g. $=\mathrm{IF}(\mathrm{I} 16<0.001,0, \mathrm{G} 24))$
I22	$=\mathrm{IF}(\mathrm{I} 16<0.001,0,(\mathrm{G} 26 * \mathrm{G} 16-\mathrm{J} 26 * \mathrm{~J} 16) / \mathrm{I} 16)$ $=\mathrm{IF}(\mathrm{I} 16<0.001,0$, '[FNGP water system]Lime treater calc.'!\$G\$78) - this equation is based on the assumption that the lime treater can only lower silica concentrations to current treater water levels (i.e. $0.9 \mathrm{mg} / \mathrm{L}$), so if its feedwaters contain more than $0.9 \mathrm{mg} / \mathrm{L}$, all of the excess mass will be drained away in the blowdown waters; on the other hand, if they do not contain more than $0.9 \mathrm{mg} / \mathrm{L}$ of silica, silica concentrations in the blowdown water will be equal to incoming levels.
I26	$\begin{aligned} & =\mathrm{IF}(\mathrm{I} 16<0.001,0,(\mathrm{G} 26 * \mathrm{G} 16-\mathrm{J} 26 * \mathrm{~J} 16) / \mathrm{I} 16) \\ & =\mathrm{IF}(\mathrm{I} 16<0.001,0, \text { '[FNGP water system]Lime treater calc.' } \$ \$ \mathrm{G} \$ 78) \end{aligned}$
I29	$\begin{aligned} & =\mathrm{IF}(\mathrm{I} 16<0.001,0, \mathrm{I} 32-(\mathrm{I} 31+\mathrm{I} 30)) \\ & =\left[\mathrm{C}_{\mathrm{T}}\right]-\left[\mathrm{HCO}_{3}\right]-\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \text { or } 0, \text { depending if the lime treater is on or off-line } \end{aligned}$
I30 \& I31	$=\left[\mathrm{HCO}_{3}\right] \&\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \text { in the lime treater product waters }(\mathrm{e} . \mathrm{g} .=\mathrm{IF}(\mathrm{I} 16<0.001,0,$
I32	$=\mathrm{IF}(\mathrm{I} 16<0.001,0,(\mathrm{G} 32 * \mathrm{G} 16-\mathrm{J} 32 * \mathrm{~J} 16) / \mathrm{I} 16)$

$\substack{\text { Lime Blowdown } \\ \text { Flow }}$
$\mathrm{Ca}, \mathrm{Mg} \& \mathrm{pH}$
${\mathrm{Fe} \& \mathrm{PO}_{4}}^{\text {Title }}$
$\mathrm{SO}_{4}, \mathrm{Na}_{\mathrm{Na}} \mathrm{Cl}$
SiO_{2}
$\mathrm{DOC}^{\mathrm{CO}_{3}}$
$\mathrm{HCO}_{3} \& \mathrm{H}_{2} \mathrm{CO}_{3}$
C_{T}
FNGP WATER SYSTEM OVERVIEW SPREADSHEET (con't)

Title	Cell(s)	Equations/values and explanation thereof
Lime Product - Cels		
Flow	J16	$\begin{aligned} & =\mathrm{G} 16-\mathrm{I} 16 \\ & =\text { Incoming flow }- \text { blowdown flow } \end{aligned}$
- if lime treater is off-line (i.e. incoming hardness $<25 \mathrm{mg} / \mathrm{L}$ as CaCO_{3})		
Ca-DOC \& T.Alk	J18-J26 \& J28	= Identical to inflow waters
pH	J27	$\begin{aligned} & \text { = Value of cell G78 in "Lime Treater Calc." } \\ & \text { - based on assumption that process waters always raised to } \mathrm{pH} 10 \end{aligned}$
CO_{3}	J29	$\begin{aligned} & =50000 \times\left(\mathrm{T} . \mathrm{Alk} / 50000+10-\mathrm{pH}-10^{-14} / 10^{-\mathrm{pH}}\right) /\left(1+10-\mathrm{pH} /\left(2 \times \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}\right.\right. \\ & \text { equilibrium constant })) \times 0.6 / 60000 \\ & - \text { from Sawyer \& McCarty } 1978 \end{aligned}$
HCO_{3}	J30	$\begin{aligned} & =50000 \times\left(\mathrm{T} . \mathrm{Alk} / 50000+10-\mathrm{pH}-10^{-14} / 10-\mathrm{pH}\right) /\left(1+\left(2 \mathrm{xH}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}\right.\right. \\ & \quad \text { equilibrium constant) } / 10-\mathrm{pH}) \times 1.22 / 61000 \\ & - \text { from Sawyer \& McCarty } 1978 \end{aligned}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$	J31	$=(10-\mathrm{pH}) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant
$\mathrm{C}_{\text {T }}$	J32	$\begin{aligned} & =\operatorname{Sum}(\mathrm{J} 29: \mathrm{J} 31) \\ & =\left[\mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \end{aligned}$
- if lime treater is on-line (i.e. influent hardness $>25 \mathrm{mg} / \mathrm{L}$ as CaCO_{3})		
Ca, Mg \& pH	J18, J19 \& J27-J32	= Values in cells G82, G79, G78, G83 \& K71-73 in the "Lime Treater Calc." spreadsheet, respectively
$\mathrm{Fe}, \mathrm{SO}_{4} \& \mathrm{PO}_{4}-\mathrm{DOC}$	J20, J21 \& J23-J26	$=$ Influent [] x ($1+\%$ gain or loss across the lime treater
SiO_{2}	J22	$=($ Influent mass - blowdown mass) / product water flow
RO Product Water - if using a composite discharge reuse model:		
Flow-DOC	K16-26	= Values specified in cells N43 through N53 in "Reverse Osmosis" spreadsheet, respectively (e.g. = IF(D14= "Composite", 'Reverse Osmosis'!\$N\$45:\$N\$53, "N/A"))
pH	K27	$=\mathrm{pH}$ of 10.0 - RO product water raised to pH 10.0 to match lime treater product water
CO_{3}	K29	$=\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant $\mathrm{x}\left[\mathrm{HCO}_{3}\right] /(10-\mathrm{pH})$

FNGP WATER SYSTEM OVERVIEW SPREADSHEET (con't)
Equations / values and explanation thereof

Cell(s)	Equations / values and explanation thereof
K30	```\(=\left[\mathrm{C}_{\mathrm{T}}\right] \times 1 /\left(10-\mathrm{pH} / \mathrm{H}_{2} \mathrm{CO}_{3}\right.\) equilibrium constant \(+1+\mathrm{CO}_{3}-\mathrm{HCO}_{3}\) equilibrium constant / \(10-\mathrm{pH}\)) - from Benefield et al. 1982```
K31	$=(10-\mathrm{pH}) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant
K32	= Value of cell N62 in the "Reverse Osmosis" spreadsheet

[^10]FNGP WATER SYSTEM OVERVIEW SPREADSHEET (con't)
Equations / values and explanation thereof

Cell(s)	Equations/values and explanation thereof
N32 M32	
	- Self-explanatory

discharge reuse scenario:
 = Cell C95 in "Softener Brine Calc." spreadsheet
$=(\mathrm{K} 18:$ K19 * K16-M18: M19 * M16) / N16
= (mass in - mass out) / blowdown volume
= K20 - K23 \& K26

- []'s in RO product flow
= Cell H17 and C44, respectively, in the "Softener Brine Calc." spreadsheet M20 - M24 \& M26
M25
M27
M29
M30

M31
M32
 $\frac{\text { Title }}{\mathrm{C}_{\mathrm{T}}}$

- If using an ion-exchan
$\begin{aligned} & \text { Softener Product } \\ & \text { Flow } \\ & \mathrm{Ca} \& \mathrm{Mg}\end{aligned}$ $\begin{array}{lc}\text {-If using an ion-exchanger in a direct composit } \\ \begin{array}{l}\text { Softener Product } \\ \text { Flow }\end{array} & \text { M16 } \\ \text { Ca \& Mg } & \text { M18 \& M19 }\end{array}$ $\begin{array}{lc}\text {-If using an ion-exchanger in a direct composit } \\ \begin{array}{l}\text { Softener Product } \\ \text { Flow }\end{array} & \text { M16 } \\ \text { Ca \& Mg } & \text { M18 \& M19 }\end{array}$
M31
M32

N16
N18 \& N19 $\frac{\text { Title }}{\mathrm{C}_{\mathrm{T}}}$

- If using an ion-exchanger in
$\mathrm{Fe}-\mathrm{Cl} \& \mathrm{DOC}$
Na
pH
CO_{3}
HCO_{3}

$\mathrm{H}_{2} \mathrm{CO}_{3}$
C_{T} Ion-X Blowdown
Flow
$\mathrm{Ca} \& \mathrm{Mg}$
$\mathrm{Fe}-\mathrm{PO}_{4} \& \mathrm{DOC}$
$\mathrm{Cl} \& \mathrm{Na}$
FNGP WATER SYSTEM OVERVIEW SPREADSHEET (con't)

Equations / values and explanation thereof

- No change in pH from the hot lime treater
$=\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant $\mathrm{x}\left[\mathrm{HCO}_{3}\right] /(10-\mathrm{pH})$ $=\left[\mathrm{C}_{\mathrm{T}}\right] \times 1 /\left(10-\mathrm{pH} / \mathrm{H}_{2} \mathrm{CO}_{3}\right.$ equilibrium constant $+1+\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium

constant $/ 10-\mathrm{pH}$) - from Benefield et
 - from Benefield et al. 1982
 $=(10-\mathrm{pH}) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}$
 $=\left[\mathrm{C}_{\mathrm{T}}\right]$ in softener product

- if a Nanofilter is used in place of an ion-exchanger
Title

Title
pH
CO_{3}
HCO_{3}
$\mathrm{H}_{2} \mathrm{CO}_{3}$
C

Flow - C_{T}
NF Blowdown
Flow - C_{T}

- if no softener is used in the treatment system:
M16-M32
N16-N32
Ion-X or NF Blowdown
Flow - C_{T}
Treated Water
Flow

016

without a softener
ii) softener product water flow if using a nanofilter
iii) (softener product water - ion-x blowdown) - if using an ion-exchanger
FNGP WATER SYSTEM OVERVIEW SPREADSHEET (con't)

$=$ ' $[$ FNGP water system]Blowdown calc.' $1 \$ \mathrm{Q} \$ 83$

pH
CO_{3}
HCO_{3}

$\mathrm{CO}_{3} \& \mathrm{HCO}_{3}$

Sulphur Plant Blowdown
Flow

$$
\begin{aligned}
& \text { = I16 } \\
& \text { - same value as cell I16 } \\
& \text { = I18: I27 } \\
& \text { - same value as cells I18 through I27, respectively } \\
& \text { = I 29: I32 } \\
& \text { - same value as cells I29 through I32, respectively }
\end{aligned}
$$ $=\mathrm{IF}(\mathrm{D} 14=$ "Composite", $\mathrm{IF}(\mathrm{K} 9=$ "yes", $\mathrm{IF}(\mathrm{O} 10=$ "Lime pond", $\mathrm{N} 16,0), 0), \mathrm{N} 16)$

- Structure of the if/then statements indicates that, regardless of the configuration of
the water treatment system, if a softener is used then the amount of blowdown
water reaching the lime pond is equal to the value of cell N16. If a water softener is
not included in the system, then this cell has a value of 0 .
- same basic format as cell F39, with the resulting value of each of these cells being
equal to 0 or N18 through N32, respectively
 F39

$$
\begin{aligned}
& \text { Ion - X Blowdown } \\
& \text { Flow }
\end{aligned}
$$

F41-F55

Domestic Backwash \& Lab water Flow	
$\mathrm{Ca}-\mathrm{pH}$	$\mathrm{G} 41-\mathrm{G} 50$
$\mathrm{CO}_{3} \& \mathrm{HCO}_{3}$	$\mathrm{G} 52-\mathrm{G} 53$
C_{T}	G 55

$\mathrm{Ca}-\mathrm{C}_{\mathrm{T}}$
${ }_{r}$

$$
\begin{aligned}
& =\mathrm{IF}(\mathrm{D} 14=\text { "Composite", } \mathrm{IF}(\mathrm{~K} 9=\text { "yes", } \mathrm{IF}(\mathrm{O} 10=\text { "Lime pond", N16, } 0), 0), \mathrm{N} 16) \\
& \text { - Structure of the if/then statements indicates that, regardless of the configuration of } \\
& \text { the water treatment system, if a softener is used then the amount of blowdown } \\
& \text { water reaching the lime pond is equal to the value of cell N16. If a water softener is } \\
& \text { not included in the system, then this cell has a value of } 0 \text {. } \\
& \text { - same basic format as cell F39, with the resulting value of each of these cells being } \\
& \text { equal to } 0 \text { or N18 through N32, respectively }
\end{aligned}
$$

$$
\begin{aligned}
& =(1.5+0.8) *(1000 / 10.01439) *(1.2 / 264.172) * 24 \\
& \text { - water volume in KLBH x conversion factors changing numbers into } \mathrm{m}^{3} / \text { day } \\
& =\text { O18:O27 } \\
& \text { - same value as cells } 018 \text { through } 027 \text {, respectively } \\
& =\text { O29:O27 } \\
& \text { - same value as cells } 029 \text { and } 030 \text {, respectively } \\
& =\mathrm{O} 32
\end{aligned}
$$

Title
$\underset{\text { Plow }}{\text { Ploals }}$
$\mathrm{Ca}-\mathrm{pH}$
$\mathrm{CO}_{3}-\mathrm{HCO}_{3}$
C_{T}
Net Inflow
Flow
$\mathrm{Ca}-\mathrm{pH}$
CO_{3}
HCO_{3}
C_{T}
Sources \& Sinks
$\mathrm{Ca}-\mathrm{C}_{\mathrm{T}}$

pH
CO_{3}
HCO_{3}

HCO_{3}
SYSTEM OVERVIEW SPREADSHEET (con't)
Equations / values and explanation thereof
$=\left(\left(10^{\wedge}-\mathrm{L} 50\right)^{*} \mathrm{~L} 53\right) /\left(4.2^{*} 10^{\wedge}-7\right)$
$=\left(10^{-\mathrm{pH}}\right) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}$ equilibrium constant
$=\mathrm{Sum}\left(\mathrm{L}_{5}: \mathrm{L} 54\right)$
$=\left[\mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$

$=$ Specific values observed in mass balances constructed with the original water data $\begin{aligned} & \text { M39 } \\ = & \text { same value as cell M39 } \\ = & \text { IF(N41:N49= } "-", \text { M41:M49, }((\mathrm{M} 41: \mathrm{M} 49 * \mathrm{M} 39 * 1000) *(1+\mathrm{N} 41: \mathrm{N} 49)) / \\ & (\mathrm{O} 39 * 1000))\end{aligned}$ | Title | Cell(s) |
| :--- | :---: |
| $\mathrm{H}_{2} \mathrm{CO}_{3}$ | L 54 |
| C_{T} | L 55 |
| Polishing Pond - Initial Feed | |
| Flow | |
| $\mathrm{Ca}-\mathrm{pH}$ | M 39 |
| CO_{3} | $\mathrm{M} 41-\mathrm{M} 50$ |
| HCO_{3} | M 52 |
| | |
| $\mathrm{H}_{2} \mathrm{CO}_{3}$ | M 53 |
| C_{T} | M 54 |
| | M 55 |
| Sources \& Sinks | |
| Ca - C | |

FNGP WATER SYSTEM OVERVIEW SPREADSHEET (con't)
 outgoing water volume. If there is no recognized gain or loss across the polishing pond, then the outgoing contaminant concentration is identical to incoming levels 0
1
1 - polishing pond effluent assumed to continually have a pH of 7.6
$=\left(\left(4.8 * 10^{\wedge}-11\right)^{*} \mathrm{O} 53\right) /\left(10^{\wedge}-\mathrm{O} 50\right)$ $=\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant $\mathrm{x}\left[\mathrm{HCO}_{3}\right] /(10-\mathrm{pH})$ $\left.=055^{*}\left(1 /\left(\left(10^{\wedge}-\mathrm{O} 50\right) /\left(4.2^{*} 10^{\wedge}-7\right)\right)+1+\left(\left(4.8^{*} 10^{\wedge}-11\right) /\left(10^{\wedge}-\mathrm{O} 50\right)\right)\right)\right)$ $=\left[\mathrm{C}_{\mathrm{T}}\right] \times 1 /\left(10-\mathrm{pH} / \mathrm{H}_{2} \mathrm{CO}_{3}\right.$ equilibrium constant $+1+\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant $/ 10-\mathrm{pH}$)

- from Benefield et a
$=\left(\left(10^{\wedge}-\mathrm{O} 50\right)^{*} \mathrm{O} 53\right) /\left(4.2 * 10^{\wedge}-7\right)$
$=\left(10^{-} \mathrm{pH}\right) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant
$=$ M55
- same value as cell M55

O54 O55
Title
pH
CO_{3}
HCO_{3}

$\mathrm{H}_{2} \mathrm{CO}_{3}$
C_{T}
BLOWDOWN CALCULATION SPREADSHEET

Title	Cell(s)	Equations/values and explanation thereof
CURRENT BOILER SYSTEM		
-This top portion of the "Blowdown Calc." spreadsheet essentially details a mass balance on the boilers and sulphur plant to deter there are any sinks or sources not previously detected which need to be included in the computer simulator.		
Boiler Feedwater Ouality		
Treated Water		
Flow	C8	$\begin{aligned} & =74.2 *(1000 / 10.1439) *(1.2 / 264.172) * 24 \\ & =\text { Flow expressed in KLBH converted to } \mathrm{m}^{3} / \text { day } \end{aligned}$
TDS - T. Alk	C10-C21	= Specific values from original data set
CO_{3}	C22	$\begin{aligned} &=\left(50000 *\left(\mathrm{C} 21 / 50000+\left(10^{\wedge}-\mathrm{C} 20\right)-\left(10^{\wedge}-14 / 10^{\wedge}-\mathrm{C} 20\right)\right) /\left(1+\left(10^{\wedge}-\mathrm{C} 20 /\left(2 * 4.7 * 10^{\wedge}-\right.\right.\right.\right. \\ &11)))) * 0.6 / 60000 \\ &= 50000 \times\left(\mathrm{T} . \mathrm{Alk} / 50000+10-\mathrm{pH}-10^{-14} / 10^{-}-\mathrm{pH}\right) /\left(1+10^{-} \mathrm{pH}_{/} /\left(2 \times \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}\right.\right. \\ &\text { equilibrium constant })) \times 0.6 / 60000 \\ &- \text { From Sawyer \& McCarty } 1978 \end{aligned}$
HCO_{3}	C23	$\begin{aligned} = & \left(50000^{*}\left(\mathrm{C} 21 / 50000+\left(10^{\wedge}-\mathrm{C} 20\right)-\left(10^{\wedge}-14 / 10^{\wedge}-\mathrm{C} 20\right)\right) /\left(1+\left(\left(2^{*} 4.7^{*} 10^{\wedge}-11\right) / 10^{\wedge}-\right.\right.\right. \\ & \mathrm{C} 20)))^{*} 1.22 / 61000 \\ = & 50000 \times\left(\mathrm{T} . \mathrm{Alk} / 50000+10^{-} \mathrm{pH}-10^{-14} / 10^{-} \mathrm{pH}\right) /\left(1+\left(2 \times \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}\right.\right. \\ & \text { equilibrium constant } \left.) / 10^{-\mathrm{pH}}\right) \times 1.22 / 61000 \end{aligned}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$	C24	$\begin{aligned} & =\left(\left(10^{\wedge}-\mathrm{C} 20\right)^{*} \mathrm{C} 23\right) /\left(4.2^{*} 10^{\wedge}-7\right) \\ & =(10-\mathrm{pH}) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3} \text { equilibrium constant } \end{aligned}$
C_{T}	C25	$\begin{aligned} & =\operatorname{Sum}(\mathrm{C} 22: \mathrm{C} 24) \\ & =\left[\mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \end{aligned}$
Condensate Return		
Flow	D8	$\begin{aligned} & =1054.2 *(1000 / 10.01439) *(1.2 / 264.172) * 24 \\ & =\text { Flow as KLBH converted to } \mathrm{m}^{3} / \text { day } \end{aligned}$
TDS - T. Alk	D10-D21	$=$ Specific values from original data set
CO_{3}	D22	$\begin{aligned} & =\left(50000^{*}\left(\mathrm{D} 21 / 50000+\left(10^{\wedge}-\mathrm{D} 20\right)-\left(10^{\wedge}-14 / 10^{\wedge}-\mathrm{D} 20\right)\right) /\left(1+\left(10^{\wedge}-\mathrm{D} 20 /\left(2 * 4.7^{*} 10^{\wedge}-\right.\right.\right.\right. \\ & 11)))) * 0.6 / 60000 \end{aligned}$

BLOWDOWN CALCULATION SPREADSHEET (con't)

Cell(s)	Equations / values and explanation thereof
	$\begin{aligned} & =50000 \times\left(\mathrm{T} . \mathrm{Alk} / 50000+10-\mathrm{pH}-10^{-14} / 10^{-\mathrm{pH}}\right) /\left(1+\left(2 \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}\right.\right. \\ & \text { equilibrium constant }) \times 0.6 / 60000 \\ & \text {-From Sawyer \& McCarty } 1978 \end{aligned}$
D23	$\begin{aligned} & =\left(50000 *\left(\mathrm{D} 21 / 50000+\left(10^{\wedge}-\mathrm{D} 20\right)-\left(10^{\wedge}-14 / 10^{\wedge}-\mathrm{D} 20\right)\right) /\left(1+\left(\left(2^{*} 4.7^{*} 10^{\wedge}-11\right) / 10^{\wedge}-\right.\right.\right. \\ & \mathrm{D} 20))) * 1.22 / 61000 \\ & =50000 \times\left(\mathrm{T} . \mathrm{Alk} / 50000+10^{-\mathrm{pH}}-10^{-14} / 10^{-\mathrm{pH}}\right) /\left(1+\left(2 \times \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}\right.\right. \\ & \text { equilibrium constant) } / 10-\mathrm{pH}) \times 1.22 / 61000 \\ & \text {-From Sawyer \& McCarty } 1978 \end{aligned}$
D24	$\begin{aligned} & =\left(\left(10^{\wedge}-\mathrm{D} 20\right) * \mathrm{D} 23\right) /\left(4.2^{*} 10^{\wedge}-7\right) \\ & =\left(10^{-\mathrm{pH}}\right) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3} \text { equilibrium constant } \end{aligned}$
D25	$\begin{aligned} & =\text { Sum (D22: D24) } \\ & =\left[\mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \end{aligned}$

E8	$\begin{aligned} & =\mathrm{D} 8+\mathrm{C} 8 \\ & =\text { Condensate return }+ \text { treated water } \end{aligned}$
E10-E20	$\begin{aligned} & =(\mathrm{C} 10: \mathrm{C} 20 * \mathrm{C} 8+\mathrm{D} 10: \mathrm{D} 20 * \mathrm{D} 8) / \mathrm{E} 8 \\ & =[] \mathrm{BFW}=\text { (mass in condensate }+ \text { mass in treated water }) / \text { boiler feedwater return } \end{aligned}$
E22	$=\left(\left(4.8^{*} 10^{\wedge}-11\right)^{* E 23}\right) /\left(10^{\wedge}-\mathrm{E} 20\right)$ $=\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant $\mathrm{x}\left[\mathrm{HCO}_{3}\right] /(10-\mathrm{pH})$
E23	$\begin{aligned} & \left.=\mathrm{E} 25^{*}\left(1 /\left(\left(\left(10^{\wedge}-\mathrm{E} 20\right)\right) /\left(4.2^{*} 10^{\wedge}-7\right)\right)+1+\left(\left(4.8^{*} 10^{\wedge}-11\right) /\left(10^{\wedge}-\mathrm{E} 20\right)\right)\right)\right) \\ & =\left[\mathrm{C}_{\mathrm{T}}\right] \times 1 /\left(10^{-\mathrm{pH}} / \mathrm{H}_{2} \mathrm{CO}_{3} \text { equilibrium constant }+1+\mathrm{CO}_{3}-\mathrm{HCO}_{3}\right. \text { equilibrium } \\ & \text { constant } / 0-\mathrm{pH}) \\ & \text {-From Benefield et al. } 1982 \end{aligned}$
E25	$\begin{aligned} & =(\mathrm{C} 25 * \mathrm{C} 8+\mathrm{D} 25 * \mathrm{D} 8) / \mathrm{E} 8 \\ & - \text { Same format as cells E10 to E20; [] BFW }=\text { (mass in condensate }+ \text { mass in treated } \\ & \text { water) } / \text { boiler feedwater flow } \end{aligned}$

Title
HCO_{3}
$\mathrm{H}_{2} \mathrm{CO}_{3}$
C_{T}
$\mathbf{B}_{\text {Boiler Feedwater (BFW) }}^{\text {Flow }}$
TDS - pH
CO_{3}
HCO_{3}
C_{T}
BLOWDOWN CALCULATION SPREADSHEET (con't)

Cell(s)
C 36
$\mathrm{C} 38-\mathrm{C} 52$

 E36-E48
E49
 E50 equilibrium constant) / $10-\mathrm{pH}) \times 1.22 / 61000$
-From Sawyer \& McCarty 1978

$$
=\text { Specific values from original data set }
$$

$=50000 \times\left(\mathrm{T} . \mathrm{Ak} / 50000+10^{-\mathrm{pH}}-10^{-14} / 10-\mathrm{PH}\right) /\left(1+10^{-\mathrm{PH} / 2} \times \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}\right.$
$=(10-\mathrm{pH}) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant
$=\left[\mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
 N $\frac{\text { Title }}{\text { Boilers - Mass Balance }}$
BFW
Flow
$\mathrm{Ca}-\mathrm{C}_{\mathrm{T}}$

450 psi Steam Flow - T.Alk
CO_{3}
HCO_{3}
$\mathrm{H}_{2} \mathrm{CO}_{3}$
C_{T}

BLOWDOWN CALCULATION SPREADSHEET (con't)	
Cell(s)	Equations / values and explanation thereof
M50	$\begin{aligned} & =50000 \times\left(\mathrm{T} . \mathrm{Alk} / 50000+10-\mathrm{pH}-10^{-14} / 10^{-\mathrm{pH}}\right) /\left(1+\left(2 \times \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}\right.\right. \\ & \text { equilibrium constant }) / 10-\mathrm{pH}) \times 1.22 / 61000 \\ & \text {-From Sawyer \& McCarty } 1978 \end{aligned}$
M51	$=(10-\mathrm{pH}) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant
M52	$=\left[\mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
O36	$\begin{aligned} & =\text { Sum (L36 : M36) } \\ & =450 \text { psi steam }+ \text { BFW flows } \end{aligned}$
O38-O52	$\begin{aligned} & =(\text { mass in BFW }+ \text { mass in } 450 \text { psi steam }) / \text { net inflow volume }(\text { e.g. }= \\ & \left.\left.\left(\mathrm{L} 38: \mathrm{L} 46^{*} \mathrm{~L} 36+\mathrm{M} 38: \mathrm{M} 46^{*} \mathrm{M} 36\right) / \mathrm{O} 36\right)\right) \end{aligned}$
P36-P48	$=$ Specific values from original data set
P49	$\begin{aligned} & =50000 \times\left(\mathrm{T} . \mathrm{Alk} / 50000+10-\mathrm{pH}-10^{-14} / 10^{-}-\mathrm{pH}\right) /\left(1+10-\mathrm{pH} /\left(2 \times \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}\right.\right. \\ & \quad \text { equilibrium constant })) \times 0.6 / 60000 \\ & - \text { From Sawyer \& McCarty } 1978 \end{aligned}$
P50	$\begin{aligned} & =50000 \times\left(\mathrm{T} . \mathrm{Alk} / 50000+10-\mathrm{pH}-10^{-14} / 10-\mathrm{pH}\right) /\left(1+\left(2 \times \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{CO}_{3}\right.\right. \\ & \text { equilibrium constant) } / 10-\mathrm{pH}) \times 1.22 / 61000 \\ & \text {-From Sawyer \& McCarty } 1978 \end{aligned}$
P51	$=(10-\mathrm{pH}) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant
P52	$=\left[\mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
Q36	$\begin{aligned} & =(1.8+142.7+71.9+0.1) *(1000 / 10.01439) *(1.2 / 264.172) * 24 \\ & =\text { Total volume of } 45 \text { and } 150 \text { psi steam venting and condensate exiting the sulphur } \\ & \text { plant } \end{aligned}$
Q38-Q48	$=$ Specific values from original data set

Title
HCO_{3}
$\mathrm{H}_{2} \mathrm{CO}_{3}$
C_{T}
Net Inflow
Flow
$\mathrm{Ca}-\mathrm{C}_{\mathrm{T}}$
Blowdown
Flow - T.Alk
CO_{3}
HCO_{3}
$\mathrm{H}_{2} \mathrm{CO}_{3}$
C_{T}
Steam and Condensate
Flow
Ca - T.Alk

BLOWDOWN CALCULATION SPREADSHEET (con't) Cell(s)
PREDICTED BLOWDOWN QUALITY

- this section of the "Blowdown Calc." spreadsheet is used to predict boiler and sulphur plant blowdown characteristics based on BFW quality and any sources and sinks detected above.
Boiler Feedwater (BFW)
Treated Water
Flow

Condensate Return
Flow
$\mathrm{Ca}-\mathrm{C}_{\mathrm{T}}$
$\underset{\text { Flow }}{\text { BFW }}$
$\mathrm{Ca}-\mathrm{pH}$
CO_{3}
HCO_{3}
BLOWDOWN CALCULATION SPREADSHEET (con't)
$\stackrel{3}{0}$

-Same format as cells E62 through E72 $=$ (mass in treated water + mass in cond

$=\left[\mathrm{C}_{\mathrm{T}}\right] \times 1 /\left(10-\mathrm{pH} / \mathrm{H}_{2} \mathrm{CO}_{3}\right.$ equilibrium constant $+1+\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium
constant $/ 10-\mathrm{pH})$
-From Benefield et al. 1982
$=(\mathrm{C} 77 * \mathrm{C} 61+\mathrm{D} 77 * \mathrm{D} 61) /(\mathrm{E} 61)$
-Same format as cells E62 through E72
$=\left[\mathrm{C}_{\mathrm{T}}\right] \times 1 /\left(10-\mathrm{pH} / \mathrm{H}_{2} \mathrm{CO}_{3}\right.$ equilibrium constant $+1+\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium
constant $/ 10-\mathrm{pH})$
-From Benefield et al. 1982
$=(\mathrm{C} 77 * \mathrm{C} 61+\mathrm{D} 77 * \mathrm{D} 61) /(\mathrm{E} 61)$
-Same format as cells E62 through E72
$=$ (mass in treated water + mass in condensate return) / BFW volume

$=\mathrm{F} 83+\mathrm{G} 83$

$=450$ psi steam + predicted blowdown flows
$=$ Values of cells E63 through E77, respectively
-Sources and sinks detected above with a value greater than 15%

$=$ Specific value from the original data set
-Based on assumption that 450 psi steam production remains constant over time
=-IF(E85•E93<D11•D19.E85.E93,D11•D19)
-Specifies that the 450 psi steam generated in the boilers will be of equal or better quality than condensate collected on the FNGP -Based on the assumption that if the BFW becomes cleaner than current levels, the quality of the 450 psi steam will similarly improve $=\mathrm{IF}(\mathrm{E} 94<\mathrm{D} 20,8.7, \mathrm{D} 20)$
-To prevent pipe corrosion and/or steam system contamination
 F83
F85-F93

Title
CO_{3}
HCO_{3}
C_{T}
Predicted Blowdown
Flow
$\mathrm{Ca}-\mathrm{DOC}$
pH
CO 3
HCO
3
BLOWDOWN CALCULATION SPREADSHEET (con't)
$\frac{\mathrm{Cell(s)}}{\mathrm{M} 85-\mathrm{M} 99}$
N85-N99
O83
O85-O93

$\underset{\text { Flow }}{\text { Steam }} \boldsymbol{\&}$ Condensate
$\mathrm{Ca}-\mathrm{DOC}$

88
P83
P85-P93
$=\mathrm{IF}(\mathrm{L} 94<\mathrm{D} 20,8.7$, D20)
-Specifies that steam pH will be 8.7 or greater
-Using same assumption as cell F94
$=\mathrm{IF}\left(\mathrm{N} 99={ }^{\prime}-\mathrm{l}\right.$, (L
$(1+\mathrm{N} 99)) / \mathrm{O} 83)$

- Same format as ce
(1+ \% gain or lo
$=(1.8+142.7+71.9+0.1) *(1000 / 10.01439) *(1.2 / 264.172) * 24$
$=$ Sum of condensate, $150 \& 45$ psi steam and vented water leaving from the sulphur
plant
$=\mathrm{IF}(\mathrm{E} 85: \mathrm{E} 93<\mathrm{D} 11: \mathrm{D} 19, \mathrm{E} 85: \mathrm{E} 93$, D11:D19)
-Specifies that the steam and condensate generated in the sulphur plant will be of
equal or better quality than condensate collected from the FNGP
- Based on assumption that if BFW quality improves beyond current standards, so too
will the plant's steam and condensate will the plant's steam and condensate $=8.7$
-Assum
-Assume that pH kept constant at 8.7
$=($ mass in 450 psi steam + mass in BFW $) \times(1+\%$ gain or loss across the sulphur plant) / total incoming water value)
$=\mathrm{M} 83+\mathrm{L} 83$
$=450$ psi steam
$=450$ psi steam + BFW flows
$=\operatorname{IF}($ N85:N93 $="-$ ", (L85:L93
$=$ IF(N85:N93 $="-$ ", (L85:L93*L83+M85:M93*M83)/O83, $((\mathrm{L} 85: \mathrm{L} 93 * \mathrm{~L} 83+$
M85:M93*M83)*(1+N85:N93))/O83)

$=$ Sources and sinks detected above with a value greater than 15%
Equations / values and explanation thereof
$=$ Exact same formulas as used for the 450 psi steam produced from the boilers (i.e.
cells F85-F99)

- $1.8+142.7+71.9+0.1) *(1000 / 10.01439) *(1.2 / 264.172) * 24$
品
Title
$\mathrm{Ca}_{\mathrm{C}} \mathrm{C}_{\mathrm{T}}$

Sources and Sinks
$\mathrm{Ca}-\mathrm{C}_{\mathrm{T}}$
Net Inflow
Flow
$\mathrm{Ca}-$ DOC
pH
C_{T}
Steam \& Condensate
Flow
$\mathrm{Ca}-\mathrm{DOC}$
pH

\[

\]

LIME TREATER SPREADSHEET
Lime Treater Output - Using Present FNGP System
-This half of the computer worksheet uses information from the Water Treatment Manual and data collected at the plant to estimate some of the chemical characteristics of the lime treater's product and blowdown waters. Given the open and easy-to-follow layout of this spreadsheet, no further explanation of the equations used herein was felt to be required.

Predicted Lime Treater Products

[^11]hardness contained in the ENGs original blowdow
-This portion of the "Lime Blowdown ,
$=(\mathrm{K} 79 * 16.3) /(232.1-(5+106.3))$
$=($ Hardness removed $*$ original blowdown flow at the FNGP $) /$ total mass of
hardness contained in the FNGP's original blowdown flow

.

Influent Water
Hardness

T. Alk

(K79*16.3) $(2321-(5+1063))$

131

 $\underset{\text { Flow Treater Blowdown }}{\text { Lime }}$ $\underset{\text { Flow Treater Blowdown }}{\text { Lime }}$

-
SOFTENER SPREADSHEET

- As with "Lime Treater Calc." worksheet, the calculations used to predict concentration of chloride and sodium in both the ion-exchange
blowdown and product water flows, as well as volume of blowdown water leaving the ion-exchangers, are, for the most part, explained
within the worksheet itself. No further explanations are necessary.
NANOFILTER SPREADSHEET
Equations / values and explanation thereof
$=$ variable open to manipulation with minimum and maximum values of 1 and 3 ,
respectively
= variable open to manipulation; always kept at 75% through this study
= variable open to manipulation $(0-75 \%)$; changed from scenario to scenario
$=$ variable open to manipulation $(0-75 \%)$; changed from scenario to scenario
$=$ variable open to manipulation (on or off); activated mainly when using a direct
composite discharge reuse scenario
$=$ variable open to manipulation (on or off); whenever a 3 stage NF unit was used,
this option was activated
$=$ variable open to manipulation $(0-100) ;$ when brine from the 2 nd NF unit was
recycled back to the 1 st NF filter, the volume of brine going back to the 1 st stage
varied from scenario to scenario
$=$ variable open to manipulation $(0-100) ;$ when using a 3 stage NF system, all of the
brine from the 3rd unit was recycled back to the 1 st NF filter (i.e. F6 = 100)

Title	$\mathrm{Cell}(\mathrm{s})$
CONSTANTS	
Number of NF stages	D10
Water recovery ratios	
Unit 1	D4
Unit 2	E4
Unit 3	F4
Brine recycling	
Unit 2	E5
Unit 3	F5
\% recycle	
Unit 3	F6
Blending	F7 \& F8
Salt rejection efficiencies Monovalents	14
Divalents	15
Organics	16
Water temperature	18

NANOFILTER SPREADSHEET (con't)

Equations / values and explanation thereof
$=$ used to adjust inlet calcium concentration to avoid salt precipitation within the NF
membranes
Same equations as used in RO worksheet, cells K6 - N6
$=10^{\wedge}-(17052 /(273+\mathrm{I} 8)+215.21 * \log 10(273+\mathrm{I} 8)-0.12675 *(273+\mathrm{I} 8)-$
$545.56)$

- same equation as cell I6 in the "Reverse osmosis" spreadsheet
$=10^{\wedge}-(2902.39 /(273+\mathrm{I} 8)+0.02379 *(273+\mathrm{I} 8)-6.498)$
- same equation as cell J6 in the "Reverse osmosis" spreadsheet
$=10^{\wedge}-(4787.3 /(273+\mathrm{I} 8)+7.1321 * \log 10(273+\mathrm{I} 8)+0.010365 *(273+\mathrm{I} 8)-$
$22.801)$

INFLUENT		
Raw Influent		
- if using a NF softener within a back-end ZED model:		
Flow	D14	$\begin{aligned} & =\text { '[FNGP water system] overview'!\$J\$16 } \\ & =\text { hot lime treater outflow } \end{aligned}$
Ca	D16	$=$ '[FNGP water system] overview'!\$J\$18-C16 $=[\mathrm{Ca}]$ in hot lime treater product water - the required Ca adjustment (if necessary)
Ca adjustment	C16	$=$ '[FNGP water system] overview'!\$J\$18-40 $=[\mathrm{Ca}]$ in hot lime treater product water - desired $[\mathrm{Ca}]$ required to prevent calcium salt precipitation within the nanofilters
$\mathrm{Mg}-\mathrm{C}_{\text {T }}$	D17-D33	$=$ '[FNGP water system] overview'!\$J\$19:\$J\$32 $=$ contaminant []'s in the hot lime treater product water
- if using a NF softener as part of a direct composite discharge scenario:		
Flow	D14	$=$ '[FNGP water system] overview'!\$K\$16 = reverse osmosis product flow
Ca	D16	$=$ = [FNGP water system] overview'!\$K\$18-C16 $=[\mathrm{Ca}]$ in RO product water outflow - the required Ca adjustment (if needed)
Ca adjustment	C16	$=$ '[FNGP water system] overview'!\$K\$18-40

NANOFILTER SPREADSHEET (con't)

 $=\operatorname{sum}(\mathrm{D} 14: \mathrm{F} 14)$
$=$ raw influent flow + recycled brine from units \#2 and \#3
$=(\mathrm{D} 16: \mathrm{D} 24 *$ D14 + E16: E24 * E14 + F16: F24 * F14)/G14
$=$ (mass in raw water inflow + mass in brine from units \#2 and \#3)/ total influent water volume $=(\mathrm{D} 25 * \mathrm{D} 14+\mathrm{E} 25 * \mathrm{E} 14+\mathrm{F} 25 * \mathrm{~F} 14) / \mathrm{G} 14-\mathrm{C} 24$
$=(\mathrm{pH}$ of raw influent $*$ raw influent flow +pH of brine
$=$ (pH of raw influent * raw influent flow +pH of brine from unit \#2 * unit \#2 brine flow +pH of brine from unit \#3 $*$ unit \#3 brine flow)/ total influent volume -
required pH adjustment
$=(\mathrm{D} 25 * \mathrm{D} 14+\mathrm{E} 25 * \mathrm{E} 14+\mathrm{F} 25 * \mathrm{~F} 14) / \mathrm{G} 14-6.5$
 precipitation within the membranes

Title
$\mathrm{Mg}-\mathrm{C}_{\mathrm{T}}$
Brine Recycle - Unit \#2
Flow
$\mathrm{Ca}-\mathrm{C}_{\mathrm{T}}$
Brine Recycle - Unit \#3
Flow
Ca - C_{T}
NF Unit \#1
Feed
Flow
Ca - DOC
pH
pH adjustment
NANOFILTER SPREADSHEET (con't)

NANOFILTER SPREADSHEET (con't)
Equations / values and explanation thereof

Cell(s)
H31
H32
H33
H34
H35

EXPLANATION:

Benefield et. al. (1982) indicates that most carbon dioxide dissolved in water does not hydrolyse to carbonic acid. The equilibrium equations used in this model to determine carbonic acid concentrations (e.x. cell D32) assume, however, that the concentration of gases; they will pass unhindered through the filters. Rather than trying to calculate the proportion of carbon dioxide existing on its own and as carbonic acid, all carbonic acid within the RO feedwaters was assumed to be dissolved carbon dioxide. It therefore freely passes though the membranes. RO concentrate and permeate waters will, as a result, have identical $\mathrm{H}_{2} \mathrm{CO}_{3}$ concentrations.
Carbonate and bicarbonate ions will not pass unhindered through the RO filters, due to the limited permeability of RO membranes to monovalent and divalent ions. While permeate and concentrate streams will have identical concentrations of $\mathrm{H}_{2} \mathrm{CO}_{3}$, they will contain different amounts of carbonate and bicarbonate. Neither system will be in equilibrium. There will either be too much or "too litle" carbonate and bicarbonate. Concentrations within each stream will shift until carbonate and bicarbonate equilibriums are re-established. H2CO3- HCO 3 Equilibrium

$$
\begin{array}{rc}
& {\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\
\text { initial conditions } & z \\
\text { at equilibrium } & z-b
\end{array}
$$

Now,
NANOFILTER SPREADSHEET (con't)

NANOFILTER SPREADSHEET (con't)

Title	Cell(s)	Equations / values and explanation thereof
		= (mass in feed flow * \% monovalent ion rejection)/product flow
DOC	I24	$\begin{aligned} & =\mathrm{G} 14 *(1-\mathrm{I} 6 / 100) * \mathrm{G} 24 / / 14 \\ & =(\text { mass in feed flow } * \% \text { DOC rejection }) / \text { product flow } \end{aligned}$
pH		
- equilibrium	I25	$=-\log 10\left(\left(10^{\wedge}-\mathrm{I} 26\right)+\mathrm{I} 35+\mathrm{I} 34\right)$
- initial	I26	$=\mathrm{G} 25$
		- see explanation below
CO_{3}		
- equlibrium	I27	$=\mathrm{I} 28+\mathrm{I} 35$
- initial	I28	$=\mathrm{G} 14 *(1-\mathrm{I} 5 / 100) * \mathrm{G} 27 / \mathrm{I} 14$ - see explanation below
HCO_{3}		
- equilibrium	I29	$=\mathrm{I} 30-\mathrm{I} 35+\mathrm{I} 34$
- initial	I30	$=\mathrm{G} 14 *(1-\mathrm{I} 4 / 100) * \mathrm{G} 29 / \mathrm{I} 14$
$\mathrm{H}_{2} \mathrm{CO}_{3}$		
- equilibrium	131	= I32-I34
- initial	I32	$\begin{aligned} & =\mathrm{G} 31 \\ & \text { - see explanation below } \end{aligned}$
$\mathrm{C}_{\text {T }}$	133	$\begin{aligned} & =\mathrm{I} 28+\mathrm{I} 30+\mathrm{I} 32 \\ & =\text { initial }\left[\mathrm{CO}_{3}\right]+\text { initial }\left[\mathrm{HCO}_{3}\right]+\text { initial }\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \end{aligned}$
[] shift $\left(\mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3}\right)$	I34	$\begin{aligned} & =\left(-\left(\mathrm{I} 30+10^{\wedge}-\mathrm{I} 26+\mathrm{O} 5\right)+\left(\left(\mathrm{I} 30+10^{\wedge}-\mathrm{I} 26+\mathrm{O}\right)^{\wedge} 2-4 *\left(-\mathrm{O} 5 * \mathrm{I} 32+\left(\mathrm{I} 30 * 10^{\wedge}\right.\right.\right.\right. \\ & \\ & \left.- \text { - } 266)))^{\wedge} 0.5\right) / 2 \\ & - \text { see explanation below } \end{aligned}$
$\square]$ shift ($\mathrm{HCO}_{3}-\mathrm{CO}_{3}$)	135	$\begin{aligned} = & \left(-\left(\mathrm{I} 28+\mathrm{I} 34+10^{\wedge}-\mathrm{I} 26+\mathrm{O} 6\right)+\left(\left(\mathrm{I} 28+\mathrm{I} 34+10^{\wedge}-\mathrm{I} 26+\mathrm{O} 6\right)^{\wedge} 2-4 *(-\mathrm{O} 6 *(\mathrm{I} 30\right.\right. \\ & \left.\left.\left.+\mathrm{I} 34)+\mathrm{I} 28 *\left(10^{\wedge}-\mathrm{I} 26+\mathrm{I} 34\right)\right)\right)^{\wedge} 0.5\right) / 2 \end{aligned}$
EXPLANATION:		
- as previously explained with the product stream, the concentration of each carbonate species will shift from its initial level in ord re-establish carbonate equilibriums. Although the equilibrium calculations used for the permeate still hold true for the brine flow, values of certain variables had changed:		
y is now $=\%$ monovalent ion rejection * feedwater [HCO3] w is now $=\%$ divalent ion rejection $*$ feedwater [CO3]		

NANOFILTER SPREADSHEET (con't)

Title	Cell(s)	Equations / values and explanation thereof
Salt Precipitation Check CaSO_{4}	J16	$\begin{aligned} = & \text { if }\left(\mathrm{I} 16 /(1000 * 40) *(\mathrm{I} 19 /(1000 * 96))>\mathrm{L} 4, \text { " } \mathrm{CaSO}_{4} ", \text { "OK" }\right) \\ = & \text { if }[\mathrm{Ca}] *\left[\mathrm{SO}_{4}\right]>\mathrm{CaSO}_{4} \text { equilibrium constant, then } \mathrm{CaSO}_{4} \text { may be precipitating } \\ & \text { within the NF membranes } \end{aligned}$
CaCO_{3}	J17	$\begin{aligned} & =\operatorname{if(}(\mathrm{I} 16 /(1000 * 40) * \mathrm{I} 27>\mathrm{L} 5, \text { "CaCO3", "OK") } \\ & =\text { if }[\mathrm{Ca}] *\left[\mathrm{CO}_{3}\right]>\mathrm{CaCO}_{3} \text { equilibrium constant, then } \mathrm{CaCO}_{3} \text { may be precipitating } \\ & \text { within the NF membranes } \end{aligned}$
MgCO_{3}	J18	$\begin{aligned} & =\text { if }(\mathrm{I} 17 /(1000 * 24.3) * \mathrm{I} 27>\mathrm{L} 6, \text { " } \mathrm{MgCO} 3 ", \text { "OK") } \\ & =\text { if }[\mathrm{Mg}] *\left[\mathrm{CO}_{3}\right]>\mathrm{MgCO}_{3} \text { equilibrium constant, then } \mathrm{MgCO}_{3} \text { may be precipitating } \\ & \text { within the } \mathrm{NF} \text { membranes } \end{aligned}$
$\mathrm{Mg}(\mathrm{OH})_{2}$	J19	$=\mathrm{if}\left(\mathrm{I} 17 /(1000 * 24.3) *\left(\mathrm{O} 7 /\left(10^{\wedge}-\mathrm{G} 25\right)\right)^{\wedge} 2>\mathrm{L} 7, " \mathrm{Mg}(\mathrm{OH})_{2} ",\right. \text { "OK") }$ $=$ if $[\mathrm{Mg}] *[\mathrm{OH}]^{2}>\mathrm{Mg}(\mathrm{OH})_{2}$ equilibrium constant, then $\mathrm{Mg}(\mathrm{OH})_{2}$ may be precipitating within the NF membranes
Unit \#2 .		
- if $>1 \mathrm{NF}$ unit, is used in the treatment system:Feed		
Flow	K14	$\begin{aligned} & =\text { I14 } \\ & =\text { Unit \#1 brine flow } \end{aligned}$
Ca - DOC	K16-K24	$\begin{aligned} & =\text { I16: I } 24 \\ & =\text { same contaminant []'s as unit \#1 brine flow } \end{aligned}$
pH	K25	$\begin{aligned} & =\mathrm{I} 25-\mathrm{J} 25 \\ & =\text { Unit \#1 brine } \mathrm{pH}-\text { required } \mathrm{pH} \text { adjustment } \end{aligned}$
pH adjustment	J25	$\begin{aligned} & =\mathrm{I} 25-6.0 \\ & =\text { Unit \#1 brine } \mathrm{pH}-6.0 \\ & \text { - ensures a feedwater } \mathrm{pH} \text { of } 6.0 \text { for } \mathrm{NF} \text { unit \#2 } \end{aligned}$
CO_{3}	K27	$\begin{aligned} & =\left(\mathrm{O}_{6} * \mathrm{~K} 29\right) /\left(10^{\wedge}-\mathrm{K} 25\right) \\ & =\mathrm{CO}_{3}-\mathrm{HCO}_{3} \text { equilibrium constant } \mathrm{x}\left[\mathrm{HCO}_{3}\right] /(10-\mathrm{pH}) \end{aligned}$
HCO_{3}	K29	$\begin{aligned} & =\mathrm{K} 33 * 1 /\left(\left(\left(10^{\wedge}-\mathrm{K} 25\right) / \mathrm{O} 5\right)+1+\left(\mathrm{O} 6 /\left(10^{\wedge}-\mathrm{K} 25\right)\right)\right) \\ & =\left[\mathrm{C}_{\mathrm{T}}\right] \times 1 /\left(10^{-} \mathrm{pH} / \mathrm{H}_{2} \mathrm{CO}_{3} \text { equilibrium constant }+1+\mathrm{CO}_{3}-\mathrm{HCO}_{3}\right. \text { equilibrium } \\ & \text { constant } / 10-\mathrm{pH}) \\ & \text { - from Benefield et al. } 1982 \end{aligned}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$	K31	$=\left(10^{\wedge}-\mathrm{K} 25\right) * \mathrm{~K} 29 / \mathrm{O} 5$

NANOFILTER SPREADSHEET (con't)

Title	Cell(s)	Equations / values and explanation thereof
		$=(10-\mathrm{pH}) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant
C_{T}	K33	$\begin{aligned} & =\mathrm{I} 33 \\ & =\text { Unit \#1 brine }[\mathrm{Ct}] \end{aligned}$
Permeate		
Flow - $\mathrm{C}_{\text {T }}$	L14-L35	- same basic calculations as cells H14 through H35
Brine		
Flow - C_{T}	M14-M36	- same basic calculations as cells I14 through I35
- if only one NF unit is used in the treatment system:		
Feed		
Flow - $\mathrm{C}_{\text {T }}$	K14-K35	$=0$
Permeate		
Flow - $\mathrm{C}_{\text {T }}$	L14-L35	$=0$
Brine		
Flow - $\mathrm{C}_{\text {T }}$	M14-M35	$=0$
Salt Precipitation Check $\mathrm{CaSO}_{4}-\mathrm{Mg}(\mathrm{OH})_{2}$	N16-N19	- same basic calculations as cells J16 through J19
Product Water		
Flow	O14	$\begin{aligned} & =\text { H14 }+ \text { L14 } \\ & =\text { Unit \#1 permeate flow }+ \text { Unit \#2 permeate flow } \end{aligned}$
$\mathrm{Ca}-\mathrm{pH}$	O16-O25	$\begin{aligned} & =(\mathrm{H} 16: \mathrm{H} 25 * \mathrm{H} 14+\mathrm{L} 16: \mathrm{L} 25 * \mathrm{~L} 14) /(\mathrm{H} 14+\mathrm{L} 14) \\ & =(\text { mass in unit \#1 permeate }+ \text { mass in unit \#2 permeate) } /(\text { unit \#1 permeate flow }+ \\ & \text { unit \#2 permeate flow) } \end{aligned}$
CO_{3}	O27	$\begin{aligned} & =\left(\mathrm{O}_{6} * \mathrm{O} 29\right) /\left(10^{\wedge}-\mathrm{O} 25\right) \\ & =\mathrm{CO}_{3}-\mathrm{HCO}_{3} \text { equilibrium constant } \mathrm{x}\left[\mathrm{HCO}_{3}\right] /\left(10^{-}-\mathrm{pH}\right) \end{aligned}$
HCO_{3}	O29	$\begin{aligned} = & \mathrm{O} 33 * 1 /\left(\left(\left(10^{\wedge}-\mathrm{O} 25\right) / \mathrm{O} 5\right)+1+\left(\mathrm{O} 6 /\left(10^{\wedge}-\mathrm{O} 25\right)\right)\right) \\ = & {\left[\mathrm{C}_{\mathrm{T}}\right] \times 1 /\left(10^{-} \mathrm{pH} / \mathrm{H}_{2} \mathrm{CO}_{3} \text { equilibrium constant }+1+\mathrm{CO}_{3}-\mathrm{HCO}_{3}\right. \text { equilibrium }} \\ & \text { constant } \left./ 10^{-} \mathrm{pH}\right) \end{aligned}$

NANOFILTER SPREADSHEET (con't)
Equations / values and explanation thereof
$=($ mass in unit \#1 permeate + mass in unit \#2 permeate $) /($ unit \#1 permeate flow + unit \#2 permeate flow)

Cells)
031
033

$=$ if (F7 $=$ "no", $\mathrm{Q} 14, \mathrm{Q} 14 *(\mathrm{~F} / 100))$
$=$ inlet water flow $* \%$ blending (if activated)
$=$ same contaminent [] 's as the inlet water

- same basic calculations as cells H14 through H35
- same basic calculations as cells I14 through I35
- if using only one or two NF units in the treatment system:
Unit \#3 inlet water
Flow- C_{T}
Q14-Q33
$\begin{array}{lll}\text { Unit \#3 }\end{array}$
$\begin{aligned} & \text { Feed } \\ & \text { Flow }-\mathrm{C}_{\mathrm{T}}\end{aligned}$
NANOFILTER SPREADSHEET (con't)
Equations / values and explanation thereof
Equations / values and explanation thereof
$=0$
$=0$
- same basic calculations as cells J16 through J19
$=$ values in cells $\mathrm{O} 14-\mathrm{O} 33$
 $\begin{aligned} &\text { constant } / 10-\mathrm{pH}) \\ & \text { - from Benefield et al. } 1982 \\ &=\left(10^{\wedge}-\mathrm{G} 53\right) * \mathrm{G} 55 / \mathrm{O} 5 \\ &=(10-\mathrm{pH}) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3} \text { equilibrium constant }\end{aligned}$
$=$ values in cells $\mathrm{T} 14-\mathrm{T} 33$

990

- if not using blending option:
Flow $-\mathrm{C}_{\mathrm{T}}$
NANOFILTER SPREADSHEET (con't)
Equations / values and explanation thereof
$=$ values in cells F42 - F52
$=$ value in cell F53 +pH adjustment
$=10-$ value in cell F53
- ensures that NF product water will have a pH $=10.0$
$=$ values in cells F54 - F57
$=$ values in cells G42 - G52
$=$ value in cell G53 + pH adjustment
$=10-$ value in cell G53
- ensures that NF product water will have a pH $=10.0$
$=$ values in cells G54 - G57

[^12]
RO and bCS SPREADSHEET
Equations / values and explanation thereof
$=96 \%$
$=$ average value from the reviewed literature
$=98 \%$
$=$ average value from the reviewed literature
$=90 \%$
$=$ average value from the reviewed literature
$=99.99 \%$

- assumed value derived to give very high quality product water as stipulated by
Bowlin \& Ludlum 1992 and Penkratz \& Johanson 1992
- variable open to manipulation with minimum and maximum values of 1 and 3,
respectively

evaluation
- assumed value
evaluation
- assumed value
$\mathrm{pK}=2902.39 / \mathrm{T}+0.02379(\mathrm{~T})-6.498$, where $\mathrm{T}=$ temperature in degree Kelvin
- this equation (from Benefield et. al. 1982) accounts for the effects of water
temperature on the $\mathrm{HCO} 3 / \mathrm{CO} 3$ equilibrium constant.
$\mathrm{pK}=17.052 / \mathrm{T}+215.2(\log \mathrm{~T})-0.12675(\mathrm{~T})-545.56$, where $\mathrm{T}=$ temperature in
degree Kelvin
- this equation (from Benefield et. al. 1982) accounts for the effects of water
$\mathrm{pK}=2902.39 / \mathrm{T}+0.02379(\mathrm{~T})-6.498$, where $\mathrm{T}=$ temperature in degree Kelvin
- this equation (from Benefield et. al. 1982) accounts for the effects of water
temperature on the $\mathrm{HCO} 3 / \mathrm{CO} 3$ equilibrium constant.
$\mathrm{pK}=17.052 / \mathrm{T}+215.2(\log \mathrm{~T})-0.12675(\mathrm{~T})-545.56$, where $\mathrm{T}=$ temperature in
degree Kelvin
- this equation (from Benefield et. al. 1982) accounts for the effects of water
$\mathrm{pK}=2902.39 / \mathrm{T}+0.02379(\mathrm{~T})-6.498$, where $\mathrm{T}=$ temperature in degree Kelvin
- this equation (from Benefield et. al. 1982) accounts for the effects of water
temperature on the $\mathrm{HCO} 3 / \mathrm{CO} 3$ equilibrium constant.
$\mathrm{pK}=17.052 / \mathrm{T}+215.2(\log \mathrm{~T})-0.12675(\mathrm{~T})-545.56$, where $\mathrm{T}=$ temperature in
degree Kelvin
- this equation (from Benefield et. al. 1982) accounts for the effects of water
$\mathrm{pK}=2902.39 / \mathrm{T}+0.02379(\mathrm{~T})-6.498$, where $\mathrm{T}=$ temperature in degree Kelvin
- this equation (from Benefield et. al. 1982) accounts for the effects of water
temperature on the $\mathrm{HCO} 3 / \mathrm{CO} 3$ equilibrium constant.
$\mathrm{pK}=17.052 / \mathrm{T}+215.2(\log \mathrm{~T})-0.12675(\mathrm{~T})-545.56$, where $\mathrm{T}=$ temperature in
degree Kelvin
- this equation (from Benefield et. al. 1982) accounts for the effects of water
$\mathrm{pK}=2902.39 / \mathrm{T}+0.02379(\mathrm{~T})-6.498$, where $\mathrm{T}=$ temperature in degree Kelvin
- this equation (from Benefield et. al. 1982) accounts for the effects of water
temperature on the $\mathrm{HCO} 3 / \mathrm{CO} 3$ equilibrium constant.
$\mathrm{pK}=17.052 / \mathrm{T}+215.2(\log \mathrm{~T})-0.12675(\mathrm{~T})-545.56$, where $\mathrm{T}=$ temperature in
degree Kelvin
- this equation (from Benefield et. al. 1982) accounts for the effects of water temperature on the $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}$ equilibrium constant. $\mathrm{K}=2.4 \mathrm{e}-5-$ from Kotz \& Purcell 1987
$\mathrm{pK}=0.01183 \mathrm{t}+8.03$, where $\mathrm{t}=$ temperature in degree Celsius
本
$\frac{\text { Title }}{\text { CONSTANTS }}$
Salt rejection efficiencies
RO
- monovalents
- divalents
\quad - organics
BCS
Water temperature
오
$\begin{array}{ll}\text { A } & \text { 今 } \\ \text { ஆ } & \infty \\ \vdots & \vdots\end{array}$

$\stackrel{0}{4}$
Number of RO stages
90
G6
D7-F7
 RO assembly
BCS units
Carbonate constants
$\mathrm{HCO}_{3} / \mathrm{CO}_{3}$ constant
$\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}$ constant
Solubility constants
CaSO_{4}
CaCO_{3}
RO AND BCS SPREADSHEET (con't)
Equations / values and explanation thereof
- this equation (from Benefield et. al. 1982) accounts for the effects of water
temperature on the CaCO3 equilibrium constant.
$\mathrm{K}=4.0 \mathrm{e}-5-\mathrm{Kotz} \&$ Purcell 1987
$\mathrm{pK}=0.0175 \mathrm{t}+9.97$, where $\mathrm{t}=$ temperature in degree Celsius
- this equation (from Benefield et. al. 1982) accounts for the effects of water
temperature on the $\mathrm{Mg}(\mathrm{OH}) 2$ equilibrium constant.
$\mathrm{pK}=4787.3 / \mathrm{T}+7.1321(\mathrm{log} \mathrm{T})+0.010365(\mathrm{~T})-22.801$, where $\mathrm{T}=$ temperature in
degree Kelvin
- this equation (from Benefield et. al. 1982) accounts for the effects of water
temperature on the water equilibrium constant.
- maximum Ca concentration that can enter the RO system without triggering salt
precipitation during filtration
$=$ IF(G13=0, 0, '[FNGP water system $]$ overview'! $\$ \mathrm{O} \$ 46-\mathrm{D} 9)$
$=$ if no RO technology is involved in the recycling system, then there is no Ca
pretreatment needed. When RO technology is used, the mass of Ca requiring
removal $=$ incoming concentration $([\mathrm{I})$ - desired Ca levels ([]d).
$=\mathrm{IF}(\mathrm{G} 13=0,0$, (D26*D15+E26*E15)/F15-5.8)
- feedwater pH was always adjusted to 5.8 , as recommended by 51,7 and 5

\footnotetext{

Title	Cell(s)
MgCO_{3}	M6
$\mathrm{Mg}(\mathrm{OH})_{2}$	N6
Kw	O6
Desired Ca concentration	D9
INCOMING WATER	
Required Ca adjustment	C17
pH adjustment	C25
- if using a back-end design:	
Composite discharge	
Flow	D15
Calcium	D17
Other parameters	D18-D26

RO AND BCS SPREADSHEET (con't)

- if using a direct composite discharge reuse scenario

Carbonic acid

Total carbonates

 Lime product> Title
Carbonate
Bicarbonate
D32
D34
= flow calculated in cell J17 in the Overview spreadsheet
$=\mathrm{if}(\mathrm{C} 17>0$, '[FNGP water system] overview'!\$J\$23-C17,

- indicates that if required calcium adjustment >0, then calcium concentration in composite discharge stream $=$ current $[\mathrm{Ca}]$ - required adjustment. Otherwise, there is no change in [Ca] from that shown in cell J23 in the Overview spreadsheet $=$ values calculated in cells J 24 to J 32 in the Overview spreadsheet $=\left(\right.$ carbonate equilibrium constant $\left.\mathrm{x}\left[\mathrm{HCO}_{3}\right]\right) /(10-\mathrm{pH})$
$=[$ total carbonates $] \times(1 /((10-\mathrm{pH} /$ bicarbonate equilibrium constant $)+1+($ carbonate
- formula from Benefield et. al. 1982
$=\left(10-\mathrm{pH}_{x}\left[\mathrm{HCO}_{3}\right]\right) /$ bicarbonate equilibrium constant
$=$ value calculated in cell J37 in Overview spreadsheet
= if(and('[FNGP water system]overview'!\$D\$19="Composite", '[FNGP water system]overview'!\$O\$15="RO"), '[FNGP water
system]overview'!\$N $21: \$ \mathrm{~N} \$ 37,0$)
D18-D26

దం
D32
D34
E15-E34
Softener Blowdown
All parameters Mg through pH
Calcium
Bicarbonate
Carbonic acid
Total carbonates

Title	Cell(s)
Carbonate	D28
Bicarbonate	D30
Carbonic acid	D32
Total carbonates	D34
- if using a direct composite discharge reuse s	
Flow	D15
Calcium	D17
Mg through pH	D18-D26
Carbonate	D28
Bicarbonate	D30
Carbonic acid	D32
Total carbonates	D34
Softener Blowdown	
All parameters	E15-E34

RO AND BCS SPREADSHEET (con't)
$\left.\begin{array}{l}\text { Title } \\ \hline \text { - indicates that if cells D19 and O15 in the Overview worksheet }=\text { "composite' and "RO", respectively, then cells E15 to E34 will have } \\ \text { the same value as cells N21 through N37 in the Overview worksheet. Otherwise, } \\ \text { these cells will have values equal to zero. } \\ \text { - this equation allows one to discharge softener wastes directly to the RO system, } \\ \text { instead of to the lime pond. This option was never used during this study. }\end{array}\right]$
RO AND BCS SPREADSHEET (con't)

$$
\begin{aligned}
& =\text { if(G13 }(\mathrm{G}=0,0, \mathrm{G} 33-\mathrm{G} 35) \\
& \text { F } \mathrm{F} 22 \\
& - \text { see explanation below } \\
& =\text { if(G13 }=0,0, \mathrm{G} 33+\mathrm{G} 31+\mathrm{G} 29) \\
& =0 \text { if no RO filtration is used, or initial }\left[\mathrm{CO}_{3}\right]+\text { initial }\left[\mathrm{HCO}_{3}\right]+\text { initial }\left[\mathrm{H}_{2} \mathrm{CO} 3\right] \text { if } \\
& \text { RO filters are included in the ZED treatment train } \\
& =\text { if(G13 }=0,0,\left(-\left(\mathrm{G} 31+10^{-\mathrm{G} 27}+\mathrm{J} 6\right)+\left(\left(\mathrm{G} 31+10^{-\mathrm{G} 27}+\mathrm{J} 6\right)^{2}-4(-\mathrm{J} 6 \times \mathrm{G} 33+\right.\right. \\
& \left.\left.\mathrm{G} 31 \times 10^{-\mathrm{G} 27} 0.5\right) / 2\right) \\
& - \text { see explanation below }
\end{aligned}
$$

RO AND BCS SPREADSHEET (con't)
Equations / values and explanation thereof
$=\mathrm{if}\left(\mathrm{G} 13=0,0,\left(-\left(\mathrm{G} 29+\mathrm{G} 35+10^{-\mathrm{G} 27}+\mathrm{I} 6\right)+\left(\left(\mathrm{G} 29+\mathrm{G} 35+10^{-\mathrm{G} 27}+\mathrm{I} 6\right)^{2}-4(-\right.\right.\right.$
$\left.\left.\left.\left.\mathrm{I} 6 \times(\mathrm{G} 31+\mathrm{G} 35)+\mathrm{G} 29\left(10^{-\mathrm{G} 27}+\mathrm{G} 35\right)\right)\right)^{0.5}\right) / 2\right)$
-
.

EXPLANATION:

Benefield et. al. (1982) indicates that most carbon dioxide dissolved in water does not hydrolyse to carbonic acid. The equilibrium equations used in this model to determine carbonic acid concentrations (e.g. cell D32) assume, however, that the concentration of carbonic acid is = to the sum of dissolved carbon dioxide and actual carbonic acid molecules. RO membranes cannot eliminate dissolved gases; they will pass unhindered through the filters. Rather than trying to calculate the proportion of carbon dioxide existing on its own and as carbonic acid, all carbonic acid within the RO feedwaters was assumed to be dissolved carbon dioxide. It therefore freely passes' though the membranes. RO concentrate and permeate waters will, as a result, have identical $\mathrm{H}_{2} \mathrm{CO}_{3}$ concentrations.
Carbonate and bicarbonate ions will not pass unhindered through the RO filters, due to the limited permeability of RO membranes to monovalent and divalent ions. While permeate and concentrate streams will have identical concentrations of $\mathrm{H}_{2} \mathrm{CO}_{3}$, they will contain different amounts of carbonate and bicarbonate. Neither system will be in equilibrium. There will either be "too much" or "too little". carbonate and bicarbonate. Concentrations within each stream will shift until carbonate and bicarbonate equilibriums are re-established. $\mathrm{H} 2 \mathrm{CO} 3-\mathrm{HCO} 3$ Equilibrium

RO AND BCS SPREADSHEET (con't)

RO AND BCS SPREADSHEET (con't)
Equations / values and explanation thereof

Total carbonate

EXPLANATION:
-as previously explained with the product stream, the concentration of each carbonate species will shift from its initial level in order to
re-establish carbonate equilibriums. Although the equilibrium calculations used for the permeate still hold true for the brine flow, the
values of certain variables had changed:

$$
\begin{aligned}y \text { is now }=\% \text { monovalent ion rejection } * \text { feedwater [} \mathrm{HCO} 3] \\ \text { w is now }=\% \text { divalent ion rejection * feedwater [CO3] }\end{aligned}
$$

EXPLANATION:
-as previously explained with the product stream, the concentration of each carbonate species will shift from its initial level in order to
re-establish carbonate equilibriums. Although the equilibrium calculations used for the permeate still hold true for the brine flow, the
values of certain variables had changed:

$$
\begin{aligned}y \text { is now }=\% \text { monovalent ion rejection * feedwater [} \mathrm{HCO} 3] \\ \text { w is now }=\% \text { divalent ion rejection } * \text { feedwater [CO3] }\end{aligned}
$$

EXPLANATION:
-as previously explained with the product stream, the concentration of each carbonate species will shift from its initial level in order to
re-establish carbonate equilibriums. Although the equilibrium calculations used for the permeate still hold true for the brine flow, the
values of certain variables had changed:

$$
\begin{aligned}y \text { is now }=\% \text { monovalent ion rejection * feedwater [} \mathrm{HCO} 3] \\ \text { w is now }=\% \text { divalent ion rejection } * \text { feedwater [CO3] }\end{aligned}
$$

EXPLANATION:
-as previously explained with the product stream, the concentration of each carbonate species will shift from its initial level in order to
re-establish carbonate equilibriums. Although the equilibrium calculations used for the permeate still hold true for the brine flow, the
values of certain variables had changed:

$$
\begin{aligned}y \text { is now }=\% \text { monovalent ion rejection * feedwater [} \mathrm{HCO} 3] \\ \text { w is now }=\% \text { divalent ion rejection } * \text { feedwater [CO3] }\end{aligned}
$$

EXPLANATION:
-as previously explained with the product stream, the concentration of each carbonate species will shift from its initial level in order to
re-establish carbonate equilibriums. Although the equilibrium calculations used for the permeate still hold true for the brine flow, the
values of certain variables had changed:

$$
\begin{aligned}y \text { is now }=\% \text { monovalent ion rejection * feedwater [} \mathrm{HCO} 3] \\ \text { w is now }=\% \text { divalent ion rejection } * \text { feedwater [CO3] }\end{aligned}
$$

EXPLANATION:
-as previously explained with the product stream, the concentration of each carbonate species will shift from its initial level in order to
re-establish carbonate equilibriums. Although the equilibrium calculations used for the permeate still hold true for the brine flow, the
values of certain variables had changed:

$$
\begin{aligned}y \text { is now }=\% \text { monovalent ion rejection * feedwater [} \mathrm{HCO} 3] \\ \text { w is now }=\% \text { divalent ion rejection } * \text { feedwater [CO3] }\end{aligned}
$$

Conc.shift ($\mathrm{HCO}_{3}-\mathrm{CO}_{3}$)

Bicarbonate
[ש!!!u! -
um!!q!!!nbe -
Carbonic acid
Lentuq!!!

- initial (
RO AND BCS SPREADSHEET (con't)

$\frac{\text { Title }}{\text { Salt precipitation check }}$
CaSO_{4}
CaCO_{3}
MgCO_{3}
$\mathrm{Mg}(\mathrm{OH})_{2}$

[^13]
-Same basic calculations as cells J17 through J20 - variable open to manipulation
= L15
$=$ Unit \#2 brine flow
= L17 : L25
= Contaminant []'s as Unit \#3 brine flow
$=$ L26-M26
$=$ Unit \#3 brine $\mathrm{pH}-\mathrm{pH}$ adjustment

$=\mathrm{L} 26-5.8$ | Title | Cell(s) |
| :--- | :---: |
| Permeate | K15-K36 |
| Concentrate | L15-L36 |
| -if only using a 1-stage RO system: | |
| Feed | J15-J36 |
| Product water | K15-K36 |
| Concentrate | L15-L36 |
| | |
| $\begin{array}{l}\text { Salt Precipitation Check } \\ \text { CaSO }\end{array}$ | | RO UNIT \#3

Water recovery ratio $\quad \mathrm{O} 13$

RO AND BCS SPREADSHEET (con't)
Equations / values and explanation thereof
$=$ Unit \#3 brine $\mathrm{pH}-5.8$
-Ensures feedwater $\mathrm{pH}=5.8$
$=\left(\mathrm{I}^{*} \mathrm{~N} 30\right) /\left(10^{\wedge}-\mathrm{N} 26\right)$
$=\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant $\times\left[\mathrm{HCO}_{3}\right] /(10-\mathrm{pH})$
$=\mathrm{N} 34 *\left(1 /\left(\left(\left(10^{\wedge}-\mathrm{N} 26\right) / \mathrm{J} 6\right)+1+\left(\mathrm{I} 6 / 10^{\wedge}-\mathrm{N} 26\right)\right)\right)$
$=\left[\mathrm{C}_{\mathrm{T}}\right] \times 1 /\left(10^{-\mathrm{pH}} / \mathrm{H}_{2} \mathrm{CO}_{3}\right.$ equilibrium constant $+1+\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium
constant $\left./ 10^{-}-\mathrm{pH}\right)$
-From Benefield et al. 1982
$=\left(\left(10^{\wedge}-\mathrm{N} 26\right) * \mathrm{~N}_{3}\right) / \mathrm{J}^{2}$
$=\left(10^{-}-\mathrm{pH}\right) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant
$=\mathrm{L} 34$
$=$

$=$ Same basic equations as cells G15 through G36

$=0$
$=0$
$=0$
-Same basic calculations as cells J17 through J20

- as stated earlier, feedwater pH always lowered to 5.8

Title	Cell(s)
CO_{3}	N 28
HCO_{3}	N 30
$\mathrm{H}_{2} \mathrm{CO}_{3}$	N 32
C_{T}	N 34
Permeate	$\mathrm{O} 15-\mathrm{O} 36$
Concentrate	$\mathrm{P} 15-\mathrm{P} 36$
-if only using 1 or 2 RO units:	
Feed	
Product water - N36	
Concentrate	$\mathrm{O} 15-\mathrm{O} 36$
Salt Precipitation Check	
CaSO	
- Mg (OH)	
pH adjustment	$\mathrm{Q} 17-\mathrm{Q} 20$

RO AND BCS SPREADSHEET (con't)

R28-R32
T15-T34
U15-U34
Overall Brine
BRINE CONCENTRATOR
Feedwater D43-D62

F43-F62
H43-H62

$\frac{\text { Cell(s) }}{}$
R15
R17-R26 + R34
U15-U34
Water recovery ratio
Product water
$\frac{\text { SPRAY DRYER }}{\text { Feedwater }}$
Concentrate
Feedwater
RO AND BCS SPREADSHEET (con't)

Title	Cell(s)
Waste	J43
Flow	Chemical parameters
Total waste mass	J62

$\frac{\text { WATER RECLAMATION SYSTEM }}{\text { Product water } \mathrm{pH}} \frac{\text { L54 }}{}$
 Product water pH L54

tSW
~
$\mathrm{N} 45-\mathrm{N} 53+\mathrm{N} 62$
N 54
N56-N60
 BCS assembly was not part of the trea
flow = RO permeate flows, cell R15

- similar equations as for product water
= product water $\mathrm{pH}+\mathrm{pH}$ adjustment
- calculated in similar format as feedwat recycling system, then $=$ cell U15 is added to the solid wast to is added to the solid waste output
- identical format to cell P43

Product water Flow	N 43
$\mathrm{Ca}-\mathrm{DOC}+\mathrm{CT}$	$\mathrm{N} 45-\mathrm{N} 53+\mathrm{N} 62$
pH	N 54
$\mathrm{CO} 3-\mathrm{H}_{2} \mathrm{CO} 3$	$\mathrm{~N} 56-\mathrm{N} 60$
Waste	P 43
Flow	P 45
Calcium	$\mathrm{P} 46-\mathrm{P} 60$

$\mathrm{Ca}-\mathrm{DOC}+\mathrm{C}_{\mathrm{T}}$
$\stackrel{\mathrm{pH}}{\mathrm{CH}_{3}}$
Waste
RO AND BCS SPREADSHEET (con't)
Equations / values and explanation thereof
$=$ total carbonate in RO permeate (cell U34) if there is no BCS assembly used in the
recycling system. If a BCS assembly is used, then this cell $=$ total mass released
from the spray dryer (sum of cells P45-P60)
事

APPENDIX F

SIMULATOR SUMMARY SHEETS

A summary sheet was made every time a different scenario was tested with the computer simulator. As a result, more than 100 summary sheets were generated over the course of this study. While all of them are included on the computer disk accompanying this document, only a few were converted into hard copies and included in this appendix to illustrate the type of information that was inputted into the simulator.

固தckrend model - fosiege RO, RCS, IX, no recyele
Test Conditions

| Water flows | F.E.T. inlet | Lime blow. Soften blow. | T.water | R.O. inlet | R.O. waste | B/C feed | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 578.3 | 13.9 | 19.0 | 545.3 | 281.6 | 140.8 | 140.8 |

Water quality		Raw water	Water from RO \& B/C	Treated water	Current T. water	Final wast Solid	
Flow	m3/day	407.4	267.5	545.3	-	-	
Chem.							
Ca	mg / L	81.3	1.3	1.4	1.4	$3.2 \mathrm{E}+01$	kg/day
Mg	mg / L	18.3	0.3	0.5	0.5	$4.2 \mathrm{E}+00$	kg/day
Fe	mg / L	0.39	0.0	0.6	0.6	4.2E-01	$\mathrm{kg} /$ day
SO4	mg / L	86.8	7.4	61.6	81.9	$9.6 \mathrm{E}+01$	kg/day
SiO 2	mg / L	5.2	0.1	0.9	0.9	$1.2 \mathrm{E}+00$	kg/day
PO4-P	mg / L	0.06	0.01	0.07	0.07	9.1E-02	kg/day
Cl	mg / L	2.9	19.2	2.1	2.4	$1.2 \mathrm{E}+02$	kg/day
Na	mg / L	12.5	20.3	49.5	50.5	$1.3 \mathrm{E}+02$	kg/day
DOC	mg / L	9.3	8.4	6.0	6.1	$2.0 \mathrm{E}+01$	kg/day
pH		7.9	4.7	10.0	10.1		
CO3	$\mathrm{mol} / \mathrm{L}$	1.4E-05	2.1E-06	1.4E-04	1.2E-04	7.6E-04	$\mathrm{kg} / \mathrm{day}$
HCO3	$\mathrm{mol} / \mathrm{L}$	3.6E-03	1.4E-03	3.0E-04	2.0E-04	$7.2 \mathrm{E}+00$	$\mathrm{kg} / \mathrm{day}$
H2CO3	$\mathrm{mol} / \mathrm{L}$	1.0E-04	1.0E-04	7.1E-08	3.7E-08	$1.3 \mathrm{E}+00$	kg/day
Ctot	$\mathrm{mol} / \mathrm{L}$	3.7E-03	1.5E-03	4.4E-04	3.1E-04		
Required pH adjustments:			2.8	for recyc. $\mathrm{H} 20 \mathrm{pH}=7.5$		414.8	kg/day

回®ckrend model = justage RO, BCS, IK, 『ecycle
Test Conditions

Results

Solubility Check	Nanofiltration			Reverse Osmosis		
	unit 1	unit 2	unit 3	unit 1	unit 2	unit 3
CaSO4	N/A	N/A	N/A	ok	N/A	N/A
CaCO3	N/A	N/A	N/A	ok	N/A	N/A
MgCO 3	N/A	N/A	N/A	ok	N/A	N/A
$\mathrm{Mg}(\mathrm{OH}) 2$	N/A	N/A	N/A	ok	N/A	N/A

| Water flows | F.E.T. inlet | Lime blow. Soften blow. | T.water | R.O. inlet | R.O. waste | B/C feed | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 536.6 | 7.2 | 3.8 | 525.5 | 239.9 | 119.9 | 119.9 |

Water quality		Raw water	Recycled Water	Treated water	Current T. water		Final wast Solid	
Flow	m3/day	137.8	227.9	525.5	-		-	
Chem.								
Ca	mg / L	81.3	1.3	1.4	1.4		$1.4 \mathrm{E}+01$	kg/day
Mg	mg / L	18.3	0.2	0.5	0.5		$2.6 \mathrm{E}+00$	kg/day
Fe	mg / L	0.39	0.0	0.3	0.6		3.9E-01	kg/day
SO4	mg / L	86.8	5.8	25.3	81.9		$6.4 \mathrm{E}+01$	kg/day
SiO 2	mg/L	5.2	0.1	0.9	0.9		8.8E-01	kg/day
PO4-P.	mg / L	0.06	0.01	0.04	0.07		9.0E-02	kg/day
Cl	mg / L	2.9	7.9	4.2	2.4		$4.3 \mathrm{E}+01$	kg/day
Na	mg / L	12.5	14.7	16.6	50.5		$8.0 \mathrm{E}+01$	kg/day
DOC	mg / L	9.3	9.7	6.0	6.1		$2.0 \mathrm{E}+01$	kg/day
pH		7.9	7.5	10.0	10.1			
CO 3	$\mathrm{mol} / \mathrm{L}$	1.4E-05	2.2E-06	$7.0 \mathrm{E}-05$	1.2E-04		7.8E-04	kg/day
HCO	$\mathrm{mol} / \mathrm{L}$	3.6E-03	$1.5 \mathrm{E}-03$	$1.5 \mathrm{E}-04$	2.0E-04		$6.5 \mathrm{E}+00$	kg/day
H 2 CO	$\mathrm{mol} / \mathrm{L}$	1.0E-04	1.1E-04	$3.5 \mathrm{E}-08$	3.7E-08		$1.2 \mathrm{E}+00$	kg/day
Ctot	$\mathrm{mol} / \mathrm{L}$	3.7E-03	1.6E-03	2.2E-04	3.1E-04			
Required pH adjustments:			2.8	for recyc. $\mathrm{H} 20 \mathrm{pH}=7.5$ Total			233.7	kg/day

Recksend model - !astege RO, BCS, NF, n® 『ecycle
Test Conditions

Raw water origin:	No name creek		NF	R.O.	B / C
Volume 8\# vented:	$0.0 \mathrm{~m} / \mathrm{day}$	\# stages	3	1	1
Softener type:	NF	Water temp (C)	40	35	25
Water recycling:		Removal			
-Brine disposal	Evaporated	monovalent	67\%	96\%	99.99\%
-Water recycled?	no	divalent	94\%	98\%	99.99\%
		TOC	98\%	90\%	99.99\%
			Water recovery:		90\%

	Nanofiltration			Reverse Osmosis		
	unit 1	unit 2	unit 3	unit 1	unit 2	unit 3
Water recovery	75\%	50\%	75\%	50\%	N/A	N/A
Brine recycle	-	no	yes			
\% recycle		20\%	100\%			
Blending	Vekm		no			
\% of product from \#1+2 into \#3 50\%						
Feedwater pH	6.5	6.0	6.2	5.8	N/A	N/A
adjustment	2.7	0.8		1.8	N/A	N/A
Feedwater Ca	35.0			65	Yevemue	***
adjustment	0.0			50		

Results

Solubility Check	Nanofiltration				Reverse Osmosis			
CaSO4	unit 1	unit 2	unit 3	unit 1	unit 2	unit 3		
	ok	ok	ok	ok	N / A	N / A		
CaCO 3	ok	ok	ok	ok	N / A	N / A		
MgCO 3	ok	ok	ok	ok	N / A	N / A		
$\mathrm{Mg}(\mathrm{OH}) 2$	ok	ok	ok	ok	N / A	N / A		

| Water flows | F.E.T. inlet | Lime blow. Soften blow. | T.water | R.O. inlet | R.O. waste | B/C feed | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 576.1 | 13.9 | 89.9 | 472.2 | 279.3 | 139.7 | 139.7 |

Water qual	lity	Raw water	$\mathrm{RO}+\mathrm{B} / \mathrm{C}$ Water	Treated water	Current T. water		Final waste Solid	
Flow	m3/day	405.1	265.4	472.2	-		. -	
Chem.								
Ca	mg / L	81.3	1.38	0.28	1.4		$3.2 \mathrm{E}+01$	kg/day
Mg	mg / L	18.3	0.33	0.01	0.5		$4.2 \mathrm{E}+00$	kg/day
Fe	mg / L	0.39	0.03	0.00	0.6		4.3E-01	kg/day
SO4	mg / L	86.8	7.67	0.50	81.9		$9.9 \mathrm{E}+01$	kg/day
SiO 2	mg/L	5.2	0.09	0.01	0.9		$1.2 \mathrm{E}+00$	kg/day
PO4-P	mg / L	0.06	0.01	0.00	0.07		9.0E-02	kg/day
Cl	mg / L	2.9	3.54	0.71	2.4		$2.2 \mathrm{E}+01$	kg/day
Na	mg / L	12.5	10.81	3.15	50.5		$6.9 \mathrm{E}+01$	kg/day
DOC	mg / L	9.3	8.30	0.01	6.1		$2.0 \mathrm{E}+01$	kg/day
pH		7.9	4.7	10.0	10.1			
CO 3	$\mathrm{mol} / \mathrm{L}$	1.4E-05	2.1E-06	8.1E-05	1.2E-04		7.6E-04	kg/day
HCO3	$\mathrm{mol} / \mathrm{L}$	3.6E-03	$1.4 \mathrm{E}-03$	1.7E-04	2.0E-04		$7.2 \mathrm{E}+00$	kg/day
H2CO3	$\mathrm{mol} / \mathrm{L}$	1.0E-04	$1.0 \mathrm{E}-04$	4.0E-08	3.7E-08		$1.3 \mathrm{E}+00$	kg/day
Ctot	$\mathrm{mol} / \mathrm{L}$	3.7E-03	$1.5 \mathrm{E}-03$	2.5E-04	3.1E-04			
Required pH adjustments:			2.8	for recyc. $\mathrm{H} 20 \mathrm{pH}=7.5$ for T.W. from $N F=10.0$		Total	256.3	kg/day

R®ckreగd model - jostege RO, RCS, NF; recycle
Test Conditions

Results

Solubility Check	Nanofiltration				Reverse Osmosis			
	unit 1	unit 2	unit 3	unit 1	unit 2	unit 3		
CaSO4	ok	ok	ok	ok	N / A	N / A		
CaCO 3	ok	ok	ok	ok	N / A	N / A		
MgCO 3	ok	ok	ok	ok	N / A	N / A		
$\mathrm{Mg}(\mathrm{OH}) 2$	ok	ok	ok	ok	N / A	N / A		

| Water flows | F.E.T. inlet | Lime blow. Soften blow. | T.water | R.O. inlet | R.O. waste B/C feed | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 521.2 | 7.4 | 41.9 | 471.8 | 224.5 | 112.2 | 112.2 |

Water q	ality	Raw water	Recycled Water	Treated water	Current T. water		Final waste Solid	
Flow	m3/day	137.0	213.3	471.8	-		-	
Chem.								
Ca	mg / L	81.3	1.43	0.04	1.4		$1.4 \mathrm{E}+01$	kg/day
Mg	mg / L	18.3	0.26	0.01	0.5		$2.7 \mathrm{E}+00$	kg/day
Fe	mg / L	0.39	0.04	0.00	0.6		$4.0 \mathrm{E}-01$	$\mathrm{kg} /$ day
SO4	mg / L	86.8	6.34	0.19	81.9		$6.6 \mathrm{E}+01$	kg/day
SiO 2	mg / L	5.2	0.09	0.01	0.9		8.9E-01	kg/day
PO4-P	mg / L	0.06	0.01	0.00	0.07		8.9E-02	kg/day
Cl	mg / L	2.9	4.43	0.82	2.4		$2.3 \mathrm{E}+01$	kg/day
Na	mg / L	12.5	13.36	2.88	50.5		$6.8 \mathrm{E}+01$	kg/day
DOC	mg / L	9.3	10.23	0.01	6.1		$2.0 \mathrm{E}+01$	kg/day
pH		7.9	7.5	10.0	10.1			
CO 3	$\mathrm{mol} / \mathrm{L}$	1.4E-05	2.4E-06	6.2E-05	1.2E-04		6.7E-04	kg/day
HCO3	$\mathrm{mol} / \mathrm{L}$	3.6E-03	1.6E-03	1.3E-04	2.0E-04		$6.6 \mathrm{E}+00$	kg/day
H2CO3	$\mathrm{mol} / \mathrm{L}$	1.0E-04	1.2E-04	3.1E-08	3.7E-08		$1.2 \mathrm{E}+00$	kg/day
Ctot	$\mathrm{mol} / \mathrm{L}$	3.7E-03	1.7E-03	1.9E-04	3.1E-04			
Required pH adjustments:			2.8	for recyc. $\mathrm{H} 20 \mathrm{pH}=7.5$ for $\mathrm{T} . \mathrm{W}$. from $\mathrm{NF}=10.0$		Total	202.6 kg/day	
			4.2					

Beckoend nodel - \{ostbo(RO, DW, OK, no recycle

Test Conditions

Raw water origin: Volume 8\# vented:	No name creek			NF	R.O.	B / C
	0.0	m3/day	\# stages	N/A	1	N/A
Softener type: Water recycling:	Ion-X	Water temp (C)		N/A	35	N/A
		Removal				
-Brine disposal -Water recycled?	Deep well	monovalent		N/A	96\%	N/A
	no		divalent	N/A	98\%	N/A
			TOC	N/A	90\%	N/A
				Water recovery:		N/A
	Nanofiltration			Reverse Osmosis		
	unit 1	unit 2	Unit 3	unit 1	unit 2	unit 3
Water recovery Brine recycle	N/A	N/A	N/A	50\%	N/A	N/A
	N/A	N/A	N/A			
\% recycle	- -	N / A	N/A		K	
Blending	\%\%yyyyyy		N/A			
\% of prod	duct from \#1+	2 into \#3	N/A			
Feedwater pH adjustment	N/A	N/A	N/A	5.8	N/A	N/A
	N/A	N/A	-	1.8	N/A	N/A
Feedwater Ca	N/A			65	-10 Kumume	
adjustment	N/A	\%osikimit		48		

Results

Solubility Check	Nanofiltration				Reverse Osmosis			
CaSO4	unit 1	unit 2	unit 3	unit 1	unit 2	unit 3		
CaCO3	N/A	N/A	N/A	ok	N/A	N/A		
MgCO3	N/A	N/A	N/A	ok	N/A	N/A		
$M g(O H) 2$	N/A	N/A	N/A	ok	N/A	N/A		
M	ok	N/A	N/A					

| Water flows | F.E.T. inlet | Lime blow. Soften blow. | T.water | R.O. inlet | R.O. waste B / C feed | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{m} / \mathrm{day}$ | 578.3 | 13.9 | 19.0 | 545.3 | 281.6 | 140.8 | $\mathrm{~N} / \mathrm{A}$ |

Water qua	lity	Raw water	Recycled Water	Treated water	Current T. water	Liquid	Final waste Solid	
Flow	m3/day	407.4	0.0	545.3	-	140.8		
Chem.			\% of wastewater not recovered			50.0\%		
Ca	mg / L	81.3	0	1.4	1.4	$2.2 \mathrm{E}+02$	$3.2 E+01$	kg/day
Mg	mg / L	18.3	0.0	0.5	0.5	$3.0 \mathrm{E}+01$	$4.2 E+00$	$\mathrm{kg} / \mathrm{day}$
Fe	mg / L	0.39	0.0	0.6	0.6	$3.0 E+00$	4.2E-01	kg/day
SO4	mg / L	86.8	0	61.6	81.9	$6.8 \mathrm{E}+02$	$9.6 \mathrm{E}+01$	kg/day
SiO 2	mg / L	5.2	0.0	0.9	0.9	$8.3 \mathrm{E}+00$	$1.2 \mathrm{E}+00$	$\mathrm{kg} /$ day
PO4-P	mg / L	0.06	0.00	0.07	0.07	6.5E-01	9.1E-02	kg/day
Cl	mg / L	2.9	0	2.1	2.4	$8.7 \mathrm{E}+02$	$1.2 \mathrm{E}+02$	kg/day
Na	mg / L	12.5	0	49.5	50.5	$9.2 \mathrm{E}+02$	$1.3 \mathrm{E}+02$	kg/day
DOC	mg / L	9.3	0.0	6.0	6.1	$1.4 \mathrm{E}+02$	$2.0 \mathrm{E}+01$	kg/day
pH		7.9	0.0	10.0	10.1	6.1		
CO3	$\mathrm{mol} / \mathrm{L}$	1.4E-05	0.0E+00	1.4E-04	1.2E-04	5.5E-08	4.6E-04	kg/day
HCO3	$\mathrm{mol} / \mathrm{L}$	3.6E-03	$0.0 \mathrm{E}+00$	3.0E-04	2.0E-04	8.3E-04	$7.2 \mathrm{E}+00$	kg/day
H2CO3	$\mathrm{mol} / \mathrm{L}$	1.0E-04	$0.0 \mathrm{E}+00$	7.1E-08	3.7E-08	1.5E-03	$1.3 \mathrm{E}+01$	kg/day
Ctot	$\mathrm{mol} / \mathrm{L}$	3.7E-03	$0.0 \mathrm{E}+00$	4.4E-04	3.1E-04	2.3E-03		
	quired pH	djustments:	2.7	for recyc.	$\mathrm{pH}=7.5$	Total	426.3	kg/day

Test Conditions

Raw water origin:	No name creek			NF	R.O.	B/C
Volume 8\# vented:	0.0	$\mathrm{~m} 3 /$ day	\# stages	N / A	1	$\mathrm{~N} / \mathrm{A}$
Softener type:	lon-X		Water temp (C)	N / A	35	$\mathrm{~N} / \mathrm{A}$
Water recycling:		Removal				
-Brine disposal	Deep well	monovalent	N / A	96%	$\mathrm{~N} / \mathrm{A}$	
-Water recycled?	yes	divalent	N / A	98%	$\mathrm{~N} / \mathrm{A}$	
			TOC	N / A	90%	$\mathrm{~N} / \mathrm{A}$
				Water recovery:		N / A

	Nanofiltration			Reverse Osmosis		
	unit 1	unit 2	unit 3	unit 1	unit 2	unit 3
Water recoveryBrine recycle	N/A	N/A	N/A	50\%	N/A	N/A
	N/A	N/A	N/A			
\% recycle	-	N/A	N/A			
Blending	10, \%3	M \% \% \& \&	N/A			
\% of prod	from \#	into \#3	N/A			
	N/A	N/A	N/A	5.8	N/A	N/A
adjustment	N/A	N/A	-	1.8	N/A	N/A
Feedwater Ca	N/A			75	\#\#,	
adjustment	N/A			11		

Results

Solubility	Check	Nanofiltration			Reverse Osmosis		
		unit 1	unit 2	unit 3	unit 1	unit 2	unit 3
	CaSO4	N/A	N/A	N/A	ok	N/A	N/A
	CaCO 3	N/A	N/A	N/A	ok	N/A	N/A
	MgCO 3	N/A	N/A	N/A	ok	N/A	N/A
	$\mathrm{Mg}(\mathrm{OH}) 2$	N/A	N/A	N/A	ok	N/A	N/A

| Water flows | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | F.E.T. inlet | Lime blow. Soften blow. | T.water | R.O. inlet | R.O. waste B / C feed | | |
| | 559.2 | 10.1 | 11.1 | 538.0 | 262.5 | 131.3 | $\mathrm{~N} / \mathrm{A}$ |

Water qu	ity	Raw water	Recycled Water	Treated water	Current T. water	Liquid	Final waste Solid	
Flow	m3/day	257.1	131.3	538.0	-	131.3	-	
Chem.			$\%$ of wastewater not recovered			50.0\%		
Ca	mg/L	81.3	3	1.4	1.4	$1.7 \mathrm{E}+02$	$2.2 \mathrm{E}+01$	kg/day
Mg	mg/L	18.3	0.5	0.5	0.5	$2.6 \mathrm{E}+01$	$3.4 \mathrm{E}+00$	kg/day
Fe	mg / L	0.39	0.1	0.4	0.6	$3.1 \mathrm{E}+00$	4.0E-01	kg/day
SO4	mg / L	86.8	12	43.3	81.9	$6.1 \mathrm{E}+02$	$8.0 \mathrm{E}+01$	kg/day
SiO 2	mg/L	5.2	0.2	0.9	0.9	$7.7 \mathrm{E}+00$	$1.0 \mathrm{E}+00$	kg/day
PO4-P	mg / L	0.06	0.01	0.05	0.07	6.9E-01	9.1E-02	kg/day
Cl	mg / L	2.9	26	7.5	2.4	$6.3 \mathrm{E}+02$	$8.3 \mathrm{E}+01$	kg/day
Na	mg / L	12.5	34	37.2	50.5	$8.1 \mathrm{E}+02$	$1.1 \mathrm{E}+02$	kg/day
DOC	mg / L	9.3	17.4	7.4	6.1	$1.6 \mathrm{E}+02$	2.1E+01	kg/day
pH		7.9	7.5	10.0	10.1	6.1		
CO 3	$\mathrm{mol} / \mathrm{L}$	1.4E-05	2.2E-06	1.4E-04	1.2E-04	5.6E-08	4.4E-04	kg/day
HCO3	$\mathrm{mol} / \mathrm{L}$	3.6E-03	$1.4 \mathrm{E}-03$	3.0E-04	2.0E-04	8.5E-04	$6.8 \mathrm{E}+00$	kg/day
H 2 CO 3	$\mathrm{mol} / \mathrm{L}$	$1.0 \mathrm{E}-04$	1.1E-04	7.1E-08	3.7E-08	1.5E-03	$1.2 \mathrm{E}+01$	kg/day
Ctot	$\mathrm{mol} / \mathrm{L}$	3.7E-03	1.5E-03	4.4E-04	3.1E-04	$2.3 \mathrm{E}-03$		
	uired pH	djustments	2.7	or recyc.	$\mathrm{pH}=7.5$	Total	335.2	/da

Backeend model - fosiage RO, DW, NP, no pecycle
Test Conditions

Raw water origin:	No name creek			NF	R.O.	B / C
Volume 8\# vented:	0.0	m3/day	\# stages	3	1	N/A
Softener type:	NF		Water temp (C)	40	35	N/A
Water recycling:	Removal					
-Brine disposal	Deep well		monovalent	67\%	96\%	N/A
-Water recycled?	no		divalent	94\%	98\%	N/A
			TOC	98\%	90\%	N/A
					ter recovery:	N/A
	Nanofiltration			Reverse Osmosis		
	unit 1	unit 2	Unit 3	unit 1	unit 2	unit 3
Water recovery	75\%	50\%	75\%	50\%	N/A	N/A
Brine recycle		no	yes			
\% recycle	-	20\%	100\%			
\% of product from \#1+2 into \#3 50\%						
Feedwater pH	6.5	6.0	6.2	5.8	N/A	N/A
adjustment	2.7	0.8	-	1.8	N/A	N/A
Feedwater Ca	35.0	4,		65		
adjustment	0.0			50		

Results

Solubility Check	Nanofiltration unit 1 unit 2				unit 3				unit 1	unit 2	unit 3
	ok	ok	ok	ok	N / A	N / A					
CaCO 3	ok	ok	ok	ok	N / A	N / A					
MgCO 3	ok	ok	ok	ok	N / A	N / A					
$\mathrm{Mg}(\mathrm{OH}) 2$	ok	ok	ok	ok	N / A	N / A					

| Water flows | F.E.T. inlet | Lime blow. Soften blow. | T.water | R.O. inlet | R.O. waste | B/C feed | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 576.1 | 13.9 | 89.9 | 472.2 | 279.3 | 139.7 | N/A |

Water qual	ity	Raw water	Recycled Water	Treated water	Current T. water	Liquid	Final wast Solid	
Flow	m3/day	405.1	0.0	472.2	-	139.7	-	
Chem.			\% of wastewater not recovered			50.0\%		
Ca	mg/L	81.3	0.00	0.3	1.4	$2.3 \mathrm{E}+02$	$3.2 \mathrm{E}+01$	kg/day
Mg	mg / L	18.3	0.00	0.0	0.5	$3.0 \mathrm{E}+01$	$4.2 \mathrm{E}+00$	kg/day
Fe	mg / L	0.39	0.00	0.0	0.6	$3.1 \mathrm{E}+00$	4.3E-01	kg/day
SO4	mg / L	86.8	0.00	0.5	81.9	7.1E+02	$9.9 \mathrm{E}+01$	kg/day
SiO 2	mg / L	5.2	0.00	0.0	0.9	$8.3 \mathrm{E}+00$	$1.2 \mathrm{E}+00$	kg/day
PO4-P	mg / L	0.06	0.00	0.00	0.07	6.4E-01	9.0E-02	kg/day
Cl	mg / L	2.9	0.00	0.7	2.4	$1.6 \mathrm{E}+02$	$2.2 \mathrm{E}+01$	kg/day
Na	mg / L	12.5	0.00	3.2	50.5	$4.9 \mathrm{E}+02$	$6.9 \mathrm{E}+01$	kg/day
DOC	mg / L	9.3	0.00	0.0	6.1	$1.4 \mathrm{E}+02$	$2.0 \mathrm{E}+01$	kg/day
pH		7.9	0.0	10.0	10.1	6.1		
CO 3	$\mathrm{mol} / \mathrm{L}$	1.4E-05	$0.0 \mathrm{E}+00$	8.1E-05	1.2E-04	5.5E-08	4.6E-04	kg/day
HCO3	$\mathrm{mol} / \mathrm{L}$	3.6E-03	$0.0 \mathrm{E}+00$	1.7E-04	2.0E-04	8.4E-04	$7.2 \mathrm{E}+00$	kg/day
H2CO3	$\mathrm{mol} / \mathrm{L}$	1.0E-04	$0.0 \mathrm{E}+00$	4.0E-08	3.7E-08	1.5E-03	$1.3 E+01$	kg/day
Ctot	$\mathrm{mol} / \mathrm{L}$	3.7E-03	$0.0 \mathrm{E}+00$	2.5E-04	3.1E-04	2.3E-03		
	ired pH	djustments:	$\begin{aligned} & 2.7 \\ & 4.2 \end{aligned}$	for recyc for T.W. from	$\begin{gathered} \mathrm{pH}=7.5 \\ \mathrm{NF}=10.0 \end{gathered}$	Total	267.8	kg/day

Backoen@ moodel - fostage RO, DW, NP, Pecycle
Test Conditions

Raw water origin:	No name creek			NF	R.O.	B / C
Volume 8\# vented:	0.0	m3/day	\# stages	3	1	N/A
Softener type:	NF		Water temp (C)	40	35	N/A
Water recycling:	Removal					
-Brine disposal	Deep well		monovalent	67\%	96\%	N/A
-Water recycled?	yes		divalent	94\%	98\%	N/A
			TOC	98\%	90\%	N/A
					er recovery:	N/A
	Nanofiltration			Reverse Osmosis		
	unit 1	unit 2	unit 3	unit 1	unit 2	unit 3
Water recoveryBrine recycle	75\%	65\%	75\%	50\%	N/A	N/A
	-	no	yes			
$\%$ recycle	*)	20\%	100\%			
\% of produ	duct from \#1+		50\%			
Feedwater pH adjustment	6.5	6.0	6.2	5.81.8	N/A	N / A
	2.7	0.8			N/A	N / A
Feedwater Ca	19.8	U1/umuke		70	Mekumumektur	
adjustment	0.0			21		

Results

Solubility Check	Nanofiltration				Reverse Osmosis			
	unit 1	unit 2	unit 3	unit 1	unit 2	unit 3		
CaSO4	ok	ok	ok	ok	N / A	N / A		
CaCO 3	ok	ok	ok	ok	N / A	N / A		
MgCO 3	ok	ok	ok	ok	N / A	N / A		
$\mathrm{Mg}(\mathrm{OH}) 2$	ok	ok	ok	ok	N / A	N / A		

Water flows	F.E.T. inlet	Lime blow. Soften blow.	T.water	R.O. inlet	R.O. waste	B/C feed		
	m3/day	542.8	10.1	60.4	472.2	246.1	123.0	$\mathrm{~N} / \mathrm{A}$

Water qua	lity	Raw water	Recycled Water	Treated water	Current T. water	Liquid	Final waste Solid	
Flow	m3/day	248.8	123.0	472.2	-	123.0		
Chem.			\% of wastewater not recovered			50.0\%		
Ca	mg / L	81.3	2.80	0.15	1.4	$1.8 \mathrm{E}+02$	$2.2 \mathrm{E}+01$	kg/day
Mg	mg / L	18.3	0.55	0.01	0.5	$2.7 \mathrm{E}+01$	$3.3 \mathrm{E}+00$	kg/day
Fe	mg / L	0.39	0.07	0.00	0.6	$3.4 \mathrm{E}+00$	4.1E-01	kg/day
SO4	mg / L	86.8	13.47	0.33	81.9	$6.6 \mathrm{E}+02$	$8.1 \mathrm{E}+01$	kg/day
SiO 2	mg / L	5.2	0.17	0.01	0.9	$8.2 \mathrm{E}+00$	$1.0 \mathrm{E}+00$	kg/day
PO4-P	mg / L	0.06	0.01	0.00	0.07	7.3E-01	8.9E-02	kg/day
Cl	mg / L	2.9	7.77	1.02	2.4	$1.9 \mathrm{E}+02$	$2.3 \mathrm{E}+01$	kg/day
Na	mg / L	12.5	23.57	3.74	50.5	$5.7 \mathrm{E}+02$	$7.0 \mathrm{E}+01$	kg/day
DOC	mg / L	9.3	18.33	0.01	6.1	$1.6 \mathrm{E}+02$	$2.0 \mathrm{E}+01$	kg/day
pH		7.9	7.5	10.0	10.1	6.1		
CO 3	$\mathrm{mol} / \mathrm{L}$	1.4E-05	2.3E-06	7.9E-05	1.2E-04	5.9E-08	4.4E-04	kg/day
HCO3	$\mathrm{mol} / \mathrm{L}$	3.6E-03	$1.5 \mathrm{E}-03$	1.6E-04	2.0E-04	9.0E-04	$6.8 \mathrm{E}+00$	kg/day
H 2 CO 3	$\mathrm{mol} / \mathrm{L}$	1.0E-04	1.1E-04	3.9E-08	3.7E-08	1.6E-03	$1.2 \mathrm{E}+01$	$\mathrm{kg} / \mathrm{day}$
Ctot	$\mathrm{mol} / \mathrm{L}$	3.7E-03	1.6E-03	2.4E-04	3.1E-04	$2.5 \mathrm{E}-03$		
Required pH adjustments:			$\begin{aligned} & 2.7 \\ & 4.2 \end{aligned}$	for recyc. $\mathrm{H} 2 \mathrm{OH}=7.5$ for T.W. from $N F=10.0$		Total	239.8	kg/day

APPENDIX G

COST ESTIMATES

COST ESTIMATING FACTORS

Reverse osmosis systems

According to Osmonics, Inc. (located in Minnetonka, Minnesota), RO systems generally cost US $\$ 2000$ per gpm of produced permeate. Given their price estimate for a $360 \mathrm{~m}^{3} /$ day RO filter system (listed below), it was assumed that a dual-media filter in any RO assembly would account for 14.9 \% of the total cost. The remaining 85.1% would be involved in purchasing the RO membranes and associated support equipment.

Equipment	Price (US\$)
Dual-media filter	17500
Chemical injection system	4000
RO skid	80000
Cleaning system	9250
Membranes	7500
Total	118250

Nanofiltration costs

Nanofiltration system generally cost 85% of the RO assemblies (Osmonics, Inc., personal com.). When no pretreatment equipment is required for the NF filters, as is the case when they are used in place of the ion-exchangers, they were assumed to cost 72.3% of RO systems.

BCS assembly

BCS unit prices for three different flow rates were provided by Resources Conservation Company (located in Bellevue, Washington):

Flow rate $\left(\mathrm{m}^{3} /\right.$ day $)$	Cost (US\$)
200	1650000
360	1900000
500	2250000

From a regression analysis on the three figures, BCS costs were estimated using the following equation:

$$
\text { price }=1990 * \text { feedwater flow }+1230235
$$

Ion-exchangers

Nalco Canada Inc. representative indicated that an ion-exchange unit would cost between $\$ 50$ 000 and $\$ 100000$ Canadian dollars, regardless of the particular ZED configuration. A price of $\$ 50000$ US dollars was used in the cost estimates.

COST ESTIMATES

Closed-Loop Designs

1 -stage RO systems

Equipment	BE, BCS, IX ${ }^{\text {a }}$		BE, BCS, NFa		CD, BCS, IX ${ }^{\text {a }}$		CD, BCS, NFa	
	$\begin{aligned} & \text { Flow }{ }^{\text {F }} \\ & \left(\mathrm{m}^{3} / \text { day }\right) \end{aligned}$	Cost (US\$)	$\begin{aligned} & \text { Flow }{ }^{\text {Flo }} \\ & \left(\mathrm{m}^{3} / \text { day }\right) \end{aligned}$	$\begin{gathered} \text { Cost } \\ \text { (US\$) } \end{gathered}$	$\begin{aligned} & \text { Flow }{ }^{\text {F }} \\ & \left(\mathrm{m}^{3} / \text { day }\right) \end{aligned}$	$\begin{gathered} \text { Cost } \\ \text { (US\$) } \end{gathered}$	$\begin{aligned} & \text { Flow }^{\text {b }} \\ & \left(\mathrm{m}^{3} / \text { day }\right) \end{aligned}$	Cost (US\$)
RO filters	120	37453	112	35049	269	83992	257	80245
RO pretreat:								
Ca removal	-	50000	-	50000	-	-	-	-
Sand filter	-	6558	-	6137	-	-	-	-
BCS	120	1.47 e 6	112	1.45 e 6	269	1.77 e 6	257	1.74 e 6
NF filters	-	-	472	125156	-	-	478	126906
Total		1.57 e 6		1.67 e 6		1.85 e 6		1.95 e 6
with initial flows		1.61 e 6		1.73 e 6		1.85 e 6		1.95 e 6

${ }^{\text {a }} \mathrm{BE}=$ back-end, $\mathrm{CD}=$ composite discharge, $\mathrm{IX}=$ ion-exchange, $\mathrm{NF}=$ nanofilters, $\mathrm{BCS}=$ brine concentrator and spray dryer
b flow $=$ produced permeate for RO and NF, and feedwater for the BCS unit

2-stage RO models

Equipment	BE, BCS, IX $^{\text {a }}$		BE, BCS, NFa		CD, BCS, $\mathrm{IX}^{\text {a }}$		CD, BCS, NFa	
	$\begin{aligned} & \text { Flow }{ }^{\text {b }} \\ & \left(\mathrm{m}^{3} / \text { day }\right) \end{aligned}$	$\begin{gathered} \text { Cost } \\ \text { (US\$) } \end{gathered}$	$\begin{gathered} \text { Flow }^{\text {b }} \\ \left(\mathrm{m}^{3} / \text { day }\right) \end{gathered}$	$\begin{aligned} & \text { Cost } \\ & \text { (US\$) } \end{aligned}$	$\begin{aligned} & \text { Flowb } \\ & \left(\mathrm{m}^{3} / \mathrm{day}\right) \end{aligned}$	$\begin{aligned} & \text { Cost } \\ & \text { (US\$) } \end{aligned}$	$\begin{gathered} \text { Flow } \\ \left(\mathrm{m}^{3} / \mathrm{day}\right) \end{gathered}$	Cost (US\$)
RO filters	146	45711	135	42171	397	123880	382	119196
RO pretreat:								
Ca removal	-	50000	-	50000	-	-	-	-
Sand filter	-	8004	-	7384	-	-	-	-
BCS	97.6	1.42 e 6	90.0	1.41 e 6	132	1.49 e 6	127	1.48 e 6
NF filters	-	-	472	125262	-	-	486	128976
Total		1.53 e 6		1.63e6		1.62 e 6		1.73 e 6
with initial flows		1.57 e 6		1.69 e 6		1.77 e 6		1.87 e 6

${ }^{\mathrm{a}} \mathrm{BE}=$ back-end, $\mathrm{CD}=$ composite discharge, $\mathrm{IX}=$ ion-exchange, $\mathrm{NF}=$ nanofilters, $\mathrm{BCS}=$ brine concentrator and spray dryer
b flow = produced permeate for RO and NF , and feedwater for the BCS unit

BCS only configurations

Equipment	BE, BCS, $\mathrm{IX}^{\text {a }}$		BE, BCS, NFa	
	$\begin{aligned} & \text { Flowb } \\ & \left(\mathrm{m}^{3} / \text { day }\right) \end{aligned}$	Cost (US\$)	$\begin{gathered} \text { Flowb } \\ \left(\mathrm{m}^{3} / \mathrm{day}\right) \end{gathered}$	Cost (US\$)
BCS	219	1.67 e 6	223	1.67 e 6
NF filters	-	-	471	125050
Total		1.67e6		1.80 e 6
with initial flows		1.79 e 6		1.91 e 6

a $\mathrm{BE}=$ back-end, $\mathrm{IX}=$ ion-exchange, $\mathrm{NF}=$ nanofilters, $\mathrm{BCS}=$ brine concentrator and spray dryer
${ }^{\mathrm{b}}$ flow $=$ produced permeate for NF, and feedwater for the BCS unit

Deep well configurations

1-stage RO options

Equipment	BE, IX $^{\text {a }}$		BE, NFa		CD, $\mathrm{IX}^{\text {a }}$		CD, NFa	
	$\begin{gathered} \text { Flow }^{\text {b }} \\ \left(\mathrm{m}^{3} / \text { day }\right) \end{gathered}$	$\begin{gathered} \text { Cost } \\ \text { (US\$) } \end{gathered}$	$\begin{gathered} \text { Flow }^{\mathrm{b}} \\ \left(\mathrm{~m}^{3} / \mathrm{day}\right) \end{gathered}$	$\begin{gathered} \text { Cost } \\ \text { (US\$) } \end{gathered}$	$\begin{gathered} \text { Flowb } \\ \text { (m³/day) } \end{gathered}$	$\begin{gathered} \text { Cost } \\ \text { (US\$) } \end{gathered}$	$\begin{aligned} & \text { Flow } \\ & \left(\mathrm{m}^{3} / \text { day }\right) \end{aligned}$	Cost (US\$)
RO filters	131	40981	123	38421	514	160474	490	152871
RO pretreat:								
Ca removal	-	50000	-	50000	-	-	-	-
Sand filter	-	7175	-	6727	-	-	-	-
NF filters	-	-	472	125262	-	-	480	127.331
Tot		98156		220410		160474		'280 202
with initial	flows -	101660		226500		161582		281257

a $\mathrm{BE}=$ back-end, $\mathrm{CD}=$ composite discharge, $\mathrm{IX}=$ ion-exchange, $\mathrm{NF}=$ nanofilters
b flow $=\mathrm{m}^{3} /$ day of produced permeate

2-stage RO designs

Equipment	BE, $\mathrm{IX}^{\text {a }}$		BE, NFa		CD, $\mathrm{IX}^{\text {a }}$		CD, NFa	
	$\begin{gathered} \text { Flow } \\ \left(\mathrm{m}^{3} / \text { day }\right) \end{gathered}$	Cost (US\$)	$\begin{aligned} & \text { Flow } \\ & \left(\mathrm{m}^{3} / \text { day }\right) \end{aligned}$	$\begin{gathered} \text { Cost } \\ \text { (US\$) } \end{gathered}$	$\begin{aligned} & \text { Flow }{ }^{\text {b }} \\ & \left(\mathrm{m}^{3} / \text { day }\right) \end{aligned}$	$\begin{gathered} \text { Cost } \\ \text { (US\$) } \end{gathered}$	$\begin{gathered} \text { Flow }^{\mathrm{b}} \\ \left(\mathrm{~m}^{3} / \text { day }\right) \end{gathered}$	$\begin{gathered} \text { Cost } \\ \text { (US\$) } \end{gathered}$
RO filters	158	49346	148	46105	518	161817	496	155002
RO pretreat:								
Ca removal	-	50000	-	50000	-	-	-	-
Sand filter	-	8640	-	8072	-	-	-	-
NF filters	-	-	472	125262	-	-	487	129082
Total 107986			229439		161817		284084	
with initial flows 111992			236770		164287		286099	

a $\mathrm{BE}=$ back-end, $\mathrm{CD}=$ composite discharge, $\mathrm{IX}=$ ion-exchange, $\mathrm{NF}=$ nanofilters

[^0]: ${ }^{1}$ The time lapse between the collection of water flow and water chemistry data was due to the desire to fully analyze the flow data prior to water sampling. Developing a complete image of the plant's water distribution network before initiating the sampling program ensured that all of the pertinent water flows were sampled.

[^1]: ${ }^{\text {a }}$ Refer to Appendix D for calculations

[^2]: ${ }^{\text {a }}$ See Table 5.3

[^3]: a Refer to Appendix D for calculations
 b ? = unknown source or sink; insig. difference $=$ insignificant difference; Ion-x regeneration $=$ sodium chloride used to regenerate the ion-exchangers

[^4]: a Refer to Appendix D for calculations
 ${ }^{\mathrm{b}}$ precipitated $=$ missing mass settled out of solution within the lime ponds; ?= unknown source or sink; insig. difference $=$ insignificant difference

[^5]: ${ }^{\text {a }}$ see Appendix G for cost calculations

[^6]: , ${ }^{\mathrm{a}} \mathrm{Ca}=$ calcium, $\mathrm{Mg}=$ magnesium, $\mathrm{SO}_{4}=$ sulphate, $\mathrm{T} . \mathrm{Alk} .=$ total alkalinity, $\mathrm{Cl}=$ cloride, $\mathrm{DOC}=$ dissolved organic carbon

[^7]: ${ }^{1}$ Simulator output indicated that salt precipitation in an RO unit was inevitable without inlet softening, and the presence of algae and other suspended solids in the FNR discharge will necessitate a RO pre-filter.

[^8]: ${ }^{\text {a }}$ R.W. = raw water; Calcium pretreat. = calcium pretreatment requirements; RO f.water $=$ feedwater flow to reverse osmosis filters; B / C f.water $=$ feedwater flow to brine concentrator
 ${ }^{\mathrm{b}} \mathrm{T} / \mathrm{O}=$ thermo-oxidizer; $\mathrm{E} / \mathrm{P}=$ effluent plant

[^9]: $\begin{array}{lll}\text {-If using direct composite discharge reuse scenario: } \\ \begin{array}{l}\text { Flow }\end{array} & \\ & \text { D16 } & =039 \\ \mathrm{Ca}-\mathrm{C}_{\mathbf{T}} & \text { D18-D32 } & \text {-Same } \\ & & =041 \\ & & - \text { These }\end{array}$

 $\underset{\sim}{\sim}$
 F16 $=\mathrm{H} 5$ $\substack{\text { Inlet water } \\ \text { Flow } \\ \mathrm{Ca}-\mathrm{pH} \\ \mathrm{CO}_{3} \\ \mathrm{HCO}_{3}}$ $=\mathrm{C} 16+\mathrm{D} 16$
 $=$ Raw water + recycled water
 $=(\mathrm{C} 18: \mathrm{C} 26 * \mathrm{C} 16+\mathrm{D} 18: \mathrm{D} 26 * \mathrm{D} 16) / \mathrm{E} 16$ $=\mathrm{C} 16+\mathrm{D} 16$
 $=$ Raw water + recycled water
 $=(\mathrm{C} 18: \mathrm{C} 26 * \mathrm{C} 16+\mathrm{D} 18: \mathrm{D} 26 * \mathrm{D} 16) / \mathrm{E} 16$ - total contamination mass in the raw and recycled waters/the combined water
 volume; formula has more general form of $\left([]_{1} \mathrm{Q}_{1}+[]_{2} \mathrm{Q}_{2}\right) /\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right)$ where []$=$ concentration; $\mathrm{Q}=$ flow, $1=$ raw water, and $2=$ recycled water $=\left(\left(4.8^{*} 10^{\wedge}-11\right)^{* E 30}\right) /\left(10^{\wedge}-\mathrm{E} 27\right)$
 $=\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant $\mathrm{x}\left[\mathrm{HCO}_{3}\right] /(10-\mathrm{pH})$ $=\left(\left(4.8^{*} 10^{\wedge}-11\right)^{*} \mathrm{E} 30\right) /\left(10^{\wedge}-\mathrm{E} 27\right)$
 $=\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant $\mathrm{x}\left[\mathrm{HCO}_{3}\right] /\left(10^{-\mathrm{pH}}\right)$
 $=\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant $\times\left[\mathrm{HCO}_{3}\right] /\left(10^{-\mathrm{pH}}\right)$
 $=\mathrm{E} 32^{*}\left(1 /\left(\left(\left(10^{\wedge}-\mathrm{E} 27\right) /\left(4.2^{*} 10^{\wedge}-7\right)\right)+1+\left(\left(4.8^{*} 10^{\wedge}-11\right) /\left(10^{\wedge}-\mathrm{E} 27\right)\right)\right)\right)$
 $=\left[\mathrm{C}_{\mathrm{T}}\right] \times 1 /\left(10-\mathrm{pH} / \mathrm{H}_{2} \mathrm{CO}_{3}\right.$ equilibrium constant $+1+\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium
 $=\mathrm{E} 32^{*}\left(1 /\left(\left(\left(10^{\wedge}-\mathrm{E} 27\right) /\left(4.2^{*} 10^{\wedge}-7\right)\right)+1+\left(\left(4.8^{*} 10^{\wedge}-11\right) /\left(10^{\wedge}-\mathrm{E} 27\right)\right)\right)\right)$
 $=\left[\mathrm{C}_{\mathrm{T}}\right] \times 1 /\left(10^{-\mathrm{pH}} / \mathrm{H}_{2} \mathrm{CO}_{3}\right.$ equilibrium constant $+1+\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant $/ 10-\mathrm{pH}$)

 - from Benefield et al. 1982
 $=(\mathrm{C} 32 * \mathrm{C} 16+\mathrm{D} 32 * \mathrm{D} 16) / \mathrm{E} 16$ / the combined water value
 -Same value as Cell 039
 $=041-055$
 - These cells have the sam
 - These cells have the same values as cells 041 through 055 , respectively $=\left(\left(4.8^{*} 10^{\wedge}-11\right)^{*} \mathrm{E} 30\right) /\left(10^{\wedge}-\mathrm{E} 27\right)$
 $=\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant $\mathrm{x}\left[\mathrm{HCO}_{3}\right] /\left(10^{-\mathrm{pH}}\right)$
 / the combined water

[^10]: = "N/A" (e.g. = IF(D14 = "Composite", 'Reverse Osmosis'!\$N\$45:\$N\$53, "N/A"))
 $=$ Specific values observed in mass balances constructed with the original data set
 model:
 $=\mathrm{J} 16$ $=$ P18 Current treated water levels (i.e. $1.4 \mathrm{mg} / \mathrm{L}$)
 Based on assumption that ion-exchanger product waters always have $[\mathrm{Ca}]=1.4$
 mg / L
 mgL

 - Stipulates that ion-exchanger product waters will always have $\mathrm{a}[\mathrm{Mg}]<$ or $=0.5$ mg / L
 - Based on assumption that ion-exchangers cannot lower [Mg]'s below $0.5 \mathrm{mg} / \mathrm{L}$,
 when feedwater [Mg] is already $0.5 \mathrm{mg} / \mathrm{L}$
 $=\mathrm{N} 20-\mathrm{N} 23 \& \mathrm{~N} 26$
 - []'s in blowdown flow
 $=[\mathrm{Cl}]$ of ion-exchanger blowdown

 M23 \& M26
 $\sum_{\sum}^{N} \sum_{\sum}^{N}$

 ## M19
 M16
 M18

 If Using a Back-End ZED
 Flow $-\mathrm{C}_{\mathrm{T}}$
 Kcenario:
 K16-32 Sources $\&$ Sinks
 $\mathrm{Ca}-\mathrm{C}_{\mathrm{T}}$

 Softener Product
 Flow
 a
 Mg
 $\mathrm{Fe}-\mathrm{PO}_{4} \& \mathrm{DOC}$
 U $\quad \underset{Z}{\sim}$

[^11]: -This portion of the "Lime Blowdown Calc." worksheet combines information from the Water Treatment Manual and the "Overview" spreadsheet to predict the quality and quantity of blowdown and product waters exiting the hot lime treaters. Written notes within the
 worksheet itself were felt to be sufficient to guide one though most of the involved equations. The values displayed in certain cells may, however, still need some further explanation. spreadsheet to predict the quality and quan

[^12]: $=$ values in cells I14 through I33 if only one NF stage used, or M14 through M33 if two NF units used
 $=$ values in cells U14 through U33

[^13]: RO UNIT\#2
 if more than 1 RO unit is used in the ZED treatment train:

 = Same contaminant []'s as Unit \#1 brine flow
 $=\mathrm{H} 26$ - 126
 $=\left[\mathrm{C}_{\mathrm{T}}\right] \times 1 /\left(10-\mathrm{pH} / \mathrm{H}_{2} \mathrm{CO}_{3}\right.$ equilibrium constant $+1+\mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant $/ 10-\mathrm{pH}$) -From Benefield et al. 1982
 $=\left(\left(10^{\wedge}-\mathrm{J} 26\right) * \mathrm{~J} 30\right) / \mathrm{J} 6$
 $=(10-\mathrm{pH}) \times\left[\mathrm{HCO}_{3}\right] / \mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3}$ equilibrium constant
 $=\mathrm{H} 34$

