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Abstract 
A numerical and experimental assessment of the hydrodynamic performance of a moored 

twin-pontoon floating breakwater made up of either rectangular or circular section pontoons 

is presented. The performance is described in terms of transmission and reflection 

coefficients, breakwater motions, and mooring line tensions. The numerical model includes 

both hydrodynamic and mooring analyses. The hydrodynamic analysis is based on linear 

potential theory which utilizes Green's theorem. A n available hydrodynamic model for 

single pontoon sections is extended so as to apply to a structure with two distinct portions 

below the water surface and so as to incorporate a mooring analysis. A n iterative procedure 

involving consistency in the wave drift force is used to link the hydrodynamic and mooring 

analyses. A comparison of numerical results with and without the iterative procedure 

indicates its importance for situations with highly nonlinear moorings. 

A corresponding experimental study involving two-dimensional laboratory tests of a twin-

pontoon moored floating is described. The experiments have been conducted in the wave 

flume of the Hydraulics Laboratory of the Department of C i v i l Engineering at the University 

of British Columbia. In the experiments, the breakwater performance is assessed using 

measured wave records at selected upwave and downwave locations in the flume, measured 

time histories of mooring line forces, and a video recording of breakwater motions. Tests 

with model breakwaters have been conducted for various pontoon spacings, pontoon drafts 

and mooring conditions, and for various wave conditions. A comparison of these results with 

the corresponding theoretical predictions is given. 

Numerical results of reflection coefficients K R , for the case of a fixed breakwater indicate 

a minimum at relative wave frequency parameter ka, ranging from 0.6 to 1.0, which is 

attributed to the interference effect between the two pontoons. For a moored breakwater, the 

numerical results indicate the occurrence of negative added mass in heave and an associated 
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sharp peak in the damping coefficient which may also be attributed to the spacing between 

two pontoons. 

Experimental results confirmed that the size of the pontoon in relation to the incident 

wave length, (i.e. ka) is a primary parameter governing the wave transmission past the 

breakwater. It is found that the twin-pontoon breakwater's overall beam should be at least 

three-quarter the span of an incident wave length (i.e. B > 3L/4), and the spacing equal to the 

width of individual pontoon in order for the breakwater to be effective. A comparison of 

results for a rectangular section with that of circular section shows that the performance of 

the two sections is very similar. 

The numerical model is found to provide reasonably good estimates of transmission 

coefficients, except in the vicinity of resonance. For conditions close to resonance, the 

experimental results of transmission and reflection coefficients, response amplitude operators 

and mooring line tensions at the anchor all show considerable scatter. 
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Chapter 1. Introduction 1 

1. Introduction 

1.1 General 

Many coastal activities require protection from waves, and breakwaters are widely used in 

order to provide such protection. The oldest and most common breakwaters are bottom-

founded structures such as rubble-mound breakwaters. These generally provide excellent 

protection from waves. However, they may become uneconomical for large water depths, 

and limited water circulation behind such breakwaters may lead to problems associated with 

sedimentation and increased pollutant concentrations within protected areas. Floating 

breakwaters have proven to be an attractive and economical alternative at locations where 

water depths are relatively large and the wave climate is not too severe. They have also been 

used at locations where temporary or seasonal protection is required. 

A wide variety of floating breakwater designs has been adopted in the past, and Fig . 1.1 

shows various categories of such designs. These structures can be classified on the basis of 

their configuration and their wave attenuation mechanism. A classification relating to 

breakwater configuration includes scrap-tire breakwaters, A-frame breakwaters, concrete 

caisson breakwaters, and more recently twin-pontoon breakwaters. The choice between these 

depends primarily on local wave and site conditions, the availability of construction 

materials, and on functional and operational aspects of the breakwater. 

Wi th respect to the latter type of classification, wave attenuation arises from a 

combination of energy dissipation and wave reflection, and the relative contribution of these 

two mechanisms depends on the nature of the breakwater and its configuration. The wave 

reflection mechanism can generally be modelled approximately by linear wave 

diffraction/radiation theory, whereas the energy dissipation mechanism involves viscous 

dissipation and nonlinear wave breaking, and as such cannot readily be dealt with using ideal 
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fluid theory. However, empirical coefficients may be used in the breakwater's equations of 

motion such that linear wave diffraction/radiation theory may continue to be used. 

In order to keep a floating breakwater at a designated location, two types of restraint are 

generally adopted; either piles or mooring lines. Piles have the advantage of restricting sway 

and roll motions almost completely, resulting in lower transmission coefficients. However, 

they have the disadvantage of wear problems at the points of contact with the breakwater, and 

their use may be limited by large water depths and poor soil conditions at the seabed. On the 

other hand, mooring lines may be more suitable in deeper water, but may give rise to 

problems related to connection points to the breakwaters, lifting or dragging anchors and they 

may not limit sufficiently the breakwater motions, leading to increased transmission 

coefficients. 

The performance of a floating breakwater is primarily characterized by the transmission 

coefficient, which is the ratio of transmitted to incident wave height. Other aspects of a 

floating breakwater's design include a consideration of the breakwater motions, and the 

possibilities of structural failure of the breakwater and its restraint or mooring system. 

Possible difficulties that a satisfactory design should overcome include a breakwater's 

inability to provide adequate wave protection, excessive breakwater motions, and damage or 

failure, which is most often associated with connections between individual units of a 

breakwater or with its moorings or anchors. Typically, floating breakwaters have been used 

at locations where the wave period ranges up to about 5 sec and wave heights up to about 

1 m. A selection of floating breakwater sites in British Columbia is listed in Table 1.1, 

corresponding to the locations shown in Fig. 1.2. 

Current designs of floating breakwaters are reasonably effective at attenuating moderate to 

high frequency waves. Although most of the energy in a deep-water wave is concentrated 

near the surface, some of it is contained in the water at depth. Breakwaters of practical 

dimensions can therefore intercept only a part of the total wave energy. In addition, the 

motions of the breakwater itself generate waves that propagate outward, contributing to the 
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transmitted wave height. Under certain wave conditions, the breakwater may undergo 

resonance and become less effective at attenuating waves. This implies that knowledge not 

only of expected design wave conditions is required but also an understanding of the 

response of the floating body under that sea state. 

Present practice relating to floating breakwater designs is often based on experience with 

past designs. The large number of variables involved and the variety of existing breakwaters 

has made it difficult for empirical relationships to be derived. For most large scale 

applications, it has therefore been necessary to resort to site-specific physical model tests 

before a particular breakwater design is adopted. In addition, there have been numerous 

attempts to develop numerical models, which may be used in place of or in conjunction with 

physical model studies. 

Twin-pontoon breakwaters may be particularly advantageous with respect to breakwater 

motions and lower transmission coefficients compared to single-pontoon breakwaters 

(Fig. 1.3), in part because they generally have a relatively high stiffness with respect to roll 

motions. Each unit may be relatively small and light compared to other single unit 

breakwaters, and this allows flexibility relating to fabrication and installation procedures. 

Therefore, the present study is oriented towards addressing the hydrodynamic performance of 

twin-pontoon floating breakwaters and focuses on various design aspects of circular and 

rectangular cross-section pontoons with respect to wave loading. 

1.2 Literature Review 

Surveys of the design of floating breakwaters include those by Jones (1971), McLaren 

(1981), McCartney (1985), Werner (1988), and Isaacson (1993a). Comprehensive 

bibliographies relating to analytical formulations and in-situ experiences with particular 

designs have been compiled by Western Canada Hydraulics Laboratory (1981) and Cammaert 

et al. (1994). General design criteria and related considerations relevant to floating docks 
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and small craft harbour facilities have been summarized by Cox (1989), Gaythwaite (1990), 

the A S C E Ports and Harbors Task Committee (1994), and Tsinker (1995). 

1.2.1 Hydrodynamic Analysis 

Regular Waves 

Numerical models of floating breakwater response to waves have originated largely from ship 

hydrodynamics, and reference may be made to Wehausen (1971) and Newman (1977) for the 

theoretical approaches generally used. In a linear analysis, the structure is assumed rigid and 

to oscillate harmonically in six degrees of freedom, corresponding to three translational 

(surge, sway and heave) and three rotational (roll, pitch and yaw) motions. The fluid is 

assumed incompressible and inviscid, and the flow irrotational, so that potential theory is 

used to solve for the fluid flow associated with a specified incident wave motion. The 

velocity potential relating to the flow is considered to be made up of components due to the 

incident waves, scattered waves associated with the structure in its equilibrium position, and 

forced waves associated with each mode of motion of the floating structure. If the floating 

breakwater is reasonably long, a two-dimensional analysis may be carried out in place of a 

three-dimensional analysis. General discussions of potential theory and the hydrodynamic 

analysis of floating breakwaters are presented in the texts by Sarpkaya and Isaacson (1981), 

Chakrabarti (1987), Faltinsen (1990) and Rahman (1994). 

The hydrodynamic analysis is generally carried out numerically by a wave source method. 

In a linear analysis, the wave diffraction problem (wave interactions with a fixed structure) 

and the wave radiation problem (waves generated by an oscillating structure) are uncoupled 

and may be solved separately. The resulting hydrodynamic forces may then be applied to 

equations of motion of the structure to determine its motion. A s examples of this general 

approach, Adee and Martin (1974) developed a two-dimensional model of a rectangular 

section breakwater; Hanif (1983) presented an application of the finite element method to 

analyze hydrodynamic properties of a floating breakwater subject to heaving and swaying 
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motions; Drimer et al. (1992) described an analytical solution for a simplified case of a box-

type floating breakwater; and Isaacson (1993b) presented hydrodynamic coefficients 

including added mass and damping coefficients for a series of rectangular breakwaters. 

Oblique Waves and Mach-Stem Effects 

The incident wave direction with respect to the breakwater orientation has a significant 

influence on a breakwater's performance. In this context, the case of oblique wave 

interaction with a long horizontal cylinder has been investigated numerically by Ba i (1975), 

Garrison (1984), and Isaacson and Nwogu (1987). Isaacson and Nwogu (1987) also 

presented a reduction factor for wave exciting force, to account for wave direction as well as 

finite length of the breakwater. 

For waves which are so oblique as to have a propagation direction almost parallel to the 

breakwater axis, the phenomena of Mach-stem reflection may occur. Using an analogy to gas 

dynamics and on the basis of acoustic principles, Wiegel (1964a and b) has described Mach 

reflections. Berger and Kohlhase (1976) conducted experiments to study the stem effects due 

to wave interaction with a fixed vertical wall . Results obtained indicated that the wave height 

measured very close to the wall was more than double the incident wave height. They 

pointed out that this effect should be interpreted as a diffraction problem. Melv i l le (1980) 

experimentally investigated various features relating to Mach reflection of a solitary wave by 

a vertical wall and reported critical angles of incidence at which Mach reflection is replaced 

by regular reflection. Yoon and L i u (1989) presented a numerical study relating to the 

formation of stem waves along a breakwater and discussed the relation between incident and 

stem wave characteristics. 

Wave Interaction with Multiple Cylinders 

Studies of wave interactions with multiple horizontal cylinders first originated from the 

hydrodynamics of catamarans and other multi-hull vessels. These include Wang and 

Wahab (1971), Ohkusu (1974), and Wang (1981). The hydrodynamic interference arising 

from multiple two-dimensional horizontal cylinders interacting with obliquely incident linear 
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monochromatic waves has been studied by Leonard et al. (1983). Recently, Valioulis (1990) 

developed a mathematical model to compute the motion response and wave attenuation of 

two linked and moored breakwaters. Chen and Mahrenholtz (1992) applied the boundary 

integral method to calculate the radiated waves generated by twin bodies oscillating in water. 

Carvalho and Mesquita (1994) studied the hydrodynamic interactions of closely spaced two-

dimensional floating bodies by also employing the boundary element method and presented 

numerical results of body responses and exciting forces. 

Short-Crested Waves 

In most cases, floating breakwaters are subjected to the actions of local wind-generated 

waves which are essentially random and short-crested, and this short-crestedness leads to 

lower wave loads than would otherwise occur. Hartz and Georgiadis (1982) presented a 

finite element response model of a continuous floating structure subjected to short-crested 

waves and compared the results with experimental measurements of the dynamic response. 

Hutchinson (1984) presented a frequency domain technique to determine the responses of a 

floating breakwater in all six degrees-of-freedom motions as well as the resulting nodal shear 

and bending moments induced in the body of the breakwater. 

1.2.2 Mooring Analysis 

Apart from a hydrodynamic analysis, the design of moored floating breakwaters also requires 

a mooring analysis in order to determine motion responses and mooring system loads. 

Mooring systems are generally made up of uniform cables with or without concentrated loads 

at various points along each cable. The behaviour of most cables tends to be planar (two-

dimensional) because of the predominance of dead weight loading on flexible cable 

segments. A mooring analysis is generally comprised of three steps: (a) the calculation of 

initial line configuration and equilibrium, (b) a static analysis, and (c) a dynamic analysis. 

Leonard (1988) has presented the elastic catenary equations and describes a procedure to 

arrive at principal loads in the initial equilibrium configuration due to the self weight of the 
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line. A static analysis is carried out to obtain the steady offset of the floating breakwater due 

to wave, current and wind loads. This involves the development of a stiffness model of the 

mooring system about the initial configuration. Various approximate expressions for 

stiffness are given in Faltinsen (1990). The dynamic response of the breakwater system about 

its steady displaced position is computed to provide the extreme displacements of the 

mooring line attachment points, maximum anchor forces and mooring line tensions. A 

detailed review of the dynamics of mooring lines with an emphasis on the mechanism of 

dynamic amplification is given by Triantafyllou (1994). 

Several studies have reported on different analysis procedures to obtain the dynamic 

response of a breakwater. Yamamoto and Takahashi (1974) carried out an experimental 

study to investigate the influence of various design parameters such as cross-sectional area, 

moment of inertia and mooring arrangements on the performance of a floating breakwater. 

Yamamoto et al. (1982) developed a two-dimensional model of a floating body with linear 

elastic springs. Yamamato (1982) then applied this model to study floating breakwater 

response to regular and irregular waves. Skop (1988) solved for the dynamic response of the 

system by assuming the mooring lines as inertialess springs, de Kat and Dercksen (1989) and 

Patel (1989) reported that the effects of wave and current loading on mooring lines may be 

negligible for situations relating to floating breakwaters, for which dynamic amplification in 

the mooring line is small. 

1.2.3 Experimental Studies 

Field data relating to breakwater motions and wave heights in the vicinity of the structure 

generally compare well with the results of laboratory tests and numerical models (see, for 

example, Adee (1976), Mi l le r and Christensen (1984), Nece and Skjelbreia (1984), Nelson 

and Broderick (1984)). Bando and Sonu (1987) reviewed a large number of existing state-of-

the-art numerical models for the purpose of selecting an efficient model to be used for routine 

analysis of wave attenuation and mooring forces associated with a floating breakwater. 
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Isaacson et al. (1994) carried out physical and numerical modelling of a circular cross-section 

floating breakwater subjected to normal and oblique waves, and reported the variation of 

transmission coefficient, breakwater motions and mooring line forces as functions of various 

breakwater parameters. Jamieson et al. (1994) conducted wave flume tests of scaled models 

of two steel pontoon floating breakwaters subjected to regular waves to quantify the 

efficiency of pontoon configuration. 

1.3 Objectives of the Present Investigation 
The primary objective of the present thesis is to improve the understanding of the 

hydrodynamic and response characteristics of twin-pontoon floating breakwaters. Specific 

goals of the study are: 

(a) to develop a numerical model for predicting the performance of a twin-pontoon 

floating breakwater subject to specified wave conditions, 

(b) to validate the numerical model with respect to two-dimensional laboratory tests, 

(c) to obtain suitable hydrodynamic coefficients relating to different configurations of 

twin-pontoon floating breakwaters, and 

(d) to assess the influence of various design parameters such as breakwater beam, 

draft, and pontoon diameter, on the breakwater performance. 

For the numerical model, the corresponding linear diffraction/radiation problem assuming 

small amplitude incident waves is treated in combination with a mooring analysis and a 

solution of the breakwater's equations of motion. The hydrodynamic interference arising 

from two-dimensional structures having two-distinct wetted portions interacting with linear 

monochromatic obliquely incident waves are treated. Laboratory studies of twin-pontoon 

rectangular and circular section model breakwaters subjected to regular normally incident 

(two-dimensional) waves are carried out for different combinations of wave characteristics 

and breakwater configurations to obtain transmission and reflection coefficients, mooring 

forces and breakwater motions. 
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2. Theoretical Approach 

2.1 Breakwater Configuration 
In the present study, a twin-pontoon moored floating breakwater with either rectangular and 

circular section pontoons is taken to be the prototype structure. A moored breakwater 

structure located at Comox, B . C . , (Rowland (1995)) provides a primary example of such a 

floating breakwater which is the focus of the present study. A view of the breakwater is 

shown in Fig . 2.1. The breakwater consists of two circular-section pontoon units rigidly 

connected to each other. The breakwater structure is typically comprised of two simple 

fabricated units: a pontoon sub-unit and a dog bone sub-unit. Each unit is relatively small 

and light as compared to a single-pontoon floating breakwater, and this allows flexibility in 

the selection of fabrication sites. The prototype conditions relating to the breakwater 

correspond to a diameter, D (= a) = 1.05 m, an overall beam, B = 8.0 m, a water depth, 

d = 10.0 m and a wave period range, T = 1.5-4.5 sec. Also, the mooring lines are made up 

of anchor chain spaced 20.0 m apart at attachment points and with a horizontal span of 

60.0 m under equilibrium conditions. The overall length of the breakwater is 100.0 m. 

The breakwater pontoons are usually water ballasted such that the structure has the 

required draft and inertial properties. The interior of the pontoons is also fitted with foam 

billets to provide the necessary buoyancy and to limit sloshing of the ballast water within the 

pontoon. The choice of a suitable draft for a given location is governed by a balance between 

excessive overtopping caused by too deep a draft, and the advantages of added inertia at 

deeper drafts. Figure 2.2 indicates the variation of the normalized buoyancy force 

F'b = Fb/(pg7cD2/4), as a function of relative draft, h' = h/(D/2), where p is the density of 

water, g is the gravitational constant, and D is the diameter, for the case of a circular pontoon 

section. The variation of normalized waterplane beam B ' = B w / (D/2) , as a function of relative 

draft is superposed on this plot. In the case of rectangular section pontoons of a given aspect 
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ratio, the waterplane beam remains constant for all drafts and the buoyancy force is a linear 

function of the draft. 

2.2 Design Variables and Dimensional Analysis 
Figure 2.3 provides a definition sketch of the problem under consideration. It is convenient 

to consider the design parameters relating to a moored floating breakwater by considering 

first a simple freely floating body interacting with a regular wave train approaching at an 

angle to the longitudinal axis of the body; and subsequently considering the case of restrained 

structures, for which additional variables relating to mooring cables must be included. 

2.2.1 Freely Floating Breakwater 

Design criteria for a freely floating breakwater involve dependent parameters which may be 

broadly taken to include (i) wave characteristics in the vicinity of the breakwater, and (ii) the 

motions of the breakwater. Thus, for the two-dimensional case of an infinitely long 

breakwater subjected to a regular oblique wave train, the following dependent variables are of 

interest: 

H T transmitted wave height; 

H R reflected wave height; 

£i breakwater motions: i = 1, sway; i = 2, heave; i = 3, roll . 

A list of independent parameters that may influence the breakwater performance for this 

case is given below: 

H incident wave height; 

T wave period; 

d water depth; 

(3 incident wave direction; 

p water density; 

v kinematic viscosity; 

g gravitational constant; 
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a characteristic section dimension: diameter of a circular section pontoon, or 

width of a rectangular section pontoon; 

h pontoon draft; 

B overall breakwater beam; 

ZG centre of gravity of pontoon section; 

re radius of gyration for roll; 

Other variables such as the mass per unit length of the breakwater, or the gap between 

pontoons, may readily be expressed in terms of the above variables and hence have been 

excluded. 

There are a total of 12 independent variables, in which water density p, may be eliminated 

for the case of a freely floating body. Thus, on the basis of a 2 unit system (L and T), 9 

dimensional groups influencing each dependent variable can be formed. A dimensional 

analysis for the transmission coefficient, K x , thus provides, for example, the following 

relationship: 

f • a . B h Z G IG a H 
T i ; 5 i i i i r^c, p 
L a a a a d L 

(2.1) 

The significance of the various dimensionless parameters listed in Eq . 2.1 is as follows: 

a/L is a ratio of characteristic pontoon size to wave length; B/a is indicative of gap size to 

pontoon size ratio; h/a represents the relative draft of the breakwater; a/d represents the 

influence of water depth and may become important in shallower water; H / L is the wave 

steepness and is indicative of nonlinear effects; and Re is a Reynolds number, which accounts 

for viscous effects and may be defined as: 

Re = - ^ 
v 

A 7tH 1 ^ a 
(2.2) T tanh(kd) 

where, U m is the horizontal water particle velocity amplitude at the still water level, given by 

linear wave theory. 
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When wave diffraction effects are important in modelling the breakwater, appreciable 

flow separation should not occur and the effect of viscosity should be confined to the 

boundary layers on the body. It is then appropriate to treat the flow as irrotational and so 

attempt to solve the problem on the -basis of potential theory. In view of this, the 

characteristic Reynolds number may then generally be omitted from Eq. 2.1. In addition, i f 

the wave steepeness is small, it is then appropriate to adopt a linearizing approximation such 

that H / L may be also omitted from Eq. 2.1. In fact, the possible significance of flow 

separation effects is often taken to be indicated by a characteristic Keulegan-Carpenter 

number K , which may be defined as: 

! = — ! — ) l (2.3) 
^ T tanh(kd) Ja 

Finally, for relatively deep water a/d may be omitted and in the two-dimensional case of 

normally incident waves, P may be omitted from Eq. 2.1. Thus Eq . 2.1 is approximated as: 

U T 

K T — 
a B h z G r G 

(2.4) 
L a a a a 

The dependent parameters relating to reflected and transmitted waves, and the three 

component motions may readily be used to develop dimensionless parameters describing the 

breakwater performance. Relevant dimensionless groups of the dependent parameters 

include the following: 

H R _ 

(2.5) 
H 

H T 

H 

H / 2 

H / 2 

for i = 1 (sway), i = 2 (heave) 

for i = 3 (roll) 

(2.6) 
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where | ; is the amplitude of the oscillatory motion of the breakwater in sway, heave and roll 

modes of motion. 

2.2.2 Moored Breakwater 

In the case of a moored breakwater, a number of additional parameters must be specified in 

order to describe the performance of a breakwater restrained by mooring lines. These are (see 

Fig . 2.3): 

Z anchor depth relative to connection points; 

S unstretched length of mooring line; 

X horizontal span of mooring line; 

q' mooring line submerged weight per unit length and per unit line spacing; 

E ' mooring line elasticity per unit length and per unit line spacing; 

The mooring line pretension could be used as an alternative independent variable in place 

of the unstretched cable length, S for the case of braided nylon rope. However, it is observed 

that initial line pretension may be lost due to permanent elongation of the line and hence is 

not considered in this study. In addition, the location of mooring attachment points to the 

breakwater may also have an influence on the breakwater's response. Since twin-pontoon 

structures have large roll stability, the influence of the location of the mooring cable 

attachment points is considered to be negligible, and is not included as an independent 

parameter. 

Combining these independent variables with those of an unrestrained body, a dimensional 

analysis yields the following extension to Eq . 2.4: 

K T — 
( a B h z G r G q' E ' Z X S^ 

L a a a a pga p g a 
2' a a a 

(2.7) 

where q'/pga is the relative submerged weight of the mooring lines, E'/pga is the relative 

elasticity of the mooring lines, and Z / X and S/Z are dimensionless parameters relating to 
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mooring line slope and slackness respectively. The horizontal spacing between the mooring 

lines, X, is excluded since q' and E ' are used and are defined so as to account for A,. 

In the case of a moored breakwater, the upwave and downwave mooring line tensions, 

denoted by T i and T2 respectively, become additional dependent variables. These may refer 

to the points of attachment to the breakwater or to the anchors. The relevant additional 

dimensionless group may be written as: 

T'j - p g a j j ^ for j = 1 (upwave), j = 2 (downwave) (2.8) 

where Tj is the maximum mooring line tension. 

On the basis of Eq . 2.3 which incorporated Froude's scaling law, the same length scale 

factors K i applies to all the relevant length variables and the scale factors of the other 

variables may be expressed in terms of K i as follows: 

T 

T 

(2.9) 

q'm = J i m _ K 2 

q P " E P 1 

The subscripts m and p denote variables corresponding to the model and prototype 

respectively. Equation 2.7 can be used to develop relationships with respect to other 

dependent variables. 

2.3 Hydrodynamic Analysis 
The numerical prediction of the breakwater response to a specified wave train is now 

considered. The approach described provides a summary of the conventional treatment of 

linear diffraction theory by the boundary element method (e.g. Sarpkaya and Isaacson (1981), 

and Isaacson and Nwogu (1987)). Thus, the interaction of a regular oblique wave train with 

an infinitely long semi-immersed horizontal rigid cylinder is considered. The cylinder is 

assumed to be large enough so as to diffract the incident flow field. 
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Flow separation effects are important in certain circumstances, such as for a structure 

which possesses sharp corners. A fundamental analysis of the forces induced by flow 

separation and vortex shedding off a sharp edge has been given by Graham (1980) and 

Downie et al. (1993). Similarly, a numerical solution for potential flows including the effects 

of vortex shedding is given by Wong and Calisal (1993). However, in practice, for large 

structures, flow separation effects have been assumed not to be significant since the 

amplitude of water particle motions relative to the characteristic structure dimension is 

sufficiently small for flow separation not to occur in most cases. Thus, effects of viscosity 

are assumed confined to a thin boundary layer on the body surface. 

The Keulegan-Carpenter number, K , given by Eq . 2.3 provides an indication of the 

importance of flow separation effects. For the range of frequencies used in this study with 

K < 2, flow separation associated with circular sections should be negligible, whereas for the 

case of rectangular cylinder sections, vortices are usually formed at the sharp corners, which 

may lead to localized flow separation effects (Sarpkaya and Isaacson, 1981). However, 

despite the formation of the vortices, earlier studies indicate good agreement between 

potential flow theory and experimental results for such cylinders, provided an empirical 

damping coefficient is then used in the equations of motion of the structure. The fluid flow 

can thus be considered to be irrotational and the problem is solved using potential flow 

theory. 

A monochromatic linear wave train of height H and angular frequency co propagates in 

water of constant depth d, and is obliquely incident upon an infinitely long structure. The 

direction of wave propagation makes an angle (3 with the x axis as shown in Fig. 2.3. A 

right-handed Cartesian coordinate system (x,y,z) is employed in which z is measured 

upwards from the still water level and the y axis is parallel to the longitudinal axis of the 

cylinder. The structure is taken to respond at the same frequency co, with three degrees-of-

freedom; sway, heave and roll. 
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Ideal fluid, irrotational flow boundary value problems may be posed corresponding to (i) 

the scattering of waves obliquely incident upon the fixed body, and (ii) the wave radiation 

caused by the forced sway, heave and roll oscillations of the body in otherwise still water. 

The scattering problem leads to exciting forces proportional to the incident wave height, 

whereas the radiation problem gives rise to hydrodynamic forces which are proportional to 

the component breakwater motions, and which may be expressed in terms of added masses 

and damping coefficients. The wave height and oscillatory motions of the body are taken to 

be small so that the complete problem of wave interaction with a floating cylinder can be 

represented by a linear superposition of the diffraction and forced motion problems. The 

oscillations are assumed to vary sinusoidally in both time and space along the y axis. 

In the following sections, the wave diffraction and radiation boundary value problems, 

and the forced response problem are treated separately. 

2.3.1 Wave Diffraction Problem 

First, the case of an oblique wave train interacting with a fixed body is considered. A n 

incident wave train which propagates at an oblique angle (3 with respect to x axis may be 

represented by a velocity potential given by: 

O 0 ( x , y , z ; t ) = Re 
isH 

00 (x, z) exp{i(ky sin (3 - oat)} 
2co 

(2.10) 

where Re[ ] denotes the real part of a complex variable, i , g is the gravitational 

constant, k is the wave number, given by k = 2n/L, L is the wave length, t is time, and <j)o is a 

two-dimensional potential function given as: 

0 o ( x , z ) =

 C O S h [ ^ ^ Z ) ] e x p { i ( k x c o s ( 3 ) } (2.11) 
sinh(kd) 

The wave number, k is related to angular frequency, co by the linear dispersion relationship: 

co2 = gktanh(kd) (2.12) 
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The linear wave diffraction problem is described by a scattered velocity potential, denoted 

0 4 , which varies sinusoidally in time and along the y axis according to: 

0 4 ( x , y , z ; t ) = Re 
isH 

- (t>4(x, z) exp{i(ky sin (3 - cot)} 
2co 

(2.13) 

where <j)4(x,z) is an initially unknown scattered velocity potential function. The scattered 

velocity potential satisfies the Laplace equation given by: 

v 2 o 4 = o 4 = o within the fluid (2.14) 
dx2 dy2 dz2 

In fact, the boundary value problem is considered in terms of dimensionless parameters by 

normalizing all the variables with respect to p, g, and a as necessary. Substituting Eq . 2.13 

into Eq . 2.14, the three-dimensional Laplace equation reduces to the two-dimensional 

modified Helmholtz equation: 

32<!>4 d\ 
+ • • v > 4 = 0 in fluid domain Q. (2.15) 

9x 2 dz2 

where v = ka sinp\ <j>4 must satisfy various boundary conditions on the free surface, seabed, 

body surface and in the far field. These are given respectively as (Isaacson and 

Nwogu (1987)): 

dz 

5̂ 4 
dz 

= 0 

3 ( 1 ) 4 1 ^ 0 = Q 
dn 9n 

^ + ikcosp4> 4 = 0 
dx 

at z = 0 

at z = -d 

on Sf 

at x = ±°o 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

where p, = co a/g, and n is the unit normal vector on the cylinder surface S B and directed out 

of the fluid. 
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2.3.2 Wave Radiation Problem 
The radiation problem corresponding to an infinitely long flexible cylinder oscillating in 

sway, heave and roll , in turn is now considered. Each mode of motion is taken to be periodic 

in time as well as along the axis of the cylinder. The displacement or rotation in the k-th 

mode is given by: 

% k (x, y, z; t) = R e [ £ k (x, z) exp{- i(vy - cot)}] (2.20) 

where ^ k is the complex amplitude of oscillation of the cylinder with k = 1, 2 and 3 

corresponding to the sway, heave and roll modes respectively. Each wave radiation problem 

may now be described by a radiation velocity potential as: 

<Pk (x, y, z; t) = R e [ - i c o a 2 £ k (x, z)<|>k (x, z)exp{i(vy - cot)}] (2.21) 

The linear radiation boundary value problem is defined similar to the diffraction problem 

by various boundary conditions on the free surface, seabed, body surface and in the far field. 

These are given respectively as (Isaacson and Nwogu (1987)): 

3 2 6 k 32(bk , 
— + -r^- ~ v > k = 0 within the fluid (2.22) 
dx dz 

- LL(bk = 0 at z = 0 (2.23) 

= 0 at z = -d (2.24) 
3z 

• - n k = 0 o n S B (2.25) 30k 

3n 

dx 

where 

^ k + ikcosp<t)k = 0 at x = ±oo (2.26) 

n, = n x 

n 2 = n z (2.27) 

n 3 -- ( z - e ) n x - x n z 
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in which n x and n z are the direction cosines of the unit normal vector n on the wetted body 

surface and (0,e) denotes the point about which the roll motion is prescribed. In the present 

study, the motion is prescribed about the origin, and thus e is taken to be zero. The boundary 

value problem for the radiation problem is similar to that of the scattered problem, except 

that the body boundary condition in Eq . 2.25 is applied such that the normal velocity of the 

fluid at the immersed body surface is equal to the normal velocity of the body surface itself. 

The generalized radiation problem statement in Eqs. 2.22 - 2.26 describes a flexural wave 

that travels along the surface of the body and generates an oblique wave in the water. 

If (3 = 0 , corresponding to normally incident waves, the radiation boundary condition 

reduces to the two-dimensional problem in the vertical x-z plane. For the special case 

(3 = 90 , which corresponds to a head sea, the radiation condition reduces to that of a rigid 

wall boundary. 

2.3.3 Body Response Problem 

Since the incident wave amplitude, and hence the resulting responses, are assumed to be 

small, the velocity potential for the wave field may be expressed by a linear superposition of 

the incident, scattered and radiation potentials. The total potential is thus expressed as: 

3 
0 ( x , y , z ; t ) = Re - ^ ( ^ 0 + ^ 4 + 14k<t>k)rexp[i(vy-cot)] 

2 ( 0 k=i j 
(2.28) 

The hydrodynamic pressure within the fluid may be expressed in terms of <E> by the linearized 

Bernoulli equation: 

p = - p — = icopO (2.29) 
dt 

in which p is the fluid density. The hydrodynamic forces on the body can then be obtained by 

integrating the pressure over the wetted surface of the body SB- These hydrodynamic forces 

are usually separated into exciting forces associated with the diffraction problem, and 

hydrodynamic restoring forces associated with the radiation problem. 



Chapter 2. Theoretical Approach 20 

Exciting Force 

The exiting force per unit length due to the incident and scattered waves is proportional to the 

wave height and may be expressed by: 

F k (y , t ) = | p g H a m R e | J((j)0+4>4)nkds exp{i(vy - cot)} (2.30) 

where m = 1 for k = 1, 2 (surge, heave) and m = 2 for k = 3, (roll). Also , F[ and F 2 denote the 

sway and heave force components respectively, and F3 denotes the roll moment about the 

origin O. 

The dimensionless exciting force is thus given by: 

F k (y . t ) 
i p g H a r 

(2.31) 

Added Mass and Damping Coefficients 

Now consider the motion problem where the floating body is forced to oscillate in otherwise 

still water by a hydrodynamic force obtained as above. These forces are associated with the 

motions of the cylinder which are proportional to the amplitude of cylinder motion in each 

direction. The k-th component of force due to the i-th component of motion can be expressed 

as: 

F l k = icop a m J O k n i ds 

SB 

fo r i , k = 1,2,3 (2.32) 

where m = 1 for i = 1, 2 and m = 2 for i = 3. Substituting the expression for Ok given in 

Eq . 2.21 the hydrodynamic force can be rewritten as: 

F l k = p c o ^ k a m R e J<l>knids 

SB 

exp{i(vy - cot)} (2.33) 

in which m = 3 for i = 1, 2 and m = 4 for i = 3. This force can also be expressed in terms of 

two components; one component in phase with the acceleration %( and the other in phase 

with the velocity Xj as: 
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F i k =-\L*Xi-KXi (2-34) 

where p j k and X i k are the added mass and damping coefficients respectively. Substituting the 

time derivatives of the response xi, gives 

F l k = Re[(co 2Pik +ico?i i k)^exp{i(vy-cot)}] (2.35) 

Comparing the expressions for the hydrodynamic forces associated with the motions, the 

dimensionless added mass and damping coefficients can be given as: 

= Re J ^ r i i ds 

pcoa 
^ = Im J 0 k n i ds 

(2.36) 

(2.37) 

where the constant m = 2 for (i,k) = (1,1) and (2,2), m = 3 for (i,k) = (1,3) and (3,1) and 

m = 4 for (i,k) = (3,3). 

2.3.4 Equations of Motion 

The response of the body in waves, which varies sinusoidally with y and t, may now be 

calculated by solving the equations of motion: 

3 3 
l [ - c o 2 ( m i k + ( i i k ) - i c o ( ^ i k + X ' i i ) + ( c i k + c ' i k ) j 5 c k =F 1 (y , t ) i = 1,2,3 (2.38) 
k=l 

in which and c;k are the mass and hydrostatic stiffness coefficients respectively, c'ik are 

mooring stiffness coefficients, and are the damping coefficients. Also , A,'„ are viscous 

damping coefficients. These may be particularly important for resonant roll motions 

(e.g. Standing (1991)). For the present problem, an empirical relationship is used to calculate 

the viscous damping coefficients from specified viscous damping ratios Q, 

asXjj = 2g i i A / c i i (m i i +p i i ) . The mooring stiffness coefficients c ' i k may be obtained from a 

separate mooring analysis as outlined in Section 2.4. 
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The mass matrix is defined as, (Newman, 1977): 

m 0 mz c 

0 m 0 

m z G 0 In 

(2.39) 

where m is the mass per unit length of the body, ZQ is the z coordinate of the centre of gravity 

and Io is the polar mass moment of inertia about the longitudinal axis per unit length, 

Io = m(rc 2+ZG 2), in which r G is the roll radius of gyration of the body. 

The hydrostatic stiffness matrix components may be determined by calculating the forces 

required to restore the body to its equilibrium position for small amplitude displacements; 

and are given as: 

0 0 0 

0 c 2 2 
C23 

0 c 3 2 
C33 

(2.40) 

For a twin-pontoon breakwater which is symmetrical about the y axis, the stiffness 

components are defined as: 

C22 = 2 p g B w 

C23 = C32 = P g B wXf 

(2.41) 

(2.42) 

C33 = pgA[(S1 1/A) + z B - z G ) (2.43) 

in which B w is the beam of the single pontoon at the waterplane line, Xf is the x coordinate of 

the centroid of waterplane area, b is the gap between the pontoons, z B is the z coordinate of 

the centre of buoyancy, A is the displaced volume per unit length, and S11 is the second 

moment of waterplane area about the y axis per unit length. In fact Sn = B w

3 / 1 2 + Ab 2 / 4 . 

Note that static stability in roll requires that C33 is positive, which implies that the metacentre 

S n / A + z B is higher than the centre of gravity ZG-

Once all the matrix components for any specified wave frequency and direction are 

known, the equations of motion can readily be solved to obtain the complex motion 
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amplitudes, £ k . These body motions can be nondimensionalized with respect to the incident 

wave amplitude and hence are given in terms of response amplitude operators (RAO's) 

defined as: 

fork = 1,2 
H / 2 

(2.44) 

H / 2 
for k = 3 

2.3.5 B o u n d a r y E lement M e t h o d 

A numerical solution of the diffraction/radiation boundary value problem for the case of the 

twin-pontoon configuration may be obtained by a direct extension of the formulation relating 

to a single pontoon configuration (Isaacson and Nwogu (1987)). A summary of the method is 

now given. 

Green's Theorem 

In the boundary element method, it is convenient to use Green's second identity as the basis 

for a numerical evaluation of the unknown potentials fa (k = 1,2,3,4). The Green's second 

theorem may be applied over the closed surface S containing the fluid region in order to 

relate the values of the potential (j)(x) at a point x on the fluid boundary to the remaining 

boundary values of the potential <j)(£) and its normal derivative dfa£,)/dn. This can be 

expressed as: 

2 * s 
* © ^ ( * ; 5 ) - ! i © G ( x ; f ; ) 

dn dn 
ds - (2.45a) 

where G(x,^) is the Green function satisfying the required boundary conditions, x is a point 

located at (x,z) where the potential is to be evaluated, and £ is the point located at (%, Q on 

the closed surface over which the integration is performed. The closed surface S comprises 

of the immersed body surface S B , the mean free surface S F , the radiation surface S R , and the 

seabed So as shown in Fig . 2.4(a). 
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When the interior point x approaches the boundary from within the fluid, Eq . 2.45a 

reduces to the following integral equation. 

4>(x) = - f 
IT J 

( K ^ ( x ; £ ) - ! ^ ) G ( x ^ ) 
dn cm 

ds (2.45b) 

The Green's theorem which satisfies the modified Helmholz equation (2.15) in an 

unbounded fluid is singular at the point x = cj and is given by,G(x;^) = - K 0 ( v r ) , where K 0 

denotes the modified Bessel function of zero order, r is the distance between the points x and 

which is given by r = | £ - x | = ^(^-x)2 + ( £ - z ) 2 . It may be noted that the function 

Ko(x) = - In x as x —» 0. The Green's function, which satisfies the two-dimensional Laplace 

equation, obtained as (3 —> 0°, is given by: 

G(x;$) = - ln ( r ) (2.46a) 

In the present solution, the seabed is assumed to be horizontal. It is computationally 

efficient to exclude the seabed from the closed surface S and thus select a Green's function, 

which takes into account symmetry about the seabed (Fig. 2.4(a)). This is: 

G (x ;£ ) = - [ K 0 ( v r ) + K 0 ( v r ' ) ] (2.46b) 

and r' is the distance between points x and Q given respectively by the expression 

r ' = | £ - x | = Vfe -x ) 2 +( t ; + 2d + z ) 2 (2.47) 

in which £ = (£ , - (£ +2d)) . 

The first term of the modified Green's function is singular at point x = ^ and therefore 

special consideration must be given to evaluating the integrand at that point. The integral 

equation, Eq . 2.45b is now evaluated numerically using the procedure described below. 

Numerical Procedure 

In order to evaluate the integral equation, Eq . 2.45b, the boundary S is divided into N 

segments with the values of <)> or dtydn considered constant over each segment and equal to 
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the value at the midpoint of the segment (see Fig. 2.4(b)). The continuous integral equation, 

Eq . 2.45b, is therefore replaced by a discrete summation as: 

1 N 

< k ( x , ) = - £ 
TIP 

r d G ( x i ; X j ) a i o g , 
<Pk(Xj) J - d s —-i- | G ( x i ; x j ) d s 

A ! 9 1 1 3 1 1 AS, 

k = 1,2,3,4 (2.48) 

where the summation is performed in a counter-clockwise manner around the boundary. This 

corresponds to four sets of equations: 

j=i 3n 
= 0 k= 1,2,3,4 (2.49) 

where Sy is the Kronecker delta function given by: 

= f l for i = j 
i j [0 for i * j 

The coefficients ay and by are defined respectively as 

b a = - - / [ K o C v r ^ + KoCvr^Jds 
1 1 ASj 

where r^ and r'y are given as: 

(2.50) 

(2.51) 

r i j = V ( x J " x 0 + ( z J " z i ) 

(2.52) 

i; = A / ( X j - x i ) 2 + ( Z j + 2 d + z 1 ) 2 

and the points (Xj,z;) and (XJ,ZJ) correspond to the midpoint of each segment. The gradient of 

Green's function dGldn may be expressed in terms of known values as: 

3G 

3n 

aG ar aG ar' + 
3r an 3r' 3n 

(2.53) 
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in which the derivative of Green's function with respect to r is given by: 

| - K 0 ( v r ) = - v K 1 ( v r ) (2.54) 
dr 

where K i is the modified Bessel function of order one. The derivative of radial distance r 

with respect to normal n is evaluated by knowing the included angle y, between the line 

connecting the points x and and the normal at I;. Similarly, the derivative of radial distance 

r' with respect to normal n is evaluated by knowing the included angle y' between the line 

connecting the points x and and normal at (see Fig. 2.4 (c)). 

A s the values of ASj in Eqs. 2.50 and 2.51 are generally small, the integrals in these 

equations can be approximated by assuming a constant value for Green's function over each 

segment, taken to be the value at the midpoint. For i j , the expressions for ay and by 

therefore become: 

K i ( v r i i ) r I a y = - v L | ( x j - x i ) A z j - ( z J - z , ) A x j 

K , ( v r ' ) r , 
- v ^ - ^ 4 ( X j - X j )Az j - (Z j + 2d + Z j ) A X j J (2.55) 

b ^ - ^ K o ^ p + K ^ v r ^ A S 

where AZJ = Zj+i - Zj, A X j = Xj+i - Xj and ASj =^(AZj) 2 + (Ax^) 2 . 

Singularities 

The Green's function approximation used in Eq . 2.45b is singular at the point x = \ and thus 

special care is required at these points. Physically, the singularities occur in the boundary 

integral process when the point of interest coincides with the point over which the integration 

is performed. These points occur in the numerical algorithm only when i = j . A t a singular 

point, the numerical difficulty arises from the fact that the Bessel function Ko(vr) approaches 

infinity as argument vr approaches zero. This can be treated by using an approximate small-

argument expression for KQ (e.g. Abramowitz and Stegun (1964)): 
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f vr K 0 ( v r ) - - In 
\ 2 ) 

+ y as vr -> 0 (2.56) 

where y is Euler's constant. This provides expressions for the diagonal coefficients an and bjj 

as: 

The expressions involving Ko(vr') do not present a difficulty since r' is never zero. Once the 

coefficients a^ and by are determined, N equations can be written relating the N values, each 

of (j) and dty/dn at the segment centres along the surface S B + S F + S R . 

Applying the appropriate boundary conditions over the various surfaces thus leads to a 

total of 2 N equations needed to solve for the 2 N values of or dty/dn. The resulting 

equations are solved using a complex matrix inversion technique to determine the values of (j) 

or dty/dn. 

2.3.6 Transmission and Reflection Coefficients 

The transmission and reflection coefficients, which are indicative of the performance of the 

breakwater, are obtained by computing the wave amplitudes at the radiation boundary. In a 

numerical approximation, the radiation boundary is truncated at a finite distance, X R from the 

origin, at which the evanescent modes due to the presence of the body are assumed to have 

decayed sufficiently so as to be negligible. These wave amplitudes are due to (i) the 

oscillations of the cylinder in its three modes, and (ii) the reflection and transmission of the 

incident wave train by a fixed body. Therefore, by knowing the relationship of wave 

amplitude with scattered and radiated velocity potentials, the reflection and transmission 

coefficients can be found by the following: 

(2.57) 

(2.58) 
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K T = <|>0(XR,0) + «l)4(XR,0) + XW k(0).P) (2.59) 
k=l 

where 1̂ 1 is the wave amplitude given as: 

Ck = at x = ± X R (2.60) 

and are the complex amplitudes of body oscillation. 

The incident wave energy flux is partly reflected from the body and partly transmitted to 

the downwave side of the body and part dissipated. The diffraction solution neglects any 

such energy losses. More generally, therefore, it is necessary to define an energy dissipation 

coefficient K D , which corresponds to the portion of incident wave energy flux that is 

dissipated. Since energy flux is proportional to the square of the wave heights, a 

consideration of energy balance leads to: 

Apart from the oscillatory wave forces exerted on the body, the body also experiences a 

second-order wave force, termed wave drift force, which is proportional to square of the 

wave height. In the case of regular waves, the drift force is obtained by averaging the 

contributions to the second order force over a complete wave cycle (Longuet-

Higgins (1977)). For the case of a long horizontal cylindrical body, the wave drift force F d 

per unit length in a dimensionless form can be expressed directly in terms of the transmission 

coefficient determined in Eq. 2.59 as: 

K j ^ + K R ^ + K D = 1 (2.61) 

2.3.7 Wave Drift Force 

(3.62) 
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2.4 Mooring Analysis 
A floating breakwater generally requires some form of mooring or restraint system to 

maintain its position and limit excursions within certain operational constraints. This may 

generally be provided by piles or by a mooring line system. Only the latter case is considered 

here. The behaviour of the mooring line influences the response of the breakwater to 

environmental loads and generally resembles that of a nonlinear spring. Thus, the 

hydrodynamic analysis should be carried out in conjunction with a mooring analysis in order 

to determine the motions of the breakwater. 

A mooring system consists of a number of cables arrayed around the structure. Either 

uniform lines or combinations of chain and wire rope or synthetic line are commonly used. 

In some applications, floats or clumped weights may also be attached to the mooring lines. 

The rope may be composed of either steel or synthetic fibres. Chain is generally taken to be 

inextensible, while rope is elastic with nonlinear stiffness characteristics. Elastic properties 

of mooring lines have been described by Wilson, (1967) and Flory et al. (1992). 

The analysis of the mooring line system is generally carried out in three component steps 

as illustrated schematically in Fig. 2.5: (i) the calculation of the initial equilibrium of the 

mooring system, including mooring line tensions and configurations; (ii) a static analysis to 

determine the displacement of the structure due to the steady loads associated with current 

drag and the mean wave drift force; and (iii) a dynamic analysis to include the effects of 

oscillatory wave forces and a slowly varying wave drift force on the maximum mooring line 

tensions and anchor loads. These steps are discussed in turn below. 

2.4.1 Equilibrium Configuration 

The first step in the mooring analysis involves the calculation of the equilibrium 

configuration of the mooring system. The principal loads are due to the self weight of the 

mooring lines, and the analysis of one cable is usually based on the equations for an elastic 

catenary (e.g. Leonard et al. (1988), and Wren et al. (1989)). 
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The initial equilibrium configuration may be considered to be either fully or partly 

suspended as shown in Fig . 2.6 and the analysis for these two cases is discussed separately 

below. Only the simpler case of a uniform mooring line is considered. 

Fully Suspended Mooring Cable 

Initially, the case of a fully suspended cable is considered as shown in Fig . 2.6(a). The cable 

is assumed to be uniform with a cross-sectional area A , buoyant net weight per unit length q, 

and elastic modulus E . Let the tension at any point along the cable be T, and the vertical and 

horizontal components of the cable tension be V and H respectively. Also let the origin of 

the reference frame Oxz be at the top end of the cable, with z directed downwards. 

The shape of the stretched cable in the initial configuration can be parametrically 

expressed in terms of the unstretched arc length s. The mooring line is assumed to have no 

bending stiffness, and a consideration of the equilibrium of a section of the unstetched length 

s gives: 

V = V n - q s 
0 4 (2.63) 

H = constant 

B y assuming that the mooring line is elastic, the stretched arc length ds' may be related to 

the unstretched arc length ds by: 

ds' = [ l + ^ ] d s (2.64) 

The differential equations for the shape of the elastic catenary can then be expressed in terms 

of the unstretched arc length as: 

(2.65) 
dz _ V(s) 

1 + 
V 

T(sn 
ds " T(s) 

1 + 
V A E J 

dx _ 

ds " 

H 

~T(s) 

( 
1 + 

T(s)^ 

A E J 
(2.66) 

B y integrating Eqs. 2.65 and 2.66 along the unstretched length s, the shape of elastic catenary 

can be obtained: 
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Hs H , . 

X = 1 — l o g 
A E q 1 

^ T ( s ) - V ( s ) ^ 

T n - V , o - v 0 

z = 
A E 

T ( s ) - T 0 

(2.67) 

(2.68) 

where T = V H 7 + V 2 , and the subscript 0 represents the values at the upper end of the cable. 

The expression for the stretched length is given as: 

s = s 1+-
2 A E 

+ -
2 A E 

V, 0 ( T 0 - T ) + ^ l o g 

q q 

( T - V ^ 

T n - V n 
(2.69) 

Substituting the boundary conditions at the bottom end of the cable into Eqs. 2.67 and 2.68, 

expressions for the horizontal cable span X and the rise Z , as shown in Fig . 2.6(a), can be 

obtained in terms of the total unstretched length of the cable S, and the horizontal component 

of the cable tension H , for a given buoyant net weight q: 

v HS H 
X = + — l og 

A E q 

1 + 
V o - q S f V 0 - q S 

H H 

1 + '0 
H 

_0 
H 

(2.70) 

Z = 
A E 

qS H 

q 

V o - q S f 
1 + 

H 
- J l + 

H 

A 2 

(2.71) 

These equations are clearly nonlinear, and thus for specified values of X , Z , and S, the 

equilibrium profile defined by H and Vo can be obtained numerically. In other words, two 

equations involving five variables are available, so that initial equilibrium configuration of 

the mooring line can be described by a set of any three variables, and the nonlinear Eqs. 2.70 

and 2.71 are solved numerically for the other two. Typically either X , Z and S or H are 

specified. 

The total unstretched length of the cable, S is a useful parameter that gives the degree of 

slackness of the mooring system when expressed as a ratio S/S 0 , where S 0 is the shortest 

distance between the anchor point and the top end of the mooring line. 
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Partly Suspended Mooring Line 

In practice, mooring lines are generally quite slack so as to reduce anchor loads, and most 

commonly partly suspended as shown schematically in Fig. 2.6(b). 

This case is similar to the case of a fully suspended cable as discussed in the previous 

section, except that a portion of the mooring line now rests on the seabed. The vertical 

component of the line tension is zero at the touchdown point. Thus, an analysis of the 

suspended portion of the mooring line gives: 

where Si is the total unstretched length of the suspended cable and (X-Xi) is the unstretched 

length of the portion of the cable lying on the seabed. Typically the location of the anchor X 

is specified along with the total unstretched cable length S. Thus, a numerical solution of the 

equations is required to obtain the horizontal component of the cable tension H, and the 

unstretched length and horizontal span of the suspended portion of the cable, Si and X i 

respectively. 

2.4.2 Static Analysis 

A static analysis of the mooring system is carried out in order to obtain the steady state offset 

of the floating structure due to the static components of the environmental loads, including 

current drag and the mean wave drift force (Fig. 2.5(b)). The restoring force of the mooring 

system in response to the static offset of the structure is determined from the combined effect 

of the individual mooring lines. 

(2.72) 

(2.73) 

(2.74) 
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Response of an Individual Line to Environmental Loads 

The response of an individual mooring line to a horizontal load is shown schematically in 

Fig . 2.7. The mooring line absorbs the external load of the structure primarily through 

changes in sag and to some extent by stretching. The response is nonlinear and the mooring 

line tensions and hence the restoring force in the displaced position are determined from the 

catenary equations. (Various approximate expressions are also available to estimate the 

restoring force, see for example, Ratcliffe (1985) and Faltinsen (1990)). 

Using Eqs. 2.72 - 2.74, the geometry of the mooring line in the loaded position is given 

by: 

X , = 
( H + A H ^ , ( H + A H ) 

A E 
log 

f qs, A 

i+ 
H + A H 

qS, 

H + A H 
(2.75) 

z _ qS,2

 | (H + A H ) 

2 A E q 
1 + qs, 

H + A H 
- 1 

s = s1 + ( x - x , ] i - H + A H 

A E 

(2.76) 

(2.77) 

where the capped parameters are the lengths relating to the modified cable configuration, and 

A H is the environmental force as indicated in Fig. 2.7. Thus, for a specified value of an 

applied total horizontal force at the top end of the cable, ( H + A H ) , the modified horizontal 

span and unstretched suspended length of the cable can be obtained numerically. 

The static offset of the structure A X corresponding to the applied load A H , may be 

obtained from the total horizontal span of the new and old profiles: 

S , + ( X - X 1 ) = S,+(x + A X - X 1 ) (2.78) 

Rearranging, the static offset A X is given as: 

A X = ( X , - X 1 ) - ( S 1 - S 1 ) (2.79) 
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Note that the force-displacement relationship is nonlinear, and so that this solution generally 

involves an iterative procedure. 

Multiple Mooring Cables 

Floating breakwaters are usually restrained by a mooring system consisting of a number of 

mooring lines as shown in Fig. 2.8. The restoring force of the overall mooring system in 

response to the static offset of the structure is determined from the combined effect of the 

individual mooring lines. The restoring force or moment is obtained from the vector sum of 

all the changes in the horizontal component of the line tensions. 

Equilibrium of forces with respect to the x and y directions and rotation about z axis 

gives: 

F(H+5;AHicos(<|>i) = 0 
i=l 

F d y + | ; A H i s i n ( < ( ) i ) = 0 (2.80) 
i=l 

M d z + X ( X j A H ; s i n ( 0 i ) - y . A H i c o s ^ ) ) = 0 

i=l 

where N is the total number of the mooring lines, is the angle between the i-th cable and 

the positive x direction, and (x;, Zj) are the coordinates of the point of attachment of the i-th 

cable to the structure. 

2.4.3 Dynamic Analysis 

The dynamic effects of the breakwater motions on the mooring line tensions are accounted 

for by a quasi-static analysis, in which the extreme displacements of the mooring line 

connection points are calculated from the addition of the steady state and the oscillatory 

motions of the structure (Isaacson and Baldwin (1996)). The quasi-static approach is 

generally considered to be adequate where the hydrodynamic loading on the individual 

mooring lines is small when compared with the energy transmitted by the structure 

(Triantafyllou (1994)). 
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2.5 Moored Breakwater Motions 
The oscillatory motions of the structure due to wave excitation depend in part on the 

equivalent linear mooring system stiffness (see Eq . 2.40), and these in turn depend on 

displaced mean position due to wave drift force and current loading. Hence the breakwater 

motions depend parametrically on the mean position through changes in the mooring system 

stiffness i.e. the hydrodynamic and mooring analyses are coupled, and the drift force and 

associated static offset must be solved by an iterative procedure. The overall procedure is 

indicated in F ig . 2.9. 

First, the equations of motion are solved by considering an unrestrained (freely floating) 

body to obtain the transmission and reflection coefficients without the influence of mooring 

stiffness. The wave drift force, calculated from the transmission coefficient using Eq . 2.59, is 

applied to the static equilibrium condition (Eq. 2.80) to obtain the breakwater offset, and the 

associated equivalent linear mooring stiffnesses at the offset position (Fig. 2.5(b)). The 

stiffnesses are then applied to the equations of motion (Section 2.3.4) to obtain modified 

motion amplitudes. Using these modified motion amplitudes, the transmission coefficient 

and the wave drift force are recalculated. This procedure is repeated until convergence in the 

wave drift force is achieved. Since the influence of the mooring stiffness on the breakwater's 

oscillatory motions is generally small, convergence occurs with relatively few iterations. 

Once convergence is achieved, the dynamic analysis of the breakwater motions is carried out 

using the quasi-static approach discussed in Section 2.4.3 and the maximum displacements of 

the breakwater are then determined by adding the amplitude of the oscillatory motion to the 

steady offset. The associated maximum mooring line forces are then obtained (Fig. 2.5(c)). 

2.6 Effect of Finite Length 
Since the preceding analysis has been based on a two-dimensional structure of infinite length, 

consideration is now given to the effect of a finite length of the breakwater. The length L of 

the structure is assumed to be much greater than the incident wavelength. The total force on 
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the structure is obtained by integrating the two-dimensional force along its length Fk(y,t), (see 

Eq . 2.30), ignoring the end effects. 

72 
^ , IV , T,' 2s in( (kL/2)s inB) , . N 

F k ( 0 = fFk(y>t)dy = E k ^ — - r T ^exp(-icot) (2.81) 
*y k sin p 

~ 72 

where F'k is the amplitude of the exciting force Fk. Thus, the k th force component, F k(t) is 

obtained by combining the corresponding force per unit length, Fk(y,t). This expression can 

be thought of as the product of the amplitude of the force per unit length F, the length of the 

structure L , and a reduction factor C(kL,P), defined as: 

C(kL .P) = 2 s i n ' ( l d - / 2 ) s i n P ) (2.82) 
kLsin(3 

The factor C(kL,p) can be considered to be a reduction of the load per unit length due to the 

finite length of the structure for a given angle of approach, or due to the obliqueness of the 

waves for a given structure length. The hydrodynamic coefficients for a finite structure are 

obtained by multiplying the sectional coefficients for beam seas (p = 0 deg) with the length of 

the structure. 
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3. Experimental Investigation 
The experimental investigation that has been carried out relates to two-dimensional 

laboratory tests of a twin-pontoon floating breakwater in order to verify the numerical model 

and to provide generic performance characteristics which could subsequently be applied to 

specific design situations. 

3.1 Experimental Facilities 
Experiments have been carried out in a wave flume located in the Hydraulics Laboratory of 

the Department of C i v i l Engineering, University of British Columbia. Figure 3.1 shows a 

sketch of the experimental set-up. The wave flume is 20 m long, 0.60 m wide, operates with 

nominal water depth of 0.50 m, and is equipped with a computer-controlled wave generator 

capable of producing regular and random waves. A 7.0 m long artificial beach consisting of 

plywood set at a 1:15 slope and covered with artificial hair matting extends from one end of 

the flume. This beach, together with a holding tank at the end of the flume, effectively 

absorb incident wave energy preventing significant wave reflection. The location of the 

model is at about 9.5 m downwave from the wave paddle. 

The main components of the experimental scheme include wave probes to record the time 

variation of wave profiles at selected locations in the flume; load cells to record time histories 

of mooring line forces; and a camcorder to obtain video records of the breakwater motions. 

Other components involve amplifiers, and a multi-channel data acquisition system and a 

digital to analog and analog to digital converters. A flowchart indicating these components is 

given in Fig . 3.2. The data generation and acquisition system, consisting of a D E C 

Vaxstation 3200 computer, was used to load the wave actuator with signals related to 

selected wave conditions, and to store the data acquired from probes and load cells. The 

G E D A P library of software, developed by the Hydraulics Laboratory of the National 

Research Council , Canada was used to generate signals relating to selected wave conditions 
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and to record the measured wave data (Miles, 1989). This system allows for the 

simultaneous generation of waves as well as sampling of the wave probe and load cell 

signals. 

3.2 Breakwater Models 
Breakwater models with both rectangular and circular cross-section pontoons have been 

considered. The two-dimensional twin-pontoon model with rectangular section pontoons 

was fabricated by constructing two perspex boxes, each 0.30 m wide, 0.20 m high and 0.53 m 

long, and connecting these to each other by an aluminum C section with an arrangement for 

adjusting the pontoon spacing. A photograph of the model is shown Fig . 3.3(a). This 

arrangement resembles a deck rigidly connected to the two pontoons in prototype situations. 

Roller bearings attached to the ends of each pontoon act as frictionless restrainers against the 

flume wall permitting surge, yaw and pitch motions only. Lead ballast was used to achieve 

the required breakwater draft, centre of gravity location, and roll radius of gyration. Mooring 

lines, made from 1/8 inch flat link stud chain and 1/8 inch braided nylon rope, were attached 

at the bottom outer corners of each pontoon. These were fixed to the flume bottom so as to 

simulate anchors with the ratio of rise to horizontal span of the mooring line Z / X chosen to 

be equal to 0.403. 

For the case of the circular section twin-pontoon breakwater model, arrangements were 

similar to those of the breakwater with rectangular section pontoons, except that two P V C 

pipes of diameter 0.20 m and length 0.53 m were used in place of the perspex boxes as shown 

in Fig . 3.3(b). The mooring lines were attached on the underside of the pontoons at angles of 

45° to the vertical. Each of the pipe ends was made water tight with a lexicon disk, and roller 

bearings were attached to each disk to minimize friction between the flume wall and model 

ends. 
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3.3 Test Procedure 
A l l tests were conducted in the wave flume with monochromatic regular waves. Table 3.1 

lists the wave conditions adopted for both the rectangular and circular section breakwater 

models. Figure 3.4 shows the ranges of Keulegan-Carpenter number K for these waves in 

relation to the characteristic dimension of the model. 

The selected wave conditions chosen were grouped into two categories; one associated 

with a constant steepness and the other with a constant wave number (Table 3.1). In all, 18 

different wave signals were used. 

The attachment point and the mooring line rise to horizontal span ratio Z / X were left 

unchanged throughout the tests, since the attachment location is assumed to have no 

significant influence on the motions (Isaacson et al. (1994) and Whiteside (1994)). For the 

case of nylon mooring lines, only a taut case was considered since the line is buoyant and the 

case of slack lines is not as relevant. Bearing in mind the above discussion, the parameters 

varied in the experiments include the wave period, the wave height, the breakwater draft, the 

pontoon spacing, and the mooring line type (and the mooring line slackness for chain only). 

The parameters held constant were the water depth, pontoon diameter, mooring line 

attachment points and mooring line horizontal span. Table 3.2 summarizes the ranges of 

these variables, and Table 3.3 gives a complete set of the test scheme adopted in the 

experimental investigation. 

A total of 80 tests were performed with respect to each of the models, corresponding to 

various combinations of wave conditions and breakwater configurations. The following 

parameters were measured in each of the tests: 

r | [ m ) incident wave surface elevation with the wave probe located at 

the origin, O (without the model in place); 

rfT•> T l ( r 2 ) > water surface elevations at three probes located at 1.0, 1.25 and 

1.45 m upwave from the reflecting face, respectively; 
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water surface elevations located at two probes at 1.0 and 

1.25 m downwave from the downstream face, respectively; 

breakwater motion amplitudes (sway, heave, and roll); 

maximum mooring line tensions at the anchor point (j=l, 

upwave, and j=2, downwave). 

3.4 Analysis Technique 

3.4.1 Reflection and Transmission Coefficients 

In the case of a reflection analysis involving a regular, uni-directional incident wave train, 

there are three parameters to be determined; (i) the incident wave height, (ii) the reflection 

coefficient, and (iii) the reflection phase angle. General methods that may be used for such 

an analysis have been outlined by Isaacson (1991). These include the following: 

Method I: two fixed probes - two heights and one phase angle measured; 

Method II: three fixed probes - three heights and two phase angles measured; and 

Method HI: three fixed probes - three heights measured. 

In the following, the basis for developing each of the three methods listed above is 

outlined briefly. 

The water surface elevation T| in front of the breakwater is assumed to correspond to the 

superposition of sinusoidal incident and reflected wave trains and may be expressed as: 

T] = a; cos(kx - cot) + a r cos(kx + cot - P) (3.1) 

where a; and a r are the amplitudes of incident and reflected wave trains, and P a phase angle 

between the incident and reflected wave trains. The reflection coefficient K R , is the ratio 

ar/aj. Assuming that co and k are known from measurements, the three unknowns to be 

determined are aj, a r, and p. The incident wave height, H and the reflection coefficient K R , 

are given in terms of a; and a r as: 

H = 2ai (3.2) 
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K R = a A (3.3) 

Equation 3.1 is applied at a series of probe locations x n , n = 1, 2, . . . . that may be substituted 

in Eq . 3.1 as: 

r | n = a; cos (kx n - cot) + a r cos(kx n + cot — P) (3.4) 

where k x n is given by k x i + A„, in which A n , the dimensionless distance between the n-th 

probe and the first probe, and is equal to kXn, (please see Appendix I). As an alternative, 

Eq . 3.4 can be expressed in complex form as: 

r | n = Re[{aj e x p ( i k x n ) + a r exp(ikx n- |3)}exp(-icot)] (3.5) 

where Re[ ] denotes the real part. The actual measurements at the probe locations w i l l 

provide corresponding amplitudes and relative phases, such that the measured elevation at the 

n-th probe may be written in complex form as: 

T](

n

m) = R e [ A n e x p ^ + 5 n ))exp(-icot)] (3.6) 

where A n is the measured amplitude of the n th record, (j)i is the phase angle, 8n is the 

measured phase of the n th record relative to that of the first record. Once the measured 

amplitudes and the relative locations of the probes are known, it is now possible to use Eqs. 

3.5 and 3.6 to develop expressions for a*, a r and (3, depending on which of the three methods 

is used. For completeness, the expressions for the unknown variables a;, a r and (3 derived 

from all three methods are summarized in Appendix A . 

In the above calculation of K R , rather than using a, obtained from a reflection analysis, the 

incident wave height measured at the wave probe placed at the origin O (see Fig . 3.1) in the 

absence of the breakwater model has been used instead. For the case of transmission 

coefficient K T , measurements from two wave probes on the downwave side of the model 

were taken and only Method I was used. In this case, K T was obtained as: 

K T = aj'/ai (3.7) 
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where, a;' is taken to be the amplitude of the transmitted wave obtained from a reflection 

analysis, whereas a; is the amplitude of the measured signal from the probe at the location O, 

without the model in place. From the measured wave elevations at different locations at the 

upwave and downwave side of the model, the incident, reflected, and transmitted waves were 

obtained by following Isaacson (1991). 

3.4.2 Wave Measurement 

Capacitance-type wave probes were used for measurements of the water surface elevation. 

The wave probes exhibit a linearity better than 98.5% and a resolution of better than 1 mm. 

The duration of the recording was selected so as to ensure that measurements of waves 

upwave of the breakwater were not contaminated by reflected waves which were re-reflected 

by the wave generator; and that the measurements of waves downwave of the breakwater 

were not contaminated by the waves reflected by the beach. Also , the time origin of the data 

recording was selected such that the shorter period waves reach the location of the model and 

there were sufficient numbers of wave cycles within a chosen record length. Hence, a 

recording length of 14 sec was chosen and data were recorded at a sampling frequency of 

50 Hz . 

3.4.3 Mooring Force Measurement 

Mooring line tensions were also measured simultaneously with the water surface elevation 

for all the tests. Two sealed shear beam load cells were placed in series with the mooring 

lines near the anchor points to measure tensions in the upwave and downwave mooring lines. 

The load cells have a 50 lb (222 N) capacity with 99.5 % linearity through their working 

range. Data were recorded at a sampling frequency of 50 H z to ensure that no sharp peaks in 

the data were lost. 
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3.4.4 Dynamic Characteristics 

The dynamic characteristics of the two models are required for the purpose of applying the 

numerical model to simulate the test conditions. These characteristics include the position of 

the centre of gravity, the roll radius of gyration and the system damping. 

When the mass distribution of a floating breakwater model is not known a priori, the 

centre of gravity and roll radius of gyration can be determined from swing tests. First, the 

location of the centre of gravity was determined by pivoting the whole system about a point 

far from the vertical axis (line of symmetry) of the breakwater and then dropping a plumb 

line through the pivot point; the centre of gravity then lies at the intersection of the plumb 

line and the vertical axis. Next, the model was allowed to oscillate as a pendulum about a 

point A , which is a known distance from the centre of gravity. The relationship between the 

roll radius of gyration and the oscillation period can be obtained from the equation governing 

the motion, and is given by L. = mg£/(o2. Here, Io is the moment of inertia about point A , £ is 

the distance between the point A and the centre of gravity G , and co is the angular frequency 

of the oscillation. Once the moment of inertia L, is known, the radius of gyration r e can be 

easily determined. Table 3.4 gives values of the location of centre of gravity ZG, radius of 

gyration re, for the base cases of both the rectangular and circular models. 

3.4.5 Breakwater Motions 

The two-dimensional motions of the breakwater were video taped using an S - V H S camcorder 

as indicated in Fig . 3.1. Two distinct marker locations on the model are shown in Fig. 3.5. 

The camcorder was fixed at an elevation that coincides with the elevation of the origin O of 

the coordinate system, and oriented such that the markers are always within the camera range. 

This position and the settings of the camera correspond to a field of view area of 

approximately 1.7 m x 1.25 m at the face of the wave flume wall . A l l relevant dimensions are 

measured such that co-ordinates in the user plane can be evaluated from the video images 

using a motion tracking package. 
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The video record of the required duration was then played to a F A S T FPS/60 frame-

grabber card installed on an I B M compatible P C and saved as a movie file. This was then 

read by the motion analysis software package Photo4D, and thereby converted to a sequence 

of single-frame still image files (see Fig . 3.5). These images were then viewed for marking 

purposes. Once the user identifies the markers on the first frame and inputs values related to 

the camera position, user coordinates, and the size of the markers, the analysis package 

automatically tracks the markers in the subsequent frames. Using scale information initially 

supplied by the user, the positions of markers in pixel coordinates are converted to user 

coordinates, and finally stored in an A S C I I file. Based on these time variations of 

coordinates of each of the markers, the three-degrees-of-freedom motions (sway, heave and 

roll) can be obtained as described in Appendix B . 

It is important to synchronize the time origin of these motion traces with that of the data 

recording relating to wave probes and mooring line forces. This was accomplished by 

sending a trigger voltage such that a small bright light bulb, placed within the range of the 

view finder of the camcorder, was illuminated at the start and turned off at the end of each 

data recording. When the video is played back, the illuminated status of the light bulb 

indicates the duration of data collection on the G E D A P data acquisition system. It is noted, 

even though the bulb appears to brighten over a finite duration, it is generally possible to 

select a specific video frame at the onset of the bulb lighting up. 

3.5 Assessment of Experimental Errors 
Part of the scatter observed in the experimental results is likely due to the limitations of the 

laboratory facilities and the measurement techniques. As mentioned earlier, in the present 

study, time histories of water surface profiles and mooring loads, and the video capture of 

breakwater motions were recorded. The water surface elevations were measured by placing 

probes at selected locations on the upwave and downwave side of the model. Limitations 

include an assessment of reflected waves from the combined incident and reflected wave 
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field measured on the upwave side, and an assessment of beach reflected waves on the 

downwave side of the model. It was also found that, after a large duration (> 20 sec), the 

flume showed standing wave and cross-wave patterns on the upwave side of the breakwater 

and subsequent overtopping. These situations limited the total duration of the recorded data 

that were analyzed, so as to keep the contamination of the wave field as low as possible at 

both the upwave and downwave sides of the breakwater. A series of preliminary tests were 

conducted to evaluate the influence of reflection so as to choose an appropriate recording 

length as described in the previous section. 

The time histories of the mooring line tension at the anchors indicated sharply rising snap 

loads due to excessive drift of the breakwater model. This may be attributed to the limited 

scope of the mooring lines. 

The use of the video motion tracking system appears suitable for estimating the 

component motions of the breakwater. The limitation of this technique basically arises from 

the hardware of the system rather than the tracking software itself. A frame-grabber card 

installed on an I B M compatible computer was used to convert the analogue video record to 

digital ' av i ' files. The card can capture frames at a maximum rate of 30 frames per sec. This 

sampling rate is not critical for component motions since the wave periods considered are in 

the range of 0.6 to 1.7 sec, and the motion tracking technique is thus associated with a 

possible error of only 1/30 sec. In the present study, the size of a captured image was chosen 

to be 320 pixels (horizontal) x 280 pixels (vertical). B y knowing the dimensions of the 

physical frame, a resolution of 3 pixels per mm was achieved. 

The response measurements are prone to error due to various factors and an assessment of 

the degree of error in the video-based motion analysis is presented now considered. The 

possible error sources include: 

(a) differences between the mouse location and a marker point (i.e. the actual point to 

be tracked), 
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(b) differences between marker locations and the reference points used for scale 

selection, and 

(c) the strength of the video image itself. 

The Photo4D (1996) software package was used to identify the marker points and then to 

track the coordinates of the marker points. The package requires the camera position and 

user coordinates as inputs. It also requires the locations of two markers as reference points 

and the distance between the two reference points. Based on these inputs, the Photo4D 

package estimates the coordinates of the markers and the associated error in estimating the 

location in user coordinates. 

Test runs were conducted with known values of rigid body locations in air and recorded 

on video in order to calibrate the motion analysis package. The ratio of the responses 

obtained from the motion analysis to that of known values gave 7 - 9 % error for the sway 

and heave motions, and 10 - 12 % for the roll motion. In the experimental study, maximum 

values of responses observed were not greater than 8 cm for translation and 5.0° for the roll . 

Thus, errors corresponding to translation and roll motions were less than 7 - 8 mm and 0.5 -

0.9°, respectively. Figure 3.6 indicates the estimated percentage error in component motions 

for the video-based motion tracking system. The figure shows these for the particular case of 

a moored rectangular twin-pontoon breakwater with d/a = 1.67, h/a = 0.45, b/a =1 .0 and 

S / S 0 = 1.08. 
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4. Results and Discussion 
This chapter summarizes results obtained from the numerical model and the experiments, 

described in Section 2.3 and Chapter 3 respectively, including a comparison with selected 

results reported in previous studies. First, the numerical model results relating to added 

masses and damping coefficients, response amplitude operators, reflection and transmission 

coefficients, and force coefficients are presented. Experimental results consisting of 

reflection and transmission coefficients, response amplitude operators, and maximum 

mooring forces in the upwave and downwave lines are then presented, and compared with 

corresponding numerical values. Finally, as an example application of the moored twin-

pontoon breakwater analysis, a prototype situation is considered and related numerical results 

are presented. 

4.1 Numerical Results 
In this section, the accuracy and computational efficiency of the numerical model is first 

assessed, and a parametric study is then carried out to investigate the sensitivity of the 

breakwater performance to various wave and structural parameters. The performance of the 

breakwater is expressed in terms of pontoon draft ratio h/a, spacing ratio b/a and mooring 

slackness ratio S/S 0 . In the parametric study, numerical results are presented first for a fixed 

body, followed by results for a freely floating body. Next, the mooring analysis is 

considered, and finally results for a moored structure are presented. 

4.1.1 Accuracy and Efficiency 

A n assessment of the accuracy of an earlier version of the numerical model has been carried 

out by Nwogu (1985), by comparing results for the case of a single-pontoon rectangular 

section breakwater with those reported by Bai (1975) and based on the finite element method. 

In the present study, an assessment of the accuracy of the integral equation method for the 

case of twin-pontoon sections has been made by considering a series of numerical test cases 
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with different sizes of elements on the free surface and the different numbers of elements on 

the body. Element sizes ranging from L/50 to L/10 have been considered, where L is the 

wave length, and the number of elements on a single pontoon, N , ranging from 20 to 40 have 

been considered. The corresponding results indicated that there is less than 0.1% change in 

the hydrodynamic coefficient values for element sizes smaller than 1/40 of the wave length 

and for N greater than 30. However, it has been noted that the hydrodynamic coefficient 

values are particularly affected by the element size along the free surface lying between the 

two pontoons. Therefore, the element length here was taken to be one-half of that for the 

upwave and downwave free surfaces. Overall, an element size of L/40 along upwave and 

downwave free surfaces and L/80 along the free surface between the two pontoons were 

chosen, together with 30 elements on each pontoon surface. These values were held constant 

through out the analysis. 

It is also important to consider the computational efficiency of the numerical model. The 

program was developed in the F O R T R A N language and was run on an I B M compatible P C 

Pentium running at 200 M H z with 64 M B R A M and with a Microsoft F O R T R A N Power 

Station 4.0 compiler. The C P U time log for the algorithm indicates that a large fraction of 

the time was required for the calculation of the element matrix coefficients. A s an example, 

the C P U time is denoted x for the case of a freely floating single-pontoon rectangular section 

breakwater with relative draft h/a = 0.5, in water of finite depth d/a = 1.67, a range of ka 

from 0.3 to 3.0 with 10 equal intervals. For the case of a twin-pontoon breakwater with the 

same sectional parameters along with the relative spacing b/a as 1.0, the relative C P U time 

observed is 2.6x. For single- and twin-pontoon circular sections the corresponding times are 

0.96x and 2.5x, respectively. 

Recently, the use of higher-order element methods has been extended to water wave 

problems (see Teng and Eatock Taylor (1995)). In a higher-order boundary element 

approach, the velocity potential is no longer assumed uniformly distributed along each 

element and its values at the element nodes become the unknowns. The velocity potential 
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and its derivatives within an element are expressed in terms of the corresponding nodal 

values and shape functions. It may be recalled that in the present context of a linearized two-

dimensional twin-pontoon wave interaction problem a constant potential approach is 

reasonably accurate. 

4.1.2 Fixed body 

Initially, the body is taken as fixed such that only the wave scattering problem is considered. 

Results are presented for a twin-pontoon rectangular section with a base case corresponding 

to d/a = 2.5, h/a = 0.5 and b/a = 1.0, where a is the width of a single-pontoon (diameter for a 

circular section pontoon). Each parameter is varied from the base case value, keeping the 

other parameters constant. The variation of reflection coefficient as a function of the 

frequency parameter ka is presented in Fig. 4.1. For comparison, numerical results from 

Will iams and A b u l - A z m (1996), are superposed on the plot. Wil l iams and A b u l - A z m also 

used boundary integral method, however, the computational domain was made up three 

separate regions pertaining to two pontoons and a trapped middle section. A matching 

boundary condition along the adjacent boundaries was introduced to solve the complete 

boundary value problem. Good agreement over the whole frequency range is obtained. The 

differences are in general less than 0.5% except for small ka values, where a more than 1.0 % 

difference exists. 

Figure 4.1(a) indicates the influence of pontoon draft on the reflection coefficient. Three 

cases of draft ratio h/a (0.25, 0.50 and 1.00) are taken, keeping the other parameters constant. 

A s expected, it is observed that in the high frequency range, the reflection coefficient 

approaches unity for all three cases and that the deeper draft section is the most efficient 

barrier. Also , it can be seen that all three curves are similar and have a sharp minimum in the 

frequency range of interest. It is interesting to note that this minimum does not occur for the 

fixed single-pontoon section, for which K R is a monotonic function of ka, and thus it is 

associated with hydrodynamic interference effects between the two pontoons. 
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In Fig . 4.1(b) the effect of relative pontoon spacing on the reflection coefficient is 

examined by considering three different values of b/a (0.5, 1.0 and 2.0), while keeping the 

other parameters constant. Once again, the reflection coefficient exhibits a minimum in the 

mid-frequency range and tends to reach unity at higher frequencies. It is noted that at low 

frequencies (0.50 < ka < 0.75) the smallest spacing, b/a = 0.25, leads to a maximum 

reflection coefficient, while at higher frequencies (ka > 1.00), the largest pontoon spacing 

results in higher values of reflection coefficient. This is because in long waves (low 

frequency) the smaller spacing allows the two pontoons to act as a continuous structure 

functioning like a single unit spanning a significant part of the wavelength, whereas in short 

waves pontoons with a larger spacing tend to act independently as two separate single 

pontoon breakwaters in series. 

In a similar way, Fig. 4.2 compares the reflection coefficient for the fixed case of circular 

twin-pontoon breakwaters (d/a = 2.5, h/a = 0.5, b/a = 1.0) indicating the influence of pontoon 

spacing. The results are analogous to those of rectangular section breakwaters. 

4.1.3 Unrestrained Body 

Consider now the case of a freely floating twin-pontoon rectangular section breakwater 

(h/a = 0.5, b/a = 1.0) in water of finite depth d/a = 5.0 interacting with a monochromatic 

normally incident wave train. Figure 4.3 shows the variations of added masses, damping 

coefficients, exciting force coefficients and response amplitude operators (RAO's) , as 

functions of the frequency parameter, ka. Also, results relating to a single-pontoon 

rectangular section breakwater corresponding to one pontoon of the twin-pontoon breakwater 

(i.e. d/a = 5.0, h/a = 0.5) are superposed in the figure, together with corresponding 

experimental results reported by Vugts (1968). As expected, the added mass in sway for the 

twin-pontoon breakwater is approximately twice that for the single-pontoon configuration. 

However, for the case of the heave mode of motion, the added mass variation with ka 
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exhibits a marked change with a minimum value of -1.25 at ka = 0.73 and remains negative 

in the range of 0.75 < ka < 1.00. 

The occurrence of negative added mass for the case of twin bodies such as catamarans, as 

well as bulbous bodies close to the free surface and ships close to a quay, have been reported 

previously. Also , it has been observed that the negative added mass occurs near the natural 

frequency for a given mode of motion. In most cases this has been observed in theoretical or 

numerical computations, but laboratory model test results have also confirmed such a 

phenomenon. This phenomenon mainly arises because of the out-of-phase motion of the 

body in relation to the water surface in the vicinity of the body (e.g. Sarpkaya and Isaacson 

(1981)). Cases giving rise to a negative added mass generally have a configuration that 

allows a localized resonance to occur in the fluid domain adjacent to the structure. In the 

present case of a twin-pontoon section, the space between the pontoons forms an oscillating 

water column, which may respond as a separate oscillator. Vinje (1989) proposed a coupled 

two-degrees-of-freedom oscillator to model such a system, and thereby showed the basic 

nature of the added mass for this configuration by varying parametrically the mass and 

stiffness characteristics of the model. 

Figure 4.3(a) also indicates that the variation of roll added mass for the case of a twin-

pontoon section is fairly constant over the range of ka considered in the study and is twice the 

corresponding value for a single-pontoon section. 

Although previous studies relating to twin-pontoon sections are generally available, 

previously reported results of hydrodynamic coefficients for the case of a twin-pontoon 

rectangular section appear not to be available. Therefore, numerical results only for a single-

pontoon rectangular section are compared in the figure with the corresponding experimental 

values reported by Vugts (1968). These two sets of results compare reasonably well . 

Figure 4.3(b) shows the variation of damping coefficients for the sway, heave and roll 

modes of motion for the same breakwater configuration. While the damping coefficient i n ' 

sway for both sections follow similar variations, there are more pronounced differences for 
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the heave and roll modes of motion. In the heave mode, the damping coefficient drops to 

zero from a peak value, at the same ka value (= 0.73) as that at which the heave added mass 

reaches a (negative) minimum (see Fig. 4.3(a)). For the roll mode, the damping coefficient 

reaches a peak value at about ka = 0.55, and is higher than that of a single-pontoon section. 

Figure 4.3(c) shows the exciting force coefficients for sway, heave and roll as functions of ka, 

and a comparison of Figs. 4.3(b) and 4.3(c) confirms that the exciting forces and damping 

coefficients are directly related, in accordance with the Haskind relations (e.g. Sarpkaya and 

Isaacson (1981)). 

Consideration is now given to the sway, heave and roll responses of the same breakwater 

where the relative radius of gyration, rc/a = 1.08, the relative centre of gravity, zcla = -0.125, 

and the relative centre of buoyancy, zpj/a = -0.25, where a is taken to be the pontoon width. 

The uncoupled natural frequency in heave and roll may be estimated from the known values 

of the overall stiffness and mass in the respective degrees of freedom, and correspond to 

ka = 0.88 and 0.99, respectively. For the case of a single-pontoon section, the relative radius 

of gyration, rc/a, is taken to be 0.20, and the natural frequencies in heave and roll are 

estimated to correspond to 0.87 and 0.41 respectively. Figure 4.3(d) shows the variation of 

sway, heave and roll R A O ' s with ka. It can be seen that the maximum heave R A O ' s are 

almost the same, whereas in roll, the maximum R A O is about 20% of that single-pontoon 

section. This is mainly due to the increased roll stiffness for the case of the twin-pontoon 

section. A s ka increases, the heave R A O drops from an initial value of 1.0 to zero and then 

reaches a maximum. This is indicative of the interference effect and the associated negative 

added mass. 

Figure 4.3(e) provides a comparison of the reflection and transmission coefficients, and 

the wave drift force coefficient for the twin- and single-pontoon rectangular sections. Once 

more, the interference effect is clearly seen in the twin-pontoon results. 

In a similar manner to the preceding comparison for rectangular section breakwaters, 

Fig . 4.4 shows a comparison of the hydrodynamic coefficients, exciting force coefficients, 
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and R A O ' s for the case of twin- and single-pontoon circular section breakwaters. Here, the 

values relating to the twin-pontoon circular section are compared with the results of Leonard 

et al. (1983), who used the finite element method to solve the corresponding boundary value 

problem. From Fig . 4.4(a) it can be seen that the estimated values of sway added mass 

compare reasonably well over the whole range of ka shown, except that for the low frequency 

range (ka < 0.35) the present results and Leonard's deviate by about 10%. Figures 4.4(b)-(e) 

indicate similar features as that for the rectangular twin-pontoon section. 

Since the preceding added mass and damping coefficient variations exhibit sharp peaks, it 

is of interest to compare the effect of pontoon spacing on these coefficients. Figures 4.5(a) 

and 4.5(b) present such a comparison for rectangular and circular twin-pontoon sections 

respectively with d/a = 2.5, h/a = 0.5, p = 0°. In Fig . 4.5(a), results are shown for relative 

spacings, b/a = 0.25, 1.0 and 4.0, (rectangular section), while in Fig . 4.5(b) they are shown 

for b/a = 0.25, 2.0, and 4.0, (circular section). Consider first the rectangular section 

breakwater. It can be noticed that for closely spaced pontoons, the hydrodynamic coefficients 

do not exhibit any peaks, while for the case of widely spaced pontoons, the variations of both 

the sway and roll added mass coefficients exhibit maxima and minima at ka = 1.25. In 

addition, the variations of damping coefficient indicate corresponding peaks at the same ka 

value. On the other hand, the heave added mass coefficient shows no such variations for both 

closer and wider spacings. Similar variations can be observed in the variation of 

hydrodynamic coefficients relating to the circular section pontoon (Fig. 4.5(b)). 

4.1.4 Mooring Analysis 

A s part of the overall analysis of a moored floating breakwater, a mooring analysis is carried 

out in conjunction with the hydrodynamic analysis. Initially, a separate mooring analysis is 

carried out here for the case of a six-point mooring system made up of chain or nylon lines in 

order to investigate the mooring line stiffness properties. The mooring lines are taken to have 

the configuration shown in the inset to Fig. 4.6, with each of the lines having a rise, 
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Z = 2.5 m, and a horizontal span, X = 6.6 m. For the case of chain moorings a slackness 

ratio, S/S 0 = 1.08 is assumed and the chain submerged weight per unit length, q, and section 

modulus per unit length, E A , are taken to be 183.0 N / m and 20.0 M N respectively. For the 

case of nylon moorings, a taut line (S/S 0 = 1.00) without any pre-tension is assumed, and q 

and E A are taken to be 2.08 N / m and 50.8 k N respectively. The breakwater length, £ is taken 

to be 20.0 m and the mooring lines attachment points are spaced equally at X. = 10.0 m. The 

water depth d is taken to be equal to 3.4 m. 

The net horizontal force as a function of displacement in the sway direction is presented in 

F ig . 4.6 for both types of mooring. As can be seen in the figure, the force-displacement curve 

for the chain mooring (slackness S/S 0 = 1.03), is linear up to a displacement 8 = 0.19 m, and 

for 8 > 0.30 m the form of the curve becomes more nonlinear. For the case of nylon 

moorings, the curve is approximately linear over the displacement range shown. A 

comparison of chain moorings of nearly taut case (S/S 0 = 1.03) with that of nylon moorings 

(taut case, S/S 0 = 1.00) indicates that the restoring force for the former is consistently higher 

and becomes greater than two times the restoring force associated with the nylon moorings 

for 8 > 0.19 m. This would not only reduce the required design strength of the anchor 

system, but also the breaking strength requirement of the mooring line itself when compared 

with the case of nylon lines. 

4.1.5 M o o r e d Breakwater Response 

It is of interest to investigate the use of the iterative procedure in evaluating the wave drift 

force of a moored breakwater described in section 2.5. Consider therefore a twin-pontoon 

breakwater with a depth d = 3.4 m, a draft, h = 0.9 m, and a spacing, b = 2.0 m. In addition, 

the radius of gyration, re is taken to be 2.16 m, the centre of gravity, ZG = -0.25 m, and the 

centre of buoyancy, ZB = -0.5 m. The six-point mooring system described above is once 

again considered, now with a slackness ratio S/S 0 = 1.03, which indicates a stronger 

nonlinear force-displacement relationship (see Fig. 4.6). Table 4.1 shows the corresponding 
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linearized stiffness matrix without any environmental loads applied on the structure, whereas 

Table 4.2 indicates the influence of iteration on the convergence of the wave drift force for 

constant values of ka = 0.675 and H / L = 0.1. The iteration procedure adopted here is given in 

section 2.5. The wave drift force at the end of the iteration is consistent with both the 

hydrodynamic and the mooring analyses. This in turn implies that the motions in sway, 

heave and roll modes are also consistent with the corresponding values of total stiffness of 

the system. 

Table 4.3 compares the results from the present analysis involving the iteration procedure 

for wave drift force with an analysis that does not consider the iteration procedure. The table 

also indicates the percentage difference in the results between the two analyses. The values 

suggest that the iteration procedure for the wave drift force is essential for cases where the 

relationship between the net horizontal force and the displacement is strongly nonlinear and 

the wave steepness is notably large. In other words, for conditions where breakwaters are 

taut moored, and are exposed to steep waves, the force-displacement relationship is strongly 

nonlinear and thus requires an iteration procedure to arrive at a consistent drift force and the 

linearized mooring stiffness matrix at this drifted position. 

Figures 4.7(a) and (b) compare the results of chain and nylon moorings for the base cases 

of rectangular and circular section twin-pontoon breakwaters. Although, the estimated 

transmission coefficients do not show marked differences, the maximum tension at the 

anchor for the upwave line indicates significant differences between chain and nylon 

moorings. 

4.2 Experimental Results 
The experiments were carried out for both the rectangular and circular section twin-pontoon 

breakwaters. As described in Chapter 3, for the base case of a rectangular section model, the 

pontoon width a = 0.30 m, and the height h = 0.20 m, and the gap b = 0.30 m. Similarly, for 

the base case of a circular section model, the pontoon diameter a = 0.20 m, and the gap 
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b = 0.40 m. For the two base cases, the draft was chosen to be 65% of the pontoon height, 

and the mooring lines were taken to have a rise to span ratio Z / X = 0.403, with a slackness 

ratio S/S 0 = 1.08 and 1.00 for chain and nylon respectively. 

The entire program of test wave conditions was generated in the flume before placement 

of the breakwaters in order to allow the incident wave trains to be examined in the absence of 

any reflected waves from the breakwater. The resulting incident waves were measured to 

ensure that the desired wave height was attained in the flume for a given wave period. 

For the rectangular section model base case, Figs. 4.8 and 4.9 show measured time 

histories of the five probe signals, and the mooring line forces at the anchors. Figures 4.8(a) 

and 4.8(b) correspond to a shorter wave period, T = 1.0 sec, and a larger wave height, 

H = 0.12 m, for both chain and nylon moorings, whereas Fig. 4.8(c) corresponds to a longer 

wave period, T = 1.70 sec and a smaller wave height, H = 0.09 m, for chain moorings only. 

A s can be seen from the component figures, the transmitted waves are slightly bigger than 

one third the incident waves, indicating clearly the effectiveness of the breakwater to provide 

adequate wave protection. Comparing Figs. 4.8(a) and 4.8(b), it can be inferred that the type 

of mooring system mainly influences the line tensions rather than the transmitted or reflected 

wave profiles. The mooring line forces are markedly different for the two systems; the time 

variation is cyclic for the case of nylon moorings whereas it contains sharp peaks for the case 

of chain moorings. 

A l l the data collection has been carried out for a length of 10.0 sec. The analysis has been 

carried out for a duration of 6 sec, between the time periodic conditions are established at the 

wave probes, and the time at which the wave record begins to exhibit some modulation. 

Also , it may be recalled that the experiments were carried out with wave periods ranging 

from 0.5 sec to 1.7 sec (see Table 3.2), ensuring 4 to 12 cycles of recorded data. The 

reflected and radiated waves in front of the breakwater seem to contaminate the incident 

wave field after 7 sec. Thus, the initial duration of 6 sec shown in Fig . 4.8(a) corresponds to 

the duration of the data analyzed. 
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Figure 4.9 shows time histories of measured sway, heave and roll motions of the 

breakwater model, as well as the incident wave profile, for the same condition as in 

Fig . 4.8(c). A s expected, the sway motion seems to have a mean as well as an oscillatory 

component. Also , the sway and heave motions are closely in phase and heave motions lag 

the sway by about 0.3 sec. The figure also indicates the heave motion to be of the same order 

as the wave amplitude. 

A t a wave period of 1.7 sec (not shown here), which is close to the heave and roll natural 

periods, the motions were quite large with a large amount of water getting on the deck. Also , 

the water contained between the two pontoons showed a very noticeable out-of-phase motion 

with respect to the heave mode. In fact, the wave generator has to be stopped immediately 

after completing the required 6.0 sec length of data recording. 

Measured time traces of wave probe signals were analyzed to provide the incident, 

reflected and transmitted waves based on the three different methods explained in Section 

3.4. It may be recalled that the water surface profiles were recorded at three different 

locations on the upwave side of the model, and two locations on the downwave side. Thus, it 

was possible to apply all the three methods of reflection analysis to the upwave side, whereas 

only Method-I was used for the downwave side. A comparison of the measured wave profile 

r|^ n" ) at an upwave location with the computed profile rff based on Eq . 3.4 is presented in 

Fig . 4.10. For the upwave side of the model, the results from three different methods did not 

compare well mutually, however the method of least squares (Method II) seems to compare 

reasonably well with the measured wave profiles. 

When analyzing the data it was assumed that the response of the breakwater is periodic 

and of the same frequency as the incident waves. However, the nonlinearities in the problem 

largely due to line snapping in the case of chain moorings resulted in notable cycle to cycle 

variations. The partially non-periodic mooring tensions, combined with the limited length of 

the tests for the reasons explained above, may be responsible for some scatter in the data. 
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The importance of the breakwater motions is mainly due to their role in the transmission 

of waves past the breakwater. Therefore, it is useful to discuss the type of results that may be 

expected. The heave degree of freedom is uncoupled from the other two degrees of freedom, 

whereas the sway and roll degrees of freedom are coupled, largely because mooring line 

attachment points do not coincide with the centre of gravity of the breakwater. However, this 

coupling is very weak, and even though both the modes are present, one can expect that either 

the roll or sway mode predominates. Furthermore, for slack lines, mooring forces are smaller 

than the hydrodynamic forces. 

4.3 Experimental and Numerical Results 
Numerical results were obtained by carrying out the hydrodynamic analysis in conjunction 

with the mooring analysis. Viscous damping, due in part to flow separation around the 

breakwater, plays an important role in the characteristics of the breakwater's response. 

Damping is associated with the waves that radiate out from the body due to its motion; but 

for situations in which the radiated waves are relatively small, that is when the system is 

lightly damped, the main contribution of the surface waves is to provide a forcing function. 

This effect is obvious in the case of roll , particularly near resonance, and the response is 

greatly over predicted by the linear potential theory (Standing (1991)). Therefore, a set of 

different viscous damping coefficients was used in the numerical model in order to obtain 

reflection, transmission and energy dissipation coefficients, and R A O ' s for comparison with 

the experimental results. This comparison is presented in Figs. 4.11 and 4.12 for rectangular 

and circular models respectively. The experimental values correspond to Table 4.4 for the 

rectangular section and to Table 4.5 for the circular section. 

Consider F ig . 4.11(a) indicating the RAO' s for the case of the rectangular section. 

Numerical results for sway and heave responses compare reasonably well with those obtained 

from the experimental study. Also, these plots indicate that the sway and heave responses are 

closely in phase. However, for the roll response the agreement between the numerical result 
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with observed experimental values is poor. The location of peak roll responses from 

numerical predictions with different damping coefficients are in the range of 0.9 < ka < 1.1, 

where as the location of peak response obtained from the experiments lie at ka = 1.4 

approximately. This discrepancy may be attributed to the fact that the mooring line tends to 

become fully suspended imparting sharp snap loads on the mooring lines, thereby limiting the 

roll amplitude in the vicinity of resonance (0.9 < ka < 1.5). 

Consider F ig . 4.11(b), which indicates the numerical values of reflection, transmission 

and energy dissipation coefficients including the associated experimental results. The 

numerical values of these coefficients do not show good agreement with the experimental 

results. This may be largely attributed to the interference effect of the two pontoons that 

imparts sharp variations in the plots of these coefficients as functions of ka. Similarly, the 

experimental study indicates significant sloshing and related energy dissipation. However, it 

may be noted that the transmission coefficient compares reasonably well except in the 

vicinity of resonance. Based on these comparisons viscous damping coefficients of 2.5% was 

assumed for numerical predictions of response for rectangular section breakwater. 

Similar analysis was carried out for the case of a circular section breakwater where the 

energy dissipation seemed less compared to that of a rectangular section. Thus, viscous 

damping coefficient of 1.0% was adopted in the numerical model for the circular section 

breakwater. 

Figures 4.12 through 4.21 relate to rectangular twin-pontoon section and Figs. 4.22 

through 4.27 correspond to circular twin-pontoon section. These figures present the 

influence of draft, pontoon spacing and mooring line material, and slackness parameters on 

the R A O ' s , the R A O phases, reflection and transmission coefficients, and the maximum 

mooring line tension coefficients at the anchors. These cases are now considered in turn by 

first considering the base case of a moored rectangular twin-pontoon section breakwater. 



Chapter 4. Results and Discussion 60 

4.3.1 Rectangular Section with Chain Moorings 

Figure 4.12 relates to the base case of twin-pontoon rectangular breakwater with relative 

water depth, d/a = 1.67, relative draft, h/a = 0.45 and relative pontoon spacing, b/a = 1.0, and 

moored with a chain of relative slackness, S/S 0 = 1.08. The figure compares the experimental 

values with those of numerical results for transmission coefficient, K T , response amplitude 

amplitudes, R A O ' s , and R A O phases. 

The numerical values of K T are greater than 0.6 for ka < 1.25. The variation of K T 

exhibits a dip at ka = 1.5, and is less than 0.5 for ka > 1.5 (Fig. 4.12(a)). For larger ka values, 

the corresponding experimental results compare reasonably well . For a twin-pontoon 

breakwater to be effective, it is noted that the minimum width of an individual pontoon must 

not be less than a quarter of the wavelength. 

Consider now Fig . 4.12(b) relating to the RAO's . The sway and heave R A O ' s exhibit an 

initial dip near ka = 1.0 with an associated phase shift, while the roll R A O exhibits a peak 

corresponding to a roll resonance. The heave R A O peaks near ka = 1.4 indicating a higher 

frequency for heave resonance. The numerical values of R A O phases are compared with the 

corresponding experimental results in Fig . 4.12(c). It is recalled that the R A O phases 

indicated here are defined with respect to a wave crest. The comparison between the 

theoretical and experimental results seems to be reasonably good. In the subsequent plots of 

R A O phases, the experimental results are not included. 

Influence of Draft 

A base case of a rectangular section with a relative water depth ratio d/a = 1.67, spacing ratio 

b/a = 1.0, and chain moorings with slackness ratio S/S 0 = 1.08 was considered. Three 

different relative drafts considered in the study correspond to h/a = 0.33, 0.45 and 0.55, and 

associated results are tabulated in Table 4.4. 

Figure 4.13(a) indicates the influence of draft on the sway, heave and roll R A O ' s . 

Experimental values have been superposed on these plots, which indicate reasonable 

agreement with the numerical results with some discrepancies at resonance. 
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The numerical results indicate that the effect of draft on sway is relatively insignificant. 

The influence of draft on the heave R A O is limited to a change in the heave natural frequency 

only: the heave natural frequency reduces as the draft increases, since the submerged volume 

and thus the effective mass increases, while the stiffness does not change. In the high 

frequency range, experimental results indicate some degree of rise in the magnitude of heave 

R A O when compared with the numerical values. This may be due to the fact that the heave 

response is in phase with the oscillation of the enclosed water column, leading to a 

discrepancy in heave R A O . For both sway and heave, the R A O ' s tend to zero near ka = 1.0 

indicative of the pontoon interference effects. In the case of roll response, an increase in draft 

results in a lower roll natural frequency and the associated response becomes sharper. 

Figure 4.13(b) presents the phase relating to the sway, heave and roll R A O ' s . The phase 

angle is defined here as a lag in the maximum value relative to a wave crest crossing the 

origin. For the case of sway, as ka increases the phase changes from 90° to 0° and then 

eventually becomes -90°. In heave, the motion is in phase with the wave at low ka values 

and changes to -90° near the heave natural frequency. For the case of roll in the low 

frequency range, the response is in-phase with sway, but as ka increases the roll phase 

increases gradually from -90° to zero and then to 90° approximately. The form of the phase-

frequency parameter curves generally remains the same for all three relative drafts 

considered. 

Figure 4.14 shows a plot of the variation of reflection and transmission coefficients with 

ka for the three relative drafts, obtained from both the numerical analysis and experiments. 

A s expected, the numerical results indicate that the deeper draft sections give rise to higher 

reflection coefficients and lower transmission coefficients, (see also Fig . 4.1). However, the 

experimental values for the deeper draft show higher K T values than for the shallower drafts, 

which may be attributed to wave overtopping due to a reduced freeboard. 
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Influence of Spacing 

Three different pontoon spacings, b/a = 0.5, 1.0 and 1.5 have been considered. 

Corresponding experimental results are tabulated in Table 4.4 and a comparison is given in 

Figs. 4.15 and 4.16. 

For the case of sway, Fig . 4.15(a) indicates that in low and moderate ranges of ka, a bigger 

spacing reduces sway amplitude by a reasonable amount. For larger values of ka (> 2.5) the 

system behaves like an individual pontoon, and indicates a higher sway amplitude. The 

variation of sway motion for the freely floating case of the single-pontoon section given in 

F ig 4.3(d) shows similar results. In the heave mode, the pontoon spacing only influences the 

natural frequency of the system. However, for the roll mode, the larger spacing reduces the 

roll amplitude significantly, because of the associated increase in the roll radius of gyration 

leading to a stiffer model. The experimental values compare reasonably well , but deviate 

near the natural frequencies of the corresponding modes. 

Figure 4.15(b) indicates the influence of spacing on the phases of the R A O ' s . The 

variations are similar to those given in Fig . 4.13(b), but for the case of small period waves, 

the phase changes from negative to positive and then returns to negative. 

Figure 4.16 shows the reflection and transmission coefficients. As the spacing increases, 

the reflection coefficient increases and the transmission coefficient decreases, but in the 

higher range of ka, these coefficients include maxima and minima respectively. Once again, 

the transmission coefficient indicates that at higher ranges of ka, the twin-pontoon 

configuration practically acts as an individual unit. Earlier the influence of spacing on the 

reflection coefficient was presented in Fig . 4.1 for the case of fixed breakwater which 

included only scattered potentials. Fig. 4.1 for the variation of K R indicated that a twin-

pontoon breakwater with larger spacings performed similar to a single-pontoon breakwater. 

For a twin-pontoon breakwater to be effective, it can be noted that the spacing is taken to be 

approximately equal to the width of a single-pontoon. Thus, with ka = 1.5 and b/a = 1.0, the 
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overall beam B (=2a+b), for a twin-pontoon breakwater can be estimated to be, 

approximately 3174, such that K T < 0.4, where L is the wave length. 

Experimental values superposed on Fig . 4.16 show reasonable agreement for the case of 

transmission coefficient. However, there exists considerable disagreement in the variation of 

the reflection coefficient. 

Influence of Mooring Line Slackness 

Three slackness values of chain moorings have been considered here: S/S 0 = 1.03, 1.08 and 

1.16. The mooring configuration and the associated stiffness characteristics adopted here are 

those considered in arriving at Fig. 4.6. Corresponding results are tabulated in Table 4.4 and 

plotted in Figs. 4 .17-4.19. 

Since the hydrostatic stiffnesses in heave and roll are much larger than the corresponding 

mooring line stiffnesses, it is expected that the moorings would have no significant influence 

on the R A O ' s and R A O phases, except for the sway mode; and indeed Fig . 4.17(a) bears this 

out. Here, the plots of R A O ' s and corresponding phases, and the reflection and transmission 

coefficients indicate that there is no significant influence of mooring slackness (see 

Figs. 4.17, and 4.18). On the other hand, the mooring line forces are the only parameters of 

interest that are influenced by the slackness. Reduced slackness introduces increased 

nonlinearities as can be seen in Fig. 4.6. Figure 4.19 shows a plot of numerical results of 

maximum line tension at the anchor for the case of mooring line 5 (upwave side) in 

Fig . 4.6. The tension coefficient for mooring 5 is denoted as T' i (upwave) and corresponding 

experimental values are superposed in the figure. The upwave chain tensions only are 

presented, since the downwave moorings become relatively slack. The comparison with 

experimental values is not satisfactory because the measured tensions include impulsive 

loads (see Figs. 4.8(a) and 4.8(c)), which are not predicted in the numerical model. 
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4.3.2 Rectangular Section with Nylon Moorings 

Attention is now given to the case of the rectangular section breakwater with nylon moorings. 

Figure 4.20 shows plots of the transmission coefficient K T , the R A O ' s and the tension 

coefficients Tj's for the base case. As already indicated, only the taut case of S/S 0 = 1.0 is 

considered. Figure 4.20(a), which shows the transmission coefficient, indicates reasonably 

good agreement between numerical predictions and experimental results. The R A O ' s 

compare fairly well overall, although the experimental values exhibit some scatter for ka 

values close to resonance (see Fig. 4.20(b)). Figure 4.20(c) shows a comparison of the 

maximum tension at the anchor for the upwave mooring line. Since the time variation of the 

mooring line tension is reasonably sinusoidal (see Fig. 4.8(b)), the estimates from the 

numerical analysis give a better agreement than that with the chain mooring system. 

Figure 4.21 indicates the influence of draft and spacing on the transmission coefficient 

and the maximum mooring line tensions at the anchors. The variation of transmission 

coefficient is similar to that for the chain system (see Fig. 4.14), and as expected the 

transmission is smaller for deeper drafts. The maximum tensions, however, do not show 

significant change for the different drafts. The experimental results reasonably agree with the 

numerical predictions in the higher ranges of frequency, ka > 1.75. However, in the moderate 

to lower frequency ranges, the numerical values are as low as 60% of the experimental 

results. This discrepancy may be attributed to the mooring line stretch, which causes peak 

loads at resonance. It is also noted that because of line stretching, the peak loads observed in 

the nylon mooring system are not snap loads. Therefore, the experimental values of 

maximum mooring tensions are closer to numerical results than those observed for the case 

of chain mooring system (see Fig . 4.19). Similar results are also observed in Fig . 4.21(b) for 

different spacings. Again, for ka > 2.5 the transmission coefficient reaches a maximum and 

drop to 0.60 as observed in Fig. 4.16 for the case of chain moorings. Although, the 

comparison between numerical results and experimental values indicate a reasonable 
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agreement for most part of the ka ranges, the experimental values deviated from the 

numerical estimation considerably, for larger spacings with ka > 2.5. 

4.3.3 Circular Section 

Similar to the rectangular twin-pontoon breakwater, results relating to the circular section 

breakwater are presented in Figs. 4.22 - 4.27 and experimental values are tabulated in 

Table 4.5. 

Figure 4.22 relates the case of a circular twin-pontoon breakwater with a 50% draft, a . 

water depth ratio h/a = 2.5 and a spacing ratio b/a = 2.0. Once again, a six-point mooring 

system similar to the case of the rectangular section breakwater was considered, with a 

slackness ratio, S/S 0 = 1.08, in the case of chain moorings. Figures 4.23 and 4.24 relate to 

chain and nylon moorings respectively. In both figures, the results from the corresponding 

experimental study are superposed. It is clear that the numerical estimates compare 

reasonably well with experimental observations for the case of nylon moorings as seen in 

Fig . 4.23(c). 

Figures 4.24 - 4.27 indicate the influence of draft and spacing on the R A O ' s , and the 

reflection and transmission coefficients, for both chain (see Figs. 4.24 and 4.25) and nylon 

moorings (see Figs. 4.26 and 4.27). Numerical results for drafts greater than 50% have not 

been estimated. These results follow a similar trend to those for the case of a rectangular 

section. 

4.3.4 Influence of Wave Direction 

The influence of incident wave direction on the hydrodynamic coefficients and the reflection 

and transmission coefficients has been reported in a number of studies for the case of a single 

pontoon section (see e.g., Bai 1975, Isaacson and Nwogu 1987, Garrison 1984). Here, 

numerical results have been obtained for the case of a fixed rectangular twin-pontoon 

breakwater with waves approaching the structure at angles (3 = 0°, 15° and 30°, and the 

resulting exciting force coefficients, and reflection and transmission coefficients are 
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presented as functions of ka in Fig. 4.28. These results are similar to those for a single 

pontoon section. As can be seen from the figure, the exciting force coefficient, and the 

reflection coefficients generally decrease with increasing angle of incidence. 

4.3.5 Influence of Pontoon Section and Configuration 

Pontoon Section 

Figures 4.29(a) and 4.29(b) show a comparison of the transmission coefficient for rectangular 

and circular section twin-pontoon breakwaters for the fixed and moored cases respectively. 

Both the sections considered here have a water depth ratio d/a = 1.67, draft ratio h/a = 0.45, 

and spacing ratio b/a = 1.0, and for the moored case the slackness ratio S/So = 1.08. The 

comparison for the moored case indicates that the K T value is higher for most part of ka for 

the circular section and is considerably higher over a reasonable midrange of ka. For 

ka > 1.75, both sections indicate small values of K T . Overall, the rectangular section 

breakwater appears to perform better than the circular section breakwater. 

Pontoon Configuration 

Finally, it is of interest to compare the transmission coefficient relating to a rectangular twin-

pontoon breakwater with that of a rectangular single-pontoon breakwater of various possible 

dimensions. Consider a twin-pontoon rectangular section breakwater with a relative water 

depth d/a = 2.5, a draft ratio h/a = 0.45 and a spacing ratio b/a = 1.0 as indicated in Fig . 4.30. 

The comparison is carried out for three different cases of a single pontoon section. These 

include a single-pontoon with a waterline beam equal to (i) the overall beam of the twin-

pontoon section, B/a = 3, (ii) two times the width of an individual pontoon, B/a = 2, and 

(iii) the width of an individual pontoon, B/a = 1. Here, B is taken to be the overall beam, and 

a is the width of an individual pontoon as defined earlier in Fig. 2.3. Figures 4.30(a) and 

4.30(b) relate to the fixed case and the case with chain moorings respectively. In Fig . 4.30(a), 

the transmission coefficient, K T for B/a = 3 stays consistently low, and that for B/a = 1 stays 

consistently high as expected, while results for B/a = 2 lie in between. These results compare 
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reasonably well with that of the twin-pontoon breakwater. However, near ka =1.0, the 

transmission coefficient rises to approximately 1.0, deviating from the results corresponding 

to single pontoon case of B/a = 2. At higher ka values, K T remains more or less the same for 

all cases. 

Figure 4.30(b) presents corresponding results with the breakwaters now taken to be 

moored by chains with a slackness ratio, S/S 0 = 1.08, and a rise to span ratio, TJX = 0.403. In 

this case, the twin-pontoon section provides lower transmission coefficients than those for the 

case of a single-pontoon section with B/a = 3. This indicates the advantage of using a twin-

pontoon configuration over a single-pontoon configuration. This reduction is mainly due to 

the increased hydrostatic roll stiffness related to the twin-pontoon section. 

It is interesting to compare the transmission coefficient for the fixed case of a twin-

pontoon section with that of a moored breakwater. The variation of K T for the fixed case 

indicates a peak in the low ka range (Fig. 4.30(a)), whereas for the case of moored breakwater 

this peak is no longer present (Fig. 4.30(b)). This confirms the presence of interference 

effects for the fixed case as there are dynamics associated with body motions present. Now 

consider the moored case as in Fig . 4.30(b), for the twin- and single-pontoon sections. The 

variation of K T exhibits a dip for all of the configurations shown except for the single-

pontoon section with B/a = 3. This indicates that the dip in K T is essentially a feature of the 

dynamics of the system and is associated with a phase shift in R A O ; it is not associated with 

any particular section configuration such as the twin-pontoon considered here. 

It is also interesting to note the performance of the twin-pontoon section in relation to that 

of an A-frame floating breakwater (see Fig . 1.1). A n A-frame section is similar to a twin-

pontoon section, except that it includes a rigid vertical centre-board with a draft larger than 

that of the pontoon itself, and also each pontoon is much smaller in size. Experimental and 

field studies have been reported by a few investigators (e.g. Byres, 1988). Consider Fig . 4.31, 

which compares the transmission coefficient of a twin-pontoon section with that of an A -

frame section breakwater. The twin-pontoon section considered here has sectional ratios 
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d/a = 6.0, b/a = 6.0, and h/a = 0.5, while the A-frame section has a similar section, including 

a draft ratio for the centre-board to pontoon width equals to 3.5. (In practice relatively small 

pontoons would be used for the A-frame breakwater.) For ka values smaller than 1.0, the 

transmission coefficient for the A-frame section is smaller than that for the twin-pontoon 

section, as expected. In addition, for a spacing ratio b/a > 1.5 and with ka > 1.5, it is 

observed that the twin-pontoon section essentially behaved like a single-pontoon section. In 

Fig . 4.31, the K j values for a single-pontoon section with d/a = 6.0 and h/a = 0.5 are also 

superposed and a comparison indicates that the A-frame section also exhibits a similar trend 

for ka > 1.5. However, the presence of the centre-board essentially reduces the K j for values 

of ka close to 1.0. 

The numerical approach based on a boundary integral method appears not to predict 

reasonable values of the transmission coefficient for the A-frame breakwater. This may be 

attributed to inconsistencies associated with the distribution of singular potentials on the 

centre-board, and also the wave-structure interaction may not be in the diffraction regime 

because the size of each pontoon is generally smaller. 

4.4 Example Problem 
The suitability of a floating breakwater design depends on several factors such as the water 

depth, soil conditions, incident wave climate, tidal range and currents, and the degree of wave 

protection required. In order to illustrate the present approach in the context of a typical 

application, consideration is given to a twin-pontoon breakwater similar to the one deployed 

at Comox, British Columbia. Figure 4.32 shows plan and sectional views of the breakwater. 

Two rectangular section pontoons each 2.0 m wide and 0.9 m in draft are rigidly connected to 

one another. The gap between the pontoons is taken to be equal to 2.0 m and the water depth 

at the site is considered to be 3.4 m. The breakwater is 40.0 m long and is moored with a ten-

point chain mooring system. The mooring lines are equally spaced at 10.0 m apart, as 

indicated in Fig . 4.32. The chain has a submerged weight per unit length, q = 183.0 N / m , an 
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elastic rigidity per unit length, E A = 20.0 M N , a slackness ratio S/S 0 = 1.08 and a rise to span 

ratio Z / X = 0.403. Waves at the site are taken to correspond to a wave period range of 1.8 to 

6.0 sec and a constant wave steepness of 0.04. The incident wave direction is taken to be 

normal to the longitudinal axis of the breakwater. 

Figure 4.33 provides a plot of mooring line tensions at the anchors as functions of 

breakwater displacement in sway, for the two chains at the centre of the breakwater. In 

addition, the restoring force as a function of breakwater displacement is shown superposed on 

the plot. The plot is useful in arriving at the mooring stiffnesses, operational line tensions 

associated with the maximum allowable line load capacity, and corresponding breakwater 

excursions. Figure 4.34 shows the exciting forces, the wave drift force, the breakwater drift, 

the amplitudes of sway motion, the transmission coefficient, and the maximum mooring line 

tensions at anchor, all as functions of incident wave frequency. In the figures, the exciting 

forces, the wave drift force, the drift and sway motions are presented with dimensions. 

Generally, moderate condition with wave frequency ranging from 0.25 to 0.4 H z (i.e. 

wave periods from 2.5 to 4.0 sec), is assumed to be a desirable for floating breakwater to be 

effective. Thus, for example, consider a wave period of 3.3 sec interacting with the 

breakwater. From Fig . 4.34 values extracted include, the exciting forces in sway and heave 

noted to be equal to 3000 and 7000 N per m length respectively, and the exciting moment in 

roll as 5000 N m per m length approximately. The corresponding wave drift force is about 

50 N per m length, and the maximum mooring line tension at the anchors is approximately 

3,000 N for the most heavily loaded line. The breakwater excursion (drift and oscillatory) for 

this frequency range is approximately 0.22 m. The transmission coefficient, K T , for this case 

is about 0.80. In the computation, the proposed iterative procedure for the wave drift force 

has been adopted. 
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5. Conclusions and Recommendations 

5.1 Summary 
The hydrodynamic performance of moored twin-pontoon breakwaters of rectangular and 

circular sections has been studied in the thesis. The hydrodynamic analysis of the breakwater 

was treated using an available numerical method based on Green's theorem, and extended so 

as to include two distinct bodies below the water surface corresponding to a twin-pontoon 

breakwater. A mooring analysis was carried out in conjunction with the hydrodynamic 

analysis in order to calculate the static and dynamic responses of the breakwater, and the 

associated tensions and displacements in the mooring system. A n iterative procedure was 

adopted such that the wave drift force is consistent for both the hydrodynamic and mooring 

analyses. Experiments have been carried out to investigate the influence of design variables 

on engineering parameters and to compare the results with those of the numerical analysis. 

Thus, the original aspects of this study include: 

(a) the extension of a numerical model to a twin-pontoon breakwater; 

(b) the integration of hydrodynamic and mooring analyses into a single 

comprehensive breakwater design computer model; 

(c) a detailed experimental investigation for moored twin-pontoon breakwaters with 

rectangular and circular sections; 

(d) the implementation of a simple but reasonably accurate method of motion analysis 

to obtain breakwater model responses, and 

(e) a comparison of experimental results and numerical predictions, which highlights 

the feasibility and limitations associated with the numerical model for design 

purposes. 
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5.2 Conclusions 
Bearing in mind the discrepancies between experimental results and numerical prediction that 

have been observed, the important conclusions of the study are summarized below. 

5.2.1 Numerical Model 

• In contrast to the case a fixed single-pontoon section, the variations of reflection and 

transmission coefficients with respect to frequency parameter, ka, for a fixed twin-

pontoon section exhibit minima and maxima respectively, this being attributed to 

interference effects between the two pontoons. Here k is the wave number and a is the 

pontoon width (diameter in the case of a circular section). 

• Flow separation effects are significant in certain situations, such as for a structure which 

possesses sharp corners. The numerical model based on linear potential theory neglects 

the flow separation effects and thus, the responses are over predicted, especially for the 

case of roll motion. This deficiency of the linear potential theory is overcome by 

incorporating empirical viscous damping coefficients. In the present study, by comparing 

the numerical results of transmission, reflection and energy dissipation coefficients, and 

R A O ' s with those of experiments, viscous damping coefficients of 2.5% and 1.0% were 

estimated for both the rectangular and circular section breakwaters. It is noted that the 

scale ratio for a rectangular section is taken to be 5.0 and that for a circular section 6.67. 

Also , it is important to bear in mind that the experiments were carried out by considering 

Froude's scaling effects and assuming Reynold's scaling effects (viscous effects) are less 

significant. Therefore, the values of viscous damping estimated from experimental 

studies need to be reduced for prototype situations and this in general, leads to larger 

responses. 

• The frequency parameter, ka is a dominant parameter in determining the efficiency of the 

breakwater. A s ka increases, the degree of wave transmission generally decreases. To be 

effective, a floating breakwater should have a pontoon width or diameter of at least one 
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quarter of the design wave length (i.e. ka > 1.5). In addition, the overall beam of the twin-

pontoon section must be about three quarter of the design wave length such that the 

transmission coefficient is less than 0.4. 

• The dynamic analysis of the moored rectangular breakwater indicated that the maximum 

heave R A O is also about 1.25 and is located at ka = 1.2, and the maximum roll R A O is 

about 1.25 and is located at ka = 1.0. However, the heave and sway modes indicate a 

minimum R A O ( = zero) at ka = 1.0. Similarly, for the case of a moored circular section 

breakwater, the heave R A O is indicated to be about 1.1 and is located at ka = 1.6, and the 

maximum roll R A O is about 0.6 and is located at ka = 0.95. However, the heave and 

sway modes indicate a minimum R A O (= zero) at ka = 0.9, which is attributed to the 

interference effect between two pontoons. 

• The relative spacing b/a between the pontoons of a twin-pontoon breakwater is an 

important parameter that brings in additional waterline beam for a given individual 

pontoon width. A s b/a increases, the wave transmission decreases for moderate ka 

values, but at large b/a values, a twin-pontoon section performs as a single-pontoon 

section. Thus, for twin-pontoon section to be effective, the spacing should be 

approximately equal to the pontoon width. 

• The occurrence of negative added mass and an associated sharp peak in the damping 

coefficient may be attributed to the effect of the spacing between the pontoons. This is 

largely because of the out-of-phase motion of the body in relation with the water surface 

in the vicinity of the body. In the case of a twin-pontoon section, the space between the 

pontoons effectively forms an oscillating water column, responding as a separate 

oscillator. 

• The relative draft h/a, directly influences the heave natural frequency decreasing its value 

as h/a increases. It may be recalled that as b/a increases, added mass coefficients in both 

sway and roll sharply rise and then drop to negative values. Consequently, an associated 

sharp rise is also expected in the damping coefficient variation. However, as b/a 
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increases, the heave added mass and damping coefficient show a sharp rise only in the 

moderate ranges of the frequency parameter (0.6 < ka < 1.0). A local minimum in the 

transmission curve is observed when ka is close to the heave natural frequency. 

• A s h/a increases, the breakwater motions decrease due to increased inertia, but 

overtopping may also occur resulting in higher transmission coefficients. A n optimum 

value of the relative draft h/a also depends on the frequency parameter, ka, and the wave 

steepness, H / L . 

• In the present study, for moored structures, the hydrodynamic analysis is carried out in 

conjunction with a mooring analysis. The two separate problems are coupled through the 

wave drift force and the effective linearized stiffness of the mooring system. A n iterative 

procedure is required to provide a solution to this problem, particularly when the mooring 

system force-displacement characteristics are noticeably nonlinear. 

• A n increase in the mooring slackness does not noticeably influence the breakwater 

motions and wave transmission, but greatly reduces mooring line forces. The choice of 

mooring line does not appear to significantly affect the overall performance of the 

breakwater. 

• The exciting force coefficient generally decreases with increasing angle of incidence, 

except for differences to this trend associated with a resonance peak in the heave exciting 

force. The reflection and transmission coefficients also show similar features. 

• Transmission coefficients for rectangular and circular section twin-pontoon breakwaters 

of equivalent size are generally comparable. The amplitudes of the sway, heave and roll 

motions are also very similar. 

• The wave transmission past a twin-pontoon breakwater is compared with that past a 

single-pontoon breakwater with three different beams. The transmission coefficient for 

the fixed case of a twin-pontoon breakwater compares more closely with that of a single-

pontoon breakwater of beam equal to the sum of the widths of the two individual 

pontoons. For the moored case, the transmission coefficient compares reasonably well 
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with that of a single-pontoon breakwater with beam equal to the overall width of the 

twin-pontoon breakwater. 

5.2.2 Experimental Results and Comparison with Numerical Model 

• In general, the numerical results relating to reflection and transmission coefficients 

compare reasonably well with those of the experiments, except at frequencies near 

resonance. Numerical results for pontoon behaviour compare reasonably well with those 

of experiments for the case of nylon moorings. However, they do not agree for the case 

of chain moorings because the measured tensions include impulsive loads that are not 

predicted in the numerical model. In the case of experiments, the chain moorings tend to 

become fully suspended and impart sharply rising snap loads. 

• The experimental results relating to reflection coefficients were obtained by three 

different methods as outlined in Appendix A . The estimates based on all three methods 

do not mutually agree, however, the least-square method appears to estimate the reflected 

wave profile reasonably well for the wave conditions considered in the present study. 

• In the experiments, response time histories have been obtained by using a video motion 

tracking system as described in Appendix B . This method of motion measurement has 

the advantage of not requiring special tracking cameras, but a rather simple camcorder 

and an I B M compatible P C with a frame grabber card are sufficient for the motion 

tracking purposes. It is quite simple to track the marked points on the model, and the 

results are sufficiently accurate to about 7 - 8% in translation and 10 - 12% in rotation. 

• The numerical model provides a parametric measure that can be related to a design 

application and the results are in reasonably good agreement with the experimental 

values, except in the vicinity of resonance. Thus, the numerical model can be used as a 

preliminary tool to obtain related engineering design parameters. 
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5.3 Recommendations 
The present study considers the case of a twin-pontoon floating breakwater interacting with 

monochromatic, regular wave train. A linearized boundary value problem is solved assuming 

the fluid as ideal, the flow irrotational, and considering the waves as non-breaking. The work 

carried out and the study performed of the related literature indicates that there are several 

extensions of the present research which may improve the overall understanding of the 

performance of floating breakwaters. Prospective extensions of the present study include the 

following: 

• In the present study the case of a twin-pontoon breakwater interacting with a regular 

wave train is considered, whereas it is of interest to consider the response of a twin-

pontoon floating breakwater to random waves. Such a study would be useful to 

assess the extent to which the regular wave results can be applied to random waves. 

For example, by first estimating the spectral density functions for the incident and 

reflected wave fields and then, calculating the reflection coefficient can be estimated 

as a function of frequency. This reflection coefficient function can be directly 

compared to the reflection coefficients for each wave period measured in the regular 

wave tests. 

• The present study largely considers the two-dimensional case of a breakwater 

interacting with normally incident regular waves, although a limited number of 

numerical results indicating the effects of wave direction on the hydrodynamic 

coefficients have also been presented. Examination of the influence of oblique 

regular waves on a rigid floating breakwater of finite length would provide phase 

difference information relating to RAO' s and exciting forces. In particular, the 

influence of the hydrodynamic loads and moorings associated with oblique waves on 

the bending moments and torsion at a breakwater section needs to be assessed in this 

effective design. 
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• In practice, the incident waves are both random and short crested (i.e. made up of 

multi-directional components) with an oblique mean direction. Therefore, the 

influence of short crested random waves on a floating breakwater needs to be 

assessed. This may be carried out on the basis of both experiments using a segmented 

wave generator, and a numerical model based on a superposition technique. 

• Finally, the present study has indicated the influence of impulsive loads in the 

mooring lines, unless these are relatively slack. It may be possible to simulate these 

numerically using a time-domain method. This would be helpful in the evaluation of 

extreme motions and forces. 
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Table 1.1 Summary of floating breakwater installations in British Columbia 
(see Fig . 1.2). 

No. Location Type Years of 
1 Lund A-frame 1963-1987 
2 Powell River Ship hull 1930-
3 Howe Sound Barge -

4 Eagle Harbour Pontoon 1977-
5 Burrard Y C Caisson/Barge 1977-
6 Deep Cove Y C Caisson 1976-
7 Port Moody Log Bundle 1976 
8 Richmond Caisson 1976-
9 Cowichan A-frame ? 
10 Maple Bay Caisson 1977-
11 Nanaimo Caisson 1974 
12 Northwest Bay Log/Styrofoam 1975-1983 
13 Ford Cove Log Raft ? 
14 Deep Bay Log Bundle ? 
15 Comox Log Bundle 7-1992 



Table 3.1 Summary of regular wave test conditions. 

Test No. T H H/L ka* K 

(s) (m) Rectangular Circular Rectangular Circular 
1 1.032 0.120 0.075 1.178 0.785 1.31 1.96 
2 0.930 0.100 0.075 1.414 0.942 1.07 1.60 
3 0.858 0.086 0.075 1.649 1.100 0.91 1.36 
4 0.802 0.075 0.075 1.885 1.257 0.79 1.18 
5 0.716 0.060 0.075 2.356 1.571 0.63 0.94 
6 0.683 0.055 0.075 2.592 1.728 0.57 0.86 
7 0.654 0.050 0.075 2.827 1.885 0.52 0.79 
8 1.032 0.104 0.065 1.178 0.785 1.13 1.70 
9 1.032 0.080 0.050 1.178 0.785 0.87 1.31 
10 1.032 0.056 0.035 1.178 0.785 0.61 0.92 
11 1.032 0.044 0.028 1.178 0.785 0.48 0.72 
12 0.716 0.080 0.100 2.356 1.571 0.84 1.26 
13 0.716 0.068 0.085 2.356 1.571 0.71 1.07 
14 0.716 0.052 0.065 2.356 1.571 0.63 0.82 
15 0.716 0.040 0.050 2.356 1.571 0.55 0.63 
16 1.704 0.092 0.028 0.565 0.377 0.42 1.96 
17 1.439 0.073 0.028 0.707 0.471 0.93 1.39 
18 1.182 0.055 0.028 0.942 0.628 0.63 0.94 

a = pontoon width for rectangular section, diameter for circular section. 



Table 3.2 Summary of ranges of design parameters relating to regular wave tests. 

Parameter Base Case Ranges 

Rectangular Circular Rectangular Circular 

Water depth, d 0.50 m 0.50 m constant constant 

Pontoon size, a* 0.30 m 0.20 m constant constant 

Cable horizontal span, Z/X 0.403 0.403 constant constant 

Wave frequency see Table 3.1 see Table 3.1 1.18-2.83 0.79-1.89 
parameter, ka 

Wave steepness, H/L 0.08 0.08 0.03-0.10 0.03-0.10 

0.50 0.50 
Pontoon spacing, b/a 1.00 2;00 1.00 2.00 

1.50 3.50 
0.33 0.50 

Relative draft, h/a 0.45 0.65 0.45 0.65 
0.55 0.80 

Mooring Chain Chain Chain Chain 

Nylon Nylon Nylon Nylon 
1.08 for Chain 1.08 for Chain 1.03 1.03 

Cable slackness, S/S0 1.00 for Nylon 1.00 for Nylon 1.08 1.08 
1.16 1.16 

a = pontoon width for rectangular section, diameter for circular section. 
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Table 3.3 Experimental conditions adopted for the rectangular and circular section 
breakwater models. 

Test Mooring, T(s) H(m) Rectangular Circular 
No. Slackness, S/S0 h/a b/a ka h/a b/a ka 
1.1 Chain, 1.080 1.032 0.120 0.450 1.000 1.178 0.650 2.000 0.785 
1.2 0.930 0.100 1.414 0.942 
1.3 0.858 0.086 1.649 1.100 
1.4 0.802 0.075 1.885 1.257 
1.5 0.716 0.060 2.356 1.571 
1.6 0.683 0.055 2.592 1.728 
1.7 0.654 0.050 2.827 1.885 
1.8 1.032 0.104 1.178 0.785 
1.9 1.032 0.080 1.178 0.785 
1.10 1.032 0.056 1.178 0.785 
1.11 1.032 0.044 1.178 0.785 
1.12 0.716 0.080 2.356 1.571 
1.13 0.716 0.068 2.356 1.571 
1.14 0.716 0.052 2.356 1.571 
1.15 0.716 0.040 2.356 1.571 
1.16 1.704 0.092 0.565 0.377 
1.17 1.439 0.073 0.707 0.471 
1.18 1.182 0.055 0.942 0.628 
2.1.1 Chain, 1.030 1.032 0.120 0.450 1.000 1.178 0.650 2.000 0.785 
2.1.2 0.858 0.086 1.649 1.100 
2.1.3 0.716 0.060 2.356 1.571 
2.1.4 0.654 0.050 2.827 1.885 
2.2.1 Chain, 1.160 1.032 0.120 0.450 1.000 1.178 0.650 2.000 0.785 
2.2.2 0.858 0.086 1.649 1.100 
2.2.3 0.716 0.060 2.356 1.571 
2.2.4 0.654 0.050 2.827 1.885 
3.1.1 Chain, 1.080 1.032 0.120 0.550 1.000 1.178 0.800 2.000 0.785 
3.1.2 0.858 0.086 1.649 1.100 
3.1.3 0.716 0.060 2.356 1.571 
3.1.4 0.654 0.050 2.827 1.885 
3.2.1 Chain, 1.080 1.032 0.120 0.330 1.000 1.178 0.500 2.000 0.785 
3.2.2 0.858 0.086 1.649 1.100 
3.2.3 0.716 0.060 2.356 1.571 
3.2.4 0.654 0.050 2.827 1.885 
4.1.1 Chain, 1.080 1.032 0.120 0.450 0.500 1.178 0.650 0.500 0.785 
4.1.2 0.858 0.086 1.649 1.100 
4.1.3 0.716 0.060 2.356 1.571 
4.1.4 0.654 0.050 2.827 1.885 
4.2.1 Chain, 1.080 1.032 0.120 0.450 1.500 1.178 0.650 3.500 0.785 
4.2.2 0.858 0.086 1.649 1.100 
4.2.3 0.716 0.060 2.356 1.571 
4.2.4 0.654 0.050 2.827 1.885 
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Table 3.3 Experimental conditions adopted for the rectangular and circular section 
breakwater models (contd.). 

Test Mooring, T(s) H(m) Rectangular Circular 
No. Slackness, S/S0 h/a b/a ka h/a b/a ka 
5.1 Nylon, 1.000 1.032 0.120 0.450 1.000 1.178 0.650 2.000 0.785 
5.2 0.930 0.100 1.414 0.942 
5.3 0.858 0.086 1.649 1.100 
5.4 0.802 0.075 1.885 1.257 
5.5 0.716 0.060 2.356 1.571 
5.6 0.683 0.055 2.592 1.728 
5.7 0.654 0.050 2.827 1.885 
5.8 1.032 0.104 1.178 0.785 
5.9 1.032 0.080 1.178 0.785 
5.10 1.032 0.056 1.178 0.785 
5.11 1.032 0.044 1.178 0.785 
5.12 0.716 0.080 2.356 1.571 
5.13 0.716 0.068 2.356 1.571 
5.14 0.716 0.052 2.356 1.571 
5.15 0.716 0.040 2.356 1.571 
5.16 1.704 0.092 0.565 0.377 
5.17 1.439 0.073 0.707 0.471 
5.18 1.182 0.055 0.942 0.628 
6.1.1 Nylon, 1.000 1.032 0.120 0.550 1.000 1.178 0.800 2.000 0.785 
6.1.2 0.858 0.086 1.649 1.100 
6.1.3 0.716 0.060 2.356 1.571 
6.1.4 0.654 0.050 2.827 1.885 
6.2.1 Nylon, 1.000 1.032 0.120 0.330 1.000 1.178 0.500 2.000 0.785 
6.2.2 0.858 0.086 1.649 1.100 
6.2.3 0.716 0.060 2.356 1.571 
6.2.4 0.654 0.050 2.827 1.885 
7.1.1 Nylon, 1.000 1.032 0.120 0.450 0.500 1.178 0.650 0.500 0.785 
7.1.2 0.858 0.086 1.649 1.100 
7.1.3 0.716 0.060 2.356 1.571 
7.1.4 0.654 0.050 2.827 1.885 
7.2.1 Nylon, 1.000 1.032 0.120 0.450 1.500 1.178 0.650 3.500 0.785 
7.2.2 0.858 0.086 1.649 1.100 
7.2.3 0.716 0.060 2.356 1.571 
7.2.4 0.654 0.050 2.827 1.885 
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Table 3.4 Principal dimensions and parameters for the base cases of the rectangular and 
circular twin-pontoon models. 

Parameters Rectangular Circular 
Length (m) 0.53 0.53 
Width or diameter (m) 0.30 0.20 
Draft (m) 0.13 0.13 
Centre of gravity (m) (0, -0.08) (0, -0.06) 
Roll radius of gyration (m) 0.45 0.33 
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Table 4.1 Linearized mooring stiffness matrix for no wave load condition for example 
application. 

Sway Heave Rol l 

Sway 26.00 0.00 12.90 
kN/m kN/m kN/rad 

Heave 0.04 8.30 0.39 
kN/m kN/m kN/rad 

R o l l 12.90 0.00 30.70 
kN/rad kN/rad kNm/rad 

Table 4.2 Influence of number of iterations on sway drift force and drift for example 
application. 

Sway Wave drift Sway 
Iteration stiffness force drift 

(kN/m) (kN) (m) 
1 32.32 3.11 0.119 
2 37.22 3.54 0.136 
3 38.82 3.72 0.143 
4 39.54 3.80 0.146 
5 39.90 3.85 0.147 
6 40.10 3.87 0.148 
7 40.20 3.88 0.149 
8 40.26 3.89 0.150 
9 40.29 3.90 0.150 

Table 4.3 Comparison of results obtained with and without the iteration procedure. 

Methods 

Sway 

stiffness 

(kN/m) 

Drift 

force 

(kN) 

Sway 

drift 

(m) 

Max. oscillatory motions 

sway heave roll 

(m) (m) (rads) 

Max. mooring line 

tensions at anchor (N) 

Ti T 2 

KR K T 

No iteration 32.32 3.11 0.12 0.87 0.78 0.37 2,548 86.5 0.30 0.92 

Iteration 40.29 3.90 0.15 1.04 0.79 0.36 2,965 42.5 0.34 0.90 

Difference 19.9 % 20.0 % 20.0 % 16.3 % 1.3% -2.8 % 14.0% -103.0% 12.6 % -2.0 % 



Table 4 . 4 Summary of experimental results for the 
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rectangular section breakwater. 

Test Mooring RAO's 
No. ka KR forces sway heave roll 

T] T'2 & & 
1.1 1.178 0.327 0.375 1.150 0 0.578 0.327 0.791 
1.2 1.414 0.326 0.329 0.911 0 0.121 1.421 0.997 
1.3 1.649 0.330 0.235 0.865 0 0.372 0.770 0.682 
1.4 1.885 0.570 0.226 0.666 0 0.212 0.514 0.566 
1.5 2.356 0.600 0.181 0.082 0 0.282 0.269 0.400 
1.6 2.592 0.942 0.152 0.033 0 0.224 0.274 0.390 
1.7 2.827 0.960 0.145 0.039 0 0.213 0.351 0.380 
1.8 1.178 0.523 0.364 0.954 0 1.146 0.147 0.218 
1.9 1.178 0.544 0.318 0.544 0 1.011 0.235 0.619 

1.10 1.178 0.413 0.482 0.444 0 1.999 0.476 0.787 
1.11 1.178 0.325 0.491 0.060 0 1.142 0.342 0.541 
1.12 2.356 0.784 0.194 0.390 0 0.505 0.468 0.513 
1.13 2.356 0.745 0.181 0.254 0 0.461 0.325 0.505 
1.14 2.356 0.545 0.216 0.089 0 0.401 0.314 0.443 
1.15 2.356 0.498 0.146 0 0 0.324 0.214 0.402 
1.16 0.565 0.125 0.954 0.375 0.377 0.935 0.891 0.796 
1.17 0.707 0.146 0.908 0.337 0.084 0.547 0.791 0.616 
1.18 0.942 0.272 0.675 0.442 0 0.353 0.614 0.585 

2.1.1 1.178 0.262 0.580 0.769 0 1.000 0.294 0.744 
2.1.2 1.649 0.320 0.420 0.749 0 1.269 1.052 0.886 
2.1.3 2.356 0.667 0.220 0.200 0 1.134 0.212 0.300 
2.1.4 2.827 0.775 0.226 0.342 0 0.851 0.321 0.254 
2.2.1 1.178 0.480 0.395 1.250 0.529 0.244 0.151 0.419 
2.2.2 1.649 0.659 0.188 1.136 0.514 0.382 0.474 0.136 
2.2.3 2.356 0.942 0.138 0.603 0.158 0.231 0.376 0.200 
2.2.4 2.827 0.971 0.080 0.602 0.280 0.154 0.301 0.185 
3.1.1 1.178 0.220 0.580 0.649 0 0.314 0.239 0.698 
3.1.2 1.649 0.294 0.420 0.551 0 0.395 0.851 0.545 
3.1.3 2.356 0.500 0.217 0.282 0 0.135 0.418 0.400 
3.1.4 2.827 0.700 0.226 0.176 0 0.354 0.351 0.050 
3.2.1 1.178 0.374 0.395 0.666 0 0.819 0.176 1.131 
3.2.2 1.649 0.416 0.188 0.581 0 0.451 0.476 0.546 
3.2.3 2.356 0.907 0.138 0.179 0 0.643 0.471 0.400 
3.2.4 2.827 0.980 0.080 0.018 0 0.458 0.675 0.215 
4.1.1 1.178 0.400 0.460 0.779 0 0.530 0.645 0.150 
4.1.2 1.649 0.350 0.350 0.563 0 0.340 0.473 0.477 
4.1.3 2.356 0.873 0.236 0.524 0 0.230 0.318 0.400 
4.1.4 2.827 0.872 0.220 0.159 0 0.150 0.312 0.375 
4.2.1 1.178 0.168 0.340 0.846 0.632 0.630 0.720 0.990 
4.2.2 1.649 0.288 0.173 0.630 0 0.463 0.546 0.341 
4.2.3 2.356 0.587 0.120 0.473 0 0.325 0.374 0.300 
4.2.4 2.827 - - - - 0.230 0.375 0.430 



Table 4.4 Summary of experimental results for the rectangular section breakwater, 
(contd...) 

Test Mooring RAO's 
No. ka KR Kj forces sway heave roll 

r , T'2 ft & 
5.1 1.178 0.213 0.476 0.358 0.184 0.517 0.524 0.698 
5.2 1.414 0.213 0.394 0.270 0.245 0.415 1.164 0.642 
5.3 1.649 0.115 0.306 0.276 0.242 0.383 0.658 0.614 
5.4 1.885 0.447 0.368 0.204 0.203 0.341 0.601 0.424 
5.5 2.356 0.685 0.242 0.102 0.052 0.292 0.430 0.200 
5.6 2.592 0.840 0.330 0.072 0.040 0.281 0.401 0.218 
5.7 2.827 0.870 0.407 0.084 0.043 0.252 0.432 0.237 
5.8 1.178 0.323 0.516 0.401 0.221 0.173 0.538 1.036 
5.9 1.178 0.357 0.488 0.388 0.245 0.684 0.621 0.856 

5.10 1.178 0.411 0.564 0.343 0.254 0.750 0.797 0.984 
5.11 1.178 0.253 0.585 0.327 0.232 0.516 0.513 0.786 
5.12 2.356 0.695 0.256 0.095 0.040 0.432 0.491 0.358 
5.13 2.356 0.612 0.242 0.082 0.030 0.374 0.563 0.298 
5.14 2.356 0.723 0.235 0.090 0.042 0.261 0.478 0.154 
5.15 2.356 0.657 0.156 0.063 0 0.241 0.562 0.185 
5.16 0.565 0.178 0.907 0.708 0.272 1.229 1.513 0.367 
5.17 0.707 0.194 0.820 0.703 0.305 1.051 1.384 0.413 
5.18 0.942 0.200 0.667 0.289 0.230 0.987 1.124 0.786 
6.1.1 1.178 0.269 0.435 0.609 0.090 1.110 0.218 0.698 
6.1.2 1.649 0.093 0.380 0.240 0 0.857 0.388 0.273 
6.1.3 2.356 0.435 0.320 0.120 0 0.730 0.155 0.200 
6.1.4 2.827 0.680 0.480 0.096 0 0.514 0.124 0.131 
6.2.1 1.178 0.345 0.370 0.188 0.099 0.769 0.481 0.419 
6.2.2 1.649 0.250 0.280 0.154 0 1.288 0.531 0.614 
6.2.3 2.356 0.806 0.160 0.037 0 0.588 0.362 0.400 
6.2.4 2.827 0.935 0.264 0.024 0 0.426 0.216 0.328 
7.1.1 1.178 0.292 0.444 0.306 0.177 0.647 0.396 0.837 
7.1.2 1.649 0.400 0.483 0.293 0 1.019 0.511 0.682 
7.1.3 2.356 0.500 0.380 0.102 0 0.614 0.214 0.300 
7.1.4 2.827 0.600 0.480 0.087 0 0.515 0.314 0.256 
7.2.1 1.178 0.400 0.434 0.649 0.175 0.602 0.675 0.233 
7.2.2 1.649 0.320 0.230 0.283 0.163 0.554 0.624 0.341 
7.2.3 2.356 0.800 0.170 0.282 0.256 0.697 0.269 0.200 
7.2.4 2.827 0.940 0.179 0.043 0 0.436 0.159 0.121 
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Summary of experimental results for the circular section breakwater. 

Test Mooring RAO's 
No. ka KR Kj forces sway heave roll 

T, T 2 & 
1.1 0.785 0.380 0.546 0.208 0.001 1.011 0.700 0.583 
1.2 0.942 0.430 0.570 0.328 0 0.650 0.650 0.623 
1.3 1.100 0.470 0.465 0.375 0 0.500 0.650 0.651 
1.4 1.257 0.571 0.367 0.308 0 0.510 0.660 0.550 
1.5 1.571 0.630 0.275 0.103 0 0.600 0.583 0.400 
1.6 1.728 0.770 0.155 0.046 0 0.495 1.100 0.405 
1.7 1.885 0.960 0.130 0.071 0 0.292 1.650 0.407 
1.8 0.785 0.523 0.611 0.452 0 0.848 0.589 0.896 
1.9 0.785 0.544 0.781 0.236 0 - -

1.10 0.785 0.413 0.795 0.059 0 0.725 0.348 0.926 
1.11 0.785 0.325 0.807 0.037 0 - -
1.12 1.571 0.784 0.156 0.098 0 -
1.13 1.571 0.745 0.228 0.138 0 - -
1.14 1.571 0.545 0.231 0.174 0 - -
1.15 1.571 0.498 0.225 0.078 0 - -
1.16 0.377 0.070 0.995 0.005 0 2.050 1.866 0.652 
1.17 0.471 0.100 0.99 0.019 0 -
1.18 0.628 0.280 0.600 0.054 0 - - -

2.1.1 0.785 0.420 0.670 0.412 0.417 0.604 0.850 0.713 
2.1.2 1.100 0.550 0.530 1.052 0.415 0.308 0.387 0.871 
2.1.3 1.571 0.680 0.153 0.122 0.060 0.443 0.520 0.455 
2.1.4 1.885 0.850 0.200 0.040 0.008 0.368 0.830 0.274 
2.2.1 0.785 0.350 0.330 0.215 0 1.150 1.100 0.496 
2.2.2 1.100 0.420 0.149 1.071 0 1.270 0.790 0.277 
2.2.3 1.571 0.550 0.230 0 0 0.541 1.348 0.227 
2.2.4 1.885 0.650 0.110 0.108 0 0.550 1.900 0.050 
3.1.1 0.785 0.193 0.490 0.013 0 0.705 0.320 0.496 
3.1.2 1.100 0.391 0.310 0.026 0 0.427 0.455 0.326 
3.1.3 1.571 0.660 0.200 0.034 0 0.680 0.680 0.333 
3.1.4 1.885 0.810 0.320 - - 0.140 0.880 0.231 
3.2.1 0.785 0.351 0.702 0.446 0 0.900 0.580 0.685 
3.2.2 1.100 0.437 0.590 0.239 0.019 0.630 0.982 0.915 
3.2.3 1.571 0.440 0.250 0.066 0 0.730 1.976 0.732 
3.2.4 1.885 0.883 0.190 0.086 0 0.420 1.200 0.542 
4.1.1 0.785 0.290 0.840 1.033 0.902 1.027 0.997 0.960 
4.1.2 1.100 0.240 0.630 0.105 0 0.948 0.970 0.948 
4.1.3 1.571 0.490 0.233 0.083 0 0.735 2.030 0.581 
4.1.4 1.885 0.746 0.205 0.033 0 0.550 1.900 0.465 
4.2.1 0.785 0.430 0.480 0.123 0 0.560 0.540 0.465 
4.2.2 1.100 0.550 0.361 0.041 0 0.426 0.500 0.317 
4.2.3 1.571 0.894 0.180 0.192 0 0.457 0.600 0.091 
4.2.4 1.885 0.840 0.060 0.047 0 0.368 0.830 0.050 



Table 4.5 Summary 
(contd...) 

of experimental results for 
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the circular section breakwater. 

Test Mooring Selected RAO's only 
No. ka KR Kj forces sway heave roll 

r, T'2 & 
5.1 0.785 0.340 0.461 0.488 0.015 0.500 0.900 0.589 
5.2 0.942 0.280 0.510 0.252 0.017 - - _ 

5.3 1.100 0.386 0.284 0.097 0.040 0.592 0.600 0.409 
5.4 1.257 0.480 0.377 0.121 0.104 - - -
5.5 1.571 0.540 0.233 0.067 0.110 0.621 0.877 0.400 
5.6 1.728 0.470 0.160 0.034 0.175 - - _ 

5.7 1.885 0.870 0.407 0.016 0.226 - _ 

5.8 0.785 0.323 0.577 0.171 0 0.383 0.149 0.582 
5.9 0.785 0.357 0.685 0.139 0 _ _ 

5.10 0.785 0.411 0.680 0.069 0 0.446 0.460 1.787 
5.11 0.785 0.253 0.723 0.076 0 - - _ 

5.12 1.571 0.695 0.149 0.059 0 - _ 

5.13 1.571 0.612 0.199 0.119 0 - _ 

5.14 1.571 0.723 0.260 0.09 0 - _ 

5.15 1.571 0.657 0.238 0.117 0 _ 

5.16 0.377 0.140 0.800 1.004 0.306 1.870 1.528 0.408 
5.17 0.471 0.230 0.817 2.124 0.749 - -
5.18 0.628 0.300 0.721 0.037 0 - _ 

6.1.1 0.785 0.327 0.357 0.305 0.010 0.831 0.223 0.434 
6.1.2 1.100 0.394 0.139 0.040 0.070 0.097 0.097 0.019 
6.1.3 1.571 0.800 0.330 0.029 0.067 0.181 0.335 0.273 
6.1.4 1.885 0.878 0.178 0.068 0.104 - - -
6.2.1 0.785 0.462 0.720 0.449 0.050 0.168 0.154 0.279 
6.2.2 1.100 0.802 0.504 0.175 0.125 0.484 0.474 0.396 
6.2.3 1.571 0.425 0.282 0.200 0.136 0.556 1.209 0.182 
6.2.4 1.885 0.300 0.119 0.150 0.187 0.230 0.950 0.230 
7.1.1 0.785 0.230 0.600 1.040 0.610 1.787 0.955 0.465 
7.1.2 1.100 0.262 0.371 0.102 0 0.844 1.670 0.575 
7.1.3 1.571 0.416 0.341 0.081 0 1.393 0.734 0.136 
7.1.4 1.885 0.817 0.274 0.096 0 - - _ 

7.2.1 0.785 0.340 0.400 0.537 0.174 0.871 0.607 0.279 
7.2.2 1.100 0.316 0.170 0.469 0.041 0.827 1.213 0.317 
7.2.3 1.571 0.650 0.110 0.42 0.078 0.664 0.343 0.136 
7.2.4 1.885 0.960 0.185 0.165 0 - - -
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Fig . 1.1 Various types of floating breakwaters (McCartney, 1985). 



Fig . 1.2 Location map relating to floating breakwater facilities in British Columbia. 
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Fig . 1.3 Comparison of transmission coefficient of various pontoon breakwater types 
(Blumberg and Cox, 1988). 
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Fig . 2.1 View of prototype twin-pontoon breakwater at Comox Harbour, B . C . 

B' 

0.0 0.5 1.0 1.5 2.0 

h' 

Fig. 2.2 Variation of buoyancy force and waterline beam as functions of relative draft 
for a circular pontoon section. 
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Fig. 2.3 Definition sketch of a moored twin-pontoon breakwater, 
(a) elevation; (b) plan view. 
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Fig . 2.4 Computational domain relating to the boundary element method. 
(a) alternative boundary geometry indication the use of symmetry about the seabed 
seabed; (b) discretization of twin-pontoon breakwater section; (c) sketch indicating 
the relationship between x, and 
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Fig . 2.5 Component steps in the mooring analysis, (a) initial equilibrium configuration 
for no wave load; (b) static analysis to obtain responses to steady loads; (c) quasi-
static analysis to obtain responses to wave loads. 



Fig . 2.6 Mooring line definition sketch, (a) fully suspended cable; (b) partly suspended 
cable. 



Fig . 2.8 Plan view of multiple cable mooring system. 
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Fig. 2.9 Component steps in breakwater analysis. 
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Fig . 3.1 Experimental set-up relating to wave flume tests. 
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Fig . 3.2 Flowchart indicating various components of the experimental scheme. 
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(a) 

Fig . 3.3 Photograph of twin-pontoon breakwater models used in wave flume tests, 
(a) rectangular section; (b) circular section. 
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Fig . 3.5 A selection of video captured images used in the motion analysis to track the 
marker locations. (T = 1.704 s). 



I l l 

F ig . 3.6 Experimental values of RAO' s for a moored rectangular twin-pontoon 
breakwater indicating the estimated errors for the video-based motion tracking 
system, (d/a = 1.67, h/a = 0.45, b/a = 1.0, S/S 0 = 1.08). 
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Fig . 4.1 Comparison of reflection coefficient, K R , with results reported by Wil l iams 
and A b u l - A z m (1996), for a fixed rectangular twin-pontoon breakwater, 
(a) influence of draft, h, (d/a = 2.5, b/a = 1.0, p = 0°); (b) influence of 
pontoon spacing, b; (d/a = 2.5, h/a = 0.5, P = 0°). 
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Fig . 4.3 

(a) added mass in sway, heave, and roll . 

Variation of hydrodynamic coefficients as a function of normalized wave 
number, ka, for a single-pontoon rectangular section (d/a = 5.0, h/a = 0.5 and 
(3 = 0°), and for a twin-pontoon rectangular section (d/a = 5.0, h/a = 0.5, 
b/a = 1.0 and p = 0°). (contd...) 



(b) damping coefficient in sway, heave, and roll . 

Fig. 4.3 (contd...) 



(c) exciting force coefficient in sway, heave, and roll . 

Fig. 4.3 (contd...) 
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(a) added mass in sway, heave, and roll . 

F ig . 4.4 Variation of hydrodynamic coefficients as a function of normalized wave 
number, ka, for a single-pontoon circular section (d/a = 5.0, h/a = 0.5 and 
(3 = 0°), and for a twin-pontoon circular section; (d/a = 5.0, h/a = 0.5, b/a = 

0.5 and (3 = 0°). (contd...) 



sw ay 

0.0 0.5 1.0 1.5 2.0 

ka 

0.0 0.5 1.0 1.5 2.0 

ka 

(b) damping coefficient in sway, heave, and roll . 

F ig . 4.4 (contd...) 
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(c) exciting force coefficient in sway, heave, and roll . 

Fig. 4.4 (contd...) 
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(e) reflection and transmission coefficients, and drift force coefficient 

Fig. 4.4. 
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Fig . 4.6 Comparison of stiffness characteristics for a six-point mooring system made 
up of chain or nylon lines. 
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4.7 Comparison between chain and nylon moorings for a twin-pontoon 
rectangular section breakwater, (a) transmission coefficient; (b) upwave and 
downwave mooring line tensions at anchor. 
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Fig . 4.10 Time traces of both measured and computed wave profiles based on reflection 
analysis for base cases of moored rectangular twin-pontoon breakwater, 
(d/a = 1.67, h/a = 0.45, b/a = 1.0, H = 0.12 m, T = 1.0 sec). 
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(a) RAO's in sway, heave and roll . 

F ig . 4.11 Numerical results indicating the influence of different values of viscous 
damping coefficient for base case of a rectangular twin-pontoon breakwater, 
(d/a = 1.67, h/a = 0.45, b/a = 1.0, S/S 0 = 1.08, p = 0°). (contd...) 
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Fig . 4.12 Comparison of experimental values and numerical results for base case of 
rectangular twin-pontoon breakwater with chain mooring, (d/a = 1.67, 
h/a = 0.45, b/a = 1.0, S/S 0 = 1.0, (3 = 0°). (a) transmission coefficient; 
(b) R A O ' s in sway, heave and roll; (c) R A O phases. 
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F ig . 4.13 Comparison of experimental values and numerical results to indicate the 
influence of draft for a rectangular twin-pontoon breakwater with chain 
mooring, (d/a = 1.67, b/a = 1.0, S/S 0 = 1.08, fj = 0°). (contd....) 
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Fig . 4.14 Comparison of experimental values and numerical results of reflection and 

transmission coefficients to indicate the influence of draft for a rectangular 
twin-pontoon breakwater with chain mooring, (d/a = 1.67, b/a = 1.0, 
S / S 0 = 1.08, (3 = 0°). 
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(a) RAO' s in sway, heave, and roll . 

F ig . 4.15 Comparison of experimental values and numerical results to indicate the 
influence of spacing for a rectangular twin-pontoon breakwater with chain 
mooring, (d/a = 1.67, h/a = 0.45, S/S 0 = 1.08, (3 = 0°). (contd...) 
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Fig . 4.16 Comparison of experimental values and numerical results of reflection and 
transmission coefficients to indicate the influence of spacing for a rectangular 
twin-pontoon breakwater with chain mooring, (d/a = 1.67, h/a = 0.45, 
S /S 0 = 1.08, (3 = 0°). 
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(a) RAO' s in sway, heave, and roll. 

F ig . 4.17 Comparison of experimental values and numerical results to indicate the 
influence of slackness for a rectangular twin-pontoon breakwater with chain 
mooring, (d/a = 1.67, h/a = 0.45, b/a = 1.0, (3 = 0°). (contd...) 
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Fig . 4.18 Comparison of experimental values and numerical results of reflection and 
transmission coefficients indicating the influence of slackness for a 
rectangular twin-pontoon breakwater with chain mooring, (d/a = 1.67, 
h/a = 0.45, b/a = 1.0,(3 = 0°). 
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4.19 Experimental values and numerical results of maximum mooring line forces at 
anchor indicating the influence of slackness for a rectangular twin-pontoon 
breakwater with chain mooring, (d/a = 1.67, h/a = 0.45, b/a = 1.0, 
P = 0°). 



146 

1.0 

K T 0.5 

0.0 
0.0 

0.4 

0.3 — 

T \ 0.2 

0.1 

0.0 

0.0 

exper imenta l 

numer ica l 
(a) 

1.0 2.0 3.0 

ka 

ka 

1.0 2.0 3.0 

ka 

g. 4.20 Comparison of experimental values and numerical results for base case of 
rectangular twin-pontoon breakwater with nylon mooring, (d/a = 1.67, h/a = 
0.45, b/a = 1.0, S/S 0 = 1.0, p = 0°). (a) transmission coefficient; (b) R A O ' s in 
sway, heave and roll; (c) maximum mooring line tensions at anchor. 
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(a) influence of draft; (d/a = 1.67, b/a = 1.00, S/S 0 = 1.00, (3 = 0°). 

Fig . 4.21 Comparison of experimental values of transmission coefficient and maximum 
mooring line tensions at anchor with that of numerical results for a rectangular 
twin-pontoon breakwater with nylon mooring, (contd...) 
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Fig . 4.22 Comparison of experimental values and numerical results for a circular section 
twin-pontoon breakwater with chain mooring, (d/a = 2.5, h/a = 0.5, b/a = 2.0, 
S/S 0 = 1.08, (3 = 0°). (a) transmission coefficient; (b) R A O ' s in sway, heave 
and roll ; (c) maximum mooring line tensions at anchor. 
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g. 4.23 Comparison of experimental values and numerical results for a circular section 
twin-pontoon breakwater with nylon mooring, (d/a = 2.5, h/a = 0.5, b/a = 2.0, 
S/S 0 = 1.0, (3 = 0°). (a) transmission coefficient; (b) R A O ' s in sway, heave and 
roll ; (c) maximum mooring line tensions at anchor. 
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(a) RAO' s in sway, heave, and roll . 

F ig . 4.24 Experimental results to indicate the influence of draft for a circular twin-
pontoon breakwater with chain mooring, (d/a = 2.5, b/a = 2.0, S/S 0 = 1.08, 
(3 = 0°). (contd...) 
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(a) RAO' s in sway heave, and roll . 

F ig . 4.25 Experimental results to indicate the influence of spacing for a circular twin-
pontoon breakwater with chain mooring, (d/a = 2.5, h/a = 0.65, S/S 0 = 1.08, 
(3 = 0°). (contd...) 
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(a) RAO's in sway heave, and roll. 

Fig. 4.26 Experimental results to indicate the influence of slackness for a circular twin-
pontoon breakwater with chain mooring, (d/a = 2.5, b/a = 2.0, S/S0 = 1.0, 
P = 0°). (contd...) 
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(a) influence of draft. 
Fig . 4.27 Experimental results of reflection and transmission coefficients, and 

maximum mooring line tensions at anchor for a circular twin-pontoon 
breakwater with nylon mooring, (d/a = 2.5, b/a = 2.0, S/S 0 = 1.0, p = 0°). 
(contd...) 



158 



159 

0.8 

0.6 

F, 0.4 

0.2 

0.0 
0.0 

2.0 

1.5 

F 2 1.0 

0.5 

0.0 
0.0 

0.8 

0.6 

F , 0.4 

0.2 

0.0 

0.0 

ka 

1.0 

ka 

2.0 

2.0 

6= 0 deg. 

— — G= 15 deg. 

9= 30 deg. 

3.0 

3.0 

— 
1 1 l i 

— — 

- — 

- — ^ •— 
— 

1 i 

1.0 2.0 3.0 

ka 

(a) exciting force coefficients. 

Fig . 4.28 Numerical results indicating • the influence of wave direction for a fixed 
rectangular twin-pontoon breakwater, (d/a = 2.5, h/a = 0.45, b/a = 1.0). 
(contd...) 



(b) reflection and transmission coefficients. 
Fig. 4.28. 
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Fig . 4.29 Numerical results of transmission coefficient indicating the influence of 
pontoon section, (d/a = 1.67, h/a = 0.45, b/a = 1.0). (a) fixed; (b) chain 
mooring, S/S 0 = 1.08. 
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Fig . 4.30 Numerical results of transmission coefficient indicating the influence of 
different configurations of rectangular section breakwaters, (d/a = 2.5, 
h/a = 0.45). (a) fixed; (b) chain mooring, S/S 0 = 1.08. 



g. 4.31 Comparison of numerical results of transmission coefficient for the twin-
pontoon and single-pontoon section breakwaters with the experimental values 
of an A-frame breakwater (Byres, 1988). 
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F ig . 4.32 Sketch indicating the related dimensions of a moored twin-pontoon floating 
breakwater, (a) elevation; (b) plan view. 
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4.33 Tension at anchor for a most heavily and the least loaded mooring line, and 
the associated restoring force in sway for a ten-point chain mooring system. 
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(a) exciting forces. 

F ig . 4.34 Numerical results as functions of wave frequency, f, for a rectangular twin-
pontoon section breakwater, (a = 2.0 m, d = 3.4 m, b = 2.0, h = 0.9 m), with 
chain mooring, S/S 0 = 1.08. (contd...) 
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Appendix A - Reflection Analysis 
In the following, a summary is given of expressions relating to three methods of 

predicting reflection coefficients from wave measurements at three locations (Isaacson, 

1991). A definition sketch is given in Fig. A . l . 

wave #1 

probes 

#2 #3 

wave 

reflected 

0 x,=o 
i i 

K 
i 

S W L ^ 

paddle x x{ x2 x 3 ^ ^ ^ ^ 

Fig . A . 1 Definition sketch related to reflection analysis. 

Method I 

In this method, the measurements made are the two corresponding wave heights 2 A i and 

2 A 2 , and the phase difference 5 = 82 between the two signals. Substituting these in to 

Eq . 3.3 and equating it to Eq . 3.4 and then simplifying gives: 

a i = 1 1

 A | V A ? + A ^ - 2 A 1 A 2 c o s ( A + 8) ( A . l ) 
2 sin A 

= ^ T T V A i + A2 - 2 A i A 2 cos(A - 5) 
2 sin A 

(A.2) 

(3 = 2 k x - x - 27i;m (A. 3) 

where x i is the location of the probe at point 1, m equals to any integer chosen such that 

0 < P < 2TT and % is given by: 

(A.4) 
A . — a: — a 

cos(x) = — ! L 

2a a 
i"r 
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Method TJ 

In this method, estimation of wave reflection is carried out by applying a least-square 

technique to measurements from three probes. Probe measurements provide five 

measured quantities, A i , A 2 , A 3 , 81, and 82 from which the three unknowns Hi , K R and (3 

are estimated. The solution for this problem can be expressed as: 

a s = | X J (A.5) 

a r = | X r | (A.6) 

where 

X r = S l S 3 " 3 S 3 (A.8) 

and 
3 

Si = £ e x p ( J 2 A n ) (A.9) 
n=l 

3 
s 2 = £ e x p ( - i 2 A n ) (A. 10) 

n=l 
3 

s3=5>nexp[z(Sn + A n ) ] ( A l l ) 
n = l 

S 4 = S A n e x p [ i ( 8 n - A n ) ] (A.12) 
n=l 

s 5 = s , s 2 - 9 (A. 13) 

A s before, H i and K R are then obtained from &i and a r through Eq . 3.5 and 3.6, while (3 is 

obtained from % through Eq. A . 3. 

Method U l 

For some cases, when measurements involving wave heights only are desired and phase 

measurements may be relatively inaccurate or may be inappropriate, this method is 

adopted. Solutions giving as and a r are given as: 
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= -(VA + r+VA-r) (A. 14) 

a r =-(VA + r - V A - r ) 

where 

A? sin[2(A 3 - A 2 ) ] - A 2 1 s in(2A 3 ) + A 3 1 s in(2A 2 ) 

sin[2(A 3 - A 2 ) ] + sin(2A 2 ) - sin(2 A 3 ) 

A? + A 3

! - 2 A 

cos(A 3 ) 

-l2 

+ 
A) - A 3 

sin(A 3 ) 

(A. 15) 

(A. 16) 

(A. 17) 

Simple substitution of measured quantities into the above expressions w i l l yield the 

incident and reflected wave heights and the reflection phase angle. Hence from 

measurements of the amplitudes and the phases of two and three wave probes in front 

aligned perpendicular to the breakwater, the basic reflection parameter K R and (3 can be 

calculated from any one the three methods. 
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Appendix B - Motion Analysis 

Marker Position 

Consider the geometry of the model as shown in Fig. B . l . Let Oxz be the reference frame 

with O being the origin about which the three degrees of freedom (sway, heave and roll) 

motions are prescribed. 

displaced position 

(x,z)A 

0(0,0) x 

P 

• 

Fig. B . l Measurement of breakwater motions. 

Let P be a point fixed to the model coinciding with the origin O when the body is at 

rest. The displacements and rotation of point P, denoted i ^ , and £3, respectively are to 

be found in terms of the displacements of the points A and B . For the two-dimensional 

case, it is sufficient to know motions of only two points on the body. 

Let the coordinates of points A and B be ( - X A B / 2 , Z A B ) and ( X A B / 2 , Z A B ) respectively 

when the body is at rest. When the body is displaced, the coordinates of A and B are 

denoted (x A , z A ) and (x B , z B ) respectively. The resulted displacements cji, and ^2, and 

rotation £3, may then be obtained for the following relations: 

^ = ^ y ^ - Z A B s i n ( ^ ) (B . l ) 
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( Z B + Z A ) 

2 
Z A B C O S ( ^ ) 

^3 = S i n " 
Z A Z B 

X AB 

(B.2) 

(B.3) 

Using these expressions, the component motions of the point P as a set of time series 

can be determined from the vertical and horizontal coordinates of the feature points A and 

B , which are themselves obtained at a series of times from every frame captured at a 

known rate. 


