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Abstract 

A numerical investigation into the deformation and failure of clamped unstiffened and 

stiffened mild steel plates is carried out. Studies indicate that with increasing load 

intensity, simple plate structures under blast loading exhibit the three general modes of 

failure: mode I (large inelastic deformation), mode II (tensile tearing and deformation) 

and mode III (shear rupture). The failure analysis of plate structures subjected to blast 

loading is still considered a difficult task. These problems are highly nonlinear due to the 

combined effect of large deformation, material plasticity and high strain-rates. The 

present work develops a semi-numerical model for failure prediction which is aimed at 

providing a simple tool for preliminary design/analysis of such structures. 

Analytical failure models have been incorporated in an existing finite element 

code which handles the large deformation, elastic-plastic transient behaviour of 

unstiffened and stiffened plate structures. The finite element formulation employs 

existing super finite plate and beam elements. 

An interactive failure model is proposed to predict the tearing and rupture of thin 

steel plates and stiffened plate structures under blast loading. The model accounts for the 

membrane and bending strains as well as the transverse shear stress experienced by the 

structure under the applied load. The interaction between the tensile tearing and shearing 

mode of failure is considered via an interaction relation between the strain and stress 

ratios. Two interactive failure criteria are considered, either Linear (LIC) or Quadratic 

(QIC) based on the way the ratios are added. The bending strain is estimated by assuming 

ii 



that a plastic hinge line develops at the boundary, while the membrane strain is calculated 

using the finite element prediction of the deformed profile. The total strain, composed of 

membrane and bending components, is then divided by a specified rupture strain for the 

material, to obtain the strain ratio. 

Since the finite element formulation is based on Kirchhoff plate bending theory, 

there is no direct prediction of shear strains (stresses). In order to achieve a continuous 

estimation of the shear force and stress along the plate boundary, a series of very stiff 

springs are introduced there. The use of high stiffness values effectively simulates the 

clamped boundary condition of the problem. The estimated shear stress is then compared 

to the ultimate shear strength of the material to form a stress ratio. 

A node release algorithm is developed to simulate the progression of rupture. The 

analysis is continued in the post-failure phase to account for the deformation which 

continues during the free flight of the torn plate. The predicted failure modes using the 

above model for blast loaded plate structures are presented and compared with previously 

published experimental data. 

The Quadratic Interaction Criterion predicts consistently better results than the 

Linear Interaction Criterion as compared to the experimental results. The results clearly 

indicate the influence of shear on the failure mechanism not only for mode III, but also 

for mode II. The results confirm the importance of the interaction effects of tensile and 

bending strain on tearing and shear failure. 

iii 



Table of Contents 

Abstract ii 

Table of Contents iv 

List of Tables ix 

List of Figures xi 

Nomenclature xix 

Acknowledgments xxvi 

1 Introduction 1 

1.1 Background 1 

1.2 Purpose and Scope 2 

2 Review of Literature 4 

2.1 Mode II Failure 6 

2.1.1 Classical Approach 6 

2.1.1.1 Fracture Mechanics 6 

2.1.1.2 Void Coalescence Mechanism 7 

2.1.1.3 Damage Mechanics 7 

2.1.1.4 Forming-Limit Diagrams 8 

2.1.2 Analytical Failure Models 8 

2.1.2.1 Strain Based Model 9 

IV 



2.1.2.2 Stress Based Approach 9 

2.1.2.3 Plastic Work Density Approach 10 

2.1.3 Computational Failure Models . 10 

2.1.3.1 Strain Based Model 11 

2.2 Mode III: Transverse Shear Failure 11 

2.3 Interactive Failure Criteria for Predicting Failure Modes 12 

2.4 Post-Failure Analysis 13 

2.5 Experimental Results 14 

3 Deformation and Failure Model Formulation 17 

3.1 Introduction 17 

3.2 Model Philosophy 17 

3.3 Deformation Response 19 

3.3.1 Equations of Motion 20 

3.3.2 Finite Element Formulation 22 

3.3.3 Damping Matrix 25 

3.3.4 Solution Procedure 26 

3.4 Failure Model 28 

3.4.1 Introduction .28 

3.4.2 Mode II Failure 29 

3.4.2.1 Unstiffened Plate 30 

3.4.2.2 Stiffened Plate 32 

3.4.3 Mode III Failure 33 

V 



3.4.3.1 Unstiffened Plate 33 

3.4.3.2 Stiffened Plate 34 

3.4.4 Mode II-III Interaction 35 

3.4.5 Post-Failure Analysis 36 

3.5 Computer Implementation 37 

Square Plate Analysis Results 43 

4.1 Introduction . 43 

4.2 Experimental Observations 43 

4.3 Verification of Spring Model: Response without Failure 45 

4.3.1 Static Analysis Results 45 

4.3.2 Dynamic Analysis Results 46 

4.4 Failure Analysis Results 46 

4.4.1 Model 48 

4.4.2 Mode II . . . .51 

4.4.2.1 Mode II* 52 

4.4.2.2 Mode Ha 53 

4.4.2.3 Mode lib 53 

4.4.3 Mode III 53 

4.4.4 Other Failure Parameters 54 

4.4.4.1 Strain and Stress Ratios to First Element Failure 54 

4.4.4.2 Time to Failure 55 

4.4.4.3 Permanent Central Displacement (Deflection-to-Thickness 

Ratio 55 

vi 



4.4.4.4 Side Pull-in 57 

4.4.4.5 Residual Kinetic Energy 57 

4.4.4.6 Centreline Failure Profiles 58 

5 Sensitivity Studies 88 

5.1 Introduction 88 

5.2 Mesh Density 88 

5.3 Time Step Size 91 

5.4 Plate Thickness 93 

5.5 Strain-Rate 95 

5.6 Pulse Shape 97 

6 Stiffened Plate Analysis Results 115 

6.1 Introduction 115 

6.2 Experimental Observations 116 

6.3 Spring Model Verification: Response without Failure 117 

6.3.1 Static Analysis Results 117 

6.3.2 Dynamic Analysis Results 118 

6.4 Onset of Failure 119 

6.4.1 Uniform Load 119 

6.4.1.1 Model 120 

6.4.1.2 Mode II : 125 

6.4.2 Nonuniform Load 128 

6.4.2.1 Model 129 

vii 



6.4.2.2 Mode II 132 

6.5 Post-Failure Analysis 134 

6.5.1 Mode II* 135 

6.5.2 Modella 136 

6.5.3 Permanent Central Displacement 137 

6.5.4 Side Pull-In and Residual Kinetic Energy 137 

6.5.5 Centreline Displacement Profiles 138 

7 Summary, Conclusions and Suggestions 176 

7.1 Summary 176 

7.2 Conclusions 178 

7.3 Suggestions for Future Work 180 

Bibliography 181 

Appendices 190 

A Transverse Shear Stress in Plates through Equilibrium Equations 190 

B Displacement Functions 193 

C Shape Functions 196 

D Spring Stiffness Matrix 200 

E Global Force Balance Method 202 

viii 



List of Tables 

4.1 Displacement and shear force for a clamped plate with different grid sizes 60 

4.2 Comparison of results with different spring stiffnesses 60 

4.3 Strain distribution of plate along the boundary in mode I failure 61 

4.4 Central displacement during post-failure analysis 61 

4.5 Failure strain proportions to initial failure 
a) LIC 62 
b) QIC 62 

5.1 Comparison of results with grid sizes for a plate in mode II* failure 99 

5.2 Comparison of results with grid sizes for a plate in mode Ha failure 99 

5.3 Comparison of results with time steps for a plate in mode II* failure 99 

5.4 Comparison of results with time steps for a plate in mode Ha failure 100 

5.5 Comparison of results with plate thickness in different modes of failure 
a) Mode II* 100 
b) Mode Ila 100 
c) Mode lib 101 
d) Mode III 101 

5.6 Cowper-Symonds material constants for calculating dynamic rupture strain. . . .101 

5.7 Comparison of results at the threshold impulse to mode II* failure using 
dynamic rupture strain 102 

6.1 Static analysis results of 2-bay stiffened plate 1 139 

6.2 Influence of spring stiffness on the linear elastic response of 2-bay stiffened 
plate I 139 

ix 



6.3 Dynamic analysis results of 2-bay stiffened plate II 140 

6.4 Central displacement and maximum strain at midpoint on boundary parallel 
to stiffener of stiffened plate with different stiffener sizes under 5 Ns impulse 
a) 2 x 2 g r i d 140 
b) 3 x 3 grid 140 

6.5 Stress ratio, strain ratio, time to first element failure and stiffener centre 
displacement at the threshold impulse to mode II failure for all stiffener sizes 
using 2 x 2 grid 
a) LIC 141 
b) QIC 141 

6.6 Stress ratio, strain ratio, time to first element failure and stiffener centre 
displacement at the threshold impulse to mode II failure for all stiffener sizes 
using 3 x 3 grid 141 

6.7 Comparison of maximum strain at midpoint on boundary parallel to stiffener 
under different load distribution 142 

x 



List of Figures 

2.1 Forming-limit diagram 16 

3.1 Spring model for plate structures (Quarter plate model) 
a) Stiffened plate 40 
b) Unstiffened plate 40 

3.2 The super finite elements 
a) Plate element 41 
b) Beam element in x-direction 41 

3.3 Flow chart for the analysis 42 

4.1 Experimental arrangement (Ref. Nurick et al., 1996) 63 

4.2 Failure modes of an explosively loaded square plate (Ref. Nurick et al., 1996). . 64 

4.3 Comparison of shear force along the plate boundary 65 

4.4 Transient linear elastic response of plate 65 

4.5 Transient nonlinear elastic-plastic response of plate 66 

4.6 Finite element model of plate (Quarter plate model) 66 

4.7 Comparison of displacement-time history of plate in mode I failure 67 

4.8 Displacement-time history of plate in mode I failure using spring model 67 

4.9 Comparison of permanent displacement profiles of plate in mode I failure 68 

4.10 Transient deformation profiles of plate in mode I failure 68 

4.11 Permanent displacement profile of plate in mode I failure 
a) 3-D Profile 69 
b) w-displacement contours 69 

xi 



4.12 Shear force-time history of plate in mode I failure 70 

4.13 Comparison of stress ratio-time history for a plate in mode I failure 70 

4.14 Time histories of strain and stress ratios and failure function of a plate in 
mode I failure 
a) Linear Interaction Criterion 71 
b) Quadratic Interaction Criterion 71 

4.15 Time history of central displacement, side pull-in, kinetic energy of plate in 
mode II* failure 72 

4.16 Transient deformation profiles of square plate in mode II* failure 
a) Displacement profiles upto first element failure 73 
b) Complete response of plate 73 

4.17 Permanent displacement profile of plate in mode II* failure 
a) 3-D profile 74 
b) w-displacement contours 74 

4.18 Time history of central displacement, side pull-in, kinetic energy of plate in 
mode Ha failure 75 

4.19 Post-failure deformation profile in mode Ila failure 75 

4.20 Permanent displacement profile of plate in mode Ila failure 
a) 3-D profile 76 
b) w-displacement contours 76 

4.21 Time history of central displacement and kinetic energy of plate in 

mode III failure 77 

4.22 Transient motion of plate in mode III failure 78 

4.23 Post-failure transient deformation profiles of plate in mode III failure 78 

4.24 Permanent displacement profile of plate in mode III failure 
a) 3-D profile 79 
b) w-displacement contours 79 

4.25 Stress and strain ratios for first element failure for a plate under explosive 
load • 80 

4.26 Initial and final failure time for a square plate under explosive load 
a) Linear Interaction Criterion 80 

xii 



b) Quadratic Interaction Criterion 81 

4.27a Plot of deflection-to-thickness ratio versus impulse for a square plate 
under explosive load 81 

4.27b Threshold impulse and deflection-to-thickness ratio to different modes 
of failure for a square plate under explosive load using LIC 82 

4.27c Threshold impulse and deflection-to-thickness ratio to different modes 

of failure for a square plate under explosive load using QIC 82 

4.28 Side pull-in of a square plate under explosive load 83 

4.29 Plot of side pull-in versus deflection-to-thickness ratio 83 

4.30 Residual kinetic energy of a square plate under explosive load 84 

4.31 Plot of residual kinetic energy versus deflection-to-thickness ratio 84 
4.32 Displacement profile at the time of first element failure of a square plate under 

explosive load 
a) Linear Interaction Criterion 85 
b) Quadratic Interaction Criterion 85 

4.33 Permanent displacement profile of a square plate under explosive load 
a) Linear Interaction Criterion 86 
b) Quadratic Interaction Criterion 86 

4.34 Comparison of permanent displacement profile of square plate in mode Ila 
failure 87 

5.1 Temporal variation of central displacement of a plate in mode I failure with 
grid size 103 

5.2 Comparison of time histories of strain ratio, stress ratio and failure function 
of a plate in mode I failure with grid size 
a) Strain ratio 103 
b) Stress ratio 104 
c) Failure function 104 

5.3 Comparison of permanent deflection profile of a plate in mode II* failure 
with grid size 105 

5.4 Comparison of permanent deflection profile of a plate in mode Ila failure with 

xiii 



grid size 105 

5.5 Comparison of central displacement time history of a plate in mode II* failure 
with time step size 106 

5.6 Variation of strain ratio, stress ratio and failure function with time step size 
a) Strain ratio 106 
b) Stress ratio 107 
c) Failure function 107 

5.7 Comparison of permanent deflection profile of a plate in mode II* failure 
with time step size 108 

5.8 Comparison of time history of central displacement of a plate in mode Ha 
failure with time step size 108 

5.9 Comparison of permanent deflection profile of a plate in mode Ha failure with 
time step size 109 

5.10 Comparison of threshold impulses to failure for a plate with different 
thicknesses 110 

5.11 Comparison of deflection-to-thickness ratio versus impulse of plate with 
different thicknesses 110 

5.12 Comparison of residual kinetic energy of plate with different thicknesses I l l 

5.13 Threshold impulse to different modes of failure for plate with different 
thicknesses using QIC 112 

5.14 Variation of strain-rate and yield stress with impulse 113 

5.15 Dynamic rupture strain and threshold impulse to failure for a plate under 
explosive load 113 

5.16 Plot of deflection-to-thickness ratio versus impulse for a plate under different 
load-time characteristics 114 

6.1 Failure modes of explosively loaded stiffened square plates 143 

6.2 Configuration of 2-bay stiffened plate I 144 

6.3 Configuration of 2-bay stiffened plate II 145 

xiv 



6.4 Comparison of linear elastic response of clamped 2-bay stiffened plate II due 
to step load 146 

6.5 Comparison of nonlinear elastic response of clamped 2-bay stiffened plate II 
due to step load 146 

6.6 Configuration and finite element model of one-way stiffened plate 
a) Configuration of plate 147 
b) Finite element model of quarter plate (2x2 grid) 147 

6.7 Comparison of mode I displacement time history of 3 x 2 - mm stiffened plate 148 

6.8 Comparison of permanent deflection profile of 3 x 2 - mm stiffened plate in 
mode I failure 148 

6.9 Time history of central displacement and kinetic energy of 3 x 2 - mm 

stiffened plate in mode I failure 149 

6.10 Transient deflection profiles of 3 x 2 - mm stiffened plate in mode I failure. . . . 149 

6.11 Comparison of central displacement time history of stiffened plate for 
different stiffener sizes in mode I failure 150 

6.12 Predicted permanent deflection profiles for plate with different stiffeners 
in mode I failure 150 

6.13 3-D mode I deflection profiles of stiffened plate 
a) 3 x 2 - mm stiffener 151 
b) 3 x 4 - mm stiffener 151 
c) 3 x 5 - mm stiffener 152 
d) 3 x 9 - mm stiffener 152 

6.14 Comparison of mode I displacement profile for 3 x 2 - mm stiffened plate 
with different grid sizes 153 

6.15 Comparison of strain distribution along the boundary parallel to stiffener 
for stiffened plates 153 

6.16 Plot of strain ratio, stress ratio and failure function with time at the midpoint 
on boundary parallel to stiffener 154 

6.17 Plot of strain ratio, stress ratio and failure function with time at the stiffener 
centre 154 

6.18 Comparison of failure function and components at the threshold impulse to 

xv 



mode II failure under uniformly distributed load - LIC 
a) Strain ratio 155 
b) Stress ratio 155 
c) Failure function 156 

6.19 Comparison of failure function at the threshold impulse to mode II failure 
under uniformly distributed load - QIC 156 

6.20 Comparison of failure function with impulse for plate with different 
stiffener sizes 
a) 3 x 2 - mm stiffener 157 
b) 3 x 4 - mm stiffener 157 
c) 3 x 5 - mm stiffener 158 
d) 3 x 9 - mm stiffener 158 

6.21 Plot of central displacement versus impulse for 3 x 2 - mm stiffened plate . . . . 159 

6.22 Plot of central displacement versus impulse for 3 x 4 - mm stiffened plate . . . . 159 

6.23 Plot of central displacement versus impulse for 3 x 5 - mm stiffened plate . . . . 160 

6.24 Plot of central displacement versus impulse for 3 x 9 - mm stiffened plate . . . . 160 

6.25 Comparison of central displacement time history of stiffened plates under 
nonuniform load 161 

6.26 Predicted mode I deflection profile of stiffened plates under nonuniformly 
distributed load 161 

6.27 Time history of central displacement of 3 x 2 - mm stiffened plate under 
different load distribution 162 

6.28 Predicted mode I deflection profiles for 3 x 2 - mm stiffened plate under 
different load distribution 162 

6.29 Comparison of stiffener centre displacement for plates in mode I failure for 
different load distribution 163 

6.30 Variation of failure function with stiffener depth under nonuniformly 
distributed load (Nu-2) 164 

6.31 Variation of failure function with stiffener size under nonuniformly 
distributed load (Nu-3) 164 

6.32 Variation of failure function with impulse for stiffened plates under 

xvi 



nonuniformly distributed load 
a) 3 x 2 - mm stiffener 165 
b) 3 x 4 - mm stiffener 165 
c) 3 x 5 - mm stiffener 166 
d) 3 x 9 - mm stiffener 166 

6.33 Comparison of stiffener centre displacement versus impulse for 3 x 2 - mm 
stiffened plate under different load distribution 167 

6.34 Comparison of stiffener centre displacement versus impulse for 
3 x 4 - mm stiffened plate under different load distribution 167 

6.35 Comparison of stiffener centre displacement versus impulse for 
3 x 5 - mm stiffened plate under different load distribution 168 

6.36 Comparison of stiffener centre displacement versus impulse for 
3 x 9 - mm stiffened plate under different load distribution 168 

6.37 Time history of central displacement, side pull-in and kinetic energy of a 
3 x 2 - mm stiffened plate in mode II* failure 169 

6.38 Plot of central displacement, side pull-in and kinetic energy versus time 
for a 3 x 2 - mm stiffened plate in mode II* failure 169 

6.39 3-D profile of 3 x 2 - mm stiffened plate in mode II* failure (two views of 
deformed plate, Impulse 14.1 Ns) 170 

6.40 Temporal variation of a central displacement, side pull-in and kinetic 
energy of 3 x 2 - mm stiffened plate in mode Ha failure 171 

6.41 3-D profile of 3 x 2 - mm stiffened plate in mode Ha failure (two views 
of deformed plate, Impulse 16Ns) 172 

6.42 Plot of central displacement versus impulse for a 3 x 2 - mm stiffened plate 
using QIC 173 

6.43 Plot of side pull-in versus impulse for a 3 x 2 - mm stiffened plate using QIC. .174 

6.44 Plot of residual kinetic energy versus impulse for a 3 x 2 - mm stiffened 
plate using QIC 174 

6.45 Deflection profile at the time of first element failure for 3 x 2 - mm stiffened 
plate under uniform load 175 

xvii 



E . l Plot of deflection-to-thickness ratio versus impulse for both failure models . . . .205 

xvin 



Nomenclature 

Length of plate 

Area of plate 

Linear strain-displacement matrix 

Plate linear strain-displacement matrix 

Beam linear strain-displacement matrix 

Damping matrix 

Consistent plate element damping matrix 

Consistent beam element damping matrix 

Nonlinear strain-displacement matrix 

Plate nonlinear strain-displacement matrix 

Beam nonlinear strain-displacement matrix 

Consistent plate element damping matrix 

Consistent beam element damping matrix 

Material constants 

Displacement vector 

Virtual displacement vector 

xix 



Velocity vector 

Acceleration vector 

Spring displacement field vector 

Plate displacement field vector 

Virtual plate displacement vector 

Plate velocity vector 

Plate acceleration vector 

Beam displacement field vector 

Virtual beam displacement vector 

Beam velocity vector 

Beam acceleration vector 

Elastic modulus 

Input energy 

Residual kinetic energy 

Tangent modulus 

Energy ratio 

Failure function 

Plate element nodal force vector 

X X 



Beam element nodal force vector 

Global plate internal force vector 

Global beam internal force vector 

Resultant spring force 

Plate thickness 

Stiffener depth 

Impulse 

Threshold impulse to mode II failure 

Threshold impulse to mode II* failure 

Threshold impulse to mode Ila failure 

Threshold impulse to mode III failure 

Non-dimensional Impulse 

Non-dimensional threshold impulse to mode II failure 

Non-dimensional threshold impulse to mode II* failure 

Non-dimensional threshold impulse to mode Ila failure 

Non-dimensional threshold impulse to mode III failure 

Linear stiffness matrix 

Spring stiffness/unit length 

Consistent spring stiffness matrix 

Global stiffness matrix 

xxi 



Tangent stiffness matrix 

Effective stiffness matrix 

Global spring stiffness matrix 

Plastic hinge length 

Length of tear 

Length of plate or beam 

Element length 

Consistent plate element mass matrix 

Consistent beam element mass matrix 

Global mass matrix 

Global plate mass matrix 

Global beam mass matrix 

Plate shape functions 

Beam shape functions 

Element load vector 

Global load vector 

Effective load vector 

Applied surface traction 

Shear force/unit length 



R Total reaction force 

S Surface area 

Time 

Non-dimensional time 

Time to failure 

Time to initial failure 

Time to complete failure 

u, v In-plane displacement 

V Volume 

Vp Velocity of free-flying plate 

w Transverse displacement 

Wext External virtual work 

Wint Internal virtual work 

x, y, z Rectangular Cartesian coordinates 

| Virtual nodal displacement vector 

j 8p

e | Virtual plate element displacement vector 

]y8h

e | Virtual beam element displacement vector 

{S^ Plate nodal displacement vector 

{8h j Beam nodal displacement vector 

^5p

e | Plate element displacement vector 

X X l l l 



Beam element displacement vector 

Central deflection of plate 

Deflection-to-thickness ratio 

Central deformation at the time of first element failure 

Mode I displacement i f failure is ignored 

Side pull-in 

Time step size 

Total strain 

Membrane strain 

Bending strain 

Static rupture strain 

Dynamic rupture strain 

Strain ratio 

Strain rate 

Strain vector 

Virtual strain vector 

Curvature of plastic hinge 

Viscous damping parameter 

Poisson's ratio 

xxiv 



0 Hinge rotation 

0max Maximum slope of the deflected plate element 

0sup Rotation of boundary 

p Mass density 

cr0 Static yield stress 

<Jd Dynamic yield stress 

ax , ay In-plane bending stress 

{cr} Stress vector 

\ap | In-plane stress for plate element 

|cr*| In-plane stress for beam element 

T Average shear stress 

TU1I Static ultimate shear stress 

T^,T_ULT Dynamic ultimate shear stress 

T0 Load duration 

xxy In-plane shear stress 

Txz , r Transverse shear stress 

r = \ Tay I Stress ratio 

a>r Frequency associated with r l h mode of vibration 

Zr Critical damping ratio 

X X V 



Acknowledgments 

I wish to thank my supervisors, Dr. M.D. Olson and Dr. R. Vaziri, for their invaluable 

guidance, encouragement and interest with regard to this work. I also thank Dr. D.L. 

Anderson and Dr. R.O. Foschi for their advice and valuable discussions which 

encouraged me to solve some difficult issues. I would like thank Dr. G.N. Nurick of the 

University of Cape Town in South Africa, for providing the experimental data and 

making some constructive suggestions. 

I would like express my gratitude to Dr. Anoush Poursartip and all the members 

of the Composites group for their friendship and support during my stay at UBC. I would 

like to thank Dr. Jiang, Dr. Fagnan and Ms. Qing Luo for the many useful discussions. 

I would like to greatly acknowledge the Natural Sciences and Engineering 

Research Council of Canada and the Defence Research Establishment Suffield, Alberta 

for providing the financial support in the form of a Research Assistantship from the 

Department of Civil Engineering at the University of British Columbia. 

I wish to thank Mrs. Leanne Bernaerdt for proof-reading my thesis. I would like to 

acknowledge Dr. S. Pradhan, Dr. S. Munshi and all other friends for making my stay in 

Vancouver a pleasant experience. I am grateful to my wife, Anupama, for her invaluable 

help and understanding. This thesis would not have been possible without her inspiration. 

xxvi 



Chapter 1 

Introduction 

1.1 Background 

Failure of engineering structures is not uncommon when they are pushed to the limits of 

their performance capabilities as is the case during earthquakes, military or accidental 

explosions. An increased understanding of structural failure is necessary in order to 

reduce both the damage frequency and severity. 

Many civil, nuclear and ocean engineering structures are subjected to a variety of 

dynamic loads: wave and wind loads, pile driving, earthquakes, blast loading due to 

accidental or military explosions, etc. Blast loading can induce a substantial amount of 

damage in simple structural elements like beams and plates. Understanding the 

deformation and failure mechanisms involved in explosive loading situations is important 

in effectively designing a system to withstand these loads. 

A designer requires information on the failure characteristics of a structure to 

accurately assess the safety factors and margins against failure. For example, it is 

important for many practical applications to have the capability for predicting the damage 

or permanent deformations of a ductile structural member when subjected to large 

dynamic loads. 

1 



Chapter 1. Introduction 2 

The description of dynamic material behaviour, especially material failure under 

high loading rates, is a difficult task. Also, the response and failure of structural elements 

under dynamic loading are complicated processes that are difficult to analyse. A 

comprehensive analytical solution for structures subjected to explosive loading is 

practically impossible. Despite the uncertainties about the short-duration loading 

response and failure characteristics of materials, there are several situations in which it is 

necessary to anticipate the extent of damage. Numerical techniques offer a means of 

obtaining a complete solution to these problems. 

1.2 Purpose and Scope 

It is the objective of this thesis to develop a simplified numerical model which is capable 

of accounting for the different modes of failure that a structure would experience under 

explosive loading situations. The main focus of the thesis is to consider structural type 

failures that originate from failure in the material. The simple failure model which 

requires much reduced input data makes it possible to carry out design oriented analysis. 

Currently, a host of commercial finite element software packages are available for 

nonlinear elastic-plastic transient analysis of plate structures. However, very few of them 

have the capability to predict material failure. The work presented in this thesis is aimed 

at providing a numerical tool to predict the tearing and rupture of metallic plate and 

stiffened plate structures. This will help to take these software programs to the next stage 

of analysis/design profile. 

A literature review of various approaches used to model the fracture and rupture 

of metallic structures are presented in Chapter 2. Also, recently developed analytical and 
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numerical failure models are discussed in this chapter. In Chapter 3, the development of 

the failure model is described and the philosophy behind this simple approach is 

discussed. The mathematical derivation of the governing equations involved in the failure 

model are presented in detail. This chapter also highlights in some depth the computer 

code developed to implement the theoretical procedure, including the post-failure 

analysis. 

The numerical analyses carried out to verify the new failure model are presented 

in Chapters 4, 5 and 6. Chapter 4 deals with the tearing and rupture of thin, square, 

clamped plates, while Chapter 6 is concerned with failure of stiffened plates. 

Experimental results are used for the verification of the failure model. Chapter 5 is 

devoted to sensitivity analysis wherein the influence of different parameters on failure 

prediction is studied in detail. 

A summary and conclusion from the current study is presented in Chapter 7 along 

with some suggestions for further research. 



Chapter 2 

Review of Literature 

The impact behaviour of structures has been a critical design consideration for many 

practical problems. Over the last two decades, it has received considerable attention by 

researchers worldwide. 

Extensive literature review has been done on the dynamic plastic behaviour of 

structures (Jones, 1975, 1978, 1981, 1985b, 1989a, 1996, Stronge, 1993 and Bangash, 

1993). Comprehensive reviews of the state-of-the-art in response predictions for 

structures subjected to air-blast loads have been given by Ari-Gur et al (1983) and Olson 

(1991). Menkes and Opat (1973) were the first to mention the failure modes for a blast 

loaded clamped beam. They conducted experiments on clamped A l 6061-T6 beams 

subjected to surface explosive charges. They defined three failure modes with increasing 

impulses as: 

Mode I: large inelastic deformation; 

Mode II: tensile tearing and deformation; 

Mode III: transverse shear failure. 

Nurick et al (1996) conducted experiments on mild steel plates and observed the 

same basic modes of failure in plate structures. They suggested further divisions in mode 

4 



Chapter 2. Review of Literature 5 

II failure regime to account for the influence of geometry of these plates. Thus, for plates 

with square geometry, they reported the following subgroups in mode II failure: 

Mode II* - Partial failure; 

Mode Ha - Complete tearing with increasing midpoint deflection; 

Mode lib - Complete tearing with decreasing midpoint deflection. 

In mode I, there is no physical fracture of material, but only a large amount of 

plastic deformation. Jones (1971, 1989b) used the rigid plastic method of analysis to 

study the behaviour of beams and plates to impulsive loading. A review of theoretical and 

experimental studies on the deformation of thin plates subjected to impulsive loading was 

reported by Nurick and Martin (1989). Most of the structural analysis programs currently 

available (NASTRAN 1 , A N S Y S 2 , ADINA 3 , A B A Q U S 4 ) have the capability to predict the 

mode I response. Gupta (1987, Gupta et al., 1987) and Houlston et al (1985, 1987) used 

ADINA to predict the mode I response of unstiffened and stiffened plates. Khalil et al 

(1987a, 1987b) used the finite strip method to investigate the response of air-blast loaded 

plates structures. In this thesis, more emphasis is given to predict and understand the 

mode II and mode III failure behaviour. 

The mode II and mode III responses of a structure involve material failure leading 

to structural failure. The pattern of deformation determines where energy is dissipated at 

an instant of response. Mode II is tensile tearing of outer fibres at or over the supports and 

is also associated with large plastic deformation, while mode III is shear dominated 

1 N A S A Structural Analysis 
2 Swanson Analysis Systems 
3 Automatic Dynamic Increment Nonlinear Analysis 
4 Hibbitt, Karlsson & Sorenson, Inc. 
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failure with very little or no significant deformation of the structure. Structural behaviour 

in these two failure modes is quite different and needs to be evaluated in detail. 

2.1 Mode II Failure 

2.1.1 Classical Approach 

Mode II can be characterized as ductile fracture of the material. The basics of ductile 

fracture phenomenon of metals is explained in the text by Thomason (1990). Several 

approaches have been used to study the ductile fracture of metal structures. Some of these 

methods are discussed in the following section. 

2.1.1.1 Fracture Mechanics 

A l l metal structures to some extent have either some pre-existing flaws or stress 

concentrations. During their life-time of usage upon exposure to hostile environments, 

cracks will initiate and grow. Classical fracture mechanics principles allow us to 

understand the fracture behaviour of metals. 

Griffith (1921) developed the basic equations of fracture mechanics. He 

considered a plate with a transverse crack. When the crack grows by a small amount, 

strain energy stored in the plate is reduced or released. According to Griffith, the crack 

will grow if the energy required for crack growth is equal to the energy available or 

energy released. 

A huge volume of work on crack initiation and propagation can be found in 

fracture mechanics literature (Broek, 1986). Recently, Ewing et al (1995) proposed a new 
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failure model for the rupture of pipes. It is based on the dynamic crack growth rate. They 

used M S C / D Y T R A N software and added a failure model to predict crack initiation and 

propagation. A crack is assumed to grow at a constant rate. 

2.1.1.2 Void Coalescence Mechanism 

This method approaches the fracture from a micro or material level. Here, materials are 

considered to have voids, the growth and coalescence of which leads to fracture in ductile 

metals. 

McClintock (1968) proposed a criterion for ductile fracture by the growth and 

coalescence of cylindrical holes in ductile metals. In this procedure, the growth of holes 

depends on the entire history of stress, strain and rotation. This method results in a very 

complicated analytical procedure. A summary of analytical and experimental studies on 

the strain localization and subsequent ductile failure due to void coalescence mechanism 

can be found in the works of Theocaris (1986) and Wilson and Acselrad (1984). 

2.1.1.3 Damage Mechanics 

Lemaitre (1985) proposed a continuous damage mechanics model for ductile fracture 

using thermodynamics and an effective stress concept. This approach defines a damage 

variable as an effective surface density of cracks or cavity intersections with a plane. The 

damage process gives rise to initiation of a macro crack for a critical value, which is 

characteristic for each material. 
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2.1.1.4 Forming-Limit Diagrams 

Sheet-metal forming industry has stimulated the development of mathematical models for 

understanding and obtaining biaxial plastic tensile instability information. Ferron and 

Zeghloul (1993) reviewed the topics of strain localization and fracture in metal sheets and 

thin-walled structures mainly from a metal forming point of view. 

Marciniak and Kuczynski (1967) analysed the loss of stability (localization of 

strains) for sheet metal subjected to a range in biaxial tension ratios. Their conclusion was 

that the fracture of metals depend only on a local discontinuity or concentration of strains. 

Another important factor in stretching a metal is the total strain it would 

experience before it fails or tears. Hecker and Ghosh (1976) used the concept of empirical 

forming-limit diagram. A forming-limit diagram is an experimentally determined curve in 

principal strain space for the locus of points representing the onset of localized necking. 

As reproduced in Figure 2.1, this diagram represents the limiting strains in biaxial stretch 

forming operations. 

2.1.2 Analytical Failure Models 

Considerable effort has been put in the last two decades to develop theoretical methods 

for the dynamic plastic behaviour of simple structural members like beams, plates, etc 

(Yu and Chen, 1992, Westine and Baker, 1974 and Gupta, 1985). Simplified rigid-plastic 

analysis procedure is obtained by neglecting the material elasticity (Jones, 1989b). 

Rupture of a ductile member initiates when either the strain or the density of dissipated 

energy at a section exceeds some characteristic value. 
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2.1.2.1 Strain Based Model 

Jones extended the rigid-plastic analysis of structures to predict failure (1976, 1989c). He 

obtained a good comparison with experimental data for tearing of outer fibres at the 

supports by analytically determining the maximum strain occurring at the supports and 

equating the strain to the uniaxial failure strain. This is effectively a plastic tensile 

instability criterion of failure. Subsequently, this criterion has been applied for predicting 

the onset of mode II failure for circular plates and cylindrical shells also. In this model 

Jones neglected the elastic deformation and the effect of transverse shear on deformation. 

Wen (1996) used an effective strain failure criterion to predict the tearing of 

beams subjected to uniformly distributed impulsive loading. This criterion considered the 

influence of transverse shear on the axial tensile strain. Good agreement with the 

experimental data is reported by the authors. 

2.1.2.2 Stress Based Approach 

Duffy (1989) explored the idea of generating the strain based failure curves 

corresponding to general failure curves in stress space. He considered both the von-Mises 

and Tresca failure surface and mapped them onto the strain space. The general shape of 

failure curve of biaxial strain failure data showed excellent qualitative agreement for the 

Tresca failure curve, while little resemblance was observed in the case of von-Mises 

curve. In general, the Tresca failure shape showed better qualitative agreement than that 

of the von-Mises failure curve. 
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2.1.2.3 Plastic Work Density Approach 

A more universal energy criterion to predict the inelastic behaviour and failure modes of 

beams loaded impulsively was suggested by Jennings et al (1991), Jones and Shen (1992, 

1993). In this approach, onset of mode II failure is identified at a point in a structure 

when the specific dissipation (density of plastic work) at that point reaches a critical 

value. This approach is also used for the prediction of tearing in circular plates (Shen and 

Jones, 1993). 

2.1.3 Computational Failure Models 

Even though abundant data is available on the dynamic elastic-plastic analysis of 

structures (Fredriksson et al., 1983, Noor, 1981, Yagawa et al., 1984 and Fong, 1982), 

prediction of the point of structural failure by material separation is still a challenging 

task. A large number of studies (Hecker, 1976) have been reported on the biaxial 

plasticity while ductile failure of a material under multi-axial loading state is still a 

developing field. The relative lack of multi-axial material failure information, compared 

to the multi-axial plasticity information, is readily apparent when we look at the available 

computer programs. The most serious limitation to the extensive use of computational 

techniques is due to the inadequacy of models describing material failure. Furthermore, in 

a few computer programs where a failure criterion is included, the criterion is typically 

based upon equating equivalent plastic strain to the failure strain in simple tension 

(Hallquist, 1981, Anderson et al., 1988) or when it reaches a critical failure strain that is a 

function of the stress triaxiality (Holmes et al., 1993). 
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Bammann et al (1993) developed an internal state variable type of criterion 

specially for numerical applications. The formulation is based on basic theoretical aspects 

that introduce internal state variables to track plasticity and damage. 

2.1.3.1 Strain Based Model 

Olson et al (1993) used finite element computations to investigate the different failure 

modes of blast loaded square plates. They assumed that a plastic hinge line develops 

along the clamped boundary of a plate subjected to blast loading. Following Jones (1976, 

1989c), they used the plastic hinge model to calculate the maximum strain at the support. 

They defined mode II failure as the instant when the maximum strain reaches the rupture 

strain in the static uniaxial test. Mode I predictions showed good correlation with the 

experimental results, while mode II results were not as satisfactory. The predictions were 

limited to the onset of tearing only. Later, they extended this idea to predict the onset of 

mode II failure for the stiffened square plates and circular plates also (Nurick et al, 1995 

and Olson et al, 1994). Other numerical results can also be found in the literature for the 

failure analysis of blast loaded beams (Yu and Jones, 1989). 

2.2 Mode III: Transverse Shear Failure 

Jones developed his rigid plastic model to predict the mode III threshold also. To estimate 

the threshold for mode III failure, the concept of shear slide (analogous to the concept of 

a bending hinge) is specified as an idealization of rapid changes of slopes across a short 

length of beam. Mode III failure is said to occur when the amount of shear sliding at the 

supports reaches the beam thickness. 
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Jones also predicted mode III threshold using the plastic work density approach 

(Jones and Shen, 1993). They included the transverse shear in the yield criterion and 

computed the amount of work done by bending and shear. For aluminum alloys, they 

calculated the threshold to occur when the energy ratio (bending to shear) is 45%. 

Olson et al (1993) were able to predict the mode III failure by extending the Jones 

criterion to plates. This was done by doubling the effective area for beam shear failure to 

account for plate slides. The threshold obtained for mode III impulse showed good 

agreement with experimental results. 

2.3 Interactive Failure Criteria for Predicting Failure Modes 

The transverse shear effect is believed to have a more important influence on the response 

of beams when loaded dynamically than statically (Bleich and Shaw, 1960). The effect of 

shear flexibility and rotatory inertia on the dynamic behaviour under impulsive loading is 

shown for a variety of structures by different researchers (Jones and de Oliveria, 1978, 

1979, 1980, 1983, Quanlin, 1988, Symonds, 1968, Jones and Song, 1986, Jones 1985a 

and L i et al., 1989, 1995). Except for the plastic work density approach, all other 

analytical models proposed two different procedures for identifying mode II and mode III 

failure. Also, the previous models did not include the interaction effects of tensile and 

shear action while predicting the failure modes. 

Olson et al (1994) proposed an interactive failure model for circular plates. They 

defined a failure function which is a linear or quadratic combination of stress and strain 

ratios. Failure is said to occur when the function attains a value of one. Shear stress was 

obtained using an equilibrium equation in the transverse direction, since direct shear 
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estimation was not available because the formulation was based on the Kirchhoff 

assumption (Fagnan, 1996). 

This concept was also used by Qing (1994) for predicting the response of clamped 

beams. Qing used the higher order beam theory to analyse the blast loaded clamped 

beams. This analysis provided a direct estimation of shear stress in the structure which 

was used in interactive failure criteria. The model showed a reasonable agreement with 

experimental results. Qing (1994) also explored the plastic work density approach by 

incorporating it into the higher order beam model which did not give satisfactory results. 

2.4 Post-Failure Analysis 

The post-failure response can be described in several ways. The failed material may be 

entirely removed from the computation or be described by a modified constitutive 

function that describes a weakened material. The basis of fracture modelling is a node 

release algorithm. Ewing et al (1995) developed a user defined failure routine to be used 

with D Y T R A N software. In this procedure, nodes along a probable line of failure are 

doubly defined—one node for each side of potential failure. The subroutine, E X B R K , is 

called each cycle during solution and is used to determine when nodes should be released, 

thereby simulating failure. 

Connolly et al (1986) incorporated a simple crack propagation routine into the 

existing nonlinear plane strain/stress dynamic transient finite element program to allow 

for the through thickness crack propagation along a line of symmetry. The crack is 

advanced one element at a time by releasing the nodal reactions incrementally during 

time stepping. This is done by applying equal and opposite forces to the nodes, thus 



Chapter 2. Review of Literature 14 

providing an external work component which equals the energy released by the crack 

during extension. Their study showed good comparisons with experimental results. 

Fagnan (1996) and Qing (1994) modified the fixed boundary condition to free 

conditions when failure was identified and continued the post-failure analysis in the 

circular plate and beam problems respectively. 

2.5 Experimental Results 

The earliest work on explosive loads was by Taylor (1950) during world war II. He 

conducted experiments to study the response of structures subjected to underwater 

explosive charges. Earlier experimental work was limited to mode I failure only, to 

measure the large inelastic deformation. Mode I failure of rectangular and square plates 

subjected to blast loading has been reported by Jones et al (1970, 1971, 1972), Nurick et 

al (1986, 1992, 1996), Y u and Chen (1992), Houlston et al (1986), Slater et al (1990) and 

Zhu (1996). Anderson et al (1988) conducted experiments on circular aluminum plates 

subjected to explosive loading, while Wierzbicki et al (1996) carried out studies in the 

mode I range on partially loaded circular plates. 

Ross et al (1975, 1977) were the first to mention the rupture of plates. They 

conducted experiments on aluminum plates and reported that failure would start at the 

middle of clamped boundaries and continue towards the corner. Olson et al (1993) 

reported a limited set of experiments in the mode II and mode III range in their paper. 

Recently, Nurick et al (Teeling-Smith and Nurick, 1991, Nurick and Shave 1996) 

conducted a complete set of experiments on plates of different geometries to estimate the 
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behaviour beyond mode I stage, and they were the first authors to give quantitative 

estimation of various parameters. 

Experimental data on the stiffened plates subjected to blast loading large enough 

to cause failure is sparse. Nurick et al (1994, 1995) have reported some of these results, 

which show essentially the same general trends. Some results in the mode I range were 

also reported by Houlston and Slater (1986). 

A comprehensive numerical analysis of the behaviour of air-blast loaded 

unstiffened and stiffened square plates with material, geometric nonlinearities and strain 

rate sensitivity, which includes the failure modelling in its entirety for all different modes, 

is still a formidable task and an undeveloped area. It is the purpose of this thesis to 

propose an approach and a simple numerical failure model for predicting the rupture of 

thin unstiffened and stiffened plate structures. This model is described in the next chapter. 
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Chapter 3 

Deformation and Failure Model Formulation 

3.1 Introduction 

The description and theoretical formulation of the failure model used in the current 

analysis is presented in this chapter. Also, some aspects of its computer implementation 

and simulation of post-failure behaviour is described. 

This chapter is divided into several sections. First, the model philosophy is 

described in section 3.2. Next, the governing equations of motion are derived in section 

3.3. The following subsections present the expressions for the mass, stiffness and 

damping matrices for the plate and beam structures. The failure model is defined and the 

two interaction failure criteria are presented in section 3.4. Also, post-failure behaviour is 

discussed in this section. Finally, the flow chart for the analysis is presented in section 

3.5. 

Since the transient elastic-plastic analysis procedure is widely available in the 

literature, this thesis focuses more on the failure model and its constituent parameters. 

3.2 Model Philosophy 

The rupture of ductile plates under blast loading occurs as a combination of tensile 

tearing and shear failure. Hence, a comprehensive analysis of the problem should have 

17 
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information about the bending, membrane, shear strain and/or stress field at all locations 

of the plate structure. A finite element procedure based on Kirchhoff theory precludes the 

possibility of obtaining any information regarding shear stress or shear strain directly. 

Even though equilibrium equations can be used (Canisius and Foschi, 1993) to obtain the 

transverse shear stress (Appendix A), this procedure poses difficulties for a plate 

undergoing geometric and materially nonlinear behaviour. The other course of action 

would require formulation of the problem using Mindlin theory (Mindlin, 1951) or higher 

order theories (Reddy, 1984a, 1984b, Heyliger and Reddy, 1988). 

Higher order theories give the nonuniform shear stress distribution across the 

depth. Qing (1994) used a higher order theory to determine its suitability for blast loaded 

clamped beams. The shear stress estimated by finite elements fluctuated in the 

wavelength of about one element size. The shear stress and stress resultants were more 

accurate at the middle of the element than elsewhere. Thus the shear stress data on the 

boundary is approximated to be that of the middle value of the first element next to the 

boundary. The results were not so encouraging from this analysis. On the other hand, in 

Mindlin theory, the shear strain is assumed to be uniform through the thickness, which 

may not yield useful results for problems under consideration. In addition, both the 

Mindlin theory and higher order theories are computationally more intensive and lead to 

increased costs and time. This does not suit the primary goal of developing a design 

oriented analysis tool. In view of all these difficulties, a new approach for the solution of 

this problem is essential. To overcome many of the challenges, a simple methodology 

based on the concept of a plate supported by springs along the boundary is developed. 

This technique will be described in the next section. 



Chapter 3. Deformation and Failure Model Formulation 19 

The idea of using springs to model boundary conditions is not new. Quite a few 

instances can be found in the literature where a variety of edge conditions were simulated 

using springs. In the current model, only translational springs are considered. The beauty 

of this idea lies in the fact that the spring forces give a direct estimation of reaction forces 

at the boundary. The continuous springs at the boundary enable the variation of reaction 

forces along the boundary to be captured. This is essential in order to model the failure 

effectively. By having very stiff springs, zero out-of-plane motion of the plate boundary 

is simultaneously achieved. Thus combining with Kirchhoff theory based analysis, they 

give a powerful, yet a simple means to analyse these problems. 

The following assumptions are made to keep the analytical procedure simple. 

1. The springs are massless and have infinitesimal length. 

2. They have a large stiffness and have translational DOF only. 

3. They always behave in a linear elastic fashion, even though the plate and beam exhibit 

geometric and material nonlinearities. 

3.3 Deformation Response 

The class of problems which are of interest in this work includes tearing and rupture of 

square unstiffened and stiffened plates. The experimental observation of these 

explosively loaded plates identifies the boundary of unstiffened plates and the boundary 

as well as beam-plate interface in the stiffened plate as possible locations of failure. 

Hence, the numerical analysis should be capable of providing shear stress and force 

details at the above location. In both types of structures, very stiff springs are used to 

simulate the rigid (zero out-of-plane motion) boundary condition. The spring model for 
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the plate structures is shown in Figure 3.1. In a stiffened plate, the double node concept is 

used to define two sets of nodes at the beam-plate junction, one each for beam and plate. 

Springs are used to connect these beam and plate nodes which will provide an estimation 

of force at the interface. 

3.3.1 Equations of Motion 

The governing equations of motion are obtained using the principle of virtual work. The 

principle states that 

for a body in equilibrium under a set of arbitrary load and boundary conditions, where 

wext is the external virtual work and wjnt is the internal virtual work of the body. 

Ignoring body forces other than inertial loads the equation of motion for a body 

under dynamic loads, can be written as 

where {<r} and {s} are the stress and strain vectors, p is the mass density, IQ is a viscous 

damping parameter, q is the applied surface traction, V and S are, respectively, the 

volume and surface area and {d} is the nodal displacement vector. The tilde(~) is used to 

denote a virtual change in the given quantity with respect to a generalized displacement 

and the superimposed dot denotes differentiation with respect to time. For static loads, the 

velocity and acceleration terms {d} and {d } in Equation (3.2) vanish. 

As mentioned earlier, the spring element connects the plate nodes to the beam 

nodes in the stiffened plate problem. The displacement of the spring is therefore 

(3-1) 

J pJ/pp} + p}/^{^} + {2r}r{o-} dV- ${d}' {q}ds = 0 (3.2) 
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Kl "({"'}-{"•}) (3.3) 

where jdp j and are the plate and beam displacement field vectors respectively. In 

the case of springs at the boundary, the spring displacement is equal to the plate 

deflection at that point (i.e., the terms associated with jd* j vanish at all these points). 

The motion of the stiffened plate structure can be expressed as a combination of 

plate and beam motion. For the plate, the equation of motion can be written as 

j \dp}'p\dp} + \dp^Kd[dp] + {sp}r{ap} dV-\\dp}' {q)ds 

+ \{dp}'ks[dp}dL - l{db}ks{db}dL = 0 (3.4) 

while for the beam, 

f{3')Tr{?) + {a>}\{*} + i?Y{a>} w 

+ \[d"Ys{db)dL - \\dp}Tks{dp}dL - 0 (3.5) 

where ks is the spring stiffness/unit length and L is the length of the plate or beam 

structure. 

For an unstiffened plate, supported by springs at the boundary, Equation (3.4) 

reduces to 

J {dp}' p{d^} + \dp}'Kd{dp} + {ep}T{ap] dV - \\d"}r{q}ds 

\[dp]T ks{dp}dL = 0 (3.6) 
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The governing equations of motion, Equations (3.4), (3.5) and (3.6) are highly 

nonlinear due to the presence of both geometric and material nonlinearities. Since an 

analytical solution of these nonlinear equations is impossible, a numerical solution 

technique has to be employed. Here, the finite element analysis scheme is employed to 

solve these equations. 

3.3.2 Finite Element Formulation 

Finite element analysis is performed using the super elements shown in Figure 3.2. These 

new plate and beam elements are used for the large deflection elastic-plastic analysis of 

unstiffened and stiffened plate structures (Koko, 1990). The displacement fields of the 

plate and beam elements are represented by polynomial as well as continuous analytical 

functions (Appendix B). The elements have been specially designed so that one plate 

element is sufficient to model the deformational response of the entire plate structure. 

The displacement function for the plate element can be collectively expressed as 

(Appendix C), |<F j and |£* j are nodal displacement quantities for the plate and beam 

elements. Similar expressions for a beam oriented in the ^-direction can be obtained by 

[d") =\vp\= [N"]{5e} (3.7) 

while for a beam in the x-direction, the displacement functions are 

(3.8) 
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replacing the terms associated with u by v. The plate element has 55 DOF, while the 

beam element has 18 DOF. 

The von-Karman large deflection theory is used to model the geometric 

nonlinearities. Large deflection effects are taken into account by including first order 

nonlinearities in the strain-displacement relations. Therefore, the virtual strain vector 

can be related to virtual nodal displacement vector 18) as 

where [B] and [C0] are the linear and nonlinear part of the strain-displacement matrix 

respectively. 

Material nonlinearities are modeled by the von-Mises yield criterion and its 

associated flow rule for a bilinear elastic-plastic stress-strain curve. Strain-rate effects are 

included by adjusting the initial dynamic yield stress, cfy at each Gauss point according 

to the Cowper-Symonds relation (Jones, 1989b): 

L | z ) | J 

where oo is the static uniaxial yield stress, s is the strain-rate and D and n are other 

material parameters. 

Using Equations (3.4) and (3.5) and substituting the finite element approximation 

(3.9) 

(3.10) 

of Equations (3.7) and (3.8) for \d"} and \dh], we get 

V 
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+ 8p

e)' 'j[N>]TkM[N>]{S'e}dL - {stf \[N']T k,[N>]{5b

t}dL 

= {S/}' \[N"\qds 
s 

(3.11) 

(3-12) 

Since j ^ / j , | J e * | are arbitrary, Equations (3.11) and (3.12) can be rewritten as 

• [<]{*}+[< p:}+/({<*/})+{K]{S: } - [K]{S: J ) = M (3.i3) 

["f]{*}+KK*}+/(K})+(I<]K}-[*.'K''})={o} (3-14) 

where [^] is the consistent spring stiffness matrix (Appendix D); / ({^ / j ) a r*d 

/^j j j ' l jare the plate and beam element internal nodal force vectors; [wtf j , [cfj 

and |c*j are consistent element mass and damping matrices for the plate and beam 

respectively; and {p} is the consistent load vector. These are given by 

[m?] = l[Npfp[Np]dV 
v 

K]= j K f p[Nb\dv 
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K ] = 1 K ] 7 ^ K K 
V 

V 

{P} = \\NpJ qds 
s 

Combining Equations (3.13) and (3.14) we get 

"[<] [o]" [k l 4- , 

Jo] R L 
* 

J°] K l 
» - f - < 

-MI [M l [Ml 
.-[*-] [K)J i(°!J 

r 

For an unstiffened plate supported by springs at the edges, the above equation reduces to 

[<]{̂ }+[<]{̂ } + /({̂ }) + [̂ ]{̂ } = W (3-16) 

3.3.3 Damping Matrix 

The high frequency of spring motion needs to be suppressed so that a smooth distribution 

of force is obtained. For simplicity, the damping matrix is assumed to be proportional to 

the stiffness matrix. Thus, 

M = a,[*] (3-17) 
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where [k] is the linear stiffness matrix, a\ — 
\cor) 

E,r and cor are the critical damping 

ratio and frequency associated with the r t h mode of vibration. 

3.3.4 Solution Procedure 

The element matrix quantities are assembled in the usual finite element fashion to obtain 

the global equations of motion. 

For a stiffened plate: 

\M'\ [o] 
s"} 

y + 
\c] [o] 
I»]. [ C1J 

5P} 

AW) + 
. - M M . 

(3.18) 

For an unstiffened plate, the above equation becomes 

[ M p ]{^} + [C"]{^} + F ( { ^ } ) + [A: J = {P} (3.19) 

A l l matrix quantities are evaluated by Gaussian quadrature. Five integration 

points are used in each in-plane direction and four through the thickness. Temporal 

integration is carried out using the Newmark-/? method with Newton-Raphson iteration 

for the solution of nonlinear equations within each time step. In this implicit solution 

scheme (Newmark-/?method) Equations (3.18) and (3.19) reduce to 

n+1 
(3.20) 

where is an effective stiffness matrix given by 
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K —
[—\M] + ̂-\C] + \KT] (3.21) 

and 17*1 is the effective load vector given by 

2J3 l " V 

(3.22) 

With y= 0.5 and /?= 0.25 and substituting for stiffness proportional damping matrix, we 

get 

m = At2 L J At 
^2^ ^ [KT] + [KT] 

At -[M] + [Kr] 1 + 
A^ 

(3.23) 

(3.24) 

and 

The above theory is codified and incorporated into NAPSSE (Nonlinear Analysis 

of Plate Structures using Super Elements), a special purpose program developed at 

U.B.C. for efficient nonlinear analysis of plate structures (Koko, 1990, Koko and Olson, 

1991a, 1991b, 1992 and Jiang et al, 1990). This program now has capabilities to perform 

static, vibration and transient analysis of unstiffened plates and stiffened plates using the 

spring model. 
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3.4 Failure Model 

3.4.1 Introduction 

Having established the deformation model, analysis and solution procedure, attention will 

now be focused on developing a model for the failure analysis of plate structures. It is 

evident that dynamic inelastic rupture of structures is a complex phenomenon. There is a 

definite need for the development of a reliable criterion that can be used to predict the 

material rupture. The failure analysis of plates having square geometry involves 

a) Identifying initial failure 

b) Failure progression 

c) Complete or total failure 

d) Post-failure analysis 

Initial failure is identified when the failure occurs first under the applied load. 

Failure progression is achieved by developing a node release algorithm. Complete failure 

is the stage when the failure reaches the corner of the plate, upon which all nodes are 

released and the plate becomes free. Post-failure analysis is the phase wherein the free 

plate flies away from the boundaries. 

It was observed experimentally (Ross et al., 1975, 1977, Olson et al., 1993, 

Nurick and Shave, 1996) that the plate deformed substantially before rupture occurs first 

at the middle of supported boundary (mode II) in an unstiffened plate, for the loading 

used in this study. For more severe loading, failure begins as shear of the plate at the 

edges (mode III) before any significant deformation takes place. 



Chapter 3. Deformation and Failure Model Formulation 29 

Although the mode II and mode III are dominated by tensile strain and transverse 

shear stress respectively, shear effects are significant even at the threshold of mode II 

failure. Between the threshold values for the two failure modes, the plate fails in a mixed 

tensile tearing and transverse shearing mode, wherein the shear stress starts to play a 

dominant role. This indicates that the interaction of tensile strain and transverse shear 

stress may possibly lead to the rupture of blast loaded ductile plates. This is the idea 

behind the interactive failure criteria. 

In the interactive failure criterion, interaction is exhibited by having a failure 

function as a mathematical function of both tensile strain and transverse shear stress. In 

this criterion, the contribution of the tensile tearing part is specified by a tensile strain 

ratio and the extent of the influence of the transverse shear part is taken care of by a shear 

stress ratio. Both parts are then included in the failure function to predict the rupture of 

plate structures. In the following sections, the individual components of the failure 

functions are developed. 

3.4.2 Mode II Failure 

The current model considers the strain effects, following Olson et al (1993). It is 

impractical to model the highly concentrated plastic deformation of the plate near the 

boundary with finite elements. A rigorous three dimensional analysis would be necessary 

to predict the required information accurately and this is not realistic for preliminary 

design/analysis work. Therefore, an approximation is used to determine the bending 

strain at the boundary. The rotation of the plastic hinge is assumed to be equal to the 
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maximum slope of the plate along a line perpendicular to the boundary, which usually 

occurs a short distance from the boundary. 

3.4.2.1 Unstiffened Plate 

In general, the total strain at a point on the boundary of a plate can be expressed as 

where sm is the membrane strain and sh is the bending strain. In this model the membrane 

and bending strains are calculated separately from the associated finite element 

calculation. 

Membrane Strain: 

The membrane strain at the boundary is approximated by averaging the membrane strain 

over the first element adjacent to the boundary. For a plate boundary oriented in the y-

direction, the membrane strain in the x-direction is calculated by 

where Le is the length of the element in the x-direction and u and w are the in-plane and 

out-of-plane displacements of the midplane. Equation (3.27) is evaluated using numerical 

integration. 

Bending Strain: 

Bending strain, on the other hand, is estimated by assuming that a plastic hinge line forms 

at the boundary. The maximum bending strain can be mathematically expressed as 

(3.26) 

(3.27) 

hie (3.28) 
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where h is the plate thickness and K is the curvature of the plastic hinge. Furthermore, the 

curvature K is related to the hinge rotation 0 by 

0 

K = j (3.29) 

where / denotes the plastic hinge length. 

Since the current finite element analysis is unable to model the plastic hinge, 

approximation is made for the plastic hinge length /. A slip line field analysis (Nonaka 

1967) indicates that the hinge length / for a rigid plastic beam of rectangular cross-

section varies between H and 2H for maximum transverse displacement between 0 and H 

(H is the beam depth). This transverse displacement also corresponds to the pure bending 

behaviour and onset of membrane response of beam respectively under the applied load. 

Jones (Jones and Shen, 1992,1993) suggested an empirical relation wherein the plastic 

hinge length changes inversely with the applied impulse. In the present work, it is held 

constant as there is no theory to predict its value analytically. Even though, the failure 

predictions are affected somewhat because of this assumption, its effect will diminish as 

the plate approaches the mode III failure. 

In the present study, most of the large deflection arises from membrane stretching, 

and hence the value of / = 2h was used. 

Therefore, bending strain reduces to 

0 
eb=j (3.30) 

In the above equation, the hinge rotation 0 is assumed to correspond to the 

maximum slope near the boundary of the deflected plate. For the simply supported plate 
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(hinge support), however, the rotation of the plastic hinge must be measured relative to 

the boundary rotation, i.e., 

where 0max is the maximum slope of the deflected plate element near the boundary and 

© is the rotation of the boundary or support. The maximum slope is determined by 

interpolating across each finite element using the shape functions (Appendix B) available 

in NAPSSE. These are easily differentiated in the closed form, the location of the 

maximum slope and its value are determined numerically. 

3.4.2.2 Stiffened Plate 

In the case of stiffened plates, plastic hinge lines are assumed to form in the plate along 

the supported boundary and also alongside the stiffeners. The hinge rotation at the 

boundary is again taken to be the maximum slope in the plate adjacent to the fixed 

boundary and a hinge length of / = 2h is used. However, for the hinge at the stiffener, it is 

taken to be the algebraic difference between the analogous slope in the plate and the 

rotation of the stiffener. Once again, Equation 3.27 is used to calculate the membrane 

strain at the plate boundary. 

It is suggested that the failure, in the stiffened plates, starts at the middle of the 

clamped boundary and terminates at the stiffener end (where the stiffener meets the 

boundary). This means that the stiffener end node would be the last node to fail. The 

stiffener end node can then be treated like a clamped beam for the purpose of failure 

analysis. A clamped beam is considered to be in a membrane state once the central 

displacement is greater than the beam thickness. Jones (1976, 1989) calculated the 

sup (3.31) 
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bending strain using a value of / = where 1/2 is the half-length of the beam. In 

the absence of a theory to calculate the plastic hinge length for the stiffener end, the 

above value is used to estimate the influence of the bending strain on the failure function. 

Having defined the procedure for calculation of the membrane and bending 

strains, the total strain in the x-direction is then determined by Equation (3.26). A similar 

procedure is used to determine the total strain in the >>-direction. Since plastic hinges 

mainly occur adjacent to the boundaries and beam stiffeners, only the strain in the 

direction perpendicular to the boundary or stiffener will have a bending strain component 

at that location. 

The maximum strain computed using Equation (3.26) at each time step is divided 

by the specified rupture strain to form the strain ratio, s = e / srup. This is used in 

calculating the failure function. This ratio will reflect the effect of strain in the failure 

function. 

3.4.3 Mode III Failure 

3.4.3.1 Unstiffened Plate 

In the present model, the springs at the boundary provide a direct estimation of the 

transverse shear forces. The resultant spring force for an element next to the plate 

boundary oriented in the x-direction is 

(3.32) 
o 
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where Le is the element length, ks is the spring stiffness/unit length and w is the 

transverse displacement of springs at the boundary. The shear stress, ravg, is then 

calculated by dividing this reaction force by the total sectional area of each element at the 

boundary. The sectional area is the product of element length and plate thickness. A stress 

for the strain-rate effects. The ratio of (CTJCTQ) calculated for the first Gauss point to yield 

is stored and the static shear strength (TUII) is multiplied by this ratio to obtain the 

dynamic ultimate shear strength of the material, Xdyn-uit- The static ultimate shear stress is 

stress at the rupture strain of the material obtained using the bilinear stress-strain 

relationship. 

3.4.3.2 Stiffened Plate 

Once again, the spring force is used to calculate the shear stress at the boundary and is 

used to identify the failure. In the case of stiffened plates, the stiffener end node would be 

the last node to fail during the post-failure analysis (i.e., the entire structure is supported 

by the stiffener end node just before the complete failure). The shear contribution towards 

the failure function needs to be evaluated appropriately, for the successful completion of 

the failure analysis. The shear stress for the stiffener end is obtained via the reaction force 

estimated at the boundary through the overall structural equilibrium (global force balance 

method, Appendix E). This value of shear stress is used in calculating the failure 

function. 

ratio, T = (^avg^Tdyn-uit)' *s formed. The dynamic ultimate shear strength, rdyn_ult accounts 

calculated from the ultimate bending strength, i.e., rull = (7u"/ where a,,,, is the 
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3.4.4 Mode II - III Interaction 

The previous two sections discussed how to evaluate the influence of tensile tearing and 

transverse shearing on the rupture of plate structures. These two ratios are also reflections 

of the extent of damage caused by tearing and shearing. 

With the measure of the two factors causing failure defined, the failure condition 

may now be specified. Failure is related to tearing and shearing actions and, therefore, the 

failure condition must be a function of the two ratios, i.e., 

r 
f (3.33) 

V ̂ rup 1'dyn-ult J 

Since both ratios represent the extent of damage to some degree, the above 

function can be thought of as a general equivalent degree of structural damage. Failure 

will occur when the extent of damage is 100%, i.e., 1. It is then reasonable to assume that 

failure of the plates occurs when 

f e T ^ 
= 1 (3.34) 

V £rup *'dyn-ult J 

Two different failure models are proposed based on the way the ratios are added: 

Linear Interaction Criterion (LIC) where the ratios are added directly, while in Quadratic 

Interaction Criterion (QIC) the ratios are squared before being added together. Failure is 

said to occur when the failure function (Linear or Quadratic sum) reaches a value of one 

(Equation (3.35) and (3.36)). These models are incorporated into NAPSSE. 

Linear model: 
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Quadratic model: 

/ = + 
'nip 

'org 

dyn-ult 

= 1 (3.35) 

f = + 
\ £ n , p ) 

• avg 

V Tdyn-nll J 

= 1 (3-36) 

3.4.5 Post-Failure Analysis 

Experimental results indicate that the failure of plates in mode II (tensile tearing) starts at 

the middle of the plate boundary and proceeds towards the corner. Also, an increasing 

central portion would fail simultaneously with increasing impulse. This behaviour is quite 

different from the blast loaded clamped beam and circular plates, wherein the first failure 

also represents the complete failure, due to symmetry of boundary conditions, loading 

and geometry. Therefore, a means of accounting for failure progression is necessary in 

the failure analysis of square and rectangular plates. 

Tearing is a very complicated process and, hence, some simplified assumptions 

are made in the present analysis. Fracture is assumed to occur instantaneously through the 

plate thickness. 

A node release algorithm is developed to simulate the progression of rupture. In 

this algorithm, the entire element side is released once failure is identified at the corner 

and midside nodes of that element (i.e., when failure function/= 1). Failure progression 

is simulated by successive releasing of elements as failure occurs. Once failure reaches 

the corner of the plate, the plate separates from the boundary and flies freely. 



Chapter 3. Deformation and Failure Model Formulation 37 

However, it should be noted that the transverse displacement of the plate at the 

instant of complete rupture is usually different from the permanent transverse 

displacement obtained from the experiments. This is because the plate has some kinetic 

energy at complete failure since not all the initial input energy has been absorbed by 

plastic deformations. The kinetic energy at rupture is often significant. With so much 

energy available at failure, the plate structure is bound to deform until a stable state is 

reached. As the plate continues to deform after complete severance, part of the kinetic 

energy is absorbed in further plastic flow until it reaches the steady state where no more 

plastic deformation occurs. At the steady state, the plate moves with associated rigid body 

kinetic energy and vibrates with relatively small amounts of energy exchanged between 

elastic energy and kinetic energy simultaneously. The mid-span transverse deformation at 

the steady state, which is the average of the maximum and minimum value during the 

vibration, can be obtained from the post-failure analysis. 

The idea of the post-failure analysis involves treating the ruptured plate as a free-

free plate with initial motion. At this stage, the fixed boundary conditions are changed to 

free ones and the analysis is continued to account for any deformation during the free 

flight of the torn plate, until it reaches a steady state. 

3.5 Computer Implementation 

The failure model described in the previous section is incorporated into NAPSSE. The 

flow chart for the failure analysis of blast loaded plates is given in Figure 3.3. The 

specified tasks shown in Figure 3.3 can be summarized as follows: 
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Step 1. Input - Data is input to describe the geometry, materials, boundary conditions, 

loading, failure and solution control parameters. 

Step 2. Initialize - Initial values are entered into the structural and material data arrays. 

Step 3. Calculate nodal forces - Forces at the nodes are calculated as the difference 

between internal and external forces. External loading is due to applied blast 

pressure. Internal forces are calculated from element stresses. 

Step 4. Solve equations of motion for displacements - The set of simultaneous 

equations are solved to obtain the nodal displacements. 

Step 5. Update velocities and accelerations - Nodal velocities and accelerations are 

calculated and updated by using the nodal displacement and the current time 

step. 

Step 6. Calculate strain increment - From the nodal displacements, strains are obtained 

at Gauss points, strain rates are calculated and strain increments are obtained. 

Step 7. Calculate element stresses - Element stresses are calculated in the material 

constitutive models from the strain increments. 

Step 8. Calculate internal forces - Nodal forces are calculated by integrating the element 

stresses. 

Step 9. Failure model - The strains and stresses at the possible locations of rupture are 

calculated. 

Step 10. The failure function is estimated at all locations where failure is likely to occur. 

The failure is checked at each time step. 

Step 11. If failure is identified, failure progression is simulated by a nodal release 

algorithm. When the plate ruptures completely, the plate separates from the 
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boundary. Further temporal progression of finite element analysis for a free-free 

plate can give information on the motion. 

Step 12. Output and check for problem termination - Output results i f specified. If the 

calculation time is less than the specified termination time, return to step 3. 
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Plate boundary also 
supported by springs 
(Not shown in this 
Figure) 

Plate 
Springs at the 
interface of beam 
and plate 

Beam 

a) Stiffened plate 

y 

Springs at 
boundary 

b) Unstiffened plate 

Figure 3.1: Spring model for plate structures (Quarter plate model) 



Chapter 3. Deformation and Failure Model Formulation 

1 w)3 t/]0 x,u 

Degrees of Freedom: 

At nodes 1,2,3,4 - u,v,w,wx,wy,wxy 

At nodes 5,7 - u,v,w,wy; plus (ul0, u„) and (w,„ uu), respectively 
At nodes 6,8 - u,v,w,wx; plus (v„, v,4) and (v,„, v13), respectively 
At node 9 - u,v,w; plus un, v12, w15, v15 

(a) Plate element 

1 "5 ut 3 2 x,u 

Degrees of Freedom: 

At nodes 1,2 - u,v,w,wx,0,0x 

At node 3 - u, v, w, &, plus uit us 

(b) Beam element in x-direction 

Figure 3.2: The super finite elements 
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(/ = 0) 
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Solve Equations of 
Motion 
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Calculate Strain 
Increments 

Begin New 
Time Step 
t = t + At 

Calculate Stresses 

t 

Calculate Internal Forces 

Figure 3.3: Flow chart for the analysis 



Chapter 4 

Square Plate Analysis Results 

4.1 Introduction 

In this chapter, the failure model discussed in Chapter 3 is used to investigate the rupture 

of unstiffened square plates subjected to explosive loads. First, the experimental 

observations are presented in section 4.2. In section 4.3, the results from the proposed 

spring model is verified using the previously published results before attempting the 

failure analysis. This section presents the results for plates under static and dynamic 

loads. Finally, the results pertaining to the prediction of rupture of plates are presented in 

section 4.4. 

4.2 Experimental Observations 

There have been several experimental studies to measure large deformation of plates 

subjected to blast and impact loading (Nurick and Martin, 1989). However, very few 

results are available on the tearing and rupture of plate structures (Olson et al, 1993, 

Nurick and Shave, 1996). Nurick et al (Nurick and Martin, 1989, Nurick, 1987) used the 

sheet explosive/ballistic pendulum method to investigate the failure mechanism of square 

mild steel plates. The experimental set up used for the study is shown in Figure 4.1. The 

test specimen was cut from cold-rolled mild steel plates of 1.6 mm thickness. The plates 

43 
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are clamped between two 20 mm thick steel plate with eight high strength bolts. The 

clamped assembly was attached to one end of the ballistic pendulum (Figure 4.1). 

The average static yield stress, (cr0), and rupture strain, {Smp), are obtained from 

the uniaxial tensile test of mild steel. The explosive used for the blast was arranged in two 

concentric square annuli placed on a polystyrene pad which was attached to the specimen. 

The explosive layout is supposed to provide a uniform distribution of loading, although 

there is no direct measurement to confirm the assumption. In each experiment, the 

applied impulse; the deformation and side pull-in of plate; and the velocity of free-flying 

disc are measured. 

The experimental study on the failure of explosively loaded square plates exhibits 

the general modes of failure: I (large permanent deformation), II (tensile tearing) and III 

(shear rupture). In addition, it exhibits several phases in the mode II failure region. These 

include mode II* which has been defined where only partial tearing of the plate occurs 

and where the deflection continues to increase for increasing impulse; mode Ila defines 

the phase where the plate is totally torn from the boundary and the midpoint deflection 

continues to increase with increasing impulse; and mode lib defines the phase where the 

plate is completely torn but the midpoint displacement decreases with increasing impulse. 

These failure modes are shown in Figure 4.2. 
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4.3 Verification of Spring Model: Response without Failure 

4.3.1 Static Analysis Results 

The governing equations of motion for this case reduce to 

V 

where | P | is the global load vector and the equations are solved by Newton-Raphson 

iteration as discussed in Chapter 3. 

The spring model is first validated by performing some benchmark tests. As a first 

test, linear elastic static analysis of a clamped plate is carried out to compute the 

deflection at the plate centre and maximum transverse shear at the boundary. The 

dimensions and material properties of the square plate are as given below: 

dimensions = 100 mm x 100 mm x 1 mm 

elastic modulus, E = 205,000 N/mm 2 

Poisson's ratio, v = 0.3 

A uniform pressure load of 0.1 N/mm 2 is applied and the plate is modelled using 

super plate elements. The results are presented in Table 4.1 and compared with analytical 

solution (Bares, 1969). Convergence of numerical results can be seen with mesh 

refinement. The variation of shear force along the boundary is shown in Figure 4.3 and is 

compared with the shear force obtained using the equations of equilibrium (Appendix A). 

The direct estimation of shear via the spring force predicts a better distribution and is 

much closer to analytical results. The effect of changing spring stiffness on the results is 
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shown in Table 4.2. Essentially, the stiffer the springs, the closer are the results to that of 

a fully clamped boundary. 

4.3.2 Dynamic Analysis Results 

The linear elastic dynamic analysis of the above plate subjected to a step load of 268.8 x 

10"3 MPa is carried out. The fundamental frequency of the structure predicted by the 

spring model is 869.55 Hz, which matches the earlier result. The displacement-time 

history of the plate is shown in Figure 4.4. The result matches with that of a rigidly 

clamped plate. Next, the nonlinear elastic-plastic transient analysis of a clamped plate 

subjected to the same step load is carried out using this model and the results are 

compared with previously published results (Koko, 1990). The time-history of the plate 

central deflection is shown in the Figure 4.5. The results indicate the predictive capability 

of the spring model. 

4.4 Failure Analysis Results 

In this section, the results of a clamped plate under blast loading is presented. The failure 

model and node release algorithm developed in Chapter 3 is used for the analysis. The 

geometric and material parameters used in the analysis are given below: 

dimensions 89 mm x 89 mm x 1.6 mm 

elastic modulus, E 197 GPa 

tangent modulus, ET 250 MPa 

Poisson's ratio, v 0.3 
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static yield stress, cr0 237 MPa 

density, p 7830 kg/m3 

rupture strain, e, •rup 0.3 

static ultimate shear stress, r ull 181.4 MPa 

D 40.4 

5 

spring stiffness, ks 1 x 1020 N/m 

Due to symmetry, different finite element grids were used to represent only one 

quarter of the square plate. The effect of mesh density on failure prediction is discussed in 

the next chapter. The results reported here are for a 4x4 grid for quarter plate as shown in 

Figure 4.6, with a time step of 0.5 //sec. A 20% critical damping is used to suppress the 

high frequency oscillations of spring motion. 

The burn rate of explosive used in the experiments was approximately 6500 

m/sec, providing complete detonation in about 15 //sec. This is higher than the speed of 

the sound in the material used (steel). Johnson (1972) reported the speed of sound in the 

following materials: carbon steel 5150 m/sec, aluminium 5700 m/sec, copper 3700 m/sec, 

and brass 3350 m/sec. It was thus felt that a fair approximation to instantaneous uniform 

loading was obtained. Thus, the pressure loading was assumed to be a rectangular pulse 

of 15 //sec duration and uniformly distributed over the entire plate surface. The applied 

loads are of impulsive nature considering the size of the plate. 

Non-dimensional parameters are used to represent the results in a very general 

manner at appropriate places. The parameters used in the current study are as follows: 
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Non-dimensional Impulse (I *) (4.2) 

Non-dimensional time (t*) t (4.3) 

Non-dimensional energy (E*) = Residual kinetic energy / Input energy (4.4) 

Residual kinetic energy is the energy associated with steady state plate motion 

(plate flying at constant velocity) as explained in section 3.4.5. The residual kinetic 

energy is calculated from NAPSSE program, while the input energy is related to applied 

impulse and can be calculated as follows. 

In the above equations, / is the applied impulse, A is the area of plate, h is the 

plate thickness, t is the actual time and r0 is the load duration. 

4.4.1 Model 

A typical mode I time history plot for the displacement of the centre of the plate (point C 

in Figure 4.6) is shown in Figure 4.7. The time history plots for the rigidly clamped plate 

and the plate supported with very stiff springs at its edges are the same, while the 

undamped and damped analysis yields virtually identical results as shown in Figure 4.8. 

The peak displacement occurs at a time of 135-140 //sec (t* « 9). The displacement 

exhibits an approximately linear increase to a maximum value followed by small elastic 

vibrations of the order of less than one plate thickness. The permanent deflection profile 

of the plate for all three cases is shown in Figure 4.9. 

E 
I 

(4.5) 
2Aph 
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The analysis is carried out by enforcing the zero slope condition at the boundary. 

However, all the figures showing the centreline displacement profiles (displacement 

along C A or CB in Figure 4.6) are obtained by drawing straight lines through the nodal 

data points and hence shows a nonzero slope at the boundary (location-1.0). Damping 

does not seem to influence the permanent response, but only helps to remove the high 

frequency content of spring oscillations. 

The transient deformation profiles of the plate subjected to an impulse of I* = 

0.58 (10 Ns) are shown in Figure 4.10. The dashed lines indicate the profiles of the plate 

between 0 and 125 //sec at an interval of every 5 /usee. As indicated in this figure, the 

deflection starts with motion of the entire plate. The boundary is seen as a moving wave 

or hinge motion toward the centre of the plate. This means that the central portion of the 

plate remains relatively flat with decreasing size until the hinge has nearly reached the 

centre of the plate. This central flat portion retains an almost square shape through about 

half of the deflection process. Then the central portion of the plate begins to bulge 

uniformly and takes on an almost spherical shape. The centre of the plate continues to 

deflect, and the spherical portion enlarges slightly, which is clearly seen in Figure 4.11. 

Thus, the response time of the plate is much longer than the load duration. At the end of 

the loading phase, the deflection is only of the order of one or two plate thicknesses, 

which can be seen in Figure 4.10. 

The variation of shear force with time used in the calculation of shear stress for 

failure function is shown in Figure 4.12. The resultant shear force calculated using 

Equation 3.32, for every element shown in Figure 4.6, is compared with that of shear 
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force obtained by global force balance method (Appendix E). The new model captures 

the variation of force along the boundary. However, the force during the load phase is 

very much the same for all elements, once again emphasizing the fact that the shear force 

(stress) is a very important component in predicting the rupture of structures under 

dynamic loading. The differences in shear forces are more pronounced for elements at the 

latter stages of response as one moves from the middle of the plate to the corner (from 

element I to IV along A D or BD in Figure 4.6). 

Comparison of time history of stress ratio ( r ) for the midpoint on clamped 

boundary (point A or B in Figure 4.6) is shown in Figure 4.13. The model exhibits the 

capability of capturing the high shear stress at this location, which leads to a better 

prediction of threshold impulse to mode II failure. 

Table 4.3 presents the distribution of the strain along the boundary of an 

explosively loaded plate under mode I failure. This is for the quadratic failure model at I* 

= 0.94 (16.3 Ns). It is interesting to note that these strain distributions are very similar in 

shape to the deformation profile shown in Figure 4.10. The observation of strain and 

stress distribution along the boundary indicate that mode II failure will occur first at the 

centre of each side. 

A plot of strain ratio and stress ratio (s,r ), as defined in section 3.4, versus time 

at an impulse of I* = 0.58 (10 Ns) for LIC and I* = 0.94 (16.3 Ns) for QIC is shown in 

Figure 4.14a and 4.14b, respectively. This plot is typical for impulses which cause mode I 

deformation. Both impulses are less than the critical one required to cause mode II 

behaviour. The strain ratio increases monotonically to a peak value, then decreases 
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slightly to a lower value and subsequently oscillates around that value. The peak value 

occurs around 85 //sec (t* « 5.6), which is earlier than the time to reach peak 

displacement (t « 130-140 //sec or t* « 9). The strain remains constant, although 

deformation continues. The time to peak strain is much higher than that of the circular 

plate of equivalent area, which is around 50 //sec (t* = 3.3). 

The stress ratio plotted in Figures 4.14a and 4.14b shows a more irregular 

response. The ratio rises steeply to a maximum at 15 //sec (t* = 1) and then falls suddenly 

when the applied pressure load drops to zero. Subsequently, it rises to another lower 

maximum around 65-70 //sec (t* = 4.3-4.7) as the inertial forces become significant. 

Thereafter, it oscillates irregularly about the zero mean position. 

The corresponding variations of the two failure functions with time can also be 

seen in these figures. Both functions show a similar variation. That is, an initial sharp 

peak occurs at about 15 //sec (t* = 1) due to high initial stress ratio followed by a second 

peak at about 60-65 //sec (t* = 4.3-4.7). The second peak coincides with the peak inertial 

force and has significant strain contribution. The plate has undergone a large amount of 

bending rotation. The time to peak failure function is less than the time to peak strain and 

much less than the time to peak displacement. The relative sizes of these peaks change as 

a function of the impulse. 

4.4.2 Mode II 

As the impulse is increased, the plate continues to respond in mode I until the threshold 

impulse for mode II is reached. Failure usually occurs at this point and begins as cracks at 
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the midpoint of the boundary (point A and B). The cracks then grow in both directions 

along the edges of the plate (AD and BD), meeting at the corners (point D). Predicted 

mode II threshold impulse is I*m2. = 0.97 (16.8 Ns) for QIC and I*m2. = 0.70 (12 Ns) for 

LIC. Both the thresholds predicted by this model are less than that predicted by the global 

force balance method (Appendix E). The lower threshold for mode II failure is a direct 

result of better representation of shear forces at boundary due to the introduction of 

springs. 

4.4.2.1 Mode II* 

The time history plot of central deformation and kinetic energy of a plate in mode II* 

failure is given in Figure 4.15. It shows a linear increase in central displacement, while 

the energy increases until the end of the loading phase and then decreases continuously. 

A l l the input energy is absorbed by the plate in undergoing deformation and rupture. 

Figures 4.16a and 4.16b show the transient deformation profile of the plate. The solid line 

in Figure 4.16a indicates the profile at the time of first element failure. At this time, the 

element side is released and the analysis is continued. The time to reach failure (r,-) and 

the corresponding central deformation ( 4 ) is shown in Table 4.4. The energy is being 

continuously dissipated into plastic work during rupture progression. The permanent 

deflection profile of the plate is shown in Figure 4.17. The 3-D picture clearly shows the 

partial tearing of the plate, which is 75% of the boundary. The ruptured boundary, in 

addition to being pulled-in, also undergoes transverse deformation. 
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4.4.2.2 Modella 

The temporal variation of central displacement, side pull-in and kinetic energy of a plate 

in mode Ha failure is shown in Figure 4.18. The kinetic energy increases monotonically 

reaching a maximum value at 15 //sec (t* = 1). After the loading phase, it drops 

continuously, reaches a stable value and oscillates around that value. The time also 

corresponds to the peak permanent deformation of the plate. Energy dissipation occurs 

continuously during loading phase as well as after the load drops to zero until 140-150 

//sec (t* « 10). Also, this time compares well with the time to peak side pull-in. 

The displacement profiles of the plate are shown in Figures 4.19 and 4.20. The 

deformation is seen to continue as a result of stored strain and kinetic energies. By the 

time of 140 //sec (t* = 9.3), most of the deformation has ceased and the plate continues to 

travel at constant velocity with some residual elastic vibration. These plots also show the 

plate pulling-in significantly from the boundary. 

4.4.2.3 Mode lib 

With the increase in applied impulse, the plate enters mode lib failure phase. In this 

phase, the plate flies away from the boundary at a higher velocity and less energy is 

dissipated into plastic work. Therefore, the permanent central deformation of the plate 

decreases continuously with the increase in applied impulse. 

4.4.3 M o d e l l l 

The plot of central displacement and kinetic energy versus time is shown in Figure 4.21 

for a plate in mode III failure. Simultaneous and complete rupture of the plate occurs very 
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early in the loading phase. Once separation occurs, the plate begins to travel freely. Less 

than 15% of the input energy is absorbed by the plate. Figures 4.22 and 4.23 show the 

distance travelled by the free flying plate, once failure occurs and the actual deformation 

at each of these instances as it flies away from the boundary. The plate moves like a rigid 

body with elastic vibration. Figure 4.24 shows the 3-D profile of the plate indicating 

insignificant plate deformation, a characteristic feature of shear dominated failure. 

4.4.4 Other Failure Parameters 

4.4.4.1 Strain and Stress Ratios to First Element Failure 

The variation of strain and stress ratios (s,f) to first element failure with impulse is 

shown in Figure 4.25. The stress ratio dominance with increasing impulse is evident from 

this figure. The plots are characterized by a sharp rise or drop at a transition impulse and 

a level plateau at higher impulses. Both linear and quadratic failure models show the 

same features. At the threshold impulse to mode II failure, the contributions are roughly 

50% for both models. The transition impulse marks the impulse above which the shear 

stress dominates the failure. Mode III threshold is defined as that impulse for which the 

shear stress ratio is around one. A strain based model (for example, Olson et al., 1993) 

fails to capture this significant influence. 

At mode II threshold, it was observed that both the stress and strain ratio 

contributions were significant. This indicates that even at the threshold of mode II failure, 

which has been characterized by several experimentalists as a tensile failure, shear effects 
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are significant. This is consistent with the recent theoretical predictions of Shen and Jones 

(1992). 

4.4.4.2 Time to Failure 

The time to initial and complete failure (/*„, tc) predicted by both models is shown in 

Figures 4.26a and 4.26b. Both models show a monotonic decrease in the time to failure 

with increasing impulse. A sharp transition in the slope of these curves can be seen in 

these figures, which corresponds to the failure within the loading phase. This is due to the 

high initial shear stress ratio which can be seen in the previous figure (Figure 4.25). The 

difference in time between the two curves in each figure presents the amount of time 

elapsed before the complete rupture of the plate during which considerable energy is 

dissipated into plastic work. The time difference is largest at the threshold impulse for 

mode II failure and then decreases monotonically. After the transition, virtually identical 

lines are also an indication of complete rupture of the plate boundary instantaneously. 

This is another feature of shear dominated failure. 

4.4.4.3 Permanent Central Displacement (Deflection-to-Thickness Ratio) 

The failure modes of an explosively loaded square plate is presented in Figure 4.27a 

along with the experimental data. The figure shows a plot of deflection-to-thickness ratio 

i, Vh) v e r s u s impulse for the experimental results as well as predicted results using the 

two failure models. The experimental results show that the ratio increases with increasing 

impulse for mode I, mode II and mode Ha, while a decreasing trend can be observed for 
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mode lib and mode III. Also, an overlap of impulse values and deflection-to-thickness 

ratios can be seen in the experimental results for various modes of failure. 

The numerical model depicts all modes of failure including partial failure of the 

plate. The trend predicted by the two failure models is in agreement with experimental 

results. The quadratic model consistently gives better results compared to the linear 

model. The figure shows a very small deformation of the plate at higher impulses which 

is another characteristic feature of mode III failure. The threshold impulses for mode Ila 

and mode lib are respectively I*m2a = 0.75 (13 Ns), I*m2b = 1.04 (18 Ns) for LIC and f m 2 a 

= 1.02 (17.6 Ns), r m 2 b = 1.27 (22 Ns) for QIC (Figures 4.27b and 4.27c). 

Nurick (1996) performed a regression analysis of experimental results and 

reported that complete tearing of the plate would occur at I^ 2 a = 0.99 (17 Ns impulse). 

Earlier numerical results put this value at 1^= 1-16 (20 Ns) for the strain based model 

(Olson et al., 1993, Jiang et a l , 1993), and at I*m2a= 0.85 and 1.10 (14.6 Ns and 18.9 Ns) 

for interactive models LIC and QIC respectively (global force balance method, Appendix 

E). The spring model predicts a value of I ^ 2 a

= 0-75 (13 Ns) for LIC. The result of 

complete failure at I*m2a = 1.02 (17.6 Ns), predicted by the Quadratic Interaction 

Criterion, is in fact very close to experimental observation. 

The experimental mode III threshold is at I^ 3 = 2.69 (46.4 Ns). The 

determination of mode III failure based on permanent central deformation alone is highly 

subjective. Based on the evaluation of all the parameters presented so far, it can be 

concluded that mode III failure which is dominated by shear is consistent with early 
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failure time, instantaneous complete failure, very little deformation of plate and no side 

pull-in. This mode III threshold can be estimated to be at I*m3 = 2.32 (40 Ns). 

4.4.4.4 Side Pull-in 

During the mode II failure, the numerical results indicate the pulling-in of the mid-side of 

the plate. This pulling-in is due to the deformation of the plate which continues during the 

time between first tearing of the sides and complete failure of the plate (mode Ha). 

Figures 4.28 and 4.29 show the plot of side pull-in versus impulse and deflection-to-

thickness ratio respectively. Side pull-in increases with increasing impulse and increasing 

central deformation for mode Ha, as seen in these figures. The numerical results predict a 

maximum side pull-in of 7.2 mm for I* = 1.16 (20 Ns) impulse with the quadratic model. 

This compares favourably with the experimental results of 9-9.5 mm for I* = 1.39 (24 Ns 

impulse). Thereafter, the side pull-in decreases with increasing impulse. For mode III, the 

experimental results give a value of 0.78 mm corresponding to I* = 2.55 (44 Ns impulse) 

while the numerical results show no side pull-in. 

4.4.4.5 Residual Kinetic Energy 

The predicted variation of the long-time residual kinetic energy with impulse and 

deflection-to-thickness ratio is plotted in Figures 4.30 and 4.31, along with the 

experimental data. The prediction shows an approximately linear increase in residual 

kinetic energy with impulse, and this is clearly confirmed by the experimental results. 

However, the predictions are higher than experiments especially at higher impulses. This 

may be due partly to the neglect herein of any energy loss in the tearing process. Also, 
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some of the experimental kinetic energy may have been in a rotation mode. There is some 

limited experimental data available indicating this possibility, but no comprehensive 

results are available to get an estimation of this rotational energy. 

4.4.4.6 Centreline Failure Profiles 

Figures 4.19 and 4.23 show the permanent displacement profiles of the plate at I* = 1.16 

and 2.90 (20 and 50 Ns). Comparison of these two figures indicate a flatter permanent 

profile at higher impulse. The edge of the plate subjected to an impulse I* = 1.16 (20 Ns) 

shows a larger permanent rotation than that of plate subjected I* = 2.90 (50 Ns). The 

higher rotation suggests a failure due to tensile tearing or mode II failure at an impulse of 

I* = 1.16 (20 Ns), whereas the lower rotation for the I* = 2.90 (50 Ns) suggests a failure 

where shear is more prominent as in a mode III failure. 

The profiles plotted in Figures 4.32a and 4.32b represent the instantaneous 

deformation shapes at the times of first element failure in each case for linear and 

quadratic models respectively. Both models predict the same behaviour, although time to 

first element failure changes and threshold impulse to failure is different. As mode II 

failure begins to occur, the plate does not have time to reach the mode I characteristic 

shape. The central portion of the plate remains relatively flat, and the deformation 

becomes more concentrated near the boundary. 

The corresponding numerical results for the failure strain proportions are 

presented in Table 4.5a and 4.5b for a range of impulses for both the models. It is seen 

that as the impulse increases, the proportion of bending and membrane to total strain 
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decreases monotonically. This also coincides with simultaneous decrease in the time to 

failure. 

Permanent deflection profiles of plates subjected to a range of impulses are shown 

in Figures 4.33a and 4.33b. The profiles can be divided into 3 groups. At lower impulses, 

the edge of the plate undergoes a large permanent rotation, suggesting a tensile tearing 

(mode II) associated with a significant amount of side pull-in. As the impulse increases, 

the plate enters the mode lib phase wherein the deformation and side pull-in start to 

decrease. There is also less rotation at the edge. The higher impulses yield a flatter 

profile, an indication of shear dominance which is characteristic of mode III. 

Figure 4.34 shows the profile of the plate for I* = 1.16 (20 Ns). The quadratic 

model predicts a profile closer to the experimental results. 
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Table 4.1: Displacement and shear force for a clamped plate with different grid sizes 

Grid size Central displacement 
(mm) 

Transverse shear 
force (KN/m) 

1 x 1 0.736 4.29 
2 x 2 0.741 4.33 
4 x 4 0.741 4.39 

Analytical Solution 0.746 4.46 

Table 4.2: Comparison of results with different spring stiffnesses 

Spring stiffness Central Transverse shear 
(N/m) displacement (mm) force (KN/m) 
1 x 106 3.329 2.58 
1 x 108 0.784 4.18 
1 x 1012 0.741 4.39 
1 x 1015 0.741 4.39 
1 x 102 0 0.741 4.39 

Clamped BC 0.741 -
Analytical solution 0.746 4.46 
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Table 4.3: Strain distribution of plate along the boundary in mode I failure 

Distance 
from corner 

£ £ 

1.0 0.154 0.064 0.219 0.706 
0.875 0.153 0.064 0.218 0.703 
0.75 0.152 0.063 0.216 0.697 

0.675 0.150 0.063 0.214 0.690 
0.5 0.146 0.062 0.208 0.671 

0.375 0.136 0.054 0.190 0.613 
0.25 0.112 0.034 0.146 0.471 

0.125 0.058 0.008 0.065 0.210 
0.0 0 0 0 0 

Table 4.4: Central displacement during post-failure analysis 

hear (% of total t, (//sec) A c(mm) 
length) 

• 25 58.5 8.52 
50 59.0 8.60 
75 99.0 . 15.89 
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Table 4.5: Failure strain proportions to initial failure 

a) LIC 

/(Ns) 8 

12 0.111 0.038 0.150 
13 0.110 0.034 0.144 
14 0.108 0.033 0.141 
15 0.106 0.032 0.139 
16 0.103 0.031 0.134 
18 0.048 0.006 0.054 
20 0.044 0.005 0.049 
25 0.033 0.003 0.036 
30 0.012 0 0.012 
40 0.003 0 0.003 
50 0.003 0 0.003 

b) QIC 

/(Ns) 
£b £ 

16.8 0.152 0.067 0.219 
17 0.152 0.067 0.219 
18 0.145 0.065 0.210 
19 0.143 0.063 0.205 
20 0.141 0.062 0.203 
21 0.061 0.010 0.071 
22 0.060 0.10 0.070 
25 0.056 0.008 0.064 
28 0.042 0.001 0.018 
30 0.017 0.005 0.047 
35 0.005 0 0.005 
40 0.003 0 0.003 
50 0.003 0 0.003 
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Figure 4.1: Experimental arrangement (Ref. Nurick et al., 1996) 



Chapter 4. Square Plate Analysis Results 64 

Mode Ila Mode lib Mode III 

Courtesy: International J Impact Engg. 

Figure 4.2: Failure modes of an explosively loaded square plate (Ref. Nurick et al., 1996) 
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Figure 4.6: Finite element model of plate (Quarter plate model) 
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a) 3-D Profile 

b) w-displacement contours 

Figure 4.11: Permanent displacement profile of plate 
in mode I failure 
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Figure 4.15: Time history of central displacement, side pull-in, 
kinetic energy of plate in mode II* failure 
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b) w-displacement contours 

Figure 4.17: Permanent displacement profile of plate 
in mode II* failure 
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Figure 4.18: Time history of central displacement, side pull-in, 
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a) 3-D profile 
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Figure 4.20: Permanent displacement profile of plate 
in mode Ila failure 
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Figure 4.21: Time history of central displacement and 
kinetic energy of plate in mode III failure 
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Figure 4.24: Permanent displacement profile of plate 
in mode III failure 
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Figure 4.31: Plot of residual kinetic energy versus 
deflection-to-thickness ratio 
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Figure 4.34: Comparison of permanent displacement profile 
of square plate in mode I la failure 



Chapter 5 

Sensitivity Studies 

5.1 Introduction 

Sensitivity of the plate response to various geometric, finite element, load and material 

parameters under explosive load are discussed in this chapter. In section 5.2, the effect of 

mesh density on the failure prediction and post-failure behaviour is investigated. Section 

5.3 discusses the effect of using different time step sizes for the analysis. The influence of 

plate thickness on the tearing and rupture of plates is presented in the following section 

(section 5.4). Next, the effect of strain-rate on rupture strain of material and its 

significance on the threshold impulse to failure is discussed in section 5.5. Finally, the 

effect of pulse shape on the failure modes of these plates are analysed. 

5.2 Mesh Density 

To check the effect of mesh density on rupture prediction as well as post-failure 

behaviour, different grids are used to obtain the responses of an 89x89x1.6 mm plate. The 

material properties are as given in section 4.4. The temporal variation of central 

displacement of the plate (zl c) is shown in Figure 5.1 for an impulse of I* = 0.58 (10 Ns). 

This is typical of mode I response, wherein the displacement increases monotonically 

until t = 135 //sec after which the plate undergoes small elastic oscillations around the 

88 
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permanent deformation position. The results from all three grid sizes are in excellent 

agreement. The permanent central deformation of the plate (Ac = 12.7 mm) predicted 

numerically is in fact close to the experimentally obtained result of 11.1 mm. 

Figures 5.2a, 5.2b and 5.2c present the time histories of the strain ratio, stress ratio 

and failure function {s,T,f respectively) for the midpoint of the plate boundary (points 

A, B in Figure 4.6; first point to fail according to predictions and experiments). The 

analysis is carried out for an impulse of I* = 0.58 (10 Ns) using the Linear Interaction 

Criterion. The plate typically responds in mode I failure. The time histories of strain ratio 

in Figure 5.2a show essentially similar behaviour, and the difference between curves 

decreases as the mesh becomes denser. That is, the maximum strain at the support is less 

sensitive to the grid size and converges as finer meshes are used. Therefore, the tensile 

membrane action coupled with plate bending, which is described by the strain ratio 

s = s / £" r a p), will converge with the refinement of the grid. 

Comparisons of stress ratios calculated from different finite element meshes are 

presented in Figure 5.2b. The same three meshes used above are employed. During most 

part of the time history, the three curves are almost the same. At the very early stages of 

the response (0-100 //sec), there is a small difference, but as the mesh is refined the 

results converge. The results from the 3x3 element grid are very close to the results 

obtained from the 4x4 element grid. From the point of view of the failure criterion, it is 

the shear force in the early stages of the response which plays an important role. As 

discussed, shear stress ratio is almost insensitive to element size. Therefore, the shear 

contribution to the failure criterion (r = r / Td ull) is independent of mesh size. 
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Both the strain and shear parts of the failure criterion are almost independent of 

the grid size. Therefore, the rupture prediction obtained from the interaction criteria are 

also almost independent of mesh density. For different grid sizes, Tables 5.1 and 5.2 

present the results for a plate in mode II* and mode Ha failure under an explosive load. 

In Table 5.1, the predicted permanent displacement (zl c) converges with finer 

mesh. The failure ratios required to initiate failure are more or less the same with almost 

equal contributions from stress and strain ratios. This is consistent with the results 

discussed in the previous chapter. 

The results from the three grid sizes in Table 5.1 show partial failure of the plate. 

This is an indication of the predictive capability of the numerical model. However, the 

amount of the tear length (/ t e a r) in each case is different. This is due to the fact that at the 

onset of rupture, failure progression is simulated by releasing the element sides via a node 

release algorithm. Different element lengths are involved at each release which influences 

the post-failure behaviour. The other reason for grid dependence on post-failure 

behaviour is the lack of any energy dissipation mechanism when element sides are 

released. However, its significance is less when the permanent deflection profiles are 

compared, as shown in Figure 5.3 for mode II* and Figure 5.4 for mode Ha. It is clear 

from the results that although the global response of the plate is the same for all three 

different meshes, better failure progression is simulated with finer mesh. 

Table 5.2 presents the results of a plate in mode Ha failure. The results indicate 

that during this failure mode, the strain ratio and shear stress ratio are almost the same 

regardless of the mesh size used for analysis. 



Chapter 5. Sensitivity Studies 91 

5.3 Time Step Size 

The analysis using two different time steps is performed and its effect on prediction of 

different quantities is discussed in this section. To see the effect of time step size on 

partial failure mode, the analysis of the plate with the same geometric and material 

properties as in the previous, section, under an impulsive load of I* = 0.70 (12 Ns) is 

carried out using the Linear Interaction Criterion. The results are shown in Figures 5.5 

through 5.7 and in Table 5.3. The analysis predicted partial failure and length of the tear 

to be 75% in both cases. There is a difference between the predicted values of the side 

pull-in in Table 5.3. This difference is not observed in other failure modes and at present, 

there is no explanation for this discrepancy. One possibility is that the time to failure is 

different and perhaps results in different values of predicted side pull-in. 

The strain ratio, stress ratio and failure function (e,r,f respectively) leading to 

first failure, which starts at the middle of the clamped boundary, is shown in Figures 5.6a, 

5.6b and 5.6c for the two different time step sizes. The results are identical for the two 

different time step sizes. The above analyses are carried out using 4x4 grid for the quarter 

plate. 

The time history of central displacement and profile of ruptured plate in mode II*, 

mode Ha failure are shown in Figures 5.5, 5.7 and 5.8, 5.9, respectively. Convergence of 

results can be observed in these figures. Next the results from mode Ha failure is 

presented in Table 5.4. The results are almost similar. The results show that the different 

parameters associated with rupture of plates are within 2-3% for the two time step sizes. 
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This is very good when we realise that the proposed failure model is very simple and no 

rigorous fracture mechanics principles are applied to carry out the progression of rupture. 

The temporal solution procedure used in this analysis is an implicit scheme based 

on the Newmark-/? method with parameters y = 0.5 and /? = 0.25. The advantage of this 

method is that it is second order accurate and is unconditionally stable for linear 

problems; in that, the solution does not grow without bound even when a large time step 

is used. Unconditional stability of the method also applies for nonlinear problems 

although there is no rigorous proof in this case (Heppler, 1986). As a consequence of this 

condition, the method allows for the use of large time steps. Hence, time steps could 

simply be based on the lowest fundamental frequency (highest period) rather than on the 

highest frequency (which requires more effort to evaluate accurately) as would be the 

case i f a conditionally stable explicit scheme is used. This is particularly useful in the 

present work because with the usage of few elements to model the structure, a larger time 

step would mean a less intensive computational procedure for the analysis of explosively 

loaded structures. 

Thus, a 4x4 grid to model the quarter plate with a time step size of 0.5 //sec is 

found to be more than sufficient for the current analysis. This is used for the further 

sensitivity studies presented in the next three sections. A l l these analyses are carried out 

using the Quadratic Interaction Criterion. 
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5.4 Plate Thickness 

Menkes and Opat showed that the threshold impulse to dynamic rupture of beams in 

mode II and mode III depends only on the thickness of the beam and not on its length. To 

estimate the influence of geometric parameters on the failure of plates, a series of 

numerical investigations are carried out on plates having the same planar dimensions, but 

with different plate thicknesses. The results of this analysis are presented in Table 5.5 (a 

through d), which provides the various parameters for different modes of failure. 

Table 5.5a presents the results of a plate in partial failure mode, in which the 

actual impulse required to cause rupture at the boundary increases with increasing 

2 5 < % < 5 0 this trend disappears and thickness. Once the plate is sufficiently thick 

the threshold impulse to mode II failure decreases. This is because for these plates the 

shear force plays a dominant role. This trend can also be seen in mode Ha failure given in 

Table 5.5b. As the plate enters the higher modes of failure, the trend vanishes. In mode III 

failure, a monotonic decrease in impulse load for increasing thickness can be seen (Table 

5.5d). 

Figure 5.10 shows the threshold impulse (non-dimensional) for various modes of 

% > 5 0 require the same failure for a plate with different thicknesses. The thin plates 

critical impulse for the rupture of square plates. This is reflected with the horizontal line 

for a/h ratios > 50. However, the thick plates tend to have a lower threshold. This is 

because failure of these plates is still dominated by shear. This trend is also seen for mode 

Ha. It should be noted that the results were obtained using the Kirchhoff theory which 
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does not include the shear effects for predicting the response of thick plates. One should 

be cautious in interpreting the plot shown for alh < 50. The mode lib and mode III 

thresholds show a monotonic increase with decreasing plate thickness. In these modes, 

the critical non-dimensional impulse required to cause failure changes inversely with 

plate thickness. 

The failure modes of these plates are shown in Figure 5.11. In this figure, the 

deflection-to-thickness ratio is plotted over a range of impulses. The plot clearly indicates 

that, with increasing thickness, the plate undergoes less permanent deformation. The thick 

plates have lower threshold to failure. Also, thick plates do not exhibit the increasing and 

decreasing trends of permanent deformation after complete failure. 

The thinner the plate, the greater is the contribution from strain ratio to the failure 

function in mode II failure. This means that a very thin plate undergoes a large amount of 

bending rotation in addition to significant stretching. This is because the thin plate 

develops a sufficiently large inertial force very early in the response resulting in a lesser 

reaction force at the boundary. Thus, a higher load is required to cause mode III failure. 

There is a monotonic increase and decrease in the proportions of stress and strain ratio 

(?, s) contributions respectively with increasing thickness in all failure modes as seen in 

Tables 5.5a through 5.5d. On the contrary, the thicker plate due to its heavy mass 

develops a large reaction (shear force) at the boundary very early in the response. Also, 

thick plates don't show the different sub groups of mode II. 

Finally, the residual kinetic energy (E*) of the system in different modes of failure 

is shown in Figure 5.12. The velocity of a free flying plate (Vp) after complete separation 
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from the boundary is same at the threshold impulse for all thicknesses in mode lib and 

mode III failure. The 2 mm thick plate in mode Ha failure has a higher residual kinetic 

energy due to initial failure during the loading period. 

Figure 5.13 shows a plot of the deflection-to-thickness ratio versus impulse. The 

solid lines indicate the threshold impulse to the mode II and mode III failure obtained 

using the Quadratic Interactive Criterion for a series of square plates with different plate 

thicknesses. This figure can be used as a design chart and is the first of its kind. Similar 

charts can be obtained for plates with other material properties and can be quite useful in 

the preliminary design of simple plates to resist blast loads. 

5.5 Strain-Rate 

The tearing and rupture of the square plate is predicted in the previous chapter using the 

static rupture strain (f„ ( / )) of material. In rate dependent materials, large strain-rates 

increase the flow stress for plastic deformation. This effect is well documented with 

sufficient experimental data supporting the effect (Jones, 1989b). However, the 

corresponding influence of strain-rate on ultimate or rupture strain of material is not well 

understood. This is partly due to the difficulties associated in conducting experiments at a 

constant strain-rate over large ranges of strain up to rupture. 

Some limited observations of experimental results indicate that the rupture strain 

decreases with increasing strain-rate. Following Jones (1989c, 1989d), a simple method is 

proposed to estimate this influence. To simplify the analysis, the following assumptions 

are made: 
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1. The energy to rupture is invariant. 

2. The variation of strain-rate sensitive effect with strain is disregarded. 

The dynamic flow stress, <rd, is related to static yield strength, <r0, of material, 

via Cowper-Symonds relation: 

ad =<Jo 

Mil 

1 + 1^" 
D-

(5.1) 

where e is the strain-rate, and D and n are material constants. 

The dynamic rupture strain can be related to the static rupture strain e 

by an expression similar to the Cowper-Symonds equation: 

dyn-rup 
£rup 

l/n 
1 + 1^" 

D, 
(5.2) 

This expression gives a fracture strain that is inversely proportional to dynamic 

stress to keep the energy absorbed invariant. Three different sets of values for D and n are 

used in the current study which are shown in Table 5.6. These values were first proposed 

by Jones (1989d) for steel materials. 

The square plate which was analysed in Chapter 4 is once again used for the 

comparative study. The effect of strain-rate on yield stress is indirectly shown in Figure 

5.14, while Figure 5.15 shows a plot of rupture strain with impulse. With the increase in 

applied impulse, the strain-rate goes up leading to an increase in the dynamic flow stress 

(Figure 5.14) and a corresponding decrease in rupture strain (Figure 5.15). The rupture 

strain decreases quite sharply at rates of order 102, and it remains almost a constant at 

strain-rates of 103 and 104 as seen in Figure 5.15. Also in this figure, the threshold 
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impulse to mode II and mode III failure is shown. The decreasing rupture strain leads to a 

drop in the threshold impulses to failure in mode II*, while the threshold impulse to mode 

III remains unchanged. This is mainly because the drop in rupture strain of material due 

to high strain-rates can have influence only on strain dominated failure modes, which is 

mode II. The shear stress developed by the plate remains unchanged, as is the threshold 

impulse to transverse shear failure. A l l analyses are carried out using a Quadratic 

Interaction Criterion. A failure envelope can be seen which encompasses the entire range 

over which the material would fail leading to rupture at the boundary. 

Table 5.7 presents the various parameters associated with the threshold impulse to 

failure for a plate with different material constants. At the onset of rupture, the plate is 

ruptured only partially with the tear length ranging from 50-75% of the clamped 

boundary. The failure is dominated by strain which is reflected by a very high strain ratio 

to failure. 

5.6 Pulse Shape 

The load-time characteristic (or pulse shape) is one of the difficult parameters to predict 

in experiments. A l l the earlier analyses are carried out by assuming a rectangular pressure 

pulse. To see the effect of pulse shape, analysis of the plate subjected to a triangular 

pressure pulse (instantaneous rise to maximum pressure) with linearly decreasing 

pressure is carried out. The triangular pulse has the same duration (15 //sec), and only the 

pressure intensity is doubled to keep the applied impulse as constant. The load is applied 

uniformly over the entire plate surface. 
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The failure modes for the plates under two pulse shapes are shown in Figure 5.16. 

In this figure, the deflection-to-thickness ratio over a range of impulses are plotted using 

the Quadratic failure model. From the figure, it is clear that the permanent central 

deformation of plate in mode I failure range is virtually the same in both cases. This 

result once again confirms that mode I response can be considered a function of the 

impulse rather than the peak pressure. However, it should be noted that in all cases the 

duration of loading was always held constant and higher loads were applied by simply 

increasing the magnitude of pressure. This result is certainly consistent with the 

predictions of Youngdahl (1970, 1971) and Fagnan (1996). 

The threshold impulse to mode II* failure is I*m2, = 0.98 (16.8 Ns) for the 

rectangular pressure pulse and I*n2, = 1.0 (17.3 Ns) for the triangular pressure pulse. In 

the current analysis, the loads are assumed to have an instantaneous rise to peak pressure. 

Fagnan (1996) reported studies on the response of circular plates to triangular (isosceles) 

pressure pulse. He reported that the threshold impulse to mode II failure of circular plates 

was almost the same for all pulse shapes. The current result matches well with his 

observations. Thus, the mode II failure threshold is sensitive only to the applied impulse. 

The figure clearly indicates that the triangular pressure pulse has a lower threshold 

to mode III failure than the rectangular pressure pulse. This is due to the fact that the 

failure occurs before the end of the loading phase and hence it is sensitive to the 

magnitude of the applied pressure. Thus, the response in mode III failure is somewhat 

dependent on the pulse shape. 
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Table 5.1: Comparison of results with grid sizes for a plate in mode II* failure 

Grid 
size 

\ 
(mm) 

tin 
(usee) 

hear 
(%) 

T £ 

2x2 9.62 1.16 67.5 50 0.50 0.50 
3x3 10.06 2.94 53.5 67 0.54 0.46 
4x4 10.28 2.84 50.5 75 0.52 0.48 

Table 5.2: Comparison of results with grid sizes for a plate in mode Ha failure 

Grid V tin tc '-'res T 6 
size /h (mm) (//sec) (//sec) 
3x3 12.80 4.28 34 138 12.8 0.54 0.46 
4x4 12.42 4.90 31.5 117.5 44.8 0.55 0.45 

Table 5.3: Comparison of results with time steps for a plate in mode II* failure 

Time step V £ T 
(//sec) Vh (mm) (//sec) 

0.5 9.53 2.04 62 0.48 0.52 
1.0 9.32 1.16 74 0.50 0.50 
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Table 5.4: Comparison of results with time steps for a plate in mode Ila failure 

Time V 4 , tin tc vP 
£ T 

Step /h (mm) (//sec) (//sec) (m/sec) 
(//sec) 

0.5 12.43 4.90 31.5 117.5 60.2 0.45 0.55 
1.0 12.28 4.72 32 119 58.1 0.45 0.55 

Table 5.5: Comparison of results with plate thickness in different modes of failure 

a) Mode II* 

h 
(mm) (Ns) Vh 

tin 
(//sec) 

\ 
(mm) 

£ T 

1.0 11.9 25.04 58.5 4.46 0.86 0.51 
1.6 16.8 13.29 62.5 2.68 0.71 0.71 
2.0 19 9.46 60 2.50 0.61 0.80 
3.2 8.4 1.91 14 0 0 1.0 

b) Mode Ila 

h 
(mm) (Ns) 

V tin 
(//sec) 

tc 
(//sec) 

'-'res 
(J) 

\ 
(mm) 

£ T 

1.0 13 30.39 32.5 161 10.3 8.0 0.84 0.56 
1.6 17.6 14.69 42.5 154.5 13 6.40 0.68 0.73 
2.0 19.4 13.66 14.5 108 93 1.52 0.16 0.99 
3.2 9.5 1.02 9.5 14.5 34 0 0.01 1.00 
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c) Mode lib 

h 
(mm) (Ns) 

V 
Vh 

tin 
(//sec) 

tc 
(//sec) 

'-'res 
(J) 

4p 
(mm) 

T 

1.0 22 18.69 13.5 14.5 688.8 8.54 0.50 0.88 
1.6 22 8.88 13.5 14 406.1 5.42 0.23 0.98 
2.0 21 5.45 12 13 299.5 1.88 0.12 0.99 
3.2 9.7 0.36 9.0 13.5 36.5 0 0.01 1.00 

d) Mode III 

h 
(mm) 

',,,3 
(Ns) Vh 

tin 
(//sec) 

tc 
(//sec) 

'-'res 
(J) 

\ 
(mm) 

s T 

1.0 50 4.28 1.5 2.5 4725.0 0.28 1.06 0.02 
1.6 40 1.33 1.5 2.5 1881.7 0.0 0.01 1.00 
2.0 35 0.47 2.0 2.5 1146.7 0.0 0.01 1.00 
3.2 25 0.0 2.0 2.5 362.2 0.0 0.00 1.00 

Table 5.6: Cowper-Symonds material constants for calculating dynamic rupture strain 

SI No D n 
1 40.4 5 
2 800 5 
3 6340 5 
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Table 5.7: Comparison of results at the threshold impulse to mode II* failure using 
dynamic rupture strain 

D, n ^ dyn-rup Im2* 
(Ns) 

V Vh 
\ 

(mm) 
tin 

(//sec) 
£ T hear 

(%) 
40.4, 5 0.10 8.0 6.43 0.90 67.5 0.93 0.37 50 
800, 5 0.14 10.5 8.52 1.70 62 0.89 0.45 75 

6340,5 0.17 12 9.73 2.22 60 0.86 0.52 75 
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Figure 5.1: Temporal variation of central displacement 
of a plate in mode I failure with grid size 
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Figure 5.2a: Strain ratio 
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Figure 5.2b: Stress ratio 

c) Failure function 

Figure 5.2: Comparison of time histories of strain ratio, stress ratio 
and failure function of a plate in mode I failure with 
grid size 
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Figure 5.3: Comparison of permanent deflection profile 
of a plate in mode II* failure with grid size 

Figure 5.4: Comparison of permanent deflection profile 
of a plate in mode Ha failure with grid size 
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Figure 5.5: Comparison of central displacement time history 
of a plate in mode II* failure with time step size 
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Figure 5.9: Comparison of permanent deflection profile of a 
plate in mode Ha failure with time step size 
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Figure 5.13: Threshold impulse to different modes of failure for plate 
with different thicknesses using QIC 
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Figure 5.16: Plot of deflection-to-thickness ratio versus impulse 
for a plate under different load-time characterstics 



Chapter 6 

Stiffened Plate Analysis Results 

6.1 Introduction 

The analysis in Chapters 4 and 5 is now extended to the analysis of stiffened plates. 

Springs are introduced at all possible locations of failure (boundary as well as plate-

stiffener interface) to evaluate the influence of shear on the failure of these structures. The 

equations of motion to be solved in this case are 

\M'\ [o] ' 

10] ["1. 

i n -K1 

[C] [0] 

[o] [c1. 
M l 

M l 

{"11 
H I 

+ 

jo} 
(6.1) 

where is the global spring stiffness matrix; F ^ ^ j j and F^^Jjare the global plate 

and beam internal force vectors; M p j , [^*], [ C J and [c*] are global mass and 

damping matrices for plate and beam respectively; and j ^ j , |<?*| and {P} are the global 

displacement and load vectors respectively. The equations are solved by the implicit 

Newmark-/? method with Newton-Raphson iteration within each time step as discussed in 

Chapter 3. The effect of structural damping has been ignored in the analysis, while 

115 
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stiffness proportional damping is introduced to remove the high frequency oscillatory 

motion of springs. 

The experimental observation of stiffened plates under explosive loading is 

presented in section 6.2. The linear elastic as well as large deflection elastic and elastic-

plastic responses are investigated to validate the spring model. Both static and dynamic 

analyses are carried out and the results are discussed in section 6.3. Sections 6.4 and 6.5 

are devoted to the response of stiffened plates subjected to blast wave load. 

6.2 Experimental Observations 

Nurick et al (1995) conducted experiments on fully built-in stiffened plates. A fully built-

in plate is one in which the plate and the support boundary are integral. This is different 

from the arrangement of unstiffened plate experiments where the plates were clamped 

between clamping blocks. A 89x89x1.6 mm square stiffened plate with rectangular 

stiffeners of four different sizes (2, 4, 5, 9 mm deep and 3 mm wide) were used in the 

study. The procedure used for the blast experiments was similar to that described in 

Chapter 4 and the material properties were obtained from uniaxial tensile test of mild 

steel. 

Most of the tests reported are in the mode I range. The results indicate that in 

mode I failure, midpoint deflection increases with the increase in applied impulse. This is 

true for all the stiffened plates. 

A limited number of results were reported in mode II failure. A series of stiffened 

plates in different modes of failure are shown in Figure 6.1. Tearing starts at the middle 

of the plate boundary parallel to the stiffener (mode IIB) for a plate with 3 x 2 - mm and 3 
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x 4 - mm stiffeners, while localised tearing of the plate at the stiffener (mode IIS) was 

observed in all the 3 x 9 - mm stiffened plates as shown in this figure. 

6.3 Spring Model Verification: Response without Failure 

6.3.1 Static Analysis Results 

This section presents the results from the static analysis of a 2-bay stiffened plate I shown 

in Figure 6.2. This example was used by Koko (1990) who provided the results for a 

clamped boundary condition. Using symmetry, one-half of the structure is modelled by 

one plate element and one beam element. The relevant beam section properties have to be 

halved in the computation since the symmetry line divides the beam into two. The results 

from the linear and nonlinear geometric and material responses are shown in Table 6.1. 

The linear elastic panel centre and stiffener centre deflections (points A and B 

respectively in Figure 6.2) at a load of 0.001 N/mm 2 are given in Table 6.1 along with 

those from a finite strip analysis using 8 strips for one bay of the structure. The panel 

centre deflection is overestimated by 2.2%, and the model underestimates the strain 

energy by 3.7%, with respect to the one mode finite strip solution. The effect of different 

spring stiffnesses on the response of the stiffened plate is shown in Table 6.2. Using stiff 

springs, the results approach the response of a stiffened plate with clamped boundary 

condition. 

The nonlinear elastic and elastic-plastic analyses are carried out under a uniformly 

distributed load of 0.4 N/mm 2. The results are in excellent agreement with that of the 

clamped boundary. The spring stiffness of l x l O 1 5 N/m used in the current analysis is 
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more than adequate to simulate the clamped condition of problem. The last column in the 

table presents the spring force developed at the centre of the plate between the plate and 

the stiffener in each case. 

6.3.2 Dynamic Analysis Results 

Dynamic analysis of the plate under a step load of 0.3 N/mm 2 is carried out to assess the 

suitability of the spring model for such analysis. The configuration and material 

properties of plate II are shown in Figure 6.3. Table 6.3 presents the linear and nonlinear 

elastic response of this plate along with previously published results (Koko, 1990). The 

frequency of the structure, peak panel and stiffener centre deflection (points A and B 

respectively in Figure 6.3) matches very well with that of a rigidly clamped structure. 

The linear elastic time history of panel centre and stiffener centre deflection are 

shown in Figure 6.4. The two results are in excellent agreement with the clamped plate 

results. Next, the nonlinear geometric analysis is carried out and the time history of 

deflection at the above two locations is shown in Figure 6.5. Once again, the results 

indicate the predictive capability of model. The spring model proves to be a very versatile 

model and is used for the failure analysis of stiffened plates. The results are discussed in 

the next section. 
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6.4 Onset of Failure 

6.4.1 Uniform Load 

A transient analysis is now performed on a one-way stiffened steel square plate with 

clamped edges. The geometric and material properties of the test plate are as shown 

below: 

dimensions of plate = 89 mm x 89 mm x 1.6 mm 

elastic modulus, E = 1 9 7 GPa 

tangent modulus, ET = 250 MPa 

Poisson's ratio, v = 0.3 

static yield stress, cr0 = 265 MPa 

rupture strain, srup = 0.18 

static ultimate shear stress, rull = 179 MPa 

density, p = 7830 Kg/m 3 

D = 40.4 

n = 5 

spring stiffness, ks = 1 x 1015 N/m 

A series of different stiffener sizes are used in the current study. A l l stiffeners are 

rectangular in shape with 3 mm width. Four different depths (H), 2 mm, 4 mm, 5 mm and 

9 mm are used in the analysis. The plates are designated as 3 x 2 - mm, 3 x 4 - mm, 3 x 5 

- mm and 3 x 9 - mm stiffened plate for all future reference, in view of stiffener size. The 
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configuration of the plate and the finite element model used for the analysis are shown in 

Figure 6.6. 

To compare with available experimental results, blast wave loading is considered. 

The pressure loading from the explosive charge is assumed to be uniformly distributed 

over the plate surface and of rectangular wave form in time. The duration of the loading is 

assumed to be 15 //sec, equal to the approximate explosive burn time. The pressure 

loading magnitude is then calculated to correspond to the measured impulses (area under 

the pressure-time curve). 

The temporal variation of stiffener centre (point C) displacement of a 3 x 2 - mm 

stiffened plate with and without damping is shown in Figure 6.7. In the damped analysis, 

a 20% damping is used to suppress all the high frequency motion of the springs. The 

results are virtually identical in both cases. The permanent deflection profiles of the plate 

in the two cases are shown in Figure 6.8. The permanent deformation predicted by the 

spring model is about 1% less than the deflection predicted by undamped analysis. 

6.4.1.1 Model 

The analysis was carried out over a range of impulses between 5 and 30 Ns for each 

stiffener case. The analysis was performed using a 2 x 2 grid for the quarter plate model 

unless stated otherwise, with a time step size of 0.5 //sec. A 20% damping is used to 

suppress all the high frequency motion of the springs. 

The time history of stiffener centre deformation (point C) and kinetic energy in 

the system is shown in Figure 6.9, for a 3 x 2 - mm stiffened plate under 5 Ns impulse. 

The central deformation increases monotonically and reaches a peak value around 120 -
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125 //sec. This time to peak displacement is slightly lower than that of an unstiffened 

plate which occurs around 135 - 140 //sec. The kinetic energy increases until the end of 

the loading phase, that is 15 //sec and decreases afterwards. A l l the input energy is 

absorbed by the plate in undergoing deformation. The time to absorb all the energy 

coincides with the time to peak displacement. This is typical of mode I deformation. The 

plate vibrates in an elastic manner about the permanent deformation position once energy 

absorption is complete. 

The transient deflection profiles of a 3 x 2 - mm stiffened plate are shown in 

Figure 6.10. The dashed lines in the figure indicate the instantaneous profile of the plate 

at every 5 //sec interval, between 0 and 100 //sec while, the solid line represents the 

permanent displacement profile (mode I) of the plate. During the loading phase, the 

energy is continuously input to the system and simultaneously a portion of it is dissipated 

into plastic work. The net result is that the kinetic energy steadily increases until the end 

of loading phase. The profile at the end of loading phase (15 //sec) is indicated in the 

above figure which shows that the plate has undergone a displacement of 0.4 mm. This 

value increases substantially to one or two plate thicknesses as the applied load is 

increased until mode II threshold is reached. 

The analysis is carried out by enforcing the zero slope condition at the boundary. 

However, all the figures showing the centreline displacement profile (displacement along 

CA) are obtained by drawing straight lines through the nodal data points and, hence, 

show a nonzero slope at the boundary (location-0.0). 
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In Chapter 4, the result from an unstiffened square plate indicated that the plate 

moves in the transverse direction with almost uniform velocity, which was observed in 

the flat profile of the plate. In a stiffened plate, observation of transient profile indicates a 

maximum between the boundary and stiffener. This is due to the fact that initially the 

stiffeners will move with less velocity because their respectively larger mass/unit area has 

to be accelerated by the explosive loading. This effect is more pronounced in deep 

stiffeners ( 3 x 9 - mm) than the thin ( 3 x 2 - mm) ones at high impulses. This velocity 

difference will lead to relative deformation of the plate between the boundary and 

stiffeners. As the deformation develops, the velocities become equal and the plate-

stiffener configuration deform together. 

Figure 6.11 shows the time history of the stiffened plate central deformations for 

plates with different stiffener sizes under an applied impulse of 5 Ns. The figure clearly 

shows that the stiffened plate responds to large deformation almost linearly with time, 

reaches a maximum and exhibits a small amount of residual elastic vibration. The time to 

reach peak displacement is almost the same, thus independent of stiffener sizes. However, 

the magnitude of peak displacement varies inversely with stiffener size. 

The predicted mode I failure deflection profiles are shown in Figure 6.12 for all 

the stiffened plates for the same impulse of 5 Ns. It is seen that the permanent central 

deformation decreases continuously with the increase in stiffener depth. Also, there is a 

significant change in the permanent deflection profiles of these plates. The figure also 

shows the mode I displacement profile of an unstiffened square plate of the same size. 

The maximum displacement always occurs at the plate centre in an unstiffened plate. 

Plates with thin stiffeners show the maximum displacement occurring at the stiffener 
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centre. This location shifts to a point between the boundary and the stiffener for plates 

with thick stiffeners. This transition is more pronounced in 3 x 9 - mm stiffened plate. 

The maximum deflection of 3 x 2 - mm and 3 x 9 - mm stiffened plates is about 20% and 

55% less respectively than the corresponding displacement of an unstiffened square plate 

made of the same material. 

Figure 6.13a through 6.13d show the predicted 3-D profiles of all four stiffened 

plates in mode I failure at 5 Ns impulse. The influence of stiffener size (depth) on the 

overall deflection of the plate can be seen in this figure clearly. The resisting effect of 

deep stiffeners leads to a maximum displacement between the plate and the stiffener, as 

explained before. 

Several numerical investigations are carried out by modelling the structure with 

different grid sizes. A comparison of predicted mode I deflection profiles of the plate for 

the 3 x 2 - mm stiffened plate is shown in Figure 6.14. It is seen that the finer grid 

provides a slightly sharper curvature at the boundary and the profile matches very well 

with that of the coarse grid. The predicted permanent central displacement by the fine 

grid (3 x 3) is only 1.5% more than the coarse grid (2 x 2). 

Table 6.4a and 6.4b show the central displacement (4.) and maximum strain at 

the boundary of the plate (point A in Figure 6.6b) with different stiffeners under 5 Ns for 

the two grid sizes. The convergence of results can be seen from the above two tables. The 

bending and membrane strains are the same at A , thus independent of stiffener sizes. 

Figure 6.15 shows the variation of strain along the boundary parallel to the 

stiffener. It can be seen that the maximum strain occurs at the midpoint on boundary 
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(point A) and the maximum strain value is independent of stiffener size. This can be also 

be observed by noticing the same rotation of all stiffened plates at the boundary from 

Figure 6.12, which shows the permanent deflection profiles of the plate. 

Temporal variations of strain ratio, stress ratio and failure function (e,r,f 

respectively) for the midpoint on a boundary parallel to a stiffener and for the stiffener 

centre (points A and C respectively in Figure 6.6b) are shown in Figures 6.16 and 6.17 

respectively. The results are for a 3 x 2 - mm stiffened plate under 5 Ns impulse. The 

strain ratio at A increases monotonically to peak value around 90 /usee and remains more 

or less constant. The time to peak strain is less than the time to reach peak displacement. 

This is true with all stiffener sizes. 

The stress ratio at A increases until 15 //sec and drops when the applied load 

drops to zero. It reaches another lower maximum when the inertial forces in the system 

become significant. Thereafter, it drops and oscillates around the zero mean value. 

The corresponding variation of failure function at A is also shown in Figure 6.16. 

It reaches a maximum value at the end of loading phase due to high initial shear stress 

ratio. The failure function drops when the applied load drops to zero. It increases again 

and reaches the maximum value when the inertial force of the system is substantial. At 

this stage, the plate has undergone a significant amount of stretching and bending 

contributing to the failure function via strain ratio. The time to peak failure function 

occurs around 90 //sec, which also coincides with peak strain. This time to peak failure 

function changes slightly with the applied impulse but remains the same for all stiffener 

sizes. 
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Similar variation of these functions with time for the stiffener centre of the above 

plate (point C) under the same load is shown in Figure 6.17. Both strain and stress ratios 

have a much smaller magnitude compared to the boundary point. This is true with all 

stiffener sizes under a uniformly applied load. 

The strain at C is always less than that of A . The experiments showed failure of 

the stiffener at the interface of the beam and plate near the centre for a 3 x 9 - mm 

stiffened plate (Figure 6.1). This is considered to be a shear failure and not a strain 

dominated failure. The maximum shear stress at C (Figure 6.17) always occurred at the 

end of the loading phase. During the loading phase, the shear stress at C is of comparable 

magnitude to that of A (Figure 6.16). This is especially true for a stiffened plate with deep 

stiffeners. Thus, the failure of the stiffener-plate interface could be the result of high 

initial shear stress during the loading phase. 

The time to peak displacement is less than that of an unstiffened plate of the same 

size. Similarly, the time to peak strain and the second peak of shear stress and the time to 

peak failure function are all less than the corresponding time for an unstiffened plate. 

6.4.1.2 Mode II 

As the applied impulse is increased, the threshold impulse to cause rupture of stiffened 

plates is reached. The threshold impulses are 9.5 Ns with LIC and 13.3 Ns with QIC 

using a 2 x 2 grid for the analysis. The changes in strain ratio and stress ratio as a function 

of stiffener depth are shown in Figures 6.18a and 6.18b respectively. The figure shows 

the response of stiffened plates under an impulse of 9.5 Ns, threshold impulse to cause 

rupture using LIC at A and C. These are the points observed to exhibit failure initiation in 
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experiments. Hence, they are chosen to study the rupture initiation in these plates. The 

values at these two locations correspond to those obtained before the end of the loading 

phase. 

Figure 6.18a shows that although there is some change in the strain ratio with a 

change in stiffener size, these changes are insignificant. However, the stress ratio 

corresponding to that time exhibits a much larger change with stiffener size. For the same 

loading, a 3 x 9 - mm stiffened plate develops 25% more shear force at the interface than 

a 3 x 2 - mm stiffened plate at the same location (Figure 6.18b). This is the first 

indication towards the possible failure of the stiffener-plate interface. These values are 

much below the threshold to cause failure during the loading phase. 

Figures 6.18c and 6.19 show the corresponding variation of the failure function 

with stiffener depth at the threshold impulse to failure using Linear and Quadratic 

Interaction Criteria respectively. The values shown are at the end of the loading phase, to 

reflect the effect of high initial shear stress on the failure of the stiffener-plate interface. 

Both figures show that the failure function has a higher value at A than that of C. The 

failure function at A shows a slight increase with stiffener depth, while the function at C 

increases monotonically. The gap between them decreases linearly with the increase in 

stiffener depth. However, these values are well below the threshold to failure. 

Tables 6.5a and 6.5b present the time to first element failure (tin), strain ratio (s), 

stress ratio (r) and displacement at the stiffener centre at the time of first failure (zlc,) 

for all stiffened plates. The applied impulse is just enough to cause mode II failure in all 

plates. From the table, it is evident that the mode II threshold is independent of stiffener 
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size. Also, the contribution of strain and stress ratio to the failure function which 

identifies the rupture is almost the same for all sizes of stiffeners. Although the time to 

failure is also the same, the central displacement at failure decreases monotonically with 

the stiffener size. 

The failure at this impulse occurs due to a combination of stress and strain ratios 

much after the loading phase is over. This is typical of mode II failure which is observed 

in the unstiffened plates. This strain domination is evident when the strain contribution to 

reach failure is observed which is characteristic of mode II failure. However, the failure 

function also has a significant contribution from stress ratio at the threshold impulse 

(46% of failure function is due to the shear stress ratio at the threshold impulse in 

stiffened plates, while close to 50% of failure function is due to shear stress ratio in an 

unstiffened plate when LIC is used for the failure analysis). A strain based criterion 

would miss this significant effect and thus give a higher threshold to failure (Nurick et al, 

1995). The time to failure also coincides with the plate developing very high inertial 

forces at these times resulting in high shear stress ratios shown in the tables. 

The results in Table 6.6 were obtained using a 3 x 3 grid under 9.5 Ns of impulse, 

with LIC to detect rupture. Once again, the numerical results converge when a finer mesh 

is used to model the stiffened plate. The last column in the two Tables 6.6a and 6.7 shows 

the mode I displacement (4 „ i ) m a t the p l a t e would have achieved if failure was ignored. 

Figure 6.20 (a through d) shows the variation of failure function as a function of 

impulse for different stiffener sizes. The values correspond to the time just before the end 

of the loading phase using LIC. The failure function at A is consistently higher than that 
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of C at all impulses for all stiffener sizes. That is, failure always starts at the middle of the 

clamped boundary parallel to the stiffener (point A). Although the difference between the 

two failure functions reduced significantly with the increase in stiffener size, this was not 

enough to cause the failure at the stiffener centre as observed in experiments for deep 

stiffeners ( 3 x 9 - mm). At higher impulses (> 14 Ns), the failure occurs before the 

loading phase is over (< 15 //sec) due to high values of initial shear stress ratio. This 

behaviour is also consistent with the results of an unstiffened plate seen in Chapter 4. 

The predicted stiffener centre displacement is plotted against impulse in Figures 

6.21 through 6.24 for 3 x 2 - mm to 3 x 9 - mm stiffened plates, respectively, along with 

the experimental data. The predicted mode I displacements are slightly higher in the case 

of 3 x 2 - mm stiffener, but the values are in excellent agreement with experimental data 

in the case of 3 x 4 - mm and 3 x 5 - mm stiffeners. This is because the analysis for the 3 

x 2 - mm case is carried out using the static yield stress of 265 MPa, while the 

experimental plates had the static yield strength of 302 MPa. Clearly an increase in the 

yield stress would decrease the permanent displacement predicted by the analysis. Hence, 

this could be a reason for this slightly higher value. However, the 3 x 9 - mm stiffener in 

experiments has a much higher central displacement compared to the analysis. The other 

aspect is that these stiffeners also failed at the interface between the beam and the plate 

near the centre, which was not predicted by the analysis. 

6.4.2 Nonuniform Load 

From the Figures 6.20 (a through d), it is clear that under the applied uniformly 

distributed load, the failure always occurred first at the supported boundary parallel to the 
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stiffener. On the other hand, the experiments showed localised tearing at the stiffener-

plate interface for a plate with deep stiffener (Figure 6.1). 

In an attempt to explain this discrepancy, it is worth noting that in the experiments 

the explosive was laid out on a 12-mm thick polystyrene pad in two concentric square 

annuli, which were interconnected by two perpendicular strips of explosive called cross-

leaders. A short tail of explosive holding the detonator was then attached to the centre of 

the cross-leaders. The mass of explosive for the tail and the cross-leaders was constant for 

all the tests. The impulse which was applied to the flat side of the plate was increased by 

increasing only the mass of the annuli explosive. 

Since there is an extra mass of explosive along with detonator at the centre of the 

plate, it was thought this might have introduced a nonuniform load distribution. 

Therefore, a series of analyses with a nonuniform load distribution over the plate were 

undertaken. 

Two different nonuniform load distributions are considered in the analyses. In 

this, the element next to plate centre is subjected to a higher load magnitude compared to 

the remaining elements. However, the total impulse applied to the structure is kept the 

same. These are termed as Nu-2 and Nu-3 respectively, depending on whether the central 

element is subjected to two or three times the load applied to other elements. Once again, 

the plate response is computed over a range of impulses for all stiffener sizes. 

6.4.2.1 Model 

Figure 6.25 shows the response of various stiffened plates under an impulse of 5 Ns. The 

structure is modelled using a 2 x 2 grid, that is 4 plate elements and 2 beam elements for 
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the quarter plate. The element next to the plate centre in this case is subjected to twice the 

load applied to the other elements (load distribution: Nu-2). The response is typical of 

mode I failure, where the central deformation increases continuously to reach the peak 

value. The time to peak displacement is about 125 /usee for all stiffener sizes and is the 

same for the uniformly distributed load also. However, the magnitudes of displacements 

are different and they decrease with increasing stiffener depth. Also, the rate at which the 

plate undergoes deformation is inversely proportional to stiffener depth. 

The permanent displacement profiles of the plate in mode I failure for the above 

case are shown in Figure 6.26. The permanent central displacement for each stiffener is 

higher than the corresponding value obtained with a uniformly distributed load. The 

relative difference is highest for thick stiffeners and decreases as the depth decreases. 

However, the maximum displacement for the thick stiffeners (3 x 9 - mm stiffener) still 

occurs at a point between the stiffener centre and the boundary. The other important 

feature is that, although the deflection profiles are quite different, they all have same 

amount of bending rotation. This once again proves that the failure when possible will 

occur at the same impulse, i f the stress ratio contributions are the same and will occur at 

the same time for all stiffened plates. 

The time history of stiffener central displacement for uniform and nonuniform 

load distribution (Nu-2, Nu-3) is shown in Figure 6.27. The results are for a 3 x 2 - mm 

stiffened plate under an impulse of 5 Ns. A l l three curves show a monotonic increase in 

displacement value. The time to peak displacement, however, decreases with nonuniform 
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load distribution due to the higher rate at which the plate deforms. The higher the 

localised load near the plate centre, the higher the magnitude of displacement also. 

Figure 6.28 shows the predicted mode I failure displacement profile for all three 

cases. The permanent central displacements are 4.89 mm for the uniform load and 5.87 

and 6.38 mm for the nonuniform load distribution, Nu-2 and Nu-3 respectively. There is a 

17% and 24% increase in the permanent central deformation for the load cases Nu-2 and 

Nu-3 respectively. The element next to the plate centre is subjected to 37.5% and 50% 

higher load when compared to the uniformly distributed load magnitude. The increase in 

central deformation does not reflect the same increment as that of the load. The other 

elements are subjected to a 20% and 33.3% less load respectively when Nu-2 and Nu-3 

are applied on a 2 x 2 grid. Also due to the higher localised load, the plate shows a 

slightly sharper curvature at the boundary. 

This effect of increased central deformation and curvature at the boundary is true 

for the other three stiffener sizes also. Figure 6.29 shows the predicted mode I 

deformation of all four stiffened plates. The applied impulse is 5 Ns and the analysis is 

carried out by using a 2 x 2 grid for the quarter plate. There is a uniform increase in the 

permanent central displacement of plates due to nonuniform loading for different stiffener 

sizes. The magnitude of permanent deformation decreases with increasing stiffener size. 

Table 6.7 shows the maximum strain at A for all three load distributions. There is 

a steady increase in the strains, experienced by the plate under nonuniform load. 
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6.4.2.2 Mode II 

Figures 6.30 and 6.31 shows the variation of failure function as a function of stiffener 

depth under the nonuniform loading Nu-2 and Nu-3, respectively. Both plots are for a 

load corresponding to 5 Ns impulse and are analysed using a 2 x 2 grid and the Linear 

Interaction Criterion. In addition, Figure 6.30 also shows the changes in failure function 

with stiffener depth for the finer grid (3 x 3). The impulse is typical of an impulse causing 

mode I failure. The figure is plotted at 14.5 //sec, just before the end of loading phase, to 

capture the effect of high initial shear stress. The failure function at the midpoint on the 

boundary (A) in both figures remains almost a constant, thus independent of stiffener 

size. The same is not true with the failure function at the stiffener centre (C). 

The localised load tends to increase the shear stress at the stiffener centre. This 

effect is more pronounced with thick stiffeners ( 3 x 9 - mm stiffener) where the initial 

shear stress at the centre is more than that at the boundary. The cross-over occurs around 

7 mm and 6 mm depth for the coarse and fine grid respectively, with load distribution 

Nu-2. The threshold moves to the left as seen in Figure 6.31, with higher concentration of 

load near plate centre. 

The failure function at the boundary drops from 40% to 36% as load distribution 

changes from Nu-2 to Nu-3 while the stiffener centre failure function at the same time 

increases from 20% to 25% for a 3 x 2 - mm stiffened plate. There is a monotonic 

increment in the value of failure function at the stiffener centre with increase in stiffener 

depth. The 3 x 9 - mm stiffened plate shows an increment from 45% to 57% in the value 
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of failure function. This increasing tendency is responsible for a local failure of stiffener-

plate interface. 

Even though the failure function at stiffener centre is higher, it is well below the 

threshold to cause failure under the applied load (5 Ns). If the applied load is increased 

then failure is identified either at the boundary (A) or at the stiffener centre (C) depending 

on which of the failure function reaches a value of one first. 

Next, the failure function is plotted as a function of impulse in Figures 6.32 (a 

through d) for all four stiffener sizes. The applied load distribution is Nu-2 and the plates 

are modelled using a 2 x 2 grid for quarter plate. As discussed earlier, the values are 

plotted just before the loading phase is over to capture the effect of high initial stress 

ratio. Once again the two possible locations of failure, A and C, are considered in the 

analysis. The 2, 4 and 5 mm deep stiffeners show that the failure function at the boundary 

is higher than that of the stiffener centre. The difference between them reduces quite 

significantly as the stiffener depth increases and also with higher applied impulse. 

However, only the 9 mm deep stiffener actually shows the stiffener centre having a higher 

value than that of boundary point. Even though the transition occurs, the magnitude is not 

enough to cause failure until 13 Ns. At this impulse, the stiffener centre fails earlier than 

that of the boundary. This effect is also seen when a 3 x 3 grid is used under load 

distribution Nu-2 for a 3 x 9 - mm stiffener. Thus, one possible explanation for the failure 

at plate stiffener interface is the effect of high localised loading. 

The threshold impulse to cause failure at the interface drops when a Nu-3 load 

distribution is considered. The effect is more pronounced when the load is more localised, 

and even the threshold moves to the left as discussed earlier. 
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The threshold to cause mode II failure is reached as the applied impulse is 

increased. The threshold is 13 Ns using QIC for all stiffened plates with load distribution 

Nu-2. This is slightly lower when compared to the uniform load. This is evident from 

Figure 6.28 which showed an increase in curvature at the boundary. The threshold 

impulse to cause mode II failure is, once again, the same for all stiffener sizes, and the 

failure at boundary (A) is predicted at this impulse. 

Figures 6.33 through 6.36 shows the mode I failure of stiffened plates under 

uniform and nonuniform load distribution. In all figures, the permanent displacement of 

the plate is higher than a corresponding uniform distribution. With the increase in 

stiffener depth, especially for 4 mm and 5 mm deep stiffeners, the results from 

nonuniform distribution give an upper bound to experimental results. The importance of 

load distribution is evident when 3 x 9 - mm stiffened plate results are observed. 

Since the aim of the study was to find the threshold impulse to failure as well as 

the failure mode transition, post-failure analysis is not carried out. For the 3 x 9 - mm 

stiffened plate, the nonuniform load distribution, Nu-3, causes rupture at the stiffener-

plate interface. The failure at the interface is predicted for this plate at 10 Ns using LIC. 

This matches very well with experimental observation. Also, the cross-over in the case of 

the 3 x 5 - mm stiffened plate occurs around 16 Ns impulse, and is in fact close to the 

experimentally reported failure (shown by the solid diamond symbol in Figure 6.35). 

6.5 Post-Failure Analysis 

The post-failure analysis of stiffened plates is carried out using the node release 

algorithm. The technique developed for unstiffened plates is further modified to simulate 
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the progression of rupture in stiffened plates. A l l the results presented in this section are 

obtained using the 2 x 2 grid to model the quarter plate. At present, there is no 

experimental evidence to support the failure progression. For illustration purposes, only 

the results for the 3 x 2 - mm stiffened plate under uniform load is presented. The post-

failure analysis of the plate with other stiffener sizes are left for future study. Once 

sufficient experimental evidence is gathered, they can be used to correlate with the 

predicted results. Quadratic Interaction Criterion is used to identify failure, as it proved to 

be a better model than Linear Interaction Criterion. 

6.5.1 Mode II* 

Figure 6.37 shows the time history of central displacement, side pull-in and the kinetic 

energy of a 3 x 2 - mm stiffened plate under 13.3 Ns impulse. The element side is 

released once failure is identified at the boundary parallel to the stiffener (point A in 

Figure 6.6) and the analysis is continued. The remaining energy is absorbed by the plate 

with no further failure. Thus, a partial failure regime is identified. 

A plot of the central displacement, side pull-in and the kinetic energy versus time 

is shown in Figure 6.38. The applied impulse is 14.1 Ns. The failure starts at A (shown by 

the solid circle in the figure). Further the failure continues on the same side of the 

stiffened plate (AO in Figure 6.6)and then the boundary adjacent to the stiffener (OB in 

Figure 6.6) fails (shown by the solid diamond and triangle symbols respectively). The 

remaining element sides are released and the entire plate is supported by the stiffener end 

only (point B in Figure 6.6). The input energy is not sufficient to cause complete failure. 

Figure 6.39 shows the 3-D profile of the deformed plate at the instant when the plate has 
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torn away from all the points along the boundary except at the stiffener. The two views of 

the deformed plate clearly shows the stiffener end still attached to the boundary. 

6.5.2 Mode Ila 

The temporal variation of the stiffener centre displacement, side pull-in and the kinetic 

energy of the system is shown in Figure 6.40 for the 3 x 2 - mm stiffened plate under an 

applied load of 16 Ns. The same trend continues at higher loads with failure always 

starting at the middle of the boundary parallel to the stiffener (point A), and terminating 

at B. The solid symbols in the figure are the instances at which each of the failure 

occurred. Once all the element sides are released, the plate is held by the stiffener end 

(point B). The reaction force is calculated using the force equilibrium, which is used to 

estimate the shear stress contribution. Failure is identified at this point when the failure 

function reaches a value of one (f= 1). At this stage, all the nodes are released and the 

plate separates from the boundary. Temporal integration is further carried out to account 

for any deformation occurring during the free-flight of the torn plate until a steady state is 

reached. Figure 6.41 shows the 3-D profile of the torn plate. The deformed profile 

indicates that substantial amount of input energy is absorbed by the plate. 

The plate enters the mode lib and mode III failure regimes, as the applied impulse 

is increased. The failure is dominated by shear in these two failure modes which is 

reflected by the insignificant deformation of the plate. 
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6.5.3 Permanent Central Displacement 

A plot of the stiffener centre displacement versus impulse is shown in Figure 6.42, for the 

3 x 2 - mm stiffened plate along with the experimental data (Nurick et al., 1995). The 

predicted mode II failure always occurred at the boundary and it always started at A . 

Only one experiment with 3 x 2 - mm stiffened plate showed rupture at the boundary 

parallel to the stiffener and the results do not offer a comprehensive comparison with the 

numerical predictions. Experimentally, the mode II failure in 3 x 2 - mm stiffened plates 

occurred around 14 - 15 Ns impulse. This value compares favorably with the results of 

13.3 Ns obtained using the Quadratic Interaction Criterion. The predicted threshold 

impulse for mode Ila is around 15 Ns. 

There is a monotonic increase in the stiffener centre displacement with the 

increase in impulse until the threshold impulse to mode II failure is reached. Similar to 

the unstiffened plates the predicted central displacement of stifffened plate shows an 

increasing trend for mode II*, mode Ila and decreasing trend for mode lib. 

6.5.4 Side Pull-in and Residual Kinetic Energy 

Figure 6.43 shows a plot of the side pull-in versus impulse. The amount of side pull-in 

increases with the impulse and increasing central deformation for mode Ila. Thereafter, 

this side pull-in decreases with increasing impulse. 

The variation of the residual kinetic energy with impulse is shown in Figure 6.44. 

The prediction shows a linear increase in the energy of the system with impulse. 
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6.5.5 Centreline Displacement Profiles 

The deflection profiles at the time of first element failure for the 3 x 2 - mm stiffened 

plate are shown in Figure 6.45 for selected cases, using QIC. A l l these failures are 

predicted to occur at the boundary. The profiles shown in these figures change 

dramatically with increasing impulse. This is because the failure function gets an 

increased amount of contribution from stress ratio with increasing impulse. The time to 

failure also decreases continuously with the higher applied impulse. This means that the 

structure did not have enough time to deform fully before failure occurred. 
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Table 6.1: Static analysis results of 2-bay stiffened plate I 

Panel Stiffener Energy Spring 
Type of Model centre centre (N-m) force at 
analysis deflection deflection centre 

(mm) (mm) (N/m) 
Linear Koko 0.471 0.042 0.335 -
elastic 

with springs1 0.471 0.042 0.335 230.5 
Finite strip 0.461 0.052 0.348 -

Nonlinear Koko 14.61 8.62 253.79 -
elastic 

with springs1 14.61 8.62 253.83 46935 
Large Koko 14.61 11.30 - -

deflection 
elastic-
plastic 

with springs1 14.61 11.30 - 29952 

1 Spring stiffness ks — l x l 0 1 5 is used in the analysis 

Table 6.2: Influence of spring stiffness on the linear elastic response of 2-bay stiffened 
plate I 

Spring Panel centre Centre Energy Stiffener Spring 
stiffness displacement displacement (N-m) centre force 
(N/m) (mm) (plate end) deflection (N/m) 

(mm) (mm) 
0 0.673 0.860 0.0364 0.0 0.0 

103 0.672 0.858 0.0363 0.6x10"6 0.858 
106 0.529 0.280 0.0225 0.117 163.4 
109 0.475 0.059 0.0171 0.059 225.4 
1012 0.471 0.042 0.0167 0.042 230.5 
1015 0.471 0.042 0.0167 0.042 230.5 



Chapter 6. Stiffened Plate Analysis Results 140 

Table 6.3: Dynamic analysis results of 2-bay stiffened plate II 

Peak panel Peak stiffener Frequency Peak 
Type of Model centre centre of structure spring 
analysis deflection 

(mm) 
deflection 

(mm) 
(Hz) force 

(N/m) 
Linear Koko 12.08 1.64 771.45 -
elastic 

with springs1 12.08 1.64 771.40 35465 
Nonlinear Koko 3.95 2.23 - -

elastic 
with springs1 3.95 2.24 _ _ 

1 Spring stiffness ks = l x l O 1 5 is used in the analysis 

Table 6.4: Central displacement and maximum strain at midpoint on boundary parallel to 
stiffener of stiffened plate with different stiffener sizes under 5 Ns impulse 

a) 2x2 grid 

H 
(mm) 

4 
(mm) 

Maximum strain at A 
H 

(mm) 
4 

(mm) 
Cm «* £ 

2 4.89 0.008 0.052 0.060 
4 4.13 0.007 0.054 0.061 
5 3.67 0.007 0.054 0.061 
9 1.71 0.008 0.054 0.062 

b) 3x3 grid 

H 
(mm) 

4 
(mm) 

Maximum strain at A 
H 

(mm) 
4 

(mm) 
em £h £ 

2 4.98 0.008 0.052 0.060 
4 4.22 0.007 0.052 0.060 
5 3.78 0.007 0.053 0.060 
9 1.74 0.008 0.054 0.062 
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Table 6.5: Stress ratio, strain ratio, time to first element failure and stiffener centre 
displacement at the threshold impulse to mode II failure for all stiffener sizes using 2 x 2 

grid 

a) LIC 

H An2* T £ hn 4 / 4„> 
(mm) (Ns) (//sec) (mm) (mm) 

2 9.5 0.427 0.574 61.0 4.48 10.32 
4 9.5 0.460 0.540 57.5 3.82 9.10 
5 9.5 0.469 0.536 56.0 3.49 8.40 
9 9.5 0.466 0.537 54.5 2.50 5.20 

b) QIC 

H 
(mm) 

An 2* 
(Ns) 

4 , 
(mm) 

£ T hn 
(//sec) 

2 13.3 6.64 0.835 0.553 64.0 
4 13.3 5.05 0.798 0.604 55.5 
5 13.3 4.66 0.796 0.607 54.5 
9 13.3 3.51 0.801 0.600 53.0 

Table 6.6: Stress ratio, strain ratio, time to first element failure and stiffener centre 
displacement at the threshold impulse to mode II failure for all stiffener sizes using 3 x 3 

grid 

H 
(mm) 

An 2* 
(Ns) 

T £ hn 
(//sec) 

A, 
(mm) 

4„ i 
(mm) 

2 9.5 0.462 0.544 52.5 3.67 10.55 
4 9.5 0.467 0.540 51.5 3.26 9.33 
5 9.5 0.465 0.564 51.5 3.08 8.63 
9 9.5 0.455 0.546 52.0 2.31 5.42 
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Table 6.7: Comparison of maximum strain at midpoint on boundary parallel to stiffener 
under different load distribution 

Maximum strain at A 
H Uniform Nu-2 Nu-3 

(mm) load 
2 0.060 0.071 0.080 
4 0.061 0.069 0.076 
5 0.061 0.069 0.075 
9 0.062 0.070 0.075 
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Courtesy: International J of Impact Engg 

3 x 2 - mm stiffener 
Mode IIB 

143 

3 x 4 - mm stiffener 
Mode IIB 

3 x 9 - mm stiffener 
Mode IIS 

Figure 6.1: Failure modes of explosively loaded stiffened square plates 
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Elastic modulus = 71,700 N/mm2 

Hardening modulus = 358.5 N/mm2 

Yield stress = 284 N/mm2 

Poisson's ratio = 0.3 

Figure 6.2: Configuration of 2-bay stiffened plate I 
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Figure 6.3: Configuration of 2-bay stiffened plate II 
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Figure 6.4: Comparison of linear elastic response of clamped 2-bay 
stiffened plate II due to step load 
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Fig. 6.5: Comparison of nonlinear elastic response of clamped 2-bay 
stiffened plate II due to step load 
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Figure 6.6: Configuration and finite element model of one-way stiffened plate 
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Figure 6.7: Comparison of mode I displacement time history of 
3 x 2 - mm stiffened plate 
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Figure 6.8: Comparison of permanent deflection profile of 
3 x 2 - mm stiffened plate in mode I failure 
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Figure 6.9: Time history of central displacement and kinetic energy 
of 3 x 2 - mm stiffened plate in mode I failure 
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Figure 6.10: Transient deflection profiles of 3 x 2 - mm 
stiffened plate in mode I failure 
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Figure 6.11: Comparison of central displacement time history of stiffened 
plate for different stiffener sizes in mode I failure 
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Figure 6.12: Predicted permanent deflection profiles for plate with 
different stiffeners in mode I failure 
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a) 3 x 2 - mm stiffener 

b) 3 x 4 - mm stiffener 

Figure 6.13: 3-D mode I deflection profiles of stiffened plate 
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c) 3 x 5 - mm stiffener 

d) 3 x 9 - mm stiffener 

Figure 6.13: 3-D mode I deflection profiles of stiffened plate 
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Figure 6.14: Comparison of mode I displacement profile for 
3 x 2 - mm stiffened plate with different grid sizes 
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Figure 6.15: Comparison of strain distribution along the boundary 
parallel to stiffener for stiffened plates 
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Figure 6.16: Plot of strain ratio, stress ratio and failure function with 
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Figure 6.17: Plot of strain ratio, stress ratio and failure function with 
time at the stiffener centre 
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Figure 6.18: Comparison of failure function and components at the threshold 

impulse to mode II failure under uniformly distributed load - LIC 
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Figure 6.19: Comparison of failure function at the threshold impulse to 
mode II failure under uniformly distributed load - QIC 



Chapter 6. Stiffened Plate Analysis Results 1 

1.0 

0.8 

c o 
"5 0.6 c 
3 

4 -

O 
3 0.4 
w 

0.2 

0.0 

Uniform load 
2x2 grid 
LIC 

A - Midpoint on boundary 
parallel to stiffener 

C - Stiffener centre 

5 10 

Impulse (Ns) 

a) 3 x 2 - mm stiffener 

15 

1.0 

0.8 

c o 
O 0.6 c 
3 
<1> 

0.4 

0.2 

0.0 

Uniform load 
2x2 grid 
LIC 

A - Midpoint on boundary 
parallel to stiffener 

C - Stiffener centre 

0 5 10 15 

Impulse (Ns) 

b) 3 x 4 - mm stiffener 
Figure 6.20: Comparison of failure function with impulse for plate 

with different stiffener sizes 



Chapter 6. Stiffened Plate Analysis Results 1 

1.0 

0.8 

c 
o 
t> 0.6 
c 

CD 

Jj 0.4 
're u_ 

0.2 

0.0 

Uniform load 
2x2 grid 
LIC 

A - Midpoint on boundary 
parallel to stiffener 

C - Stiffener centre 

5 10 

Impulse (Ns) 

c) 3 x 5 - mm stiffener 

15 

1.0 

0) 

re 

0.8 H 

c 
o 
t> 0.6 
c 

0.4 

0.2 

0.0 

Uniform load 
2x2 grid 
LIC - - C 

A - Midpoint on boundary 
parallel to stiffener 

C - Stiffener centre 

0 5 10 15 

Impulse (Ns) 

d) 3 x 9 - mm stiffener 

Figure 6.20: Comparison of failure function with impulse for plate 
with different stiffener sizes 
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Figure 6.21: Plot of central displacement versus impulse 
for 3 x 2 - mm stiffened plate 
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Figure 6.22: Plot of central displacement versus impulse 
for 3 x 4 - mm stiffened plate 
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Figure 6.23: Plot of central displacement versus impulse 
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Figure 6.25: Comparison of central displacement time history 
of stiffened plates under nonuniform load 
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Figure 6.26: Predicted mode I deflection profile of stiffened plates 
under nonuniformly distributed load 
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Figure 6.27: Time history of central displacement of 3 x 2 - mm 
stiffened plate under different load distribution 

Figure 6.28: Predicted mode I deflection profiles for 3 x 2 - mm 
stiffened plate under different load distribution 
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Figure 6.29: Comparison of stiffener centre displacement for plates 
in mode I failure for different load distribution 
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Figure 6.31: Variation of failure function with stiffener size under 
nonuniformly distributed load (Nu-3) 
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Figure 6.32: Variation of failure function with impulse for stiffened 
plates under nonuniformly distributed load 
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Figure 6.33: Comparison of stiffener centre displacement versus impulse for 
3 x 2 - mm stiffened plate under different load distribution 

Figure 6.34: Comparison of stiffener centre displacement versus impulse for 
3x4- mm stiffened plate under different load distribution 
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Figure 6.35: Comparison of stiffener centre displacement versus impulse for 
3 x 5 - mm stiffened plate under different load distribution 
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Figure 6.37: Time history of central displacement, side pull-in and kinetic 
energy of a 3 x 2 - mm stiffened plate in mode II* failure 
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Figure 6.38: Plot of central displacement, side pull-in and kinetic energy 
versus time for a 3 x 2 - mm stiffened plate in mode II* failure 
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Figure 6.39: 3-D profile of 3 x 2 - mm stiffened plate in mode II* 
failure (two views of deformed plate, Impulse 14.1 Ns) 
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Figure 6.40: Temporal variation of central displacement, side pull-in and 
kinetic energy of 3 x 2 - mm stiffened plate in mode Ila failure 
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Figure 6.41: 3-D profile of 3 x 2 - mm stiffened plate in mode Ila 
failure (two views of deformed plate, Impulse 16 Ns) 
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Figure 6.42: Plot of central displacement versus impulse 
for a 3 x 2 - mm stiffened plate using QIC 
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Figure 6.43: Plot of side pull-in versus impulse for a 
3 x 2 - mm stiffened plate using QIC 
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Figure 6.45: Deflection profile at the time of first element failure for 

3 x 2 - mm stiffened plate under uniform load 



Chapter 7 

Summary, Conclusions and Suggestions 

7.1 Summary 

Super finite elements (beam and plate elements) are used to predict the large deformation, 

elastic-plastic transient behaviour of unstiffened and stiffened plate structures. The 

displacement fields of the element are represented by polynomials as well as continuous 

analytical functions, and the elements have been specially designed so that one element is 

sufficient to model the deformational response of the entire structure. 

The von Karman large deflection theory is used to model the geometric 

nonlinearities. Material nonlinearities are modelled by the von Mises yield criterion and 

the associated flow rule using a bilinear strain-hardening law. Strain-rate effects are 

included via Cowper-Symonds relation. The finite element equations are derived using 

the virtual work principle, and the matrix quantities are evaluated by Gaussian 

quadrature. Five integration points are used in each in-plane direction, and four points are 

used through the thickness. Temporal integration is carried out using the Newmark-/? 

method with Newton-Raphson iteration for solution of the nonlinear equations within 

each time step. 

A n interactive failure model is proposed to predict the tearing and rupture of thin 

steel plates and stiffened plate structures under blast loading. The model accounts for the 

membrane and bending strains as well as the transverse shear stress experienced by the 

structure under the applied load. The interaction between the tensile tearing and shearing 

176 
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mode of failure is considered via an interaction relation between the strain and stress 

ratios. Two interactive failure criteria are considered, either Linear (LIC) or Quadratic 

(QIC) based on the way the ratios are added. The bending strain is estimated by assuming 

that a plastic hinge line develops at the boundary, while the membrane strain is calculated 

using the finite element prediction of the deformed profile. The total strain, composed of 

membrane and bending components, is then divided by a specified rupture strain for the 

material, to obtain the strain ratio. 

Since the finite element formulation is based on Kirchhoff plate bending theory, 

the program does not provide any information on shear strains (stresses). In order to 

achieve a continuous estimation of the shear force and stress along the plate boundary, a 

series of very stiff springs are introduced there. The use of high stiffness values 

effectively simulates the clamped boundary condition of the problem. The estimated 

shear stress is then compared to the ultimate shear strength of the material to form a stress 

ratio. 

A node release algorithm is developed to simulate the progression of rupture. 

When the plate tears completely, it separates from the boundary and flies freely. The 

post-failure analysis is continued to account for the deformation which continues during 

the free flight of the torn plate. The new formulation has been applied to predict the 

failure modes of unstiffened and stiffened square mild steel plates. The verification of the 

spring supported plate model in linear and nonlinear static as well as dynamic domain 

confirms the validity of using this approach for modelling plate structures. 

The predicted failure modes using the above model for blast loaded unstiffened 

and stiffened plates are presented and compared with available experimental data. The 
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predicted threshold impulse to mode II failure for unstiffened square plates is in the same 

range as that of experiments. In fact, the proposed Linear and Quadratic Interaction 

Criteria for identifying rupture appear to provide a bound on the observed experimental 

results. The threshold impulse to mode II failure is also predicted quite well for the 

stiffened plates. Of the two, the Quadratic criterion predicts results which are closer to 

experiments. 

The threshold impulse to transverse shear failure mode (mode III) is established 

with reasonable accuracy. In addition to the failure modes, the model also predicts 

associated parameters like residual kinetic energy, side pull-in and deformation profiles 

of the ruptured plates which also compare well with the experimental data. 

The extensive sensitivity analysis carried out indicates the versatility of the failure 

model. The simple modelling of the plate structure and the small input data file are 

indeed very attractive features for the failure analysis of these simple plates. 

7.2 Conclusions 

The proposed interactive failure model provides a satisfactory method for the analysis of 

unstiffened and stiffened square plates subjected to blast loading. The inclusion of the 

node release algorithm results in simulating the failure progression, and thus, identifying 

the partial failure regime. The model captures the interaction effects between the tensile 

tearing and shearing failure modes and the reasonably accurate predictions instills 

confidence in the failure models used. 

The model successfully predicts the threshold to mode II failure in the case of 

stiffened plates. It also suggests the possible paths of failure progression. For plate with 
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deep stiffeners, the experimentally observed localised tearing near plate centre, is 

captured by the model under nonuniform distribution of load. 

The Quadratic Interaction Criterion predicts consistently better results than the 

Linear Interaction Criterion as compared to the experimental results. The results clearly 

indicate the influence of shear on the failure mechanism not only for mode III, but also 

for mode II. The results confirm the importance of the interaction effects of tensile and 

bending strain on tearing and shear failure. 

The rigorous testing of the failure model through an extensive parametric study 

provides useful guidelines and charts for designing simple plate structures to resist blast 

loading. The main usefulness of the model is its simplicity and capability to capture the 

global response with relatively few elements and yet obtain a reasonable overall accuracy 

in the failure predictions. 

Even though the model is adequate for identifying the failure at the global or 

structural level, it lacks the sophistication and detail in modelling the fracture process. 

The absence of an energy dissipation mechanism will lead to some uncertainties in the 

predicted failure thresholds. 

The predicted threshold and range of different failure modes still depends on the 

input material parameters, especially the rupture strain and ultimate shear strength of the 

material. Once better understanding and characterization of material behaviour under high 

rates of loading is possible, the present model offers the scope for incorporating them in 

the future. 
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7.3 Suggestions for Future Work 

1. Although the present model is adequate to understand the failure modes of unstiffened 

and stiffened plates, more experimental results would give further confirmation of the 

phenomenon. Further validation of the model can be made by analysing failure of 

simple plates made of different materials. 

2. In the present work, the plastic hinge length is held constant as there is no theory to 

predict its value analytically. This will definitely have an effect on the predicted 

results. Further work can be carried out in establishing the hinge length and some 

refinements can be made in this regard. 

3. The failure model provides the strain and shear stress data in a continuous fashion at 

all points on the boundary. Thus, it would be worthwhile to conduct research into a 

possible development of an energy dissipation mechanism, in order to obtain a better 

description of tearing and rupture of plate structures. 

4. The present model can be used to study plates with different stiffener sizes. It would 

be worthwhile to carry out a parametric study, on the effect of stiffener depth on the 

post-failure behaviour of stiffened plates. 

5. The formulation can also be extended to the analysis of stiffened and unstiffened shell 

structures. 

6. A study of scaling laws on dynamic rupture would give further confirmation of 

observed phenomenon. 
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Appendix A 

Transverse Shear Stress in Plates through Equilibrium 

Equations 

The equations of equilibrium when inertial forces are present are given by 
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Substituting and rearranging terms we get 
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dz 

dz 

l-vzJ\dx' dxdy1 

d^w c^w] d 
W-v2)\dx2dy ' dy3 J + Pdy (*) 

(A.9) 

(A. 10) 

Integrating Equation (A.9) and (A. 10) 

E d3 w d3 w + 
1 - v V \dx3 cxcy 

C^W d3 w + 

d .. 
2 1 H dx 

d 
\-vl)\cxldy dy 3 ' dy 

v 2 

v 2 

+ a (A.11) 

(A.12) 

Apply boundary conditions that the shear stress is zero at top and bottom surface 

C 3 = 
- h d3 w d3 w • + • 

l-v'Jldx3 cxcy1 

h2 

8 
<?w d3 

• p — ( w ) 
dxy ' 

d 
\-vl)\dxdy dy dy 

(A.13) 

(A.14) 

Substituting for constants C 3 and C 4 

d3 

1-v 2 

^ c 3 

d3 

cxcy2 

p 
d 0 
dx <? 

0 dy 

w I ' z 2 2̂  

2 8 J 
(A. 15) 

In the static case the terms associated with acceleration of the body vanish 

d3 

T., 
y 1 . 1-v 2 

dx3 

d3 

dxdy2 

d3 

dx2dy dy3 

w 

w I 
{z2 h_ 

2 8 

2\ 
(A. 16) 
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The static shear force/unit length is obtained by integrating the shear stress (Equation 

A. 16) through the thickness 

(A. 17) 
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Displacement Functions 

Displacement fields within the plate element are given by 

9 
M*Y r , -« 1 0 A M 

T 

u = Z N"ut + sin 2n^< 
y _ ] 

L2{r?)> < > + sin 4 T T £ ' 4 ( 7 ) > 

MI). A W w 1 5 

9 
M$V ' v i o ' 

T 

v = Z NJv/ + sin 2nn-Li® ' ' V l l > + sin 4TTJ]< • < 
V 1 4 ' 

Mb M$. V 1 5 , 

16 

w = Z tfjVj + 

r 'w, ' T 
' W 8 ' 

^2(7) wy, H*(z) Wx 
• • 

H*(z) 
> < > 

w1 

"4(7). I x<> J 

> + fa) fa)*, 

Where u, v, w are the displacements in the rectangular x, y, z coordinate directions, 

respectively; x and y being in the plane and z normal to it. £ and TJ are the non-

dimensional equivalents of x and y, respectively. L are quadratic Lagrange interpolation 

polynomials, Hj are cubic Hermitian polynomials and (j> is the first vibration mode of a 

fully clamped beam. The in-plane displacement shape functions, N" and N, are 

products of the Lagrange polynomials, while NJ are products of the Hermitian 
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polynomials, y/. represent the variables associated with out-of-plane bending at the 

corner nodes. Also, w, and v, represent the in-plane nodal variables and it is noted that 

the extra ones labeled ul0,uu v 1 5 are actually the amplitudes of the trigonometric 

(Sine) functions used to model the in-plane displacements. 

Beam Elements 

The membrane and flexural displacement fields referred to the centroidal axis of a beam 

in the x-direction are given by 

11 = Z2(4 Lffi) + w 4 sin InS, + u5 sin 4TT^ + 

+ e[H{(%), H'2{c;), H'A($)] 

w = [Htf), H2($; H3(4), H<($] 

w. 

wr 

> + 

where the primes denote differentiation with respect to x and e is the distance between the 

centroidal axis of the beam and the mid-plane of the plate. 
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The effect of torsion and lateral bending in the stiffener beam element has been 

included in some cases. The rotation, 6 and lateral displacement, v fields are 

approximated, respectively, by 

0 = H2^\ H3($, H4(4)] 

*2 J 

+ (/)03 

v = [Lfc), L2({), 4(3] 
3 J 

where 0X 0X ,.. .. v 3 are the beam nodal rotation, twist or lateral displacement variables. 
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Shape Functions 

15 15 25 

Using the notations u = ^ N " u i > v = X '̂"v> ^ w = X 7̂̂0 ' t h e s h a p e 

/=i i=i j=i 

functions for the plate elements are given by 

N; = L^LM) 

N; = i^Lfa) 

N; = £3(^(17) 

N; = L^)L2{ij) 

Nl = LffiLfr) 

N; = L^)L,{rj) 

iV,"0 = 1 , ( 7 7 ) sin 2n$ 

JV," = L2(rj) sin 2 K•£ 

N"2 = 1 3 ( 7 ) 5m InE, 

N"3 = 1 , (7 ) 5m 4fl£ 

iV"4 = I 2 (7 ) 5 m 4;r£ 
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N"5 = 4(7/) « « 4 ^ 

iV," = A7 for / < 9 

N;Q = 4(3 2 ^7 

A^', = 4 ( £ ) 2TTT7 

Â ,2 = 4(<?) 2 ; z 7 7 

N*3 = « n 4 ^ 7 7 

tf* = Z2(3 «« 4TT/7 

iV* = 4(3 sz/i 4mj 

N? = H^)H,{rj) 

N; = H^H^rj) 

N; = H^)H2{rj) 

N: = H2{{)H2{«) 

N: = H^)H,{rj) 

N; = H<(S)HX(T,) 

N; = H3{Z)H2(TJ) 

N? = H^)H2{rj) 

N: = H3($H3(rj) 

Nil = Hfc)H3(r,) 

N;\ = H3($HA(r,) 

K = HA(S)HA(T,) 
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NW 

J V | 3 

= H^)H3{TJ) 

= Hfa)H,{ij) 

NW = HX(Z)H4(tj) 

J V 1 6 = H2(S)HA(ri) 

NW = fa)^(v) 

= fa)Hfa) 

NW 

J V 1 9 
= Hfa)fa) 

NW 

J V 2 0 
= Hfa)fa) 

NW 

i v 2 , 
= faH(v) 

J V 2 2 = faHW 

AT 
J V 2 3 = H^)fa) 

A/" 
-' v24 = Hfa)fa) 

J\IW 1\25 = fa) fa) 

Shape Functions for Beam Element in .x-direction 

The shape functions for a beam element in the x-direction are given by 

N;» = 

N>2" = eHfe) 

K = eH^) 

K = Lfa) 

K = eHfa) 
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= m 

N'" = e<f>'{{) 

= sin 2TZE, 

K = sin 4nE, 

Nf 

N* 

N° = H>® 

N4

B 

JV5
Z 

Where the superscripts m and B stand for membrane and bending, respectively, e is the 

distance between the centroidal axis of the beam and mid-plane of the plate and <f> is the 

first symmetric vibration mode of a clamped beam. For a beam in the ^-direction 

replace £ by TJ . 
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Spring Stiffness Matrix 

The consistent stiffness matrix of springs in the transverse direction is given by 

[V]=pf']Tk\N>}k=ftNb]TkM[Ni]dx 
L I 

13Z ILL 2 21L -13L2 

35 210 210 420 

11Z2 Z 3 13Z2 - 3 Z 3 

210 105 420 420 

271 13Z2 13Z -11Z 2 

210 420 35 210 

-13Z 2 - 3 Z 3 - I L L 2 Z 3 

420 420 210 105 

£, E2 E, E4 

i 

where Ex = J//,(^(<^ 
o 

E2 = )H2(fy>(t)d{ 
0 

1 

E3 = \H3(5W)dZ 
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E4 = JHA(fy@dt 
0 

1 

E5 = j > 2 ( £ ) ^ 

o 

In the above equation H, Ht are Cubic Hermitian polynomials and <j> is the first 

symmetric vibration mode of a fully clamped beam. 



Appendix E 

Global Force Balance Method 

The Kirchhoff theory based analysis is not conducive to failure analysis of plates which 

undergo mode III failure, where transverse shear dominates. Hence, an approximate 

procedure is used to account for the effect of shear in the failure model. A very simple 

analytical method is incorporated into the program to determine the shear stress at the 

support at each time step. The idea is very similar to that used in circular plates (Fagnan, 

1996 and Olson et al, 1995) where a uniform shear stress distribution around the clamped 

boundary is assumed. The shear stress at the boundary is obtained via the reaction force 

estimated at the boundary through the overall structural equilibrium. The vertical forces 

including the inertial force are summed up at each time step to determine the reaction 

force at the boundary. That is, 

where the first term is the applied load, the second term represents the inertial force of the 

system and R is the total reaction force. The inertial force of the system using the 

displacement polynomials of super plate element (Equation 3.7) is given by 

R = jpdA- j pwdV (E.l) 
A V 

(E.2) 
v v 
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J[iV"]cL4 ph\5p} (E.3) 
A 

where p is the material density, h is the plate thickness, and 5 and N are the acceleration 

vector of nodal variables and shape functions associated with w DOF of plate element. 

Substituting the above expression for inertial force in Equation (E.l), we get, 

An average shear stress, ravg, is then calculated by dividing this reaction force by 

the total sectional area at the clamped boundary. This shear stress is used in the failure 

model (Equations 3.35 and 3.36) for the prediction of tearing and rupture of plates. Once 

again, the failure progression is simulated using the node release algorithm, while the 

post-failure analysis is the same as that explained in Chapter 3. 

The square plate analysed in Chapter 4 (section 4.4.1) is again used for this study. 

Figure E . l shows a plot of deflection-to-thickness ratio versus impulse for the 

experimental results as well as predicted results using the two failure models. The 

numerical results show the same general trend for the different modes. Overall, the 

quadratic model appears to correlate more closely with the experimental results than the 

linear failure model. This method fails to predict the mode II*- partial tearing of the plate. 

To that extent, the two criteria are conservative. In essence, compared to an actual failure 

process, the two models do not account for sufficient energy dissipation. This may be a 

direct result of not incorporating any energy dissipating mechanism into the failure model 

as tearing of the plate occurs. The threshold impulse for mode Ila (lm2a) is 18.9 Ns for 

(E.4) 
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QIC and 14.6 Ns for LIC. Similarly, the mode lib threshold (lm2b) is defined at 16 Ns for 

LIC and 22 Ns for QIC. Mode III is defined as complete tearing of the plate with no 

significant deformation. The current analysis predicts a small deformation of 1.3mm for a 

49 Ns impulse for both models. Thus the predicted threshold lies around 50 Ns impulse. 

Limitations of the method 

The results clearly indicate the influence of shear on the failure mechanism not only for 

mode III, but also for mode II. The results confirm the importance of the interaction 

effects of tensile and bending strain on tearing and shear failure. One weakness of the 

analysis is its inability to predict the partial tearing of the plate which was observed in the 

experiments. 

In this procedure, the shear stresses required for determining the interactive failure 

function were assumed to be uniformly distributed over the plate boundary with the 

magnitude equal to the dynamic reaction force divided by the remaining cross-sectional 

area. A shortcoming of this averaging technique is that it masks the peaks and troughs of 

the shear stresses which are vital in the evaluation of the failure functions and detection 

of critical points in the structure. 
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Figure E.l: Plot of deflection-to-thickness ratio versus impulse 
for both failure models 


