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A B S T R A C T 

The role of fibers in the enhancement of the inherently low tensile stress and strain 

capacities of fiber reinforced cementitious composites (FRC) has been addressed through 

both the phenomenological, using concepts of continuum damage mechanics, and micro-

mechanical approaches leading to the development of a closing pressure that could be 

used in a cohesive crack analysis. The observed enhancements in the matrix behavior is 

assumed to be related to the ability of the material to transfer stress across cracks. 

In the micromechanics approach, this is modeled by the introduction of a nonlinear 

closing pressure at the crack lips. Due to the different nature of cracking in the pre-peak 

and post peak regimes, two different micro-mechanical models of the cohesive pressure 

have been proposed, one for the strain hardening stage and another for the strain 

softening regime. This cohesive pressure is subsequently incorporated into a finite 

element code so that a nonlinear fracture analysis can be carried out. On top of the fact 

that a direct fracture analysis has been performed to predict the response of some F R C 

structural elements, a numerical procedure for the homogenization of F R C materials has 

been proposed. In this latter approach, a link is established between the cracking taking 

place at the meso-scale and its mechanical characteristics as represented by the Young's 

modulus. A parametric study has been carried out to investigate the effect of crack 

patterning and fiber volume fractions on the overall Young's modulus and the 

thermodynamic force associated with the tensorial damage variable. 

After showing the usefulness and power of phenomenological continuum damage 

mechanics ( P C D M ) in the prediction of F R C materials' response to a stimuli (loading), a 

combined P C D M - N L F M 1 approach is proposed to model (predict, forecast) the complete 

response of the composite up to failure. Based on experimental observations, this 

approach assumes that damage mechanics which predicts a diffused damage is more 

appropriate in the pre-peak regime whereas, N L F M is more suitable in the post-peak 

NLFM: Non Linear Fracture Mechanics 
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stage where the opening and propagation of a major crack wi l l control the response of the 

material and not a deformation in a continuum sense as opposed to the pre-cracking zone. 

Tensile and compressive tests have been carried out for the sole purpose of calibrating the 

constitutive models proposed and/or developed in this thesis for F R C materials. The 

suitability of the models in predicting the response of different structural members has 

been performed by comparing the models' forecasts with experimental results carried out 

by the author, as well as experimental results from the literature. The different models 

proposed in this thesis have the possibility to account for the presence of fibers in the 

matrix, and give fairly good results for both high fiber volume fractions (vf > 2%) and 

low fiber volume fractions (vf < 2%). Use of interface elements in a finite element code 

has been shown to be a powerful tool in analyzing the behavior of concrete substrate-

F R C repair materials by the introduction of a zero thickness layer of interface elements 

to account for the interface properties which usually control the effectiveness of the 

repair material. 
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Chapter 1 
Introduction and Objectives 

INTRODUCTION AND OBJECTIVES 

INTRODUCTION 
Cement-based materials require reinforcement because of their low tensile strength and 

strain capacities. The tensile strain capacity of cement-based materials can be 

dramatically improved by the addition of fibers. 

In conventional FRCs {Vf < 1%) fibers are not added to improve the strength. Rather 

their role is to affect the behavior of the material once the matrix has cracked and control 

the cracking of the FRC [3]. The fibers that bridge the cracks formed in the matrix 

contribute to the energy dissipation through the processes of debonding and pull-out. As a 

result, the post peak response continues to be of strain softening, but with a slope less 

steep compared to the unreinforced cementitious material. Thus the fibers improve the 

energy absorption capacity (or the toughness). It is generally accepted that for FRCs with 

Vf < 2%, the major contribution of the fibers is after the matrix strain localization, which 

occurs around the peak of the tensile stress strain curve. However new processing 

techniques have helped in the manufacture of thin-sheet products with fiber volume 

fractions (Vf) as high as 15%. In these composites type, fibers are added not only to 

improve the ductility of the material, but also to increase the strength of the composite. 

This nonlinear increase in strength, termed strain hardening, is associated with the 

appearance of multiple cracking in the material which requires a higher energy input to 

open the microcracks. See Figure. 1.1. for a typical stress strain response of high Vf with 

discontinuous fibers. 
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Introduction and Objectives 

00 

Multiple Cracking 
Zone 

Strain Softening 
Zone 

Strain 

Strain Crack Opening 

Figure 1.1. Different stages in the response of a high Vf FRC 

The response consists of 3 regions: 

I - elastic region (up to matrix cracking represented by point 1) 

II - multiple cracking region (up to max. post cracking point 2) 

III- Failure region (crack opening localization beyond point 2) 

The fracture process zone in high fiber volume fraction cementitious composites is not 

concentrated in a narrow band around the localized crack, but spreads over a large 

volume of the material. Thus, this kind of composites exhibit a high tensile strain and 

energy absorption capacity due to the extensive cracking off and parallel to the main 

crack plane. An important feature of composite materials lies in the fact that their 

mechanical and fracture properties can be adjusted or tailored to the needs of specific 

applications. Indeed, a composite material can be designed for either high strength or 
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high ductility. As one would expect, the tailoring is done mainly through varying 

microstructural parameters associated with the three fundamental phases in a fiber 

composite (the fiber, the matrix, and their interface). Fiber volume fraction, fiber aspect 

ratio, matrix fracture toughness, fiber-matrix bond strength, etc. are examples of such 

parameters. 

Due to their enhanced fracture properties, cementitious composites can be useful in a 

wide range of engineering applications [6,30]. These include cases of structures under 

intensive shear loading, where the high ductility of the composite could help avoid a 

brittle catastrophic failure [107], and earthquake resistant structures, where the high 

fracture energy could increase the energy dissipation of the structure in a significant way. 

A fiber reinforced cementitious material would be very beneficial if applied at locations 

where plastic hinges are likely to occur, such as, near the beam-column connections. 

Another potential area of application for such materials, is their use as repair or patch 

materials [7,10] where their high tensile strain and stress capacities combined with their 

compatibility with the substrate concrete are used to create a high performance repair. 

Partly due to the difficulty of carrying out structural tests as compared to the material 

tests, there is a lack of knowledge regarding the behavior of fiber reinforced structural 

elements. This provides a rational for development of analytical models that provide the 

missing link between the laboratory test and the field performance. 

OBJECTIVES 
Powerful techniques and methods for the modeling of heterogeneous media have 

mushroomed over the last few decades. These methods which are very well established in 

the elastic case are developing when dissipative phenomena are considered. 

Unfortunately, most efforts along these lines deal with media other than cement-based 

materials. This is particularly the case of the aerospace industry where the need for a 

precise modeling of the material's behavior is a crucial issue. Despite the fact that 
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concrete is one of the oldest materials known to mankind, a precise modeling of its 

behavior has always lagged behind, at least partly, by the complicated nature and poor 

understanding of phenomena underlying its behavior. The quest for a rational constitutive 

law for FRC that reproduces its most characteristic features while linking them to what is 

happening at a mesoscopic level (level of heterogeneities) is still under way. In this thesis 

the term FRC refers to any kind of fiber reinforced cementitious composite. 

When modeling composite materials in general, and FRC in particular, two different 

aspects, which are not necessarily mutually exclusive, are usually considered: 

1- Material aspect, related to the optimization of the composite by tailoring its 

constituents in such a way that the desired benefits are maximized, 

2- Structural aspect, related the development of a constitutive law that could be used to 

characterize the material a given structure is made of, so that its response to a given 

stimuli can be computed. 

Depending on the final objective, two main modeling approaches are usually available. 

First, we have the phenomenological models, dealing with macroscopic quantities where 

some a priori defined field variables called internal variables (in a thermodynamical 

sense) are supposed to account for the local mechanisms without any explicit 

consideration of these latter ones. Secondly, we have the micromechanical-based models 

which provide a direct link between the structural performance of the composite and the 

local mechanisms underlying that behavior. This is usually achieved by using the so-

called homogenization techniques, which are averaging methods consisting in lumping 

what is happening around a given material point in the heterogeneous material 

(microcracking, fiber slippage/breakage/debonding, etc.) into the constitutive law of a 

material point in an equivalent homogeneous material. The model's accuracy then 

depends on the adequacy and relevance of the mechanisms we choose to account for. In 

this thesis we give a description of both approaches along with advantages and 

inconveniences of each of them while considering their application to FRCs. 

Among the major benefits of analytical models, one can mention: 
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Interaction with experimental studies: numerical predictions can be used to explain 

experimental results or to optimize the actual experimental setup. The analyses may 

reveal, the existence of phenomena which should be further investigated. 

- Numerical simulations represent a good alternative to experimental testing which are 

too expensive or too difficult to carry out. A n example of such applications, is found 

in the size effect investigations where large specimens are usually needed. Another 

example is related to material's tailoring and the related parametric studies which 

would necessitate a very large number of tests. 

Here, a model assuming a discrete representation of cracking of the material is proposed 

using the generalized Dugdale-Barenblat cohesive model. This representation includes in 

a single stress-COD relationship, the complete behavior of the material from the first 

departure from linearity at the onset of microcracking in the pseudostrain hardening 

regime up to ultimate failure. This assumes that even in the multiple cracking zone, the 

tensile behavior of the material could be represented by the introduction of an 

"equivalent" cohesive crack that would exhibit the same material response as the one 

related to a representative volume element of the given material. 

The proposed model has been used to analyze a three point bending beam, and a double 

cantiliver beam for different fiber volume fractions and two lengths of carbon fibers. 

These analyses serve to check the validity and limitations of the proposed model and to 

further clarify the fracture behavior of cementitious composites. 

A combined continuum damage mechanics-nonlinear fracture mechanics approach has 

been proposed as an alternative procedure for modeling the nonlinear behavior of F R C 

composites. 

A finite element-based numerical procedure is used to compute the effective moduli of 

F R C composites together with the macroscopic damage variable and its associated 

thermodynamic force. A parametric study has been performed to investigate the effects of 
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fiber volume fraction and crack patterns in a cracked R V E on the evolution of the 

mechanical characteristics and the damage variable. 



Chapter 2 
Thermodynamics of Continuous Media 

THERMODYNAMICS OF CONTINUOUS MEDIA 

FORMULATION OF CONSTITUTIVE EQUATIONS 

Everyday experience shows that constitutive elements of a given system play an essential 

role in its evolution: in spite of the fact of having the same geometry and subjected to 

identical loads, a metallic rod does not respond (deform) the same as a timber or an 

elastomeric rod, water does not flow like o i l , . . . . 

The necessity of this characteristic behavior of materials becomes clear when we consider 

the movement problem. A s can be seen on Table 1, an inventory of the available field 

equations and the unknown fields shows that the equilibrium equations together with the 

equation of continuity form a set of 4 scalar equations in a given coordinate system 

whereas the unknown fields a,u and p provide 10 scalar unknowns. The 6 missing 

equations are none other than the constitutive equations that must relate tr to the other 

unknowns. In a general framework, such constitutive equations allow us to represent in a 

phenomenological manner the diversity of "continuous" materials encountered in Nature. 

Indeed, the field equations are valid for all types of media irrespective of their internal 

constitution. However, material bodies having the same mass and geometry, when 

subjected to identical external stimuli, respond differently. The internal constitution of 

matter is responsible for these different responses. Since we are not concerned with the 

atomic structure of matter in continuum mechanics, the constitutive equations needed 

must reflect the gross differences in the structural performance. 

Unknowns 
Displacement Vector, u 3 scalar variables 

Unknowns Stress Tensor, tr 6 scalar variables Unknowns 
Density, p 1 scalar variable 

Field Equations 

Balance Equations 

p—-diver = f 
y dt J 

3 scalar equations 

Field Equations 
Continuity Equation 

—+div(pu) = 0 
dt H 

1 scalar equation 

Table 2.1 Number of field equations vs. number of unknown variables 
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Despite the fact that atomic concepts in general do not intervene in the formulation of 

constitutive equations, certain physical and mathematical considerations must be satisfied 

in the selection of constitutive variables and in the formulation of constitutive equations. 

Constitutive theory follows along a deductive scheme once a certain number of postulates 

and basic principles have been adopted. These principles are but the formalization and a 

priori acceptance of hypotheses which have proven to be efficient and useful both in 

peculiar applications and in everyday experience. Such principles serve as guidelines and 

constraints in the construction of the relevant constitutive theory. They thus have a 

heuristic value. Their foundations cannot be demonstrated and, as such, they cannot be 

related to any logical frame. Symbolically one can write 

a(t) = SR e(r) 
<-r<t 

or e(t) = 3 (T(T) 
Tit 

This equation states that the stress field at instant t depends on the entire history of 

deformation and vice versa. This functional representation, initially introduced by 

Volterra in 1912, must however be particularized for each material. We will see in the 

sequel how certain invariance and thermodynamic principles limit the class of allowable 

functional. Due to a lack of precise knowledge of bonding etc... at the atomic level, 

practical identification of constitutive laws at this stage is necessarily experimental. 

principle of determinism: Past and present causes (independent constitutive variables) 

determine the present "effects" (dependent constitutive variables), suggesting the use of 

a time functional for the description of general constitutive equations. However, if no 

hereditary phenomena are being accounted for, like in this thesis, the principle is usually 

reduced to the simpler form: present "causes" determine present "effects". 

principal of contiguity or local action: This principle emphasizes the influence of what 

is nearby, thus suggesting that only the "causes" defined in an arbitrarily small 

neighborhood of the point X affects appreciably the dependent constitutive variables at X 

(so-called axiom of neighborhood). The values taken by independent constitutive 

variables at distant material points from one material point X do not affect appreciably 
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the values of the dependent variables at X. This leads to the notion of materials of the 

material-gradient type or theory of n-th gradient of a material. For example, let A and B 

be an "effect" and a "cause", respectively. Then, accordingly, the constitutive equation 

corresponds to a first-order gradient theory with respect to the field B. All classical 

theories of continua (classical elasticity, hydrodynamics) are of this type. Higher-order 

gradient theories are defined by induction, e.g., A = A^7^B(X,cr),V^V^B(X,a)j 

corresponds to a second-order gradient theory. A counter example of the principle of 

contiguity is provided by the so-called nonlocal theories (see chapter IV). 

principle of objectivity: This principle singles out the objective and physical properties of 

a material from those which are subjective and depend on the observer. The constitutive 

equations of an ideal "continuous" material must be form-invariant with respect to 

superimposition of an arbitrary rigid-body motion. In other words, they must be form-

invariant with respect to space-time changes of frame. Physically, the principle of 

objectivity signifies that: 

"If two observers consider the same motion of a given material body, then they determine 

the same response of the material, e.g., the same stress and/or strain fields". 

Although such a principle is applied unconsciously in everyday life, it bears a profound 

operational significance; the internal forces in a continuum depend on the relative 

deformations of the continuum with respect to itself and not on the parameters of a rigid 

body motion. 

thermodynamical admissibility: The expression of constitutive equations must not 

contradict the thermodynamical evolution represented by the second principle of 

thermodynamics. 

x,cr) = A(y RB(X,a) J, with X=X(x, a), 

9 
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material symmetry: The constitutive equations of a material must reflect in their very 

mathematical structure the degree of symmetry (isotropy, anisotropy and/or 

crystallographic group to which it belongs) of the material in its reference configuration 

or a privileged configuration considered as such. 

principle of virtual work: Although it is a principle that deals with the concept of energy, 

the celebrated principle of virtual work, also referred to as d'Alembert's principle has a 

very intimate relation with the principle of objectivity. 

Let us consider the case of a continuum subjected to surface tractions T on the external 

bounding surface dD and to body forces F throughout the region D occupied by 

matter. The principle of virtual work can be stated as follows 

SW.+SW.+5W, =0 

where SW/is the rate of work performed by the internal forces, SWethe rate of work 
performed by the surface tractions T on dD and body forces F in D, and SWj the rate 
of work performed by inertial forces. 

with 

SWt=- SWdef = \a:SedV = [D(a.n).Su * dS - jdiva-Su * dV 

SWe = ^T.Su*dS + jDpF.Su*dV 

SWj=-\DpF.Su*dV 

Hence one can write 
£ [diva + p (F - y)\. Su * dV + | d [T - <j.n]. du * ds = 0 

using Haar's lemma in variational calculus, localization of the above equation for an 
arbitrary virtual displacement field Su*, yields both 

the local field equations 
diva + p(F -y) = 0 

- the associated boundary conditions 
T-a.n = 0 

1 0 
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It is interesting to notice that the virtual displacement field does not have to respect the 

physical constraints on the real body. For instance, if a degree of freedom is blocked, a 

virtual displacement which does follow it will yield the corresponding reaction at that 

point. 

THERMODYNAMICS OF CONTINUA 

Before stating the principles of thermodynamics in the form they take for continuous 

media, we introduce or recall some fundamental notions. 

We call system, S, a part of the material universe (an open region of R3). The 

complement of S in R3, Sex, is the exterior of S. 

A system is said to be closed if it does not exchange matter with the exterior. We call 

thermodynamical system a closed system of which the energy exchanged with its exterior 

consists only in heat exchange and works performed by body and surface forces acting on 

S. A thermodynamical system that does not exchange any energy with its exterior is said 

to be isolated. 

T H E F I R S T P R I N C I P L E O F T H E R M O D Y N A M I C S 

This principle expresses the conservation of energy and could be written as 

—(U + K)=W + Q (2.1) 
dt 

where U is the internal energy of the system under consideration, K its kinetic energy, 

W the work rate done by external loads, and Q is the rate of thermal energy supplied to 

the system. These quantities are in turn given by, 
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U= \DpedQ 

K=]b^pv'dfi 

Ivy = [ fv dn+ [rvdr 
(2.2) 

Q= [rd£2- [ qndr 
JD JdD 

where p is the mass density, e the internal energy density, v the velocity field, / the 

body forces, T surface forces applied on the bounding surface 3D of the body, r the 

non-mechanical heat source per unit volume, q the heat flux supplied through 3D, and 

n the external normal to 3D .By recalling that 

T = a n (2.3) 

and by using Stokes' formula, it is possible to derive the local form of equation (1) 

p— + div(q -arv) = f v + r 
dt 

(2.4) 

where E represents the total energy density and is given by 

1 2 E = e + —v 
2 

(2.5) 

THE SECOND PRINCIPLE OF THERMODYNAMICS 

The first principle introduces the notions of internal energy and heat, whereas the second 

principle introduces the one of entropy s . More specifically, we assume that the internal 

energy e is function of the entropy s , the total strain e and the internal variables 

ai(i = \,...,n) (scalars or tensors) which represent the internal state of matter (crack or 

dislocation density, residual stresses , etc.). Therefore we have, 
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with 

de = T ds + — x de-—F da. 
P P ' 

ds 
de 
de 

(2.6) 

(2.7) 

K=-P 
de 

da. 

where T is interpreted as the absolute temperature of the medium, x represents the 

reversible stress, and Fa, the thermodynamic force associated to the internal variable at. 

Eq. (2.7) represents the state laws. Introduction of the free energy 

i// = e-Ts (2.8) 

allows one to put Eq . (2.7) under the following form 

dy/ 
s = — 

\X = P 

dT 
dy/ 
de 

dy/ 
da. 

(2.9) 

Eqs. (2.5) and (2.6) lead to 

ds _ p dE v dv x de Fa, dat 

dt T dt TdT T dt T dt 
(2.10) 

Combining Eqs. (2.10) and (2.2) and the equilibrium equations given by 

p— -diva = f 
• dt J 

(2.11) 

one can deduce 
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ds (o ~\ r 

dt \l ) 1 

with 

1 1 1 dt 

where cr* is the entropy production rate, ^- is interpreted as the entropy flux, and 

V represents the gradient symbol. The second principle states that the production of 

entropy is always positive 

a*>0 (2.14) 

Assuming that the absolute temperature is always positive (T > 0) , Eq . (2.14) can be put 

under the form 

di +dT>0 (2.15) 

with 

dt = (cr - %): e(v) + Fa (intrinsic dissipation) 
dt 

dT = -j-.VT = -q. V(LogT) (thermal dissipation) 

Traditionally, it is assumed that both the intrinsic dissipation dt and the thermal 

dissipation dT are positive, not only their sum. A s a general rule the second principle is 

not sufficient for the complete construction of constitutive laws of materials, since it can 

only allow the determination of the admissible ones. To obtain these latter ones, one 

needs to define the complimentary laws. 
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C O M P L I M E N T A R Y L A W S 

In the sequel we consider only the case of isothermal evolutions (T = Cste). The second 

principle is then given by 

dm 
d, =(<T-%): s(y) + Fa—±>0 (2.16) 

' dt 

The complimentary laws allow the definition of a relationship between the variable 

dot 
air = cr - x a n d the thermodynamic forces Fa to the velocities e(v) and — L , 

dt 

respectively. To construct such laws, the normality rule is usually assumed to hold. This 

rule states that there exists a positive function (p(crir,Fa) assuming its minimum at zero 

such that 

(i(u),d) e d(p(o~ir, Fa) (2.17) 

where u is the displacement and d is the sub-gradient symbol. This assumption, 

however, must be verified experimentally for each material. According to Halphen-

Nguyen [ 6 8 ] , a material which obeys the normality rule and has a free energy \\i and a 

function <p that are convex of their arguments is said to be a generalized standard 

material, (p is then called dissipation pseudo-potential. Application of the principles of 

the thermodynamics of continuous media are given in the next two sections in the context 

of continuum damage mechanics and fracture mechanics. 

A P P L I C A T I O N I: Continuum Damage Mechanics 

Important efforts have been made over the last few decades in developing the area of 

thermodynamics by establishing the necessary bases required in the construction of 

physically admissible constitutive laws. We adopt in this section the theory of internal 

variables. Therefore, the state of a continuum at instant t is fully determined by the 

knowledge of the value of the observable variables together with the values taken by a set 
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of hidden variables which are assumed to characterize the internal state of matter. The 

reader interested in a detailed presentation of the content of this section should consult 

references [41,48,101,103,117] 

We limit the presentation in this section to the case of a damage-elasticity coupled 

behavior, with no permanent deformation (e = ee), in the framework of isothermal 

transformations (T = Cste ). The usual classification of the different variables in this case 

is then as follows 

Observable variables Hidden Variables Associated variables 

e CT 

T s 

D Y 

Table 2.2. Classification of the different field variables 

where s is the entropy of the system and Y the thermodynamic variable associated with 

D. Given the expression of the specific free energy 

y/ = y/(e,D,T) (2.18) 

The state laws are derived as follows 

a = p 
dy/ 

s = -

Y=p 

de 
dy/ 

dy/ 

(2.19) 

3D 

Since we are dealing with isothermal evolutions, the thermal dissipation vanishes and the 

intrinsic dissipation becomes, 

<j), = -Y : D > 0 (2.20) 
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with 

Y :D = Tr[Y.D] 

the Clausius-Duhem inequality having its roots in the second principle of 

thermodynamics imposes 

The complimentary evolution laws which govern the internal variables, are 

thermodynamically acceptable i f the intrinsic dissipation is always positive or equal to 

zero. The introduction of a dissipation pseudo-potential cp leads to the adoption of the 

generalized normality rule and the respect of the positive aspect of the dissipation. 

Let q> * be a function of the associated variables Y, dual of cp , obtained through a 

legendre Frenchel Transformation. In the case of generalized standard materials [68], we 

can state 

-Y :D>0 (2.21) 

(p(<j,Y;e,b) = XDf((T,Y;e,b) (2.22) 

where AD is the damage factor, and / is a convex function, centered at the origin 

representing the damage threshold. This results in an evolution law of the form 

with 

= 0 and 

and f < 0 
or 

17 



Chapter 2 
Thermodynamics of Continuous Media 

Two elements govern the implementation, or particularization to a given material, of the 

constitutive laws 

• knowledge of the damage threshold function 

• Knowledge of the expression of the specific free energy 

The expression of specific free energy y/ is chosen so that it is compatible with the 

expression of the stress tensor tr through the constitutive law. Therefore, in the case of 

an elastic-damageable material we have 

a = A(D): s 

If we choose y/ to be given by 

( d v } 
= p i r (2.24) 

py/ = ̂ A{B):e\e (2.25) 

then, the thermodynamic variable associated with D can be put under the form 

dyi IdAiPf 
Y=P = . £: £ (2.26) 

dD 2 dD ' 

Cordebois [48] proposed a damage threshold of the form 

f(Y) = Yu-K(D) = 0 (2.27) 

where Yu = yjTrY2 and K(D) represents the damage threshold for a given value of D. If 

we assume that 

K(D) = K(Dn) (2.28) 

with 

D.^VTTD7 (2.29) 
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Then 

A , = ™ (2.30, 
A . 

Consequently, the damage evolution law (2.23) becomes 

• df Y 
D = -XD^- = -XD— (2.31) dY u Yu 

or 

JTW = A D ^ ^ = ZD (2.32) 

If we express the fact that a loading case, other than fatigue, corresponds to / = 0 and 

/ = 0 we deduce from Eq. (2.27) 

Yn--^-Dn=0 (2.33) 

or 

in^xBmzn=0 ( 2 . 34 ) 
dDn DUY„ 

Eqs. (2.32) and (2.33) lead to a new expression of the damage factor 

4 = d K *"/ — (2-35) 
d K Dn NlW 

or 

Y Y D _ - t i i - t u z v n 

dK-Tr[D.Y] 
(2.36) 

dDn 
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Further particularization is achieved by the introduction of a damage tensor of the same 

type as the one proposed by Chaboche [41], and which is governed by a differential 

equation of the type 

b = Q(a)D (2.37) 

where Q(<r) is a second order tensor which depends on the material and the state of 

stress. In the particular case of a proportional loading this simplifying assumption is 

equivalent to a 'fixed' anisotropic situation irrespective of the loading (crstaying 

proportional to a fixed stress cr0). Under these conditions, we have 

D = Q((T)D (2.38) 

Noting that 

and 

VrrZ>2 = D ^TrQ2 (2.39) 

Dn = yJTrt)2 = D ^TrQ2 (2.40) 

dK 
Let = Mix) be the so-called 'modulus of deconsolidation' 

dD, ' i i 

M plays the role of the hardening parameter in the theory of plasticity and is determined 

experimentally. Eq . (2.39) leads to a new expression of the damage factor given by 

(2.36) 

4 = ^ 7 (2.41) 
M 
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and the evolution law becomes 

Y Y 
D = U- (2.42) 

MYU 

The problem is completely determined, since we know the expression of Y , which is 

given by 

Y = ^ : s : s (2.43) 
2 8D K J 

It is worth noticing that in the particular case treated here the intrinsic dissipation is given 

(p,=-Y :Q(<r)b (2.44) 

Since <j = A:e it can be shown [41] that -Y :Q(<r) is a quadratic form of the srains. 

Under these conditions the Clsusius-Duhem inequality (2.21) imposes 

D>0 (2.45) 

Which states that damage is an irreversible process and corresponds to a real 

deterioration phenomenon. 

E X A M P L E : Brittle Elastic Materials 

The free energy for these materials is usually given under this form 

py/ = ̂ a{D):s:s (2.46) 

where D is a tensorial or scalar damage parameter representing the state of deterioration 

or internal damage of the material (cavities, or cracks). The dissipation pseudo-potential 

is assumed to correspond to the "indicatrice " of the convex C defined by 
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C = {FD, f(FD)<\} (2.47) 

where FD is the thermodynamic force associated with D. The complimentary and 

constitutive laws lead to 

j-i 1 da 
Fn = :£•£ 

D 2dD 

D = A 

Z = a(D).e 

df 
dFn 

with 
\A = 0 if 

U>0 if 

(2.48) 

f<l 

f = l 

When damage is isotropic, the stiffness matrix of the material a(D) is expressed as a 

function of the initial stiffness matrix a(0) in the following way 

a(£>) = (l-Z>) a(0) (2.49) 

This equation is equivalent to the effective stress hypothesis which states that the 

constitutive law of a damaged medium can be obtained from the constitutive law of the 

plain material simply by replacing the real stress a by the effective stress aeJf defined 

by 

(2.50) 

It is seen that for these materials, the free energy is no longer convex with respect to all 

the variables considered together, but is only convex with respect to each variable taken 

separately. This model applicable only in the case of fragile materials such as plain 

concrete, is not of great interest as far as F R C materials are concerned. Another model, 

better suited for this kind of materials, w i l l be presented in more details and applied to 

predict the response of F R C specimens in chapter 4. 
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A P P L I C A T I O N II: Fracture Mechanics 

In this sequel section, the general equations of the Griffith theory wi l l be deduced from 

the coming derivations of the energy balance for a cracked body and w i l l be applied to 

two examples. We start with the global energy balance in a continuum during crack 

growth from which the Griffith criterion is deduced as a special case. In an attempt to 

extend the principles of linear elastic analysis to situations of highly localized yielding at 

the crack front, the various irreversibilities associated with fracture are lumped together 

to define the fracture toughness of the material. This approach allows the applicability of 

Griffith's theory to metals and other inelastic engineering materials. A general energy 

balance of a deformable continuum subjected to arbitrary loading and containing a crack 

is presented. N o particular assumptions regarding the constitutive equations relating 

stresses and strains are made. 

Consider the case of a cracked continuum subjected to surface tractions T on the 

external bounding surface 8DT and to body forces F throughout the region D occupied 

by matter, as we can see from Figure 4.1. Furthermore, we assume 

1. the total bounding surface of the body 3D to be given by dD(t) = dDT + dDc(t) 

where dDc(t) represents the surface of the crack 

2 . the cracked surfaces to be stress free 

3. the total volume to be unaffected by crack growth 

4 . The crack is not necessarily stationary but may be propagating and it is assumed that 

the crack growth is described by the crack area as a simple parameter. 
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Figure 2.1 A continuum body with a crack 

Application of the first law of thermodynamics to this cracked body leads to 

W + Q = E + K + t (2.51) 

Here, W is the work performed per unit time by the surface tractions T on dDT and 

body forces F in D, Q is the thermal energy supplied to the body per unit time, E is 

the rate of change of the internal energy, K is the kinetic energy of the continuum, and 

f the energy per unit time spent in increasing the crack surface dDc. These different 

quantities are in turn given by 
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^ = [ D T

T k ^ d Z + l p F k u k dV 

Q=[DqnkdZ+[)pkdV 

E = — \pedV = [pedV 
dt *> 

(2.52) 

where, p is the mass density, u is the displacement vector, n the unit vector normal to 

the bounding surface, e the internal energy density per unit mass, q the heat flux vector 

per unit surface, h the non-mechanical heat source per unit mass, and y the energy 

required to form a unit of new surface. For the scope of the present study, we assume that 

Under conditions a and b, the velocity field ii developed in the continuum is small and 

hence the kinetic energy which is proportional to u2 may be ignored. In other words, the 

realm of dynamic fracture mechanics where the kinetic energy term, K, cannot be 

omitted is not addressed in this study. According to conditions c and d, crack growth 

takes place under isothermal or adiabatic conditions. Thus, the thermal energy term in 

equation (2.52) Q can be ignored. 

In Eq . (2.52), the rate of change of internal energy can be rewritten as, 

a- the applied loads are time independent 

b- the crack grows slowly in a stable manner 

c- there is no heat flux into the body 

d- absence of any non-mechanical heat source in the body 

(2.53) 
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where cr. and stj denote the components of the stress tensor and strain tensor 

respectively. The strain increment detj may be split into a recoverable elastic part ds.j 

and a permanent inelastic part ds™ , with de{j = ds.j + de\" Hence, Eq . (2.53) takes the 

form 

E=lcTu^dV+lncrue-dV (2.54) 

where D'n denotes the part of the body that has been undergoing an inelastic 

deformation. The elastic strain energy rate may be given by 

I)' = f CT.. £e. dV (2.55) 

whereas, the rate of inelastic strain work is given by 

. y« i] y (2.56) 

According to the above mentioned assumptions, all changes with respect to time are 

solely caused by changes in crack size. Let A be the crack surface, therefore 

dt ~ dA 8t~ dt 
with A > 0 (2.57) 

W = ™A = 
dA 

[ Tk^dZ+\PFk

d-^dV 
JBDt

 k pi A y k QA 
(2.58) 

E=—(ue+uin)A = 
dAX ' 

f d£e

u , ds" 

I crii-±dV+ f o-,—?-dV + 
b '} b'" 'J P)A 

(2.59) 
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Consequently, the energy balance equation Eq . (2.51) during quasi-static stable crack 

growth, where dynamic effects and thermal energy are ignored, takes the form 

8W 

8A 
dUe dU' 

• + -dA dA + • 
a r 

dA 
(2.60) 

or 

a n _ dum a r 

~dA~ dA ~dA 
(2.61) 

where i l = Ue -W is the potential energy of the system. Eq . (2.60) shows that the work 

rate supplied to the body by the external forces is equal the rate of the elastic strain 

energy and the inelastic strain work plus the energy dissipated during crack growth. The 

other form of the energy balance, Eq . (2.61), indicates that the rate of decrease in 

potential energy during crack propagation is equal to the rate of energy dissipated in 

inelastic deformation and crack growth. 

Assuming that the energy required to form a unit of new material surface is constant for a 

given material and environmental conditions, Griffith [65,66] used the minimum 

potential theorem of elastostatics to approach the problem of fracture of an ideally brittle 

material. If y represents the energy required to form a unit of new surfaces in such 

materials where the inelastic energy dissipation is usually negligible, Eq . (2.60) takes the 

form 

representing the energy available for crack growth, is given the symbol G in 
dA dA 

honor of Griffith. 2y represents the resistance the material opposes to crack propagation 

and is a material constant. Therefore, Eq . (2.62) represents the fracture criterion for crack 

growth. There are two important cases that are usually encountered in the literature. One 
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called 'fixed grips' loading and corresponds to the particular case where the surface of 

the body on which the loads are applied remains stationary when the crack grows. The 

other, called 'fixed load' is characterized by the fact that the applied loads on the surface 

of the continuum are kept constant during crack growth. It is interesting to note that for 

both cases, the magnitude of the elastic strain energy release rate necessary for crack 

growth is the same. However, the elastic strain energy of the system decreases for 'fixed 

grips' and increases for 'fixed load' conditions. In either case, Eq . (2.62) can be written 

as 

G = - ^ = 2 y (2.63) 
dA 

or 

— ( n + r ) = o (2.64) 
dA 

where IT is the potential energy defined by Eq . (2.61). This form of the energy balance 

states that, the total potential energy of the system IT + T has a stationary value. 

Example 1 (Line crack in an infinite plate) 

The change in elastic strain due to the presence of a line crack of length 2a in an infinite 

plate of unit thickness subjected to a uniform stress ka- perpendicular, and a parallel to 

the crack as calculated by Sih and Liebowitz [153], is given by 

2 2 
U =— (*: + !) 

8/i 
(2.65) 
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Figure 2.2 line crack in an infinite plate 

The critical stress required for unstable crack growth is given by Eq . (2.62) 

2Ey 

7ta 
(2.66) 

For generalized plane stress 

2Ey 
}na(\-v-) 

(2.67) 

For plane strain 

As expected, it is seen that the stress ka parallel to the crack plane has no effect on the 

critical fracture load. Furthermore, Eqs. (2.66) and (2.67) Confirm Griffith's 

experimental findings, indicating that the critical stress cr. is proportional to the square 

root of the crack length. 
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Example 2 (Elliptical crack embedded in an infinite solid) 

a/b 

Figure 2.3 Normalized critical stress versus the ratio of the semi-axes 

of an elliptical crack [153] 

Let us now consider the case of an infinite plate endowed with an elliptical crack of semi 

axes a and b and subjected to a uniform stress cr perpendicular and sa parallel to the 

crack plane. The change in elastic strain energy U' and the increase in surface energy T 

due to the presence of the crack are given by [95], 

u t = 2x(\-v)abW 
3pE(k) 

Y = 2nahy (2.69) 

Adopting the simplifying assumption of Kassir and Sih [95] stating that the ellipse of 

semi axes aandb grows into another ellipse with the same foci, application of the 

Griffith criterion becomes possible and leads to 
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— {Ue-r)=0 (2.70) 

As a result, the following expression for the critical stress is derived 

b(l-v) 2 (Hk'2) E\k) 
-<J. — T. » (2.71) 3/M 2(\ + ku)E(k)-ku K(k) 

A graphical representation of Eq . (2.71) is given by Figure 4.3. It is seen that the critical 

a 
stress increases as the ratio — 

b 
— > 1 decreases. Its maximum value for the penny-

shaped crack is 

° c = — (2-72) 
a ( l - v ) 
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HOMOGENIZATION OF HETEROGENOUS MEDIA 

INTRODUCTION 

The behavior of fiber reinforced concrete exhibits several characteristics that could be 

interpreted in terms of the presence of microcracks and fibers. The aim of this chapter is 

to describe few techniques on how to design a mathematical model of the behavior of 

concrete that takes into account those characteristic properties of the material. 

A natural way of describing the response of F R C seems to lie in the idea of considering 

the macroscopic behavior of matter as a consequence of its microscopic behavior (i.e. at 

the scale of heterogeneities). If we admit the validity of such an assumption, it seems to 

be very natural to approach the behavior of F R C by studying friction at crack lips and at 

the fiber-matrix interface, propagation of cracks, fiber pull out, etc. 

To design a model that would behave like F R C we can adopt a macroscopic approach 

[41,101,103] or a microscopic one [2,29,76,112]. A typical result of the former is to 

postulate the existence of an a priori parameter along with its influence on the 

macroscopic mechanical properties, and calibrate its evolution from experimental results. 

In the latter case, the method is less direct, but provides a direct link between the damage 

parameter and the microstructure. Although homogenization methods are well established 

for the elastic case, these are in their infancy when local dissipative phenomena such as 

crack propagation and fiber pull-out need to be included. 

The aim of homogenization techniques is to replace a highly heterogeneous material by 

an equivalent homogeneous one whose behavior approximates the macroscopic behavior 

of the heterogeneous composite. Two essential reasons explain this approach: 

• Some characteristic aspects of the mechanical behavior of highly heterogeneous 

materials can be explained only at the level of the microstructure. Modeling of such 
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behaviors takes into account the mechanisms taking place at the level of the 

heterogeneity. 

• From the numerical point of view, the cost of structural analysis when these materials 

are used would be extremely high if all the heterogeneities have to be taken into 

account explicitly. 

These two reasons define the scale at which we should put ourselves in order to study the 

behavior of the equivalent homogeneous material, the so-called representative volume 

element (rve). The rve should be large enough with respect to the microstructure in order 

to have global information on the behavior of the equivalent homogeneous material , and 

small enough with respect to the structure so that the equations that govern its behavior 

could be written in a local form. 

The different homogenization methods differ in the sense of the equivalence which 

allows the transition from the behavior of the heterogeneous material to the behavior of 

the equivalent homogeneous material. 

MICROSCOPIC AND MACROSCOPIC SCALES 

In principle, the equations that describe the behavior of each phase are known and may be 

written at the microscopic level, where we focus our attention on what happens at a point 

within a considered constituent present in the domain. Sometimes it is even possible to 

know the conditions that prevail on the surface that bounds a given phase. However, due 

to the fact that the geometry of the surface that bounds the phase is not observable and/or 

is too complex to be described, the equations cannot usually be solved at this level. Since 

the general description and response of a heterogeneous material to a given stimuli at a 

microscopic level is impractical and may even be impossible, another level of 

description, is needed, the so-called macroscopic level. A t this level, measurable, 

continuous and differentiable quantities may be determined and boundary value problems 

can be stated and solved. Accordingly, the main objective of this chapter is to introduce 
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the continuum approach that leads to the macroscopic level of describing the constitutive 

laws of heterogeneous media. Each phase (gas, liquid or solid) is regarded as a 

continuum, overlooking its molecular structure. 

A multi-phase medium is called homogeneous with respect to a macroscopic parameter 

characterizing the geometrical configuration of any phase within the material, if that 

parameter has the same value at all points of the domain. If not, the domain is called 

heterogeneous with respect to that parameter. For example, a porous medium domain, D, 

is homogeneous with respect to porosity, 0, if 

V<9 = 0 inZ) (3.1) 

As a consequence of the microscopic configuration of any phase within the rve, in the 

neighborhood of a point in a heterogeneous medium domain, certain macroscopic 

properties at that point may vary with direction. A continuous medium is said to be 

anisotropic with respect to a property if that property varies with direction at that point. 

A medium is said to be isotropic at a point with respect to a property, if that property 

does not vary with direction at that point. 

The advantages of an overall continuum description of a heterogeneous medium are 

a- It circumvents the need to specify the exact configuration of the interphase 

boundaries, 

b- It describes processes occurring in heterogeneous media in terms of differentiable 

quantities, thus enabling the solution of problems by employing the methods of 

mathematical analysis, 

c- The macroscopic quantities are measurable, and can therefore be useful in solving 

field problems of practical interest. 

These advantages are however, at the expense of the loss of detailed information 

concerning the microscopic configuration of interphase boundaries and the actual 

variation of quantities within each phase. However, as we shall see later, the macroscopic 

effects of these factors are still accounted for through some averaging technique. 
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R E P R E S E N T A T I V E V O L U M E E L E M E N T 

Suppose we wish to describe the motion of the fluid inside the void space of a porous 

medium. For example, we wish to determine the velocity of the fluids at points within the 

fluid that occupies the void space. At first, we see no difficulty. To achieve our goal, we 

have to solve the momentum balance equation, which for a Newtonian Fluid (and water 

is considered as such fluid) takes the form of the well known Navier-Stokes equation. 

This is a partial differential equation, written in terms of the state variable "fluid 

velocity". 

To solve this equation for the fluid domain, i.e., the void space domain, we need also the 

boundary conditions. The information on boundary conditions contains two parts: (a) 

information on the geometry of the boundary surface, and (b) conditions that have to be 

satisfied on the boundary. In the case considered here, the boundary surface is the solid-

fluid interface. 

Suppose we know the condition on the boundary surface, e.g., a condition of "no flow 

through the boundary". Is there any practical way to describe the detailed geometry of 

this boundary surface? The answer is, obviously, NO. This procedure for obtaining a 

description of the flow is not possible. 

However, do we really need to know what happens at every point within the matrix 

phase, or within any given inclusion? 

Furthermore, suppose we could predict the behavior at such points, is there any way to 

measure this behavior, say, in order to verify our prediction? 

Can we really measure the velocity or the pressure at a point within a fluid occupying the 

void space in an FRC material? 
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To overcome the above difficulties which stem from the heterogeneity of the domain 

(which is a consequence of the presence of solid and void space subdomains), a 

smoothing operation is usually performed. 

By the averaging over an rve, we can transform the microscopic description into a 

macroscopic one, the latter being a continuum description. We must still select the 

appropriate size and shape for the rve for a heterogeneous material. To determine this 

size, let us recall what we shall use the rve for. Once rve-averaged values of some 

property, say of stress or strain, have been introduced into the macroscopic model, we 

should construct or use instruments that measure these averaged values, i.e., that take 

averages of the corresponding microscopic values over the selected size of the averaging 

volume. If our model really describes the considered phenomenon, the predicted and 

measured values must be the same, within the range of error introduced by the modeling 

and measuring processes. 

For each selected averaging volume, the averaged values of the state variables will, in 

general, be different (see Figure 3.1). Hence, every averaged value must be accompanied 

by a label that specifies the volume over which this average is taken. But, How could 

averaged values be compared? 

Instead of employing an rve of an arbitrary size, the size of an rve should be selected such 

that the average value of any geometrical characteristic of the microstructure of the 

region occupied by an inclusion at any point in a heterogeneous medium, is a single-

valued function (or nearly so within an acceptable error) of the location of that point only. 

The averaged value should also be independent of small perturbations in the size of the 

rve, which means that it should remain more or less constant over a range of volumes that 

correspond to the range of variation in instrument sizes. 

Actually, this process of averaging quantities over a certain volume element should not 

be new to us, and is very well illustrated by the definition of the density of a continuum. 

Because of the molecular structure of matter, and its discontinuous structure at that level, 
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i f "point" means "a mathematical point", the answer to the question of density is not 

unique. The point may "hit" a molecule, or be in vacuum. Under such conditions, there is 

no meaning to the term "density". To overcome this difficulty, let us enclose the 

considered point within a small spherical volume V centered at the latter, and then try to 

determine the ratio MTV within that sphere, where M is the mass of matter enclosed in the 

sphere. If the volume, V is very small, the result w i l l be unstable and strongly fluctuating. 

As we increase the volume, and the number of molecules increases, the fluctuations in the 

ratio of M / V wi l l gradually attenuate, reaching some plateau, with ever decreasing 

fluctuations. This process is shown on Figure 3.1. In this Figure, we note that the rve, 

may be selected in the range between V = U m and V = . The density, p, at the 

point, is the ratio MN for V = . 

Density 

Figure 3.1. Variation of density with the size of the rve 
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By using this procedure of averaging to determine p at every mathematical point within 

a domain, the domain and its behavior have been transformed from the molecular level to 

the microscopic one. The latter is now a continuum. The density is defined at every 

microscopic point. The real molecular world is transformed into the fictitious continuum 

world. 

Denoting the characteristic dimension of an rve by / and the length characterizing the 

microscopic structure of inclusions by d, a necessary condition for obtaining non-random 

estimates of the geometrical characteristics of the heterogeneity at any point within a 

polyphase medium domain emerges, 

In other words, we require that the size of the rve, say the diameter of a sphere, be much 

larger, say 100 times, the scale of heterogeneity at the microscopic level, indicated by the 

dimension of an inclusion. This is analogous to the requirement, in passing from the 

molecular level to the microscopic one, that the size of the rve be sufficiently large, so as 

to contain a very large number of molecules. Here we require a very large number of 

grains, pores and fibers, so that if the rve contains a few inclusions more, or a few 

inclusions less, the average will remain practically unchanged. 

Thus, the size of the rve must be much larger than the scale of the heterogeneity at the 

microscopic level, resulting from the presence of solids and voids. We have thus 

determined the lower bound to the size of the rve. However, as can be seen on the 

previous Figure, if the domain is heterogeneous at the macroscopic level, an upper bound 

has also to be determined, as we wish to select an rve that will reflect the properties of the 

porous medium domain at the considered point. Therefore, another condition, that sets an 

upper limit to the size of the rve, is required. The selection of the size of the rve is also 

constrained by the requirement that 

where L is a characteristic length of the heterogeneous medium domain, such as the size 

of the structure being analyzed. 

/ >> d. (3.2) 

l « L . (3.3) 
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* 

DESCRIPTION OF FEW HOMOGENIZATION TECHNIQUES 

MACROSCALE MICROSCALE 
CONTINUUM 

Figure.3.2. Macroscale vs microscale representation of an rve 

For each type of medium, knowledge of the most important microscopic mechanisms is 

necessary for the modeling of materials with microdefects, because a number of 

characteristic properties of such materials cannot be explained at any scale other than the 

scale of the microstructure. But at the same time, from an engineering point of view, 

precise knowledge of the continuum fields such as displacement, stress, dissipation, 

discontinuities, ...etc., which in the case of a finite element analysis for instance, would 

require a refined mesh around each type of discontinuity, and for the whole solid, is not 

of significant interest. Therefore, the scale at which we are interested is located at an 

intermediate level between the scale of the local mechanisms and the one of global 

mechanisms of the considered structure. As we saw earlier, the macroscopic scale is 

defined as the scale of the material point of the solid and is usually represented by the 
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rve. This volume is denoted by Q, X is the macroscopic space variable, and x is the 

microscopic space variable. The microscopic scale on the other hand is the local scale 

within the rve Q. It is at this level that the displacement, stress, and strain fields are 

defined. The problem of homogenization is related to the question of whether it is 

possible to model the global behavior of a heterogeneous material, without explicitly 

using what happens at the microscopic level, and i f that is possible how could it be done?. 

Hence we should first of all define the macroscopic strains E(X) and stresses E(X) as 

functions of the local fields u(x), e(x), tr(x); and then determine the macroscopic 

constitutive law relating S(X) to E(X). 

v.\V> £2 S - \ \ \ \ \ \ \ \ \ \ S \ \ \ \ \ V 
>.\V> \ \ \ \ \ \ \ \ \ \ \ V \ V \ . N S V 

\\S\S\S\\\\V \ . \ '1\\VS\\\N\\\\\V 

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ V . .. .wwwwv 

dn 

Figure 3.3. Example of an rve containing a cavity-type inclusion 

If the rve contains void type defects such as cavities and microcracks we denote by Q the 

geometric volume occupied by matter, T the volume of cavities and by dD. the boundary 

of Q . Therefore 

a = a - r 

dh = dQvjdr ; df2ndr = 0 
(3.4) 

The strain tensor in small perturbations is defined as a function of the d i sp lacement« by: 

£u =-(diuj+djui) (3.5) 
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The macroscopic strain and stress tensors E and 27 which are intuitively related to 

averages of the local fields e, u and o~ permit the computation of the macroscopic strain 

energy of the solid S. Since our objective is to hide the microstructure of Q when 

describing the behavior of S, it is natural to impose the following condition on the fields 

E and Z : 

where v is the outer normal to dCl and n is the outer normal to dT. The preceding 

equation consists of 2 parts; the average strain energy in the element Q, (I), and the work 

of the forces applied on the internal boundary of Q, (II). In the case where Q does not 

contain any cavity-type defect (voids, cracks ...etc.), the above mentioned strain energy 

reduces to the average of the strain energy in the rve. On the other hand when such 

defects exist, the strain energy has an extra term due to the work of the forces applied on 

the boundary of such defects (contact between the lips of a crack, pressure of a fluid on 

the surface of cavities, etc.). Taking this work in the strain energy expression shows that 

during the process of homogenization these forces wi l l be considered as internal forces in 

the equivalent material. 

To establish homogenized constitutive laws, different approaches have been used since 

Poisson [138]. Among the most popular of these techniques we have, the variational 

methods, theory of effective moduli, periodic homogenization, and the self consistent 

method. In the elastic case, Kroner [98] has proposed a statistical approach that gives a 

clear distinction between the periodic homogenization method and the self consistent 

method by clarifying the relative assumptions from which they are derived; that is perfect 

order for periodic homogenization which utilizes a periodic microstructure, and complete 

disorder for the self consistent method. 

(3.6) 

(I) (II) 
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In general, it is not possible to determine the fields 2 and E satisfying equation (3.6) 

without an extra assumption. The assumption is either related to the microstructure of the 

material the solid is made of, or to the form of the local fields <y,e oru. The various 

homogenization techniques are different from each other because of the different 

assumptions they adopt and the definition of the macroscopic fields that follow. 

V A R I A T I O N A L M E T H O D S 

Initially introduced by Hashin and Shtrikman [71], H i l l [75], this method was 

reconsidered by Bergman and Kantor [31] and in a pure mathematical form by Tartar 

[163], Francfort and Murat [60], Golden and Papanicolaou [67], and others. In the case of 

linear problems, these methods yield bounds on the coefficients of the equivalent 

homogeneous material. 

The utilization of this method is possible without any prior knowledge of the geometry of 

the heterogeneities, but the obtained results get better as a better knowledge of the flaws 

geometry is taken into account. 

This approach is based on the use of energy theorems along with very suitable choices of 

the stress and strain fields which have to be statically and kinematically admissible. 

M E T H O D O F E F F E C T I V E M O D U L I 

The key assumption in this method (approach) is related to the distribution on the 

boundary dQ. of either of the following fields: 

. the stress vector (stress approach) or, 

. the displacement field (displacement approach). 

To fix ideas, we consider the case of a homogeneous, linearly elastic material endowed 

with cavities and cracks. As long as the cavities do not propagate and the cracks do not 

close back, the behavior of the altered material remains elastic. 

The proposed approach is based on the determination of the compliance or rigidity 

tensors of the equivalent material. The equivalence between the two materials is then 

42 



Chapter3 \ 0 _ \\\ s = > 
Homogenization of Heterogeneous Media 

defined by equating their elastic potentials. The stress approach allows the determination 

of the effective compliance tensor S, whereas the displacement approach allows the 

determination of the rigidity tensor C. 

Z = C:E 
(3.7) 

E = S:I 

Stress Approach 

Hypotheses 

- The stress vector is constant on any face ofd 

- Stresses on opposite sides are of opposite sign 

Equilibrium of the rve Q shows the existence of a symmetric tensor S(X), satisfying the 

following equation on dQ: 

Mxedfi; cr(x)v = Z(X).v (3.8) 

E(X)\s the macroscopic stress tensor associated with the microscopic stress tensor 

CT(JC) . It could be shown that Z(X) is the average (or) of <J(X) over Q, given by: 

Z{X) = (<r) 
(3.9) 

=\kioa(x)dv 

The macroscopic strain E(X) associated with 

(3.6) which represents the strain energy. And 

the field u(x) is then deduced from equation 

the final result could be put under the form: 

where (u ® v ) s = — {uivj + u.vVs) (3.10) 
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After imposing the macrostress 27 , the macrostrain E is expressed as a function of 27. 

The equations of the problem are as follow: 

in Q 

on d£2 

on dr 

s : local compliance tensor 

div(cr) = 0 

a.v = 27.v 

an =0 

e(u) -s:a 

(3.11) 

Due to its linearity the problem can be reduced to the resolution of 6 elementary 

problems. The final result is typically a compliance tensor that looks l ike the following 

expression: 

SM=T-x\-Smma<rlt<Tildv (3.12) 
i 2 *" PI 

where cT*'n is the stress localization tensor. For other stress distributions on the boundary, 

different compliance tensors are obtained. 

Displacement approach 

Basic hypothesis 

There exists a symmetric tensor E(X) such that the displacement field satisfies the 

following equation on the faces ofdQ. 

Vxedn, ui{x) = Eij(X).xj (3.13) 

The relationship between the macroscopic strain E(X) and the local displacement u(x) 

is the same as before and the macroscopic stress E(X) is related to the microscopic 

stress a(x) by: 

Z..= aik.Xrvkds 

(3.14) 
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After imposing a uniform macroscopic strain E by prescribing a linearly varying 

displacement field on 8Q, the rigidity tensor is deduced by expressing S as a function of 

E. The equations of the problem are summarized by: 

div(cr) = 0 in Q 

u,. (x) = Eu .Xj on dO 

cr.n =0 on dr 

cr = c : e(u) c : local rigidity tensor 

(3.15) 

The procedures for determining C are basically similar to those used to determine 5, and 

the final results are analogous, like we can see on the following expression: 

' p i • c m „ „ / ™ (v )sn„ (v'J) dv (3.16) 

A fundamental limitation of this method is the fact that for the same geometry of pores, 

the tensors 5 and C are not inverse of each other. 

S E L F - C O N S I S T E N T M E T H O D 

The preceding approximation is no longer realistic when the inclusion's concentration 

(porosity in this case) becomes important in which case the interaction between the 

defects is important. In order to include this interaction in the compliance tensor S for an 

arbitrary concentration of the defects the self-consistent method can be used. This 

technique takes into account in some average sense the interactions among all the defects 

present in the rve. 

Just like in the case of the method of effective moduli, we distinguish a stress approach 

and a displacement approach, and equations 3.8-3.10 for the stress approach and 3.13-

3.14 for the displacement approach respectively are still valid. 

This method was originally developed for polycrystalline metals. The microstructure of 

these materials consists of grains having different shapes, crystalline orientation and 
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mechanical characteristics. Hence it is impossible to isolate each and every grain and 

consider one of the phases forming the grain as a matrix containing all the other phases. 

To get back to the original matrix-inclusion problem, we adopt as a matrix the equivalent 

homogenized medium we are looking for. Ignoring local effects, we can imagine that 

each grain "sees" the whole material to which it belongs as a homogeneous material (the 

equivalent material we are trying to determine). 

The other assumptions on which the method is based are basically the same as for the 

method of effective moduli. Furthermore we assume that the inclusions can be grouped 

into n "phases", where each phase i is characterized by its compliance tensors,.. 

Let | T i | = u l r " ! be the total volume of inclusions in the phase i, and be the 

average of the quant i ty/ in the phase i: 

l<,i<.n 

(/> = j4Z \fds (3-17) 

If one of the phases contains cavities or cracks the foregoing equations are still valid with 

the following definitions of averages: 

(3.18) 

Let n denote the index of the phase consisting of voids (if it exists). Under the assumption 

that each phase is homogeneous, (e) is expressed as a function of (a) by the following 
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relation (e) =s,.(o") (for n^i). This way the macroscopic strain E could be expressed 

by the following relations: 

\E 

E *,+ £ ( ' , • " * / ) A'(S) + A"(S) :2-
(3.19) 

E 

s1+^i-sI)A'(S) + An(S) S 

Consequently, the determination of S reduces to the determination of A 1 . In the classical 

self-consistent method, these tensors are computed for inclusions with simple geometries 

such as ellipsoids under the assumption of an infinite medium. This way we have to solve 

as many matrix-inclusion problems as the number of inclusions in the rve. The main 

difficulty of this method resides in the fact that the compliance tensor of the matrix used 

in the elementary calculations is the one we are trying to determine. This leads to the 

following implicit equation: 

Contrary to the method of effective moduli, the self-consistent method overestimates the 

interactions between the heterogeneities. This could lead to unexpected results. To 

overcome this difficulty and take into account local effects in a realistic way, other 

techniques have been introduced to the self-consistent technique. One of these techniques 

is the so-called multiple scale homogenization [170]. The basic idea of this technique is 

that an inclusion of a given size d sees in a homogenized form only the medium made of 

the matrix and the inclusions of sizes smaller than d, the larger inclusions being ignored. 

The self-consistent model has been extended by H i l l [77] to nonlinear behaviors. This 

extension has been applied to elastic-plastic and viscoplastic polycristals, and the results 

were found to be in agreement with the Voight-type upper bound. A more restrictive 

upper bound has been established recently by Ponte Castaneda [139]. 

(3.20) 
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PERIODIC HOMOGENIZATION 

This method is based on the assumption that the microdefects or inclusions are 

distributed in a periodic fashion throughout the solid under consideration. Hence, the 

microscopic stress and strain fields are periodic. It has been shown that in this case the 

microscopic strain field can be written as 

ui(x) = Eij(X)xj+vi(x) ( 3 2 1 ) 

Eij: a symmetric second order tensor 

Vj: a periodic function 

In the case where Q, does not contain any cavity-type defect or crack, the tensor E(X) is 

interpreted as the average strain of the ce\\E(X) = {e(u)). Hence, E(X) is the 

macroscopic strain we are looking for. In the case of porous or cracked media, the 

relation between E(X) and e(u) is given by: 

(3.22) 

The average stress tensor obtained by the eventual prolongation of the stress field a by 0 

over the cavities, is given by the following expression. 

(3.23) 

The tensor (a) satisfies the following equation relative to the strain energy: 

(Hi l l ' s lemma) (3.24) 
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Consequently the macroscopic variables are defined in a consistent way with Equation 

(3.6) by: 

(3.25) 

The assumption of periodicity provides a natural way for defining the macroscopic 

mechanical properties and allows one to reduce the problem of studying the whole solid 

to the study Of the unit cell. Alike the case of effective moduli there is a displacement and 

a stress approach: 

Displacement Approach 

Starting from equation (3.21): 

ui(x) = Eij(X)xj+vi(x) 

we impose Ey which represents the linear part of the displacement, the unknown being 

the periodic displacement field, v(., solution of the following problem: 

div(a) =0 in Q 

an-0 on dr 
a = c:e(Ex + v) (3.26) 
tr.v antiperiodic 

v periodic 

The field r . n is said to be antiperiodic if it takes opposite values on opposite sides of 

the cell. This condition is due to the continuity of tr.v through dQ. 

In the case of elastic inclusions or cavities, the existence of the rigidity tensor has been 

proven when the size of the period tends to zero. In the presence of cracks, however, the 

convergence problem is still open (Sanchez-Palencia [145]). Nevertheless, we can 
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compute the equivalent rigidity tensor using averages of the elementary solutions on the 

unit cell analogous to the ones used in the method of effective moduli. 

Stress Approach 

The average stress is imposed on the cell. W e obtain the macroscopic compliance tensor 

using a procedure similar to the one used in the displacement approach. It can be shown 

that the two tensors C and S obtained through these two approaches are inverse of each 

other. The major difference between the method of effective moduli and the periodic 

homogenization technique is related (due) to the difference in the boundary conditions 

imposed to the unit cell. 

IV- COMPARATIVE EXAMPLE: Case of an elastic porous medium 

The differences among the three methods presented earlier are illustrated here through the 

determination of effective moduli in the case of a porous medium. Since this chapter is 

restricted to techniques providing closed form solutions to the problem, the assumption of 

an infinite medium is practically unavoidable. For more realistic geometries, numerical 

methods are usually invoked (see chapter 8). 

We consider the case of a linearly elastic, isotropic two dimensional porous medium 

where pores are represented by circular holes (see Figure 3.4). 

1- Method of effective moduli: 

As mentioned earlier, use of the infinite medium approximation requires the replacement 

of the elementary solutions ukl in 

ijkl ~ Sijkl 
2\n\ *r ' 1 1 ' 

(3.27) 
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Figure 3.4. Schematic representation of the porous medium 
and choice of an rve 

by the corresponding solutions in the infinite medium. The symmetry of the problem 

being exactly that of the boundary dr, the equivalent material is necessarily isotropic. 

The compliance tensor S needs only two coefficients to be defined; namely, the effective 

Young Modulus E and effective Poisson ratio v. These ones are related to 5 as follows 

Sun -' 

e -
°//22 — 

(3.28) 
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X2 A 

27 11 

Figure 3.5. Study of the rve associated to the porous medium 
subjected to Z" loading 

The isotropy of S allows the determination of its other non zero components in the 

following way 

\S2222 — SJJJJ 

1^1212 ~ ^1111 $1122 ~ 
1 + v (3.29) 

Thus, the computation of 5 requires the knowledge of only the elementary solution u" 

This latter one is provided on dr by Muskhelishvili [126]: 

R 
u" =—(3Cos20-Sin20) 

2 R 
\u'J = Sin20 

(3.30) 
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and hence, the expressions for S1U1 and SU22 are given by 

(3.31) 

Introduction of the porosity of the material, defined as the ratio of the cavity area to the 

surface of the rve 

leads to 

(3.32) 

l + 3d (3.33) 
v = v0+d(l-3v0) 

It is interesting to notice that, in the case where the Poisson coefficient of the matrix is 

equal to 1/3, the effective Poisson coefficient is also equal to 1/3 regardless of the 

porosity of the material. This result, also mentioned by Vavakin [170], for a three 

dimensional medium, but for v0 = v = 0.2. 

It is equally possible to characterize the equivalent medium by its coefficient of 

compressibility K and its shear modulus ju which are defined as functions of E and v by 

K = 
2(1-v) 

E 

2(1+ v) 

(3.34) 
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Hence, the expressions for the considered porous medium 

1 
K = Kn 

(l + 3d) 
l - v n 

\M = Mo
il* 3d) 

l - v n 

(3.35) 

2- Self-Consistent Method 

S is computed using a similar equation as the one used in the previous section with the 

only difference residing in the fact that the two dimensional medium characterized by 

(E0,v0) is replaced here by the unknown medium we are trying to determine (E, v). The 

implicit equations in the case of the considered porous medium are given by 

J__J_ 3d_ 
lE~ En

 + 

V _ V 

~E~~E~n 

d_ 

E 

(3.36) 

leading to 

E = E0(l-3d) 

v = v0 + d(l-3v0) 
(3.37) 

According to this method, 

- The effective Young modulus vanishes for a porosity d -1/3, which corresponds to 

pore radius equal to 0.303 for an rve of a unit width. 

- For v0=l/3, the effective coefficient v does not vary with d and remains constant 

and equal to its original value v0. 
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3- Periodic Homogenization 

We make use in this section of a numerical analysis from the literature [51a]. As 

can be seen on Figure 3.6, a regular hexagone has been chosen as a unit cell or rve 

in order to ensure the isotropy of the effective medium. 

Figure 3.6. Unit Cell for the isotropic medium 

Figure 3.7, presents the different predictions of the ratio k/k0 for the coefficient of 

compressibility of the porous material to the one of the matrix. A significant 

difference is noticed in the predictions as soon as the porosity becomes greater than 

0.2 which suggests that these predictions, made for the particular case of circular 

pores, are very sensitive the fundamental assumptions of each method. 
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Figure 3.7. Comparative chart for the predictions of three 
homogenization techniques for a porous medium 
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CONTINUUM DAMAGE MECHANICS 

INTRODUCTION 
Many engineering materials, such as concrete, wood and composites exhibit a nonlinear 

behavior, called damage, and which could be described in terms of microcrack initiation, 

growth and coalescence leading to the creation of macrocracks. This latter one could be 

viewed as a sudden localization of damage, the propagation of which would ultimately 

lead to the ruin of the structure. Even though the idea of reinforcing relatively brittle 

building materials with fibers has been known and practiced since the ancient times [30], 

modeling the mechanical behavior of such materials is by no means a trivial task. This is 

because the nonlinear behavior of these materials depends on the type, size, distribution 

and orientation of microdefects, fibers and other inclusions within the material. 

To model this behavior in a continuum sense, two different approaches are usually 

available. The phenomenological approach [101, 102, 103], where relations between 

global fields are based on the relationship between macroscopic quantities obtained from 

experiments, and the micromechanics-based approach [33,72, 76, 67] where the 

mechanical behavior of the material is considered to be a consequence of the behavior of 

its constituents and their interactions. 

n 

Figure 4.1. A damaged element 
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In the phenomenological continuum damage mechanics PCDM, a set of continuous field 

variables that represent the damage of the material,'called damage parameters or internal 

variables, is introduced without consideration of microscopic phenomena. The 

mechanical properties of the material at a certain state of damage are prescribed by the 

damage parameters. The evolution law that determines the value of the damage 

parameters for a given macroscopic stress or strain is usually deduced from the general 

framework of the thermodynamic of irreversible processes, and its parameters identified 

by simple fitting of experimental data. 

Micromechanics-based continuum damage mechanics MBCDM, offers a natural way of 

studying the mechanical behavior of heterogeneous materials by considering the global 

behavior as a consequence of the local one at the scale of the heterogeneities. 

The MBCDM models thus make an explicit use of local mechanisms and need good 

knowledge of them to get good predictions. However, this is not always apparent since 

simplifying assumptions are usually made in order to make the problem manageable or 

just because the local mechanisms are not well understood. PCDM models, on the other 

hand, identify their parameters directly from the experiments where the local mechanisms 

are implicitly accounted for through their final effect on the experimental data. 

Due to their low tensile strength and strain capacities, fibers are added to cementitious 

matrices to improve both strength and "ductility" of the material. However, this 

improvement makes the overall response highly nonlinear and adequate constitutive 

modeling needs to be developed for such materials. Usefulness and potential of PCDM 

approach in modeling the complete response of CFRC beams is demonstrated in this 

chapter through comparison of numerical predictions and experimental results. 

Ultimate failure of a solid is the result of a succession of complex phenomena, 

schematically represented in Figure 4.2, that could be divided into two major stages 

creation of a macrocrack 

stable or unstable growth of the crack in the solid 
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Figure 4.2. Schematic Representation of the failure process of materials 

A macroscopic crack is a cut or discontinuity in matter, that is sufficiently large 

compared to the microscopic heterogeneities but still sufficiently small so that it can be 

contained in a representative volume element (rve) in the sense of continuum mechanics. 

Studying the propagation of cracks larger than the one introduced in this definition 

requires the consideration of modification in the stress and strain fields due to the 

important perturbations introduced by these geometric defects. This is the realm of 

fracture mechanics (see chapters 5 and 6). Predicting and analyzing the creation of 

macrocracks is based on the so-called damage theories. Damage represents the 

progressive deterioration of the material's cohesion under the action of loads leading to 

the fracture of the rve. This deterioration process is a complex phenomenon in the case of 

FRC materials and a full understanding of the mechanisms underlying it has not been 

reached yet. 

As can be seen in Figure 4.3, the pre-peak tensile behavior of FRC is characterized by the 

process of microcrack propagation in the matrix prior to the formation of a continuous 

crack system across the critical section at the peak load. The process by which load is 
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Multiple Cracking 
. HighVf 

\ Strain Softening 

Strain 

Strain Crack 
Opening 

Figure 4.3. Typical stress-strain curves for low fiber volume 
and high fiber volume FRC 

transferred from the matrix to the fibers, and the bridging effect of the fibers across the 

matrix cracks which occurs at a later stage of loading are believed to be the main 

mechanisms controlling the effectiveness of fibers in enhancing the mechanical 

properties of the brittle cementitious matrix. The pull-out action of fibers would be 

mobilized when a crack tends to widen at a critical section; this starts at peak load and 

tends to dominate the post-peak behavior. A significant amount of energy is consumed in 

the process of debonding and fiber pull-out. It is generally accepted that for FRCs with 

Vj<2%, the major contribution of the fibers is after the matrix strain localization, which 

occurs around the peak of the tensile stress strain curve. However, new processing 

techniques have helped in the manufacture of thin-sheet products with fiber volume 

fractions (Vy) as high as 15%. In this type of materials fibers not only improve the 

ductility of the material, but lead to a significant increase in the strength of the composite. 

This increase in strength termed pseudostrain hardening is associated with the appearance 

of multiple cracking in the specimen which requires a higher energy input to open the 

microcracks. Figure 4.3 provides a typical stress strain response for a high Vf with 

discontinuous fibers. The response consists of 3 regions: 

I - elastic region (up to matrix cracking) 

II - multiple cracking region (up to max. post cracking pt) 

III- Failure region (crack opening localization) 
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The complexity of the mechanisms underlying the characteristic behavior of FRC 

composites suggests that modeling the damage phenomenon, in order to predict the entire 

response of structural elements can only be a schematic and a crude approximation of the 

physical reality. 

In this section a brief review of the theory of damage mechanics before presenting the 

selected model is given. The theory of damage mechanics goes back to the end of the 

fifties, with Kachanov's work regarding the creep of metals [90]. But it took the seventies 

and the early eighties for this theory to receive a sufficiently general base to allow its 

application to other types of material [102]. 

At the beginning of the eighties, it was established that damage mechanics could model 

the strain softening of concrete in a very satisfactory way [114]. The main tool to achieve 

this goal is the thermodynamics of irreversible processes which provides the definition of 

a variable representing the matter deterioration while considering this latter one as a 

continuum. This justifies the use of the classical continuum mechanics equations. 

Moreover, the hypothesis of a dissipation potential provides the framework leading to 

damage evolution laws as a function of the loads. Hence, by considering the material as a 

system described by a set of variables and a thermodynamic potential, the constitutive 

laws are systematically deduced along with conditions on the kinematics of damage. But 

an adequate choice of the potential and the damage variable (scalar, tensor, etc.) remains 

to be made. 

The notion of hidden or internal variables, introduced by the thermodynamics of 

irreversible processes, allowed the solution of a certain number of fundamental problems 

in elasticity, elastoplasticity and elastoviscoplasticity of materials. These hidden internal 

variables representing the internal state of matter are formally introduced within the 

general framework of thermodynamics. Unfortunately, this approach cannot take into 

account the quantitative aspect of the physical phenomena, and often leads to a number of 

internal variables that are not compatible with their experimental identification 

possibilities or procedures. To overcome this inconvenience, a more pragmatic approach 
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is usually adopted. In this alternative approach, one proceeds from the concrete needs 

towards some form of abstraction according to the following scheme, 

Describe in a precise manner the phenomena governing the response of the 

material for the particular type and/or range of loading we are interested in. 

This is the case because the same material may demonstrate more than one 

constitutive law to model its behavior (static, dynamic, elastic, plastic etc.) 

- To capture the effects of these phenomena, one needs to define representative 

variables and conceive the relationships among them. Usually, this is achieved 

through a choice of a damage variable and its effects on the mechanical 

properties of the material. The logical framework for this part is provided by 

the pre-established thermodynamics concepts. 

The necessary and sufficient conditions for a complete description of the macroscopic 

thermo-mechanical process evolutions are given by 

u: displacement field 

ee: elastic strain tensor field 

e'n : inelastic strain tensor field 

cr: stress tensor field 

T: absolute temperature 

fv: field of body forces 

e\ specific internal energy 

q: heat flux 

s: specific entropy 

X: set of internal variables 

These quantities are determined for each material and/or specific case of loading through 

the conservation and balance equations of thermodynamics of continuous media together 

with the constitutive equations expressing in terms of other quantities, the following 

functions: 
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<f> = (f>(ee,T,%) Helmholtz free energy 

The principles of thermodynamics allow the elimination of a certain number of variables 

in the constitutive relations. If the scope of the analysis is limited to quasi-static cases, the 

thermomechanical couling is neglected, and the mechanical behavior of the material can 

be described without the constitutive laws of the three thermodynamic variables (heat 

flux, entropy and Helmholtz free energy).This leads to the following system of tensorial 

evolution equations 

a = Fe(ee,T,X) 

ein=Fin{£\T,X) 

X = Fh(e\T,X) 

Fe,Fin and Fh are the elastic, inelastic and hidden (internal variable) functionals 

respectively, to be specified for each material. The first equation describes the elastic 

behavior of materials and is identified with the generalized Hooke's law, whereas the 

second equation is a plasticity or viscoplasticity constitutive relation. Existence of a 

dissipation pseudo-potential associated to the normality rule provides a systematic 

scheme for determining the functional F!n. The last equation is a formal representation of 

the evolution laws of internal variables. 

The choice of internal variables is determined by the phenomena that need to be 

modeled. A hidden variable is associated with every phenomenon that cannot be 

represented by a measurable variable, such as the internal degradation of matter. The 

internal variable should not contradict the principles of thermodynamics, and have a 

sense that is compatible with the acquired knowledge regarding the mechanisms 
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governing the phenomena. Keeping only the phenomena of damage and elasticity, the 

two obvious variables are the strain tensor and a damage variable (to be defined). The 

damage and strain variables represent physically these phenomena only in some average 

sense. This is because a material point is usually identified with a characteristic volume 

element the material is made of, the so-called representative volume element (rve). For 

instance the characteristic dimension in the rve for metals is of the order of 0.1-1mm, 

whereas for concrete this length varies from 1 to 10 cm. Hence trying to give a sense to 

the strain or damage below that scale would be meaningless. 

Hypothesis of the effective stress 

The damage variable is classically defined from the hypothesis of effective stress to 

which it is easy to give a physical sense in the unidimensional case. Consider a tensile 

test where the specimen is under a stress cr. If that specimen possesses cavity-type 

microdefects such as a microcrack and/or microvoid, then only a fraction S of the 

apparent surface S is resisting the load. The stress cr is the stress acting on the effective 

section S : 

where a(M) is the distribution of stress concentration coefficients that exist at crack 

vicinities. Since the crack mechanisms and internal crack profiles and densities are not 

sufficiently understood for evaluation of a(M) and S , the following definition of damage 

has been introduced. The damage variable is the operator A which when applied to the 

usual stress cr gives the effective stress & ,cr = zl(cr). The hypothesis of the effective 

stress implies that the constitutive law of any damaged material is the same as the 

constitutive law of the plain material where the usual stress is replaced by the effective 

one in the equation. When a given load creates a damage characterized by the same loss 

of resistance in all directions, damage is called isotropic. In this particular case, the 

5 = — \a(M) a ds (2) 
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damage variable, which is usually a tensor, is reduced to a scalar and therefore the 

effective stress is related to the nominal stress by, 

a 
a = 

\-D 

This way, damage in the sense of deterioration which leads to fracture could be 

represented by a single scalar variable D such that D = 0 corresponds to the undamaged 

plain material, and D = 1 for a fully fractured volume element. 

The parameter D, introduced here as a hidden thermodynamic variable, has the physical 

sense of a section or a volume weakened due to the development of microcracks. D 

represents the phase of creation and evolution of the process of deterioration. Notice that 

the variable D is not directly related to the geometry of microcracks or microvoids; but is 

related to these quantities only through the equivalence between the behavior of the plain 

material (written in terms of the stressor) and the behavior of the damaged material 

(written in terms of the effective stress a). 

In the case of an elastic behavior, the 3D constitutive law of the material takes the 

following form 

a = H0 :se for the plain material 

cr = H(D): se for the damaged material 

with H0 = H(D = 0), H being the elastic rigidity tensor and ee is the elastic strain tensor. 

In the general case of an anisotropic damage, a scalar representation is no longer 

possible, because it involves an anisotropic evolution of the mechanical characteristics 

and therefore a tensorial representation is necessary. Among the difficulties that are 

raised when working in this direction, one can cite: the respect of compatibility with the 

isotropic model, the symmetry of the operator H(D) necessary condition for the existence 

of an elastic potential and the possibility of non radial loads in which the directions of the 
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principal stresses are not fixed anymore. In the general case of behavior modeling, this 

leads to the introduction of a fourth order damage tensor, often difficult to be 

experimentally identified [42]. 

D A M A G E M O D E L S F O R C E M E N T I T I O U S M A T E R I A L S [ 1 0 3 , 1 1 6 , 1 1 7 ] 

At constant temperature, concrete can be described by the elastic strain tensor ee, the 

permanent strains ep tensor and the damage tensor D. 

= ^\epe"\dt 

e = £e +ep where ep is the tensor of plastic strain rates. Each equilibrium state is 

characterized by a scalar thermodynamic potential py/ function of ee, E P and D where 

p is the mass density of the material. A common choice for the function ^ i s the 

quadratic form represented by the free energy. Assuming that damage affects only the 

elastic characteristics of the material, one can write 

where 

and 

CT = 

CT = 

dee 

d(p¥

p) 

ds 

py/ = py/ +pyyf 

ye=y/e(ee,D) 

yp =y/p(£p,D) 

the elastic stress tensor 

the plastic stress tensor 

Y = — — : the strain energy release rate 
3D 

The phenomena of damage and creation of permanent deformations are irreversible 

processes leading to a dissipation of the mechanical energy in the form of surface 

66 



Chapter 4 
Continuum Damage Mechanics 

creation and heat. Application of the two fundamental principles of thermodynamics 

impose that this dissipation be positive. This is usually represented by the Claussius-

Duhem inequality: 

<f> = a: e - p\j/e - py/p >0 

It is easy to distinguish in this relation between the damage dissipated energy rate if>d and 

the plasticity dissipated energy rate <fip. 

<j>d=<r:£e-py/e 

(f>p=o: ep - pyp 

A sufficient condition to satisfy the Claussius-Duhem inequality is given by 

j>d>0 

As introduction of plasticity in the models follows the classical rules [57] we wi l l focus 

our attention on the introduction of damage into the elastic constitutive laws. W e adopt 

the elastic energy as our potential energy py/e 

py/e =^H(D):ee :ee 

where H(D) is a fourth order tensor interpreted as the secant rigidity matrix. A t this 

stage we notice that the choice of py/e has been reduced to the choice of the dependence 

of the rigidity matrix on the damage variable. The effect of damage appears in H(D), 

through the evolution of mechanical properties of the material. Damage evolution is 

governed by a loading surface of the form 

f(e,H,K0)=0 
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where K0 is the initial damage threshold. A n y loading path that stays within the surface 

does not lead to any damage evolution, D=0, whereas any loading path that tends to 

leave the surface wi l l pull it with it. This latter one becomes larger and damage evolves, 

D>0. 

Damage Model with Anisotropy and Permanent Deformations 

Choosing a thermodynamic potential of the form 

pyf = ±[HD:e'}\ee+8>] 

with 

ee is the elastic strain tensor 

ep is the permanent strain tensor 

HD is the rigidity matrix of an orthotropic material 

leads to a formulation incorporating the effects of induced anisotropy. HD on damage 

according to the following formula 

H~': or = H~': [LD : a] 

where 

H0 is the initial rigidity tensor of the material 

L D is a fourth order symmetric tensor representing the damage variable 

This model divides the total response of a material into three stages: 

• Stage 1 

At this stage the material behaves in an elastic isotropic manner 
s = H„' :tr 
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• Stage 2 

Beyond a first threshold, damage appears by affecting in an anisotropic way the 

mechanical properties of the material 

e = HD

1 a 

• Stage 3 

Beyond a second threshold, permanent deformations are induced 

s = H-1:a + ep 

In the most general case, nine scalar damage variables are necessary to describe the 

model 

hi ^12 113 

hi h2 h3 

_hi hi _ 

In the axisymmetric case, however, only 4 scalar variables are needed to represent 

damage 

h h2 ^23 

^12 h hs 

hi ^23 

If 
h=h=l 

h2 = hs 
we arrive at the case of isotropic damage with / = 

(1-D) 

Experimental tests on cylinders and cubes have shown that there is a significant drop in 

the modulus of elasticity in the direction parallel to the loads along with a substantial 

increase of the Poisson ratios in the perpendicular directions. This led to the following 

evolution of characteristics: 
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-  yo 

= v _B[l-(l-v0)A](£-K0) + v0 

B(s-K0) + 1 

with A and B denoting material parameters to be calibrated from experimental tests. 

Identification of this model requires compressive and axisymmetric triaxial test data. 

Unilateral Model 

This model assumes that the material is elastic damageable and that damage is isotropic. 

Two independent scalar damage variables are used. These two variables are assumed to 

be uncoupled in order to account for the closing effects of cracks when the signs of 

stresses are changed (unilateral character). The constitutive law of the damaged material 

then takes the following form 

1-D, 
cr, + 

1~DC 

H, -i o 

where 

H, o' :crt=^r[u + v0)(<T)+-v0(Trcr)+l] 
'0 

'0 

with 
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In the Claussius-Duhem inequality we have two damage energy release rates, each of 

which is related to the corresponding scalar damage in the following way 

0d=YtDt+YcDc 

with 

dD, 

y = d(py/e) 
3DC 

A necessary condition to satisfy this equation is given by 

Dt>0 

Dc>0 

A damaged threshold is defined for each damage type in terms of damage energy release 

rate 

ft(e,H,K0) = Yt-K,(D,) 

fc(e,H,K0) = Yc-Kc(Dc) 

Evolution laws for each damage variable are given by 

DC=FC(YC) 

Thus, the behavior of the material is given by 

a = E0 (1 -Dt) s in tension 

a = E0 (1 -Dc) s in compression 

The assymetric behavior displayed by cementitious materials is automatically accounted 

for, since the damage thresholds and variables are different in compression and in 

tension, and the memories of Dt and Dc are conserved when a change of sign occurs. 
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Scalar Damage Model [114] 

Keeping only the two phenomena of damage and elasticity, one has a natural choice of 

variables consisting of the elastic strain tensor and a damage variable (to be defined). 

The damage and strain variables however physically represent these phenomena only in 

some average sense. This is because a material point is usually identified with a 

characteristic volume element the material is made of, the so-called representative 

volume element (rve). For instance, the rve for metals is of the order of 0.1-1mm 3, 

whereas for concrete rve is of the order of 1-10 c m 3 . Hence trying to give a sense to the 

strain or damage below that scale would be meaningless. 

The physical phenomena of nucleation, propagation and coalescence of cracks are 

represented in the framework of continuum mechanics by a scalar variable called 

damage. The choice of this model is mostly motivated by finding a compromise between 

the needed accuracy and the cost of calculations. 

The constitutive law for an elastic material that damages according to the scalar model is 

given by 

where Sj represents a principal strain. 

Since concrete exhibits an asymmetric behavior in tension and compression, the damage 

evolution laws in tension and compression are different, the evolution being slower in 

compression. 

<r = (l-D)H0:e with 0 < D < 1 

The damage evolution law is piloted by the equivalent strain s defined by 

with 

D,=Dt(£,A,,Bt,K0) 

Dc=Dc(s,Ac,Bc,K0) 
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where D t is the damage due to tension and D c the damage due to compression. K 0 is the 

initial damage threshold. At and Bf are parameters modeling the shape of the tensile curve 

in its nonlinear part, and finally Ac and Bc are parameters modeling the shape of the 

compression curve in its nonlinear part. At, Bf, Ac, Bc are considered to be material 

characteristics. 

The case of damage due to a multiaxial loading is defined by an intermediate value 

between D c and Dt which is a function of the two contributions via the following linear 

relation: 

D = a,Dt+occDc 

where ct t: Coefficient accounting for tensile damage 

a c : Coefficient accounting for compressive damage 

-Case of pure tension ac = 0 and (D = Dt) 

- Case of pure compression ac = 1 and a,=0 (D = DC) 

- Combination ac+a,=l 

Determination of at and ac 

<T = <7++<J_ with 

a: tensor of principal stresses 

tx+ : tensor of positive principal stresses 

<y_ : tensor of negative principal stresses 

ec=Hl.a_ 

with H"1: Tensor of mechanical characteristics of the material 

Hence 

and 
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[1 if ei >0 
with = I 

0 Otherwise 

The evolution laws of Dt and Dc are identified from the corresponding uniaxial tests. 

Direct tensile and compressive tests for two volume fractions (V^ = 2%, and Vf =3%) 

and two fiber lengths ( L f = 3 mm, and Lf = 10 mm) have been performed on pitch based 

carbon reinforced mortars. Figure 4.4 shows the ability of the model to represent in a 

very accurate way the uniaxial behavior of fiber reinforced cementitious materials. 

The threshold function is expressed by: 

f = s-K(D) 

The damage evolution is piloted by the "loading function"/as follow: 

Y'CASE if f=0 and f =0 Then 

Dt = Dt (e, At, B t , Ko); 

_ x ( l - A Q K p A, 

e E x p [ B t ( 6 - K 0 ) ] 

D c = D c(e, A c , B c , K 0 ) 

_ 1 ( l - A e ) K o A c 

8 E x p [ B c ( 8 - K 0 ) ] 

/ < 0 , or 
2nd CASE if \ . Then AD = 0 

\f = 0 and f = 0 

The random distribution of local strengths due to local defects (pores, cracks, 

microvoids, etc.) leads to a volume influence on the behavior. 
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Figure 4.4. Model's capabilities to represent the tensile 
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One way to treat the scale effect is to consider it as a consequence of the assumptions 

used to model the material and its behavior, which allows one to include this effect in the 

model by taking into account the particular properties of the material and the mechanisms 

of its rupture. The main influence of the material heterogeneities on the damage evolution 

is taken into account via a multiscale approach which consists in the simultaneous use of 

information coming from two different scales [115,116]; the scale of volume element and 

the scale of the rve. Inside a volume element, stresses and strains are computed in a 

traditional way. The equivalent strain e is evaluated by considering it as a function of 

the state of deformation in a certain neighborhood of the considered point which is its 

rve. Many previous studies [55,8a,69a] have shown the efficiency of multiscale 

approaches in the prediction of fracture behavior of materials and the convergence of 

numerical results with mesh refinement. 

Different studies have shown that use of local models in numerical applications presents 

some problems [115,125]. For instance, in the case of a large gradient of stresses, there is 

a strong dependence of the structural response upon the mesh. Damage evolution is 

influenced simultaneously by the size and orientation of the elements. The elements 

located right under the load get damaged first and usually this damage is confined to a 

narrow region, generally of the size of one element, such that a progressive refinement of 

the mesh gives results that do not agree with reality. To determine the origin of these 

problems, different studies have been conducted on the mathematical aspect as well as on 

the physical one. 

On the mathematical side, some authors [27,132] have shown the existence of a certain 

critical level of deformation beyond which the solution is not unique anymore. This 

result suggests that beyond that critical point, the finite element solution is not objective 

and depends strongly on the chosen mesh. On the other hand, from the physical point of 

view, studies on the uniaxial loading of specimens [21,22] have shown that the stability 

in the case of materials exhibiting strain softening is possible only i f the size of the 

localization zone is larger than a certain critical value. This led to different suggestions 

on the way to define that critical zone, where the main contributions are: 
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- limitation of the size of elements [24] 

- introduction of strain tensors of higher order gradients [26] 

- use of a nonlocal approach; either for the constitutive law [23] or for the damage 

evolution law [116,136]. 

The last possibility has been chosen for the adaptation of the local model, since the only 

nonlocale quantity is the damage evolution law, which does not require any special 

modification nor the introduction of supplementary boundary conditions in a finite 

element analysis. This led Mazars et al. [136] to develop the following multiscale 

approach. 

In order to stay in the continuum mechanics framework, the considered damage 

evolution is nonlocal. Therefore the evolution of the local state of damage is a function 

of the materials state in a certain neighborhood. The retained approach consists of 

evaluating the average of the piloting damage variable s a v on a certain volume V called 

representative volume of damage. In the three dimensional case this volume is 

represented by a sphere of radius Lp, where LQ is the so-called characteristic length 

which is supposed to be a material property [20,21]. 

This approach is termed multiscale because it makes use of information coming from 

different scales; on the one hand the scale of the representative volume element where 

damage is defined relative to the material heterogeneities and crack interaction and, on 

the other hand, the scale of the elementary volume element (in the sense of continuum 

mechanics) where stresses and strains are evaluated in a traditional way. Therefore, 

instead of computing the traditional local equivalent strain, we compute the averaged 

quantity defined by 
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where g(x-s) is the weight function representing the intensity of interaction between the 

considered point with coordinates x and its neighboring points having coordinates s 

contained in the representative volume element surrounding the point x. Results from 

micromechanical studies [20,32,136] led to the following relations: 

g(x — s) - - Exp 

g(x-s) = 0 

APPLICATION OF PCDM TO FRC MATERIALS 

The one parameter damage model described earlier, has been implemented in a finite 

element code to predict the uniaxial and biaxial bending behavior of C F R C materials. 

1- BEAM BENDING 

The model has been incorporated into the constitutive law of a 4-noded 2D elasticity 

isoparametric element and used to predict the bending behavior of pitch-based carbon 

fiber reinforced cementitious mortars, see Figure 4.5. The characteristics of the fibers 

used in this study are given in Table 4.1. 

Carbon Fiber 
Fiber Type 

Diameter 

(pm) 
Specific Gravity 

Tensile Strength 

(MPa) 

E 

(GPa) Carbon Fiber 

Pitch-based 18 1.7 590 

Mortar W/C S/C SF/C 

Lf = 3 mm 0.35 0.5 0.2 

Lf = 10 mm 0.35 1 0.15 

Table 4.1. Mix proportions and fiber characteristics 

r2(x-sj^ 

V L D J 
if \x-s\< LD 

if \x-s\>LD 
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300 mm 

Figure 4.5. Experimental setting of the three point bending test 

Two fiber lengths, Lf =3 mm and Lf =10 mm have been considered. For each fiber 

length, two volume fractions, Vf = 2% and Vf = 3% have been incorporated into the 

cementitious composite. 

A summary of the comparison between the model predictions and the experimental 

results is given in Table 4.2. As can be seen in Figures 4.6 and 4.7 and on Table 4.2, the 

model predictions of the bending response of C F R C beams are fairly close to the 

experimental data. 

One important shortcoming of this continuum model that needs to be mentioned is 

related to the failure pattern of the specimens. A s shown in Figure 4.8, the model predicts 

a diffused damage within the material up to failure of the specimen, whereas 

experimental observations, show that failure is usually a result of the creation and growth 

of a macrocrack. Thus, P C D M can give a good representation of the physical reality only 

up to peak load, range where microcrack nucleation takes place in a continuum with no 

significant growth is the primary deterioration process. After peak load, the response of 

the specimen or structural member is mainly controlled by the opening and growth of a 

macrocrack due to propagation and coalescence of microcracks and the phenomenon of 

localization is said to occur. A t this stage of loading, use of stress-strain functionals to 

describe the behavior of a quasi-brittle material is physically inadequate since the 
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observed deformation is rather due to the opening of a crack than to a deformation in a 

continuum sense. Consequently, PCDM approaches do not capture the physics of the 

deterioration process after localization and use of existing nonlinear fracture mechanics 

theories should be more appropriate for a description of the response of the material at 

this stage. Nonetheless, CDM can still give a fairly accurate prediction of the overall 

behavior (load vs displacement) of structures. Finally, developed within the general 

framework of thermodynamics of irreversible processes, PCDM offers a great potential 

for extending its application to include the effects of durability issues on the long term 

behavior of cementitious composites. Such an extension should facilitate the 

development and implementation of an integrated durability-structural design procedure 

[144] 

Lf = 3 mm 
Peak Load 

(KN) 

Peak 

Displacement 

(mm) 

Area under 

curve 

(J) 

Experiment 
V, = 2% 362.37 0.515 293.58 

Experiment 
V , = 3 % 404.12 0.401 309.25 

Model 
Vf = 2% 366.91 0.482 278.64 

Model 
Vf=3% 414.17 0.363 294.55 

Lj = 10 mm 
Peak Load 

(KN) 

Peak 

Displacement 

(mm) 

Area under 

curve 

(J) 

Experiment 
Vf = 2% 363.60 0.601 227.29 

Experiment 
V , = 3 % 421.78 0.890 579.88 

Model 
Vf = 2% 

f 

367.03 0.483 220.68 
Model 

Vf = 3% 413.90 0.740 545.36 

Table 4.2. Comparison between model predictions and experimental results 
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CONCLUDING REMARKS 

• A one scalar damage variable continuum model has been implemented into a 4-noded 

2D elasticity isoparametric finite element and used to predict the complete response 

of 4 specimens of CFRC beams up to failure 

• In spite of its relative simplicity (one scalar damage variable), the model is still 

capable of predicting most of the characteristic behavior of CFRC beams 

• One major shortcoming of the model resides in the incompatibility of a stress strain 

constitutive law with the physical reality after peak load where the response of the 

specimen becomes controlled by the opening of a major crack rather than by a 

deformation of matter in a continuum sense 

Damage Scale 

• 0<D<0.3 
• 0.3<D<0.5 
EJ 0.5 < D < 0.7 
El 0.7 S D< 1 

Numerical 

Figure 4.8. Typical damage distribution as predicted by the model 

and experimental failure patterns 
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• A better way of modeling the response of C F R C structures could be achieved by 

combining C D M and nonlinear fracture mechanics concepts ( N L F M ) through the 

introduction of an equivalence between a diffused damage and a localized crack so 

that continuity of the response is guaranteed. This way, C D M could be used from the 

unloaded stage up to peak load, stage at which damage is converted into a localized 

crack, and a suitable N L F M theory can be used from then on up to failure 

PLATE BENDING 

In this section we recall briefly the Reisner-Mindlin theory of plates along with the way 

of introducing damage into a finite element for thick plates called Q4y. Use in a strict 

sense of the variational forms that have been developed in the literature for the theory of 

plates with transverse shear and having a reduced number of nodes and nodal variables 

presents many difficulties. This led to the formulation of some very useful elements (no 

shear locking and no parasite modes). But this is possible only at the price of a loss of 

rigor in the application of the variational forms. Q 4 ; K [ 1 8 ] belongs to this category of 

elements. 

First, we choose a reference set of coordinates such that the xy plane coincides with the 

midsurface, the z axis being transverse. The selected theory is based upon the following 

assumptions. 

- the normal stresses are negligible » 0 with respect to the other stresses; 

- the normal strains are negligible su « 0 

- plane sections remain plane after deformation, without necessarily conserving a right 

angle. 

- the induced stresses in the midsurface by flexural strains are neglected. If the 

transverse displacements are of the order of the thickness, this approximation 

corresponds to a first order approximation 
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This latter assumption does not present any particular difficulty. The first order theory 

we chose to model the plate uses the following 5 independent variables 

- u and v: membrane displacements (in the xy plane) 

- w : displacement along the z axis 

- Bx: rotation of the normal to the mid-surface in the plane xz 

- By: rotation of the normal to the mid-surface in the plane yz 

The displacement throughout the plate is given by 

u(x, y,z) u(x, y) 
< v(x,y,z) > =. v(x, y) ' + Z-Py(x,y)-
w(x,y,z) w(x, y) 0 

Application of the formula for small perturbations, s.. = -̂ -(w, . +uji), allows one to 

define the state of strains as a function of the 3 variables w, Bx and By by the following 

kinematic relations 

w -
with 

2s 
{eh 

u 
v, 

U,y+V.x 

ftx,x 

where {%} represents the curvatures, z {^Jthe flexural strains, {e}the membrane strains, 

and {/} the shear strains. 
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Since our element has a new constitutive law, the rest being basically the same as the 

element described in reference [18], we wi l l focus our presentation on the issues related 

to the implementation of damage into the original law. 

The stress-strain relationship could be written in a matrix form as follows 

where {o"0}, {r 0} are the initial stresses. 

For an isotropic material we have 

1 v 0 

v 1 0 

0 0 l^-
2 

1 0 

0 1 

The generalized stresses are related to the generalized strains by 

{M}=[Hmf]{e}+[HF]{X}+{M0} 

{T} = [Hc]{y}+{T0}{z} 

where {N}, {M}, {r} represent the normal force, bending moment and shear force 

receptively. [Hm], [// /] , and [# m / ] are 3x3 symmetric matrices and represent the 

elastic characteristics of membrane, flexion and membrane-flexion coupling. 

Carbon fiber reinforced cementitious composites are considered to be isotropic materials, 

since the fibers are randomly distributed in the bulk of the matrix. Moreover that material 

was used in plates that are symmetric with respect to the mid-surface. This allows one to 

take \Hmf ] = 0, since membrane and flexural characteristics are decoupled. 

{H} = 1-v2 

2(1 + v) 
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The stiffness matrix [K] is given by 

[*]=W+fcl 
where 

+t 

[ i ^ ] and [Z?c] are matrices relating the curvatures and the shear strains, respectively, to 

the nodal variables. Integration in the xy plane is performed using a 2*2 Gauss scheme. If 

no damage has occurred yet, [H/] and [HC] are evaluated as in the elastic case: 

h3 En 

12 (1-v2) 

1 V 0 

V 1 0 

0 0 
1-v 

0 0 
2 

12 (7 + v) 

1 0 

0 1 

Introduction of the scalar damage variable is a particularly easy task, since the only 

elastic characteristic affected by damage is Young's modulus. 

E = E0(1-D) 

Consequently \H F\ and [HC] are given by: 
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12(l-v2) 

1 v 0 

v 1 0 

0 o !=!L 

+1 

\z2(l-D)dz 

{Hc} = - 5 E ° 
12{l + v) 

1 0 

0 1 
\(1-D)dz 

The parameter D depends on the considered point and the level of loading since it is 

directly related to the state of deformation. Since damage distribution is not known, we 

used a simple numerical integration scheme through the depth of the plate at each Gauss 

point. The depth of the plate was divided into a number of equal intervals, then damage 

is computed at the center of each interval and assumed to be constant over that interval 

Figure 4.9 shows a flow chart that summarizes the different steps of the adopted 

numerical scheme. 

If first iteration and first step (D=0), adopt 
E = En 

• Compute the global stiffness matrix K[D = 6] and the left hand load vector {F}, 

• Solve for {u}; and get the principal strains e{. This allows one to compute the 

average equivalent strain eav and the damage variable i f the initial threshold is 

exceeded. If this is the case compute the new global stiffness matrix using the new 

value of D 

• Compute the residual 

{R}=[K]{AU}-{AF} 

• Test i f there is convergence with the prescribed condition 

where e p is the prescribed precision, and ||/?|| is the norm of the residual vector {R} 

• If convergence Then 

- add a load increment 

- go to the next step (j=j+l on the flow chart) 
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RESULTS AND DISCUSION 
Results of few predictions of the model for plate bending are compared to the 

experimental results. Use of P C D M is motivated by the fact that prior to peak load, the 

deterioration of the material is mainly due to the creation, propagation and coalescence 

of microcracks. After the peak load there is a creation of a macrocrack due to the 

coalescence of propagating microcracks which would ultimately lead to the failure of the 

specimen (or structural component). The creation of such a macrocrack could be viewed 

as a sudden localization of damage. Once that localization occurs, the behavior of the 

specimen is usually very well predicted by existing fracture mechanics theories. 

However, when interested in that part of the behavior where deterioration of the material 

is still considered distributed over a certain volume of material and governed by the local 

effects of microcracking, damage mechanics provides a more rational framework for 

predicting the behavior of specimens and predicting the areas where macrocracks wi l l 

form. That is why some authors [119] have suggested to use damage mechanics to 

predict the response of structural components up to the peak load, and the use of fracture 

mechanics from then on to the failure of the structure or specimen. Accordingly, fracture 

mechanics and damage mechanics are correlated theories. 

In the numerical implementation of the non local constitutive law, the characteristic 

length LD which is considered by some researchers [20,21] to be a material characteristic 

has to be determined. Arguments that were suggested for the use of nonlocal quantities, 

is the fact that they allow to account not only for the presence of heterogeneities 

including cavity type defects, but for their interactions as well . For concrete specimens, 

it is suggested that LD»3d , where d is the dimension of the largest aggregate in the mix 

[20]. A direct application of this value is not valid since we are dealing with carbon fiber 

reinforced cement pastes. So in this study, the process of trial and error was used to get 

an estimate of L D . The best results for our problem were obtained for LD = 5 mm. This 

suggests that for this particular case, the nonlocal aspect is mainly due to the interaction 

between microcracks rather than to the presence of large aggregates. 
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j = j + l 

NO 

INPUT DATA 
MESH, B.C'S 

...ETC. 

GLOBAL MATRIX 
K(D) = 0 

LEFT HAND VECTOR 

/ \ 
SOLVE SYSTEM 

GLOBAL STIFFNESS 
MATRIX K{DM) 

i = i + l 

NO 

Yes END 

Figure 4.9. Flow chart of the main steps followed by the finite element code 
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Circular 
support 

Figure 4.10. Schematic representation of the test setup 

Considering the symmetry in geometry, boundary conditions and loading (see Figure 

4.10), only a quarter of the plate needs to be modeled when using the local approach. 

Unfortunately, this is no longer valid when using the multiscale approach, unless we 

account for the "fictitious" integration points that are not present in the considered 

portion of the structure but which should exist i f the whole specimen is modeled. 

Therefore, instead of writing a procedure that would take into account those "fictitious" 

integration points, we decided to choose the easiest solution of considering the whole 

structure, despite the increase in the computing time. 

A s we can see in Figures 4.11 and 4.12 , despite of its relative simplicity, the scalar 

damage model allowed us to predict the strain hardening exhibited by the circular plates 

for both volume fractions of carbon fibers. 

Just as in the case of beam bending in the previous section, the model predicts a diffused 

damage around the center of the plate under the concentrated load and at lesser extent 

around the support reactions, whereas an examination of experimental failure patterns 

reveals that propagation of macrocracks is the major mechanism governing the failure of 
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the plates. A t low fiber volume fractions, failure is usually controlled by the formation 

and propagation of a single macrocrack. A t high fiber volume fractions, on the other 

hand, one would observe a lot of microcracking around the center prior to peak load and 

the formation of a system of macrocracks with a smaller total width than the width of the 

single macrocrack in the case of unreinforced matrices or with low fiber volume 

fractions. This suggests that at high volume fractions, the failure pattern gets closer to the 

damage distribution as predicted by the model. 

Lf = 6 mm 
Peak Load 

(KN) 

Peak Displacement 

(mm) 

Experiment 
Vf = 2% 0.83 0.54 

Experiment 
Vf=3% 1.39 0.80 

Model 
Vf = 2% 0.92 0.51 

Model 
Vf = 3% 1.47 0.74 

Table 4.3. Comparison between model predictions and experimental results 

C O N C L U D I N G REMARKS 

• Based on the Reisner-Mindlin theory, the four-noded thick plate element called Q4y 

has been extended to include the effect of a scalar damage variable on its constitutive 

law 

• As one would expect, the discrete failure pattern observed in experimental tests and 

the diffused damage distribution as predicted by the model are fundamentally 

different. Nonetheless, as the fiber volume fraction increases, the patterns of the two 

modes becomes closer to each other 

• The new element has been able to predict the response of C F R C plates subjected to a 

concentrated center loading up to peak load where the assumption of a diffused 

damage within the specimen is physically acceptable for both volume fractions. 
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Figure 4.12. Comparison of the model predictions to the experimental results for V 
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Nowadays, a lot of efforts have been spent in developing modeling techniques that are 

more and more sophisticated, but unfortunately, in the case of cementitious materials, 

such models are never taking into account the effect of durability issues [144] on the long 

term behavior of concrete. Due to its general thermodynamic framework, P C D M seems 

like a potential candidate for such an extension. 

• 0 < D < 0 . 3 

• 0.3 < D < 0.5 

• 0 . 5 < D < 0 . 7 

0 0.7 < D < 1 

Damage Scale 

a) Numerical 

Low V, f High V, f 

b) Experimental 

Figure 4.13 . Failure pattern as predicted by the model and 

observed experimental failure patterns 
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FRACTURE MECHANICS CONCEPTS 

I- INTRODUCTION 

The objective of design in c iv i l engineering is the determination of the geometry and 

dimensions of structural elements along with materials selection in such a way that the 

elements perform their expected operating function in a safe, efficient and economic 

manner. This is the main reason as to why the results of displacement and stress 

analyses are coupled with an appropriate failure criterion, which is nothing else but a 

postulate for predicting the event of failure itself. Traditional failure criteria (stress 

criteria) have failed to give an adequate explanation for number of structural failures 

that occur at stress levels considerably lower than the ultimate strength of the material 

and with much less than expected ductility. The quest for a rational explanation to these 

phenomena has led to the creation of fracture mechanics. 

Experiments performed by Griffith in 1921 [65] on glass fibers led to the conclusion 

that the strength of real materials is much smaller, typically by two orders of magnitude, 

than their theoretical strength. Fracture mechanics studies the load-bearing capacity of 

structures in the presence of initial defects, where a dominant crack is usually assumed 

to exist. Therefore, it is based on the assumption that all materials contain crack-like 

defects, which constitute the nuclei of failure initiation. Flaws can appear in a structure 

at least in three ways: 

1. they can exist in a material due to its composition such as debonding in composites, 

second phase particles etc. 

2. they can be introduced into a structure during construction, such as in welds, 

inadequate compaction of concrete etc. 

3. they can be created during the service life of an element, like fatigue, environment 

assisted. 

In the case of cementitious materials, microcracks are usually present even before 

loading at regions of high material porosity near the interface between the inclusion 
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(aggregate or fiber) and the mortar. They are due to shrinkage of the mortar. Cracks are 

also present in the mortar matrix. Under an applied load, both types of cracks start to 

increase and new cracks are formed. The interface cracks extend inside the mortar and 

connect with the matrix cracks. Aggregates and fibers act as crack arrestors. 

Fracture mechanics is searching for parameters which characterize the onset of a crack 

to propagate. Such parameters should be able to relate structural performance to 

laboratory test results, so that the response of a cracked structure can be predicted from 

laboratory test results. This is determined as a function of material behavior, crack size, 

structural geometry and loading conditions. Fracture toughness, determined from 

laboratory tests and considered to be a property of the material, constitutes such a 

parameter. It expresses the ability of the material to resist fracture in the presence of 

cracks. B y equating this parameter to its critical value, a relation is obtained between the 

applied load, crack and structure geometry which gives the desired information for 

structural failure predictions. Among the critical quantities proposed in the literature, 

one may mention the stress, the strain, the stress intensity factor, the crack opening 

displacement, the J-integral, and the strain energy release rate. Each criterion assumes a 

quantity that has to be related with the loss of continuity and has a critical value that 

serves as a measure of the resistance of the material to an unstable propagation of crack. 

During the process of fracture of solids, new surfaces are created in the medium in a 

thermodynamically irreversible manner. Fracture mechanics is a branch of mechanics 

dedicated to the study of problems involving crack initiation, propagation and arrest. 

The phenomenon of fracture of a solid is complicated and depends on a large number of 

factors, including the macroscopic effects, the microscopic phenomena which take place 

at the locations where the fracture nucleates or grows, and the composition of the 

material. The study of a fracture process depends on the scale level at which it is 

considered. A t one extreme is the rupture of cohesive bonds in the solid and the 

associated microscopic phenomena. For such studies quantum mechanics principles 

should be invoked. At the other extreme, the material is considered as a homogeneous 

continuum and the phenomenon of fracture is studied within the framework of 

continuum mechanics and classical thermodynamics. Among the fracture processes that 
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take place at scale levels between these two extremes we can mention, microcracking of 

concrete, grain inclusions and voids, formation of subgrain boundary precipitates, and 

slip bands, movement of dislocations. The purpose of this chapter is to present, a clear, 

straightforward and unified interpretation of the basic problems of fracture mechanics 

with particular emphasis given to fracture mechanics criteria and their application in 

cementitious materials, with or without fiber reinforcement. 

II- LINEAR ELASTIC FRACTURE MECHANICS 

In this section, L E F M concepts are reviewed. The limitations and applicability of those 

concepts to model arbitrary, quasi-static crack evolutions are discussed in the 

framework of modern L E F M . More specifically, the basic methods for determining the 

linear elastic stress field in cracked bodies, with particular emphasis on the local 

behavior around the crack tip. In 2D, the basic concepts necessary to accomplish the 

modeling are the stress intensity factors and mixed mode-mode interaction theories. The 

most important crack interaction theories for mixed mode are reviewed 

It is well known that structures fail due to a variety of causes: excessive elastic 

deformation, generalized plastic deformation, buckling and fracture. N o structure is 

perfect and some initial defects w i l l always exist. The presence of flaws or cracks may 

cause a structure to fail earlier than expected, even though the material is still in the 

elastic range. This is mainly due to stress concentrations at some particular points, like 

the presence of flaws or re-entrant corners for example. The classical formula developed 

by Inglis [84] for elliptical flaws can be used to illustrate the effect of such called stress 

raisers. 

CT = CT0{\ + 2alb) ( 5 J ) 

where cr is the stress at the tip of the elliptical hole, a0 is the far field stress, a is the 

major axis and b is the minor axis as illustrated in Figure 5.1. As can be seen, when b 

tends to zero or a » b the elliptical hole approximates a crack and the stress at the tip 

becomes singular. Cracks result in high stress elevation in the neighborhood of the 

crack tip, which should receive particular attention since it is at that point that further 
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crack growth takes place. The principal idea is that the presence of irregularities w i l l 

considerably reduce the strength of the material causing the structure to fail far below 

the expected load capacity of the structure. 

Figure 5.1. Stress distribution close to an elliptical hole in an oo plate 

Since a real material cannot sustain an infinite stress, inelastic deformation and other 

nonlinear effects in the neighborhood of the crack tip are expected to occur, except for 

the case of ideally brittle materials [85]. This zone is usually referred to as the process 

zone (Figure 5.2). There are, However, situations in which the extent of the nonlinear 

effects and the inelastic deformations are very small compared to other dimensions of 

the problem like crack length, crack ligament (distance from tip to closest boundary), 

etc., a small scale yielding condition is said to occur. This means that, despite the 

nonlinear effects, the elastic field surrounding the process zone governs the stability of 

the crack. This concept forms the basis of the usefulness of L E F M . Situations where the 

extent of inelastic deformation is pronounced necessitate the use of nonlinear theories 

and wi l l be dealt with in the next section. 
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4 
fc, , j' m 

(•) 

(b) 

Figure 5.2. Fracture process in concrete 

As we saw earlier, the first mathematical solution of a stress field in a linear infinite flat 

plate subjected to uniform tension and weakened by an elliptical opening which could 

be degenerated into a crack was provided by Inglis in 1913 [84]. However, Irwin [86] 

was the first to recognize the general applicability of the singular stress field in 1957 

and introduced the concept of the stress intensity factor that measures the "strength" of 

the singular stress field. According to Irwin, there are three independent kinematic 

movements of the upper and lower crack lips with respect to each other as shown on 

Figure 5.3 

Figure 5.3. The three basic modes of crack growth 
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Any deformation of the crack surfaces can result from a superposition of these basic 

deformation modes, which are defined as follows 

CL- Opening mode, I. The crack lips move symmetrically with respect to the planes xy and xz 

b- Sliding mode, II. The crack surfaces slide relative to each other skew-symmetrically with 

respect to the plane xz and symmetrically with respect to the plane xy 

C- Tearing mode, III. The crack lips slide relative to each other skew-symmetrically with 

respect to both planes xy and xz 

In L E F M , the effects of the process zone are usually neglected. Thus, in the 

neighborhood of the crack tip a singular stress develops and, consequently, a safety or 

stability criterion based on stresses is inappropriate. Based on the first law of 

thermodynamics, an energy criterion was originally proposed by Griffith [65]. He 

proposed that a condition for instability occurs when the elastic strain energy released 

during crack growth by a small amount is equal to the energy necessary to create the 

new crack surfaces. Thus, Griffith resolved the paradox arising from the Inglis solution 

of a sharp crack in an elastic body according to which an infinite stress occurs at the 

crack tip and, consequently, a body with a crack could sustain no load. 

For the classic, infinitely large plate containing a crack of length 2a oriented 

perpendicular to an applied uniform tensile stress field (Figure 5.3), the critical applied 

stress cr. that would cause crack propagation is given by [65,94] 

(5.2) 

where y is the surface energy per unit area and E is a function of the Young's modulus 

E, the Poisson's ratio v and the problem type: 

E'-E in plane strain 

II. 1 • / ( 5 - 3 ) E = r - in plane stress 
( l V ) 

Later, the critical potential energy release rate Gc has been introduced in order to 

incorporate not only the surface energy, but also the energy due to plastic deformations 

in the process zone [85, 94]. Equation 5.2 can be restated as: 
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<y.. 1 

G..E 

TUl 
(5.4) 

The energy based stability criterion is then given by: 

G = GC 

where the potential energy release rate G is defined more generally as: 

G = ——g 
E' 

(5.5) 

(5.6) 

where g is a correction factor due to the geometry and loading of the structure. For 

Griffith's problem (Figure 5.1), g is equal to unity. The parameter G c i s a measure of the 

material resistance to crack propagation, usually referred to as critical fracture energy. 

I -" 

Figure 5.4. Material element near a crack tip 

The typical stress distribution near a crack tip when L E F M is assumed, is given by [94] 

K 
f(&)+ Negligible terms (5.7) 

where r is the radial distance from the crack and 9 is the angle with respect to a line 

parallel to the crack. The coefficient K is the stress intensity factor. The stress 

distribution is invariant with respect to the geometry and loading of the specimen. 
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Therefore, the stress intensity factor must incorporate these effects. It can be recognized 

that the stress intensity factor fully characterizes the stress field in the vicinity of the 

crack tip. For this reason, it can be used as a crack propagation criterion. In this case, 

fracture toughness is represented as a material constant KC 

K = KC 

For the infinite plate 

\K - cro-Jm 

KC (5-9) 

(5.8) 

Comparing (5.4) and (5.8), it becomes obvious that both measures of toughness are 

related 

(5.10) 

Stress intensity factors can be derived in closed form for a variety of crack geometries, 

specimen geometries and loading. For general configurations, however, numerical 

methods must be used for their computation. 

/ / '\A° / / 

/ / / / / 
Figure 5.5. Elliptical crack at an angle to a uniform 

applied stress in an infinite medium 

Up to this stage, only the problem of a plane crack extending through the thickness of a 

flat plate was solved using the two dimensional theory of elasticity. However, many 

embedded cracks or flaws have irregular shapes and are three dimensional in nature, but 
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for the purpose of analysis, are usually idealized as planes of discontinuities bounded by 

smooth curves such as penny-shaped and elliptical embedded cracks. A great amount of 

effort has been spent on the determination of stress distribution in bodies with three 

dimensional cracks [95]. The fruit Of such studies was the expression of the local stress 

field near the crack front in a form analogous to the 2D case in terms of three stress 

intensity factors, which are independent of the local coordinates, and depend only on the 

crack geometry, the form of loading and the location of the point along the crack border. 

This result is fundamental in analyzing the fracture behavior of cracks, and provides 

uniform expressions for the local stresses under various geometrical and loading 

conditions, where only the values of stress intensity factors differ. A great variety of 

stress solutions for internal and external cracks in 3D, including the effects of material 

anisotropy and non-homogeneity, is provided by Kassir and Sih [95]. These analytical 

solutions, however, are mainly concerned with bodies of infinite extent, because of the 

mathematical difficulties that one is faced with, when considering bodies of finite 

dimensions in which case, numerical and/or experimental methods are used. 

II.l- M I X E D M O D E I N T E R A C T I O N T H E O R I E S 

In the previous sections, where crack growth was analyzed mainly within the 

framework of energy balance, it was assumed that the crack extends in a self-similar 

manner, which occurs only when the applied loads are directed normal to the crack 

plane. Unfortunately, the crack follows a curved path in general, and mixed-mode 

fracture can occur in the plane of the cracked specimen when 

a- load and crack are not symmetrically aligned 

b- in the thickness direction when ductile fracture modes are 

present such as cup and cone failure 

c- development of shear lips near the specimen surfaces 

The mixed-mode crack growth problem cannot be ignored as being academic. It is real 

and must be taken into account in any thorough structural design. Three mixed-mode 

interaction theories are described for determining crack stability and predicting direction 

of propagation in cases where crack growth direction is not known a priori. These 
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theories are based on the stress intensity factors and have shown good agreement with 

experimental results for some materials [58,81,154]. 

II.1.1- Maximum circumferential stress theory 

This theory [58] assumes that the crack propagates in the direction that maximizes the 

function cr^, The circumferential stress around the crack tip. The analytical solution of 

this problem is given by 

where 9 is the angle of propagation measured from the tangent to the crack path, and 

K,, Kn are values of stress intensity factors. The crack is assumed to be unstable when 

where KIc is the critical stress intensity factor for static loading and plane stress 

conditions. Other versions of the stress criterion based on the maximum tangential 

principal stress and the maximum tangential strain have been proposed in the literature 

[57]. The stress criteria used in mixed-mode crack growth are inadequate for the 

following reasons 

J . The location of fracture may not always be governed by only one of the six 

independent stress components. The combination may play a role, 

2. A stress quantity cannot be used to describe the fracture resistance of a material, 

3. The contradiction that occurs for the case of a moving crack, where the normal 

stress parallel to the crack is greater than the stress perpendicular to the crack in 

which case the maximum stress criterion is in direct disagreement with 

experimental observations. 

II.1.2- Maximum potential energy release rate theory 

This theory states that the crack propagates in the direction that maximizes the potential 

energy released as the crack grows. G{0) is determined from 

K, Sin 6 + Ku (3 Cos 6 -1) = 0 (5.11) 

K, Cos 2 (0/2)- - K„ Sm(o)Cos{012)>K1 Ic (5.12) 

G(G) = - l i m 
Aa->0 

7t{a + Aa)-7t(a) 

Aa 
(5.13) 
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where 7r(a) and n{a + Aa) represent the potential energy of the body prior to and after 

crack extension. The critical energy release rate at crack growth is 

G(0c) = max[G{e)] = l im - l im 
Aa->0| 

n{a + Aa)-n(a) 

Aa 
(5.14) 

The above considerations lead to the following expression 

G(0) = ^[Kf (0)^1(0)] (5.15) 

where G is the shear modulus, A: is a function of the Poisson ratio v, 

Ik = 3 - 4 v in plane stress 

3-v . , 
\K = in plane strain 

1 + v 

(5.16) 

G(0) is the energy release rate per unit length of crack front, 0 is the angle of 

propagation, and K, (0) and Ku (0) are the stress intensity factors for the tip of the 

propagation branch, in the limit as the branch vanishes, given by 

K,(0) = 
3 + Cos20, 

3 + Cos20J 

\ei2* f 3 > 
Kj COS0 + -K,, Sin0 

\<>' 2 " ( i A 

\K„ Cos0--K, Sin0 

(5.17) 

where K,, K„ are values of stress intensity factors for the tip of the main branch in the 

absence of the propagation branch. 

For the analytical computation of the crack extension angle 0, a stress analysis of the 

branched crack problem has first to be performed. A closed form solution for this 
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problem, possessing two different stress singularities, is very difficult to obtain even for 

the most simple geometry. Even i f an analytical closed form solution were to exist, the 

proofs for the existence and uniqueness of the strain energy release rate would be a very 

difficult task. The maximization of the function G(0) is performed numerically using a 

line search algorithm. A s there is not necessarily only one local maximum of G(o), it is 

important that the initial trial value be close enough to the solution to ensure 

convergence. The maximum circumferential stress theory is computationally simple and 

has proven to give adequate trial values for a sufficiently wide range of stress intensity 

factor ratios K„/K,. Propagation of the crack is likely to occur when the value of 

G(c9m a x) corresponding to the direction of maximum energy release rate 0^ reaches 

G(0^) = ^Kfc (5.18) 

II.1.3- Maximum strain energy density theory 

Introduced by Sih [155] in an attempt to circumvent many of the shortcomings that 

could not be overcome by other criteria, mainly related to the combined effect of 

specimen size, complex geometries and loadings, this theory states that crack extension 

takes place in the direction along which the strain energy density possesses a minimum 

value. The strain energy as a function of the propagation angle is computed by the 

expression 

S(0) = anKf + 2al2 K, Ku+a12Kl (5.19) 

where 

au =——7[(\ + COS0)(K-COS0)] 
16nG 

^ 2 = 7 ^ v [ 2 O w 0 - ( * - l ) ] \6nG 
(5.20) 

'22 = — r [ ( l - COS0)(K +1)+(l + Cos0){3 Cos0 -1)] 
l6nG 
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The same procedure described for the maximazation of G(#)is used for the 

minimization of S(d) , using results from the maximum circumferential stress theory to 

evaluate a first trial sufficiently close to ensure convergence. Propagation is likely to 

occur when the value of 5(f5m i n) corresponding to the direction of minimum strain 

energy density 0^ reaches 

S(^nh^K?c (5.21) 

III- NONLINEAR FRACTURE MECHANICS 

When a cracked concrete structure is subjected to loading, the applied load results in an 

energy release rate Gq at the tip of the effective quasi-brittle crack that could be split up 

nto two parts: 

the energy rate consumed during material fracturing in creating two surfaces, GIc and 

i- the energy rate to overcome the cohesive pressure o~(vv) in separating the surfaces, G C T . 

Gq=GIc+G<7 (5.22) 

According to its definition, the value of Ga can be computed as follows 

Ga = — t f cr(w) dx dw (5.23) 
Aa * * 

where cr(w) is the normal cohesive pressure and wc is the crack separation 

corresponding to cr(vv) = 0 . In the case where the crack opening profile (shape) does not 

depend significantly on the crack length, the above equation becomes 

G„ = %'a(w)dw (5.24) 

Eq. (5.22) is a general energy, balance condition indicating that for quasi-brittle 

fracturing, the energy release rate due to the applied load Gq is balanced by two fracture 

energy dissipation mechanisms. The Griffith-Irwin energy dissipation mechanism, 
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represented by the fracture energy release rate Glc and the Dugdale-Barenblatt energy 

dissipation mechanism represented by the material traction term Ga. {Kobayashi et 

al.[96] , Jenq and Shah [87], Cook et al. [47], Cox and Marshall [49]} have proposed 

fracture models including the two energy dissipation mechanisms. Another alternative 

to this approach, is to use only a single fraction energy dissipation mechanism, either 

the Griffith-Irwin mechanism by assuming Glc - 0 , leading to the so-called fictitious 

crack models, or the Dugdale-Barenblatt mechanism by assuming CT(W )=0 , leading to 

effective-elastic crack models or equivalent-elastic crack models. 

III.l- FICTITIOUS C R A C K MODELING 

The fictitious crack approach assumes that the energy needed to create new surfaces is 

negligible compared to that required to open them and that the energy dissipation during 

crack propagation can be completely characterized by the cohesive stress-COD 

relationship cr(vv). Hence 

The fictitious crack is assumed to initiate and propagate when the principle tensile stress 

reaches the tensile strength of the material. Hillerborg et al. [78] proposed a fictitious 

crack model for fracture of concrete. A s can be seen on Figure 5.6, it is assumed that 

strain localization appears only after the maximum load is reached, whereas, the post-

peak fracture behavior or softening can be characterized by a stress-COD curve. The 

material fracture toughness GF, representing the energy absorbed per unit area of crack 

and considered to be a material fracture parameter is given by the entire area under the 

softening stress-COD curve, cr(w). Or analytically 

(5.25) 

(5.26) 
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Figure 5.6. Principle of the fictitious crack model, after Hillerborg [78] 

In the fictitious crack model, the softening stress-COD curve, which is considered to be 

a material property, independent of structural size and geometry, is completely 

determined when the tensile strength / ( , the fracture toughness GF, and the profile of 

the cr(w) curve are known. Hillerborg [78] has combined / , and GF to obtain lch, the 

so-called characteristic length, which is a purely material property proportional to the 

length of the fracture process zone. In concrete, the length of the fracture process zone 

at complete separation of the initial crack tip is of the order of 0.3 lch to 0.5 lch 

according to this model. It is important to keep in mind that the crack propagation in 

this model is governed by the principal tensile stress exceeding the tensile strength of 

the material, instead of an energy criterion. The fictitious crack model may be combined 

with a finite element analysis to predict the fracture behavior of concrete structures. But 

an appropriate selection of fracture parameters is required in order to obtain good 

predictions. This approach may physically make sense in the case of metals where the 

crack tip fracture process zone has the same fracture mechanisms as the crack wake 

process zone (same yielding process) on which case the original Dugdale's model was 

based. But in the case of concrete, many different fracture mechanisms may exist in the 

crack tip and the crack wake process zones, and this model cannot be more than an 

approximation of the fracturing process. One major problem of this model is the need to 

determine, experimentally, a size-independent value of the tensile strength. 
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III.2- T W O - P A R A M E T E R F R A C T U R E M O D E L 

It is interesting to note that this model is a member of Equivalent-Elastic crack approach 

family. In this alternative method, the fracture process zone of concrete is modeled 

through the replacement of the actual cohesive crack by an equivalent traction-free 

elastic crack and the single Griffith energy dissipation mechanism is used, by assuming 

cr(vv) = 0 . This effective crack is governed by 

i- a LEFM-based criterion, and 

ii- explicit prescription of an equivalence between the 

actual and the corresponding effective-crack 

As a result, the energy release rate for a medium containing an effective-elastic crack 

which governs the propagation of such a crack due to change of applied load under 

opening mode conditions, is given by 

Gq=GIC (5.27) 

where G ? i s a function of applied loads, structural size and geometry as well as the 

effective-elastic crack length. In the case of a stable crack propagation, the crack length 

wi l l increase as the applied load increases. Hence, an additional equation is required to 

determine the crack length before equation (5.27) is used. Unfortunately, the effective-

elastic crack length cannot be used directly as an independent fracture criterion because 

it has been shown empirically that it is dependent on the structure's size and geometry. 

Thus, another quantity should be introduced as a fracture criterion. This is the case of 

most of the effective-elastic crack models that have been proposed in the literature, 

where virtually all of them use two fracture parameters to define the inelastic fracture 

process and to govern crack propagation. It is along these lines that Jenq and Shah [88] 

proposed a two-parameter model based on the elastic fracture response of structures. 

According to this model, crack growth wi l l take place i f the following two conditions 

are satisfied 

K, = K f, 
' , c (5.28) 

CTOD = CTODc 

where K, and CTOD the stress intensity factor and the crack tip opening displacement, 
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respectively, whereas, Klc and CTODc are their critical counterparts. CTOD and K,, 

are determined according to the following procedure. 

CMOD = 
CMOD*+ CMOD' CTOO = 

CTODV CTOD" CMOD 

(a) CMOD' 

(b) 

Figure 5.7. Test for the determination of Ks

!c and CTODc 

As we can see on Figure 5.7, the CMOD at peak load has been split up into an elastic 

component CMODe

c and an inelastic component CMOD'", so that 

CMODc = CMOD' + CMOD'c" (5.29) 

The critical stress intensity factor K5

lc together with the critical effective-elastic crack 

length ac are computed from the following system of two equations and two unknowns 

after measurement of CMOD' value and the maximum stress cr. 

V o j 

CMOD! = 
4cra 

(5.30) 

v u J 

The value of the crack tip opening displacement CTOD" is then computed 

CTOD" = CMOD" g3 

b 'a 
( 5 . 3 1 ) 

c J 

Note that gi (i = 1,2,3), are geometric functions that can be found in an L E F M 

handbook [160]. Just like in the fictitious crack model by Hillerborg, Jenq and Shah 
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[88] introduced a material length, Q, which is proportional to the size of the fracture 

process zone 

( E CTODt ^ 
(5.32) 

The material length Q can be used as a brittleness index for the material. The higher the 

value of <2, the more ductile is the material. In concrete, a one parameter representation 

of the fracture process, such as Klc or GF , is misleading because one would observe 

that the fracture toughness becomes proportional to the compressive strength or the 

strain rate, whereas, experimental evidence shows that concrete becomes more brittle as 

its compressive stiffness increases. According to the two-parameter model [89], the 

critical crack extension decreases with increasing compressive strength. Even though, 

the stress intensity factor evaluated at the effective crack tip, has been shown to be a 

good candidate as a material parameter through an extensive study initiated by R I L E M 

[93], the validity of the CTODc as a material parameter has not yet been confirmed. 

This is mainly because of the inherent difficulty related to the measurement of such a 

small parameter. Since the material parameters Kjc and CTODc are defined for the 

critical fracture of a structure, the effective-crack approach can only predict the 

maximum load and the corresponding displacement (or crack length) of a structure. In 

order to predict the entire stress-strain response of a structure, corresponding R-curves 

are usually introduced. 

III.3- R-CURVE BASED MODELS 

According to the energy principles discussed earlier regarding the Griffith balance 

approach of crack growth, the critical load is determined from 

„ 8W dUe „ 

which resulted from the conservation energy in the entire body. Crack growth is 

considered unstable when the system energy at equilibrium is maximum and unstable 

when it is minimum. A sufficient condition for crack stability is 
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a 2 ( n + r ) 

SA2 

< 0: unstable fracture 

> 0: stable fracture 

= 0: neutral equilibrium 

(5.34) 

where n is the potential energy of the system, defined by Tl = Ue -W . This stability 

condition can be rewritten in terms of the crack driving force G and the crack 

resistance R. 

dJG-R) 
8A 

> 0: unstable fracture 

< 0: stable fracture 

= 0: neutral equilibrium 

(5.35) 

For the particular case of an ideally brittle material R = 2y = cste and the R - term 

vanishes from Eq. (5.35). Hence the stability criterion for crack growth may be 

expressed in terms of the stress intensity factor as follows 

> 0: unstable fracture 

< 0: stable fracture (5.36) 

= 0: neutral equilibrium 

In this case, the fracture resistance is described by the critical stress intensity factor K. 

Under such conditions, fracture of the material is sudden and there is virtually no crack 

growth before final instability. For quasi-brittle materials such as fiber reinforced 

cementitious composites, on the other hand, the process zone is no longer negligible and 

the final instability is preceded by some slow crack growth. In such circumstances, it 

was observed experimentally that the fracture resistance increases with increasing crack 

growth (Figure 5.8). The crack growth resistance curve, or R-curve method, is a one 

parameter method for the study of fracture in situations where small, slow, stable crack 

growth -usually accompanied by inelastic deformation- is observed prior to global 

instability. 

113 



Chapter 5 

Fracture Mechanics Concepts 

R, G„ I Failure criteria: 
Gq = R 
dGg=dR 
da da^ 

Gq-curve 

Quasi-brittle 
materials 

R-curve Perfectly brittle 
materials 

. . . . / . 

ao a, a" 

Figure 5.8. Typical R-curve representation 

The R - curve describes the changing resistance to fracture with increasing crack size. 

The slope of the R - curve, known as the tearing modulus, expresses the increase of 

fracture toughness as the crack length increases prior to instability. The theoretical basis 

for the R - curve, can be provided by the energy balance equation, which applies 

during crack growth. For situations in which the energy dissipated to plastic (inelastic) 

deformation Um is not negligible, the energy balance equation takes the form 

G = R 
with 

G = dW dUe 

dA dA 

n dr duin 

R =— + 
dA dA 

(5.37) 

(5.38) 

R which represents the rate of energy dissipation during crack growth is composed of 

two parts 

1. the energy consumed in the creation of new material surfaces, 

1. the energy dissipated in plastic (inelastic) deformation. 

During stable crack growth, Eq. (5.37) and inequality (5.35) should be satisfied. Both 

parts of Eq. (5.37), are represented graphically on Figure 5.8 in G - a space. The points 

of intersection of the G and R-curve refer to stable crack growth, since Eq . (5.37) and 

Eq. (5.35) are satisfied. Stable crack growth continues up to point P, at which the 

G(«,cr .)-curve corresponding to the value cr. of the applied stress is tangent to the R-
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curve. Beyond point P, instability occurs. Thus, the critical stress crc and the critical 

crack length ac are determined from the knowledge of point P. The 7?-curve concept 

was first introduced by Irwin [96] using the energy criterion. Due to the suitability of 

this approach to the study of quasi-brittle materials, many attempts have been made 

recently to extend its use to describe the fracture of cementitious materials and ceramics 

[78,88], both theoretically (construction of the curve) and experimentally (measurement 

of the crack resistance as a function of the crack growth). The major difficulty of R-

curve behavior is that R- curves depend on both specimen geometry and material 

parameters. Consequently, the assumption that the R-curve is a material parameter for a 

given thickness, temperature and strain is open to question. 

For a given structural geometry and a material fracture property, R-curves can be 

interpreted as an envelope of a series of Gq-curves for certain type of structures in the 

following three ways 

1. an R-curve may be defined as an envelope of Gq-curves for a series of 

structures with the same size but different initial crack lengths, or 

2. an R-curve is an envelope of Gq-curves for a series of structures of 

different sizes but the same initial crack length, or 

3. an R-curve may be defined as an envelope of Gq-curves for a series of 

geometrically similar structures with increasing sizes. 

Based on the energy dissipation mechanisms in the vicinity of the crack tip, R-curves 

for quasi-brittle materials can be categorized into fictitious crack approach, where a 

cohesive pressure is introduced on the crack surfaces, and effective-elastic crack 

approach, where a traction free equivalent-elastic crack is assumed, and R-curves are 

derived based on L E F M with at least two fracture parameters. It is interesting to note 

that the R-curve for a given structure is not unique due to the above mentioned different 

definitions. Bazant et al. [25] Proposed an R-curve based on their size effect model. 

They considered the maximum loads of a series of geometrically similar structures with 

different size. The R-curve was established by using failure criteria of the structures 

with different size. The R-curve obtained is interpreted as an envelope of Gq - curves 

for a series of geometrically similar structures with increasing sizes. Ouyang et al. [133] 
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have developed an R-curve using the effective-elastic crack approach. A governing 

differential equation for R-curves was derived based on the failure criteria of quasi-

brittle materials. The R-curve was then obtained by solving this differential equation. 

This R-curve is interpreted as an envelope of the energy release rates for a series of 

structures with the same specimen geometry and the initial crack length but different 

specimen sizes. 

Using the fictitious crack approach, Foote et al. [61], proposed a fracture resistance 

curve in terms of the stress intensity factor Kr. In this model the stress intensity factor at 

the crack tip has been split into two parts 

where Klc is the stress intensity factor to create new cracked surfaces, and K the 

Kq=K,c + Ka (5.39) 

stress intensity factor needed to overcome the cohesive pressure cr(w). 

a 
P 

P 

P 

x 

Figure 5.9. Superposition of stress intensity factors at crack tip 

Since Kq should be balanced by KR , the following expression is obtained 
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KR ~ Kic + K<r (5.40) 

with 

Ka = T qj(a,x)a(w)dx 
(5.41) 

'0 

where <p(a,x) is the appropriate Green's function that represents the stress intensity 

factor at the crack tip due to a unit force acting at a distance x from the crack tip. Foot 

et al. [61] suggested the following stress-COD curve 

where ft and wc are the tensile strength and the critical opening displacement. The 

parameter m is a softening index, m = 0 corresponds to ideally brittle materials and 

m = oo corresponds to the case of ideally plastic materials. In order to be able to perform 

the integration in equation (5.36), Castiliano's theorem is used to estimate the crack 

profile w(x). 

A KR - curve is obtained by substituting Eqs. (5.41), (5.42) and (5.43) into Eq . (5.40). 

Since the crack opening displacement w(x) obtained from Eq . (5.43) is a nonlinear 

function of x, a numerical iterative scheme is usually needed to obtain VV(JC). This 

KR - curve is geometry and size dependent, since the Green's function in Eq . (5.41) 

and the crack opening displacement calculated from Eq . (5.43) are dependent on the 

size and geometry of the specimen. This R-curve has been further simplified by M a i et 

al. [120] by introducing a Green's function for the semi-infinite plate and a certain crack 

opening profile. However, the simplified R-curve becomes geometry independent 

(Insensitive). 

f ... \ m 

(5.42) 

(5.43) 
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NUMERICAL MODELING OF FRACTURE GROWTH 

BACKGROUND AND HISTORY 
The simplest technique for numerical simulation of a discrete crack involves symmetrical 

cracks [44]. Schematics of two different configurations that can be modeled with quarter 

symmetry are shown in Figure 6.1. The configurations shown in the figure are relatively 

easy to mesh, and the propagation can be represented by merely changing the boundary 

conditions. The obvious shortcoming of this approach is that crack propagation along a 

plane of symmetry is the exception, not the rule. Nonetheless, these configurations have 

been the benchmark problems for many innovations in computational fracture mechanics. 

They have been used as a vehicle for investigations in such areas as convergence studies 

[166], crack-tip elements [18,73,167], and techniques for evaluating stress intensity 

factors [19a]. 

Figure. 6.1. Example of crack problems that can be 
represented using quarter symmetry 
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A more general methodology for evaluating crack propagation was clearly necessary. In 

the I960's, two independent approaches or school of thought, nodal release and smeared 

cracks, evolved. With both approaches, little or no mesh modification was necessary. 

The first application of crack propagation simulation for non-trivial problems was in the 

cracking of plain concrete and reinforced concrete using the nodal release method [128]. 

The nodal release approach is essentially what its name implies. A t each step, one node is 

released (divided into two nodes) and the crack extends along one element length. A n 

example of this is shown in Figure 6.2. With this technique, cracks that do not follow 

symmetry planes can be modeled, and the crack trajectory is not necessarily constrained 

to remain a straight line. There are problems with this approach, however. Crack paths 

may become highly idealized, and considerable effort may be necessary to generate a 

mesh with element edges along the expected crack trajectory, which is usually not known 

a priori. 

*********** *********** ****^****** 
***£ Sip***** 
***jg 5***5 S*i 
1* \ / 

Cracks Steel &7 

Reinforcement 
Figure 6.2. A discrete crack simulation using the technique of nodal 
release in reinforced concrete beam (after Ngo and Scordelis [128]) 

At the time, most researchers considered discrete crack modeling to be too difficult for 

practical simulations (due to necessary mesh modifications).. In 1968, Rashid introduced 

a fundamentally different approach, the smeared crack method [140]. Here, the idea is 

quite simple. Rather than representing the crack explicitly, it is modeled implicitly 
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through modifications to the material constitutive relations for elements along the "crack" 

path. In short, when it is determined that the tensile stress in an element has reached a 

critical value, the constitutive relationship for that element is changed so that the element 

has little or no stiffness in the direction of tension. The presence of the crack is 

effectively "smeared" throughout the element. This effectively intermixes the 

representation of the crack with the physics governing the fracture process. These are 

uncoupled in the discrete crack approach 

Based on the concept of replacing the crack by a continuous medium with altered 

physical properties, this approach quickly became the predominate method for 

performing crack propagation simulations in some areas of mechanics. Not only did it 

eliminate the necessity to remesh at each simulation step, but with smeared cracks, it was 

not necessary to treat a crack tip in a special manner, (use of singular elements at the 

crack tip) since no tip actually exists. Also , for many materials (such as concrete), a band 

of small cracks appealed to one's intuition of how damage accumulates in front of a crack 

tip and eventually forms new fracture surfaces [22] (however, the physical interpretation 

of a smeared crack in materials with a relatively finer grain structure, such as metals and 

glasses, is less obvious). 

A n illustration of the concept underlying this method is given in Figure 6.3 using the 

crack band model developed by Bazant and Oh [24] 

In this model, the crack band width, wc must be several times larger than the largest 

aggregate size in the concrete mix. wc includes the actual crack or group of cracks. 

Within this band, average properties are used based on orthotropic behavior which 

depends on the crack's orientation. This band width, assumed to be a material property, 

must be limited to ensure stability of the solution. The element stiffness matrix is 

obtained from 

SMEARED MODELING OF CRACK PROPAGATION 
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Cracking within the element can be represented through either one of the two ways: 

Anisotropic model, in which we modify D, Rashid [140] 

Discontinuous shape functions, in which we modify B, Droz [54] 

t t 
(c) (d) 

Figure 6.3. Random microstructure, scatter of microstress, 
and crack band or sharp crack models 
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In the anisotropic model, assuming we have a crack aligned with the y axis, we maintain 

B fixed and alter D such that 

K 
0 0 

0 E 

0 0 

0 

0 
a E 

2(1 + v) 

As can be seen, the normal stresses can only be transmitted across the y axis, and the 

shear coefficient has been reduced by a factor a which is a function of aggregate 

interlock. The issue of proper determination of a has been the subject of numerous 

controversies [40]. 

Although Rashid's model has been widely used in numerous finite element programs, it 

has been recently shown by Droz [54] that certain undesirable coupling remains within 

the stiffness matrix. This coupling causes perturbation of the shear stresses of the element 

and is unable to correctly model structural response under mixed mode loading cases. It 

has been numerically shown that this perturbation increases with mesh density. In the 

new alternative, the matrix D is kept constant whereas B is modified. The idea in this 

approach is to break any connection between two adjacent nodes across the crack. 

Among the advantages of the smeared crack approach one can mention [82]: 

No remeshing is required, making it very convenient from the computational point of 

view 

The crack generally is not straight but tortuous. Such tortuosity is readily 

approximated using the smeared crack approach 

Distributed damage and cracking have been observed in reinforced concrete 

structures 

In the case where parallel cracks in concrete are densely and uniformly distributed, 

such cracks are well represented by the smeared crack model with a minimum crack 

band width equal to the actual spacing of the parallel cracks. 
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Despite its popularity, there are three significant difficulties inherent in using smeared 

cracks. The first is the lack of an unambiguous description of a crack's geometry and a 

crack openning profile. Without explicit geometry it is not possible to model crack 

propagation along the interfaces between regions of differing materials [see chapter 5]. 

Also, for some types of fracture problems (hydrofracture for oil well stimulation, for 

example) cracks are driven by fluid pressure within the crack. The local fluid pressure is 

a function of the local crack opening. Without an expilicit crack opening profile, these 

types of analyses are not possible. 

The second difficulty with smeared cracks is that, if used naively, the results are highly 

sensitive to the finite element mesh used [22, 23]. What is worse, not only are results not 

objective, but in the limit as the elements in the crack tip region become small, the 

solution diverges in a manner such that the load necessary for crack propagation 

approaches zero. This lack of convergence is counter to one's intuitive understanding of 

how discrete methods should approach a non-trivial solution in the limit, as the mesh is 

refined. It has, however, been shown that the divergent behavior can be prevented if care 

is taken when formulating the constitutive relationships for the cracked elements, and 

when certain other (sometimes stringent) restrictions are observed when meshing [23]. 

The third difficulty with smeared cracks has been reported quite recently [142]. This has 

to do with a fundamental kinematic incompatibility inadvertently introduced by the 

smeared-crack softening when the direction of propagation is not parallel to the element 

edges. In this case, significant stresses are observed in some of the elements along the 

crack face (where stresses should be very small). Rots [142], calls this phenomenon 

"stress-locking". The overall displacements in the model tend to be accurate, but stresses 

and strain-energies computed within the finite elements will not be accurate in the region 

of the crack. This is an artifact of linking crack representation with the physics 

controlling the fracture process. 

Stress locking can be illustrated with the following Figures [142]. Figure 6.4 shows a test 

configuration analyzed by Rots. The physical experiment was performed by Kobayashi et 
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al. [97]. Two detailed views of the upper right portion of the plate are shown. The left 

portion of Figure 6.4 shows the deformed mesh, while the right portion illustrates vectors 

of principal stress. Regions of "locked-in" stresses are clearly evident along the crack 

path. This material should be essentially unloaded. These three problems may be more or 

less significant, depending on one's purpose in performing a simulation and the nature 

and size of the object being simulated. There is one class of problems for which smeared 

cracks are the obvious choice. These are problems where a large number of cracks are 

present in a single structure. In this case, it would be difficult to model all the individual 

cracks explicitly. 

Figure 6.4. Test configuration analyzed by Rots together with 
a representation of the deformed mesh and principal stresses 
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DISCRETE MODELING OF CRACK PROPAGATION 
Initial attempts at discrete crack propagation simulation were made over twenty years 

ago. Since then, techniques have improved significantly, but such simulations are still 

performed routinely by only a small number of practicing engineers. This is likely to 

change in the coming years, as propagation simulations become an integral part of the 

total life cycle (design, analysis, and maintenance) of many products. 

The factors expected to drive the increase in popularity of these methods include the 

following: 

• The computer processing and graphics performance necessary to perform these 

simulations is increasingly becoming available on the desks of most practicing 

engineers, due to the continued exponential increase in computer processing power. 

• New popular materials, especially composites and ceramics, are more susceptible to 

failure by brittle fracture than conventional plastic and metallic components. The 

increased use, and subsequent failure, of these materials will continue to increase 

interest in discrete crack propagation simulations, which are particularly well suited 

these types of materials. 

• Software for crack propagation simulation continues to improve. This is primarily 

due to new techniques ad algorithms in the areas of computational mechanics and 

solid modeling. 

Because crack propagation simulations are currently not widely used, some readers may 

be unfamiliar with the topic. Part one is included to provide the necessary background 

information. The specific focus of the chapter is three-fold. First, it serves as an 

introduction for readers unfamiliar with the topic. Second, it contains a review of the 

applicable literature. Third, it introduces simulation strategies for crack propagation. 
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The purpose of this section is to introduce the topic of discrete modeling of crack 

propagation, and to present a brief history. There are two defining characteristics of 

discrete crack modeling: Cracks are represented explicitly and extended discretely. That 

is, an explicit representation of the geometry of the crack (or cracks) is always 

maintained. A s a crack grows in an object, the created surfaces are explicitly incorporated 

into the model. In addition, when cracks are also extended, it is done in a discrete 

manner: crack increments have finite length, and represent a piecewise, rather than 

continuous, model of crack evolution. This approach is necessary when performing a 

propagation simulation with finite simulation-resources and is consistent with other types 

of discrete mechanics. 

Discrete modeling of crack propagation is an approximate technique similar to other 

approximate techniques used for computational mechanics (eg. Finite elements, boundary 

elements, finite differences, boundary collocation). A s with most approximate 

techniques, there is a strong notion of convergence towards a "correct" solution as the 

numerical model is refined and the computational cost is increased. Wi th discrete crack 

modeling, there are two principal types of approximation in addition to the usual 

assumptions about idealized material models, geometry, and boundary conditions. First, 

discrete crack modeling relies on an underlying approximate technique for performing 

stress analysis (usually the finite or boundary element method). Second, the continuous 

evolution of a fracture surface is idealized by discrete extensions. A discrete crack 

simulation wi l l converge to an asymptotic solution only i f both types of approximations 

are reduced. That is, both more (or better) elements must be used for the stress analysis, 

and shorter crack increments (i.e., more simulation steps) must be taken. 

Discrete modeling of crack propagation is an iterative process with four major tasks in 

each simulation step. A flow chart of the process is shown in Figure 6.5. The input to the 

process is the initial geometry of an object to be idealized. The first task in the 

computational procedure is to perform a stress analysis. The purpose of the stress analysis 

step is to compute the response of the object (stresses, strains, and displacements) to the 

imposed boundary conditions (loads and restrains). 
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Figure 6.5. Flow chart of the iterative scheme 
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The second task in the simulation loop is the fracture analysis. This is the evaluation of 

the parameters that govern the fracture process. The most commonly used parameters are 

stress intensity factors, energy release rates, J values, crack tip opening displacements 

(CTOD's ) , and crack mouth opening displacements ( C M O D ' s ) . It is with these 

parameters that predictions about the nature of the crack's growth is made. 

The third task in the simulation process is to perform an assessment to determine whether 

a condition of failure or arrest has occurred. This is the test that allows an exit from the 

simulation loop. The notion of crack arrest is only meaningful in the context of unstable 

crack propagation. It is defined as the point at which the crack-tip velocity drops to zero. 

The definition of failure, however, is more subtle. The actual definition of failure w i l l 

vary according to the type of simulation being performed and the ultimate objective of 

the simulation process. Typical failure criteria are the onset of dynamic crack 

propagation, a crack tip reaching a free surface, or a critical value of stress intensity 

factor or crack opening being obtained. In most cases, once failure or arrest has been 

attained, the simulation process is complete. 

If failure or arrest is not attained, the fourth task in the simulation process is the finite 

extension of the crack or cracks. This implies three sub-tasks. First, the fracture 

parameters, evaluated in step two, are used to predict the new crack direction and length. 

Second, the geometry of the object is explicitly modified to reflect the new crack 

configuration. Third, i f necessary, the object is remeshed so that a new stress analysis can 

be performed. The simulation loop is now complete, and begins again with a new stress 

analysis. 

There are three general classes of crack propagation: sub-critical crack growth, quasi-

static crack growth, and unstable crack growth. The distinction among the three is the 

ratio of the generalized forces driving and resisting crack propagation. 
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In the case of sub-critical crack growth (for example, fatigue or stress corrosion 

cracking), the driving forces are less than the toughness of the material (or resistance to 

cracking). However, cracks w i l l still grow due to the degradation of the material at the 

crack tip caused by corrosion or repeated loading and unloading. In general, sub-critical 

crack growth takes place over relatively long periods of time. Crack-growth rates are 

typically measured in terms of days, months, or even years. 

Quasi-static crack propagation takes place when three conditions are met. First, the force 

driving the crack must exactly equal the material's resistance to cracking. Second, the 

rate of change of the driving forces with respect to the crack length must be negative. 

Third, the rate of crack growth must be slow enough that inertial forces can be neglected. 

This situation is attained for some configuration when the loads or displacements applied 

to the object are monotonically increased at a relatively slow rate. These events are 

typically measured in the terms of seconds, but may occur over much longer periods of 

time (as in cracking driven by swelling or long term temperature changes). 

The final crack propagation is unstable, or dynamic, crack propagation. In this case, the 

crack driving force is greater than the toughness of the material. The excess of energy, 

which cannot be absorbed by the fracture process, is converted to other forms such as 

kinetic and thermal energy. These types of propagation take place very rapidly (typically 

measured in milliseconds), and inertial effects must be considered. 

From the point of view of a numerical simulation, there are many similarities among the 

three classes of propagation. In particular, one set of data structures and algorithms can 

be used to represent and modify the geometry, meshes, and boundary conditions for all 

three types of propagation. These data structures and their corresponding algorithms wi l l 

be called the representation of an object. What differs among the classes is the strategy 

that is used to dedicate the nature of the modifications to the geometry, meshes, and 

boundary conditions, during crack propagation. 
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REMESHING DURING CRACK PROPAGATION 

In the early 1980's, the first attempt to model crack propagation without regards to an 

existing finite element mesh was developed by Saouma and Ingraffea [146, 147]. Here, a 

very pragmatic approach was taken, splitting elements in the crack path into a number of 

smaller elements. This approach left most of the mesh intact, making only local 

modifications in the region. The remeshing process then became one of identifying the 

particular topology present, and using the appropriate template to remesh the problem. 

The remeshing process is illustrated for three different crack configurations in Figure 6.6. 

Using this procedure, arbitrary curvilinear crack propagation was modeled and the 

remeshing process was automated. The major disadvantage of this method, however, is 

related to that the resulting meshes are often of poor quality. When poor aspect ratio 

elements are generated at the crack tip where stress gradients are very high, the accuracy 

of the near crack-tip solution becomes questionable. 

Figure 6.6. Three different crack configurations using 
the splitting element approach 
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A more sophisticated approach has been introduced by Swenson [158,159]. Here, the 

strategy is: 

to delete a group of elements in a certain neighborhood of the crack tip 

the crack is extended into this area 

well shaped elements are introduced around the crack tip 

create a "transition" mesh that will fill the area between the crack-tip elements and 

the original mesh 

With the development of the delete-and-fill approach to remeshing, and robust 

implementations of the associated algorithms, it is finally possible to analyze arbitrary 

curvilinear crack propagation for planar and axisymmetric problems when L E F M is 

applicable [83]. 

As we saw in chapter 5, the introduction of stress intensity factors for the first time gave 

engineers an effective tool for investigating the fracture of structural components. 

Unfortunately, prior to development of numerical methods, this capability was severely 

limited by the relative scarcity of stress-intensity factor solutions which need to be 

determined separately for every different geometry and loading configuration, and were 

only available for a small number, of often, idealized configurations. Handbooks of the 

known stress intensity factor solutions were compiled. Sometimes, however, the engineer 

finds himself faced with a problem with no known solution and is forced to use a known 

solution that has the closest geometry and loading to a known solution (or to use a good 

dose of judgement to make appropriate modifications). 

INTERFACE ELEMENTS 
As seen in chapter 5, the assumption of singular stresses at the crack tip is mathematically 

correct only within the framework of L E F M , but physically unrealistic. In cementitious 

materials, a fracture process zone develops ahead of the crack tip. The most popular 

model simulating this behavior is Hillerborg's fictitious crack model ( F C M ) . 
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Due to their ability to model the behavior of geometrical discontinuities in multi-phase 

materials, interface elements play a very important role in computational mechanics. Two 

finite element formulations of interface elements can be made: the nodal (lumped) 

interface formulation and the continuous (integrated) interface formulation [147]. 

In order to model the behavior of the stress transfer through a discontinuity, such as 

cohesive cracks in F R C materials or substrate-repair material in structural repairs, use of 

interface elements can be invoked because of their ability to represent and model both 

geometrical discontinuities and material nonlinearities [10]. Even though the nodal 

interface formulation (lumped) is equivalent to the continuous interface formulation 

(integrated), they lead to different element stiffness matrices. 

Figure 6.7. Interface idealization and notations 
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Lumped Interface Elements 
This is a generalization of the nodal approach where rudimentary nodal interfaces are 

introduced. In the 2D case, this latter method, consists in the introduction of two-noded 

spring like elements with two degrees of freedom per node. 

r - - ~ -

Figure 6.8. 2D nodal interface elements 

The element nodal displacement vector is given by 

v = {v> n

2 , v / , v t

2 } (6.1) 

where superscripts indicate element nodes and subscripts n and t represent the normal and 

tangent to the interface respectively (Figure 6.8). The relative displacement vector is 

related to the nodal displacements through a matrix B 

Au = • 
\Aun 

I Au, 
= Bv with B = 

-1 +1 

0 0 

0 0 

-1 +1 
(6.2) 

The traction-relative displacement constitutive relation is given by a matrix D defined as 

follows 

t = = DAu = 
d 

n 

0 

0 

d, 

\Aun 

I Au, 
(6.3) 
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The linear elastic stiffness matrix K is obtained through the principle of minimum total 

potential energy by setting STIp = 0, where 

n=U+V = - f AuTtdA — vTf (6.4) 

is the total potential energy, U is the internal energy, V the potential of external work, and 

/ i s the external force vector. This leads to 

Kv-f with K=\BTDB (6.5) 
JA 

In the case of a 2D problem, the above equation yields 

K = A 

~dn 
0 0 

~dn dn 
0 0 

0 0 d, -d, 
0 0 ~d, d, 

(6.7) 

A represents a contribution factor that depends on the type of interpolation and the 

dimension of the surrounding elements [150]. 
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Figure 6.9. Linear and quadratic 2D interface elements 

A generalization of the nodal interface is provided by the lumped interface formulation 

where continuous elements are introduced instead of interface points. In this case, 

continuous two dimensional elements are used in planar stress or strain or axisymmetric 

conditions. A n illustration of an r-noded line interface where each node has two degrees 
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of freedom is given by Figure 6.9 for the case r=4 and r=6. The element nodal 

displacement vector is given by 

v = {v^v„ 2 , . . . ,v„ r; v/ ,v, 2 , . . . ,v;} (6.8) 

The traction-relative displacements relation is evaluated at the node sets and the matrix B 

is similar to the one defined in the case of nodal interface elements. Consequently, in the 

case of a non distorted six-noded line element, B is given by 

B = 
-1 0 0 +1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 -1 0 0 +1 0 0 
(6.9) 

A summation over the contribution of each node set is performed in order to obtain the 

interface stiffness matrix K and the equivalent nodal loads / in the following manner 

0 K. 

with 

6 

1=1 

d, 0 0 ~di 
0 0 

0 4d, 0 0 -4d, 0 

0 0 dt 
0 0 -d, 

-d, 0 0 d, 0 0 

0 -4d, 0 0 4d{ 0 

0 0 -d; 0 0 d, 

(6.10) 

(i — n,t) 

where A, is the surface nodal contribution factor and nns is the number of node-sets. 

Continuous Integrated Interface Elements 

This formulation is more sophisticated than the lumped formulation. Instead of using 

relative displacements at isolated node sets, like in the previous case, the continuous 

integrated interface formulation makes use of interpolated relative displacements at 

integration points and therefore, interpolation functions are introduced like in the case of 
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continuum elements. Since the numerical integration automatically takes into account the 

correct contributions, the introduction of surface nodal contributions is no longer needed. 

A n r-noded element nodal displacement vector could be defined as before 

v = {v'n,v2

n,...,vr

n; v/ ,v, 2 , . . . ,v (

r } (6.11) 

A continuous displacement field vector is defined for the lower and upper edges of the 

interface under the following form 

u = {u"n,u'n,u?,ul

t} (6.12) 

/ and u denote the lower and upper edges of the interface, respectively. A matrix H 

containing the interpolation polynomial functions defines the relationship between the 

displacement field vector u and the element nodal vector v as follows 

U = H v with H = 

n 0 0 0 

0 n 0 0 

0 0 n 0 

0 0 0 n 

(6.13) 

where n = {N1,N1,...,Nr/2}. r/2 denotes the number of pair of nodes (node sets). The 

continuous displacement field u is related to the relative displacement Au through a 

matrix L defined by 

Au-Lu (6.14) 

~-l + 1 0 0~ 
where L = 

0 0 - 1 + 1 

The relative displacements are related to the nodal displacements through the following 

relation 

Au=Bv (6.15) 

with B-LH. A n example of a matrix B is given below in the case of non distorted 

interface line element 
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-n n 0 0 
B = (6.16) 

0 0 -n n 

-Nj -N2 -N3 Nj N2 N3 0 0 0 0 0 0 

0 0 0 0 0 0 -Nj -N2 -N3 NJ N2 N3 

where n = {Nl,N2,N3). For line interfaces, the element stiffness matrix K and the 

equivalent nodal forces/can be computed as follows 

where b is the out of plane thickness of the specimen in plane strain or plane stress 

applications. The traction-relative displacement relations need to be evaluated at the 

location of integration points. In the case of a distorted interface, a transformation to the 

local reference is necessary in both formulations. The continuous numerically integrated 

interface formulation gives exactly the same results as the lumped formulation i f the 

integration points are chosen so that they coincide with the node-set points. However, if 

another integration scheme is used, the results would be different in the two formulations. 

In this work, emphasis is on 2D (line) elements and the continuous (or numerically 

integrated) interface formulation has been adopted. Linear and nonlinear constitutive 

laws have been used. The constitutive models retained for the interface elements are the 

Normal traction-Displacement models. 

Dealing with nonlinear interface models requires a reliable algorithm to determine 

accurate solutions. The dynamic relaxation solver has been selected for this purpose 

because of its simplicity, ability to cope with highly nonlinear material and geomaterial 

behavior [169]. Intended for the static solution of structural mechanic problems, the 

K=b \ BTDB —— 1 *S 
(6.17) 

DYNAMIC RELAXATION SOLVER 
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method is based on the key idea that the static solution is actually the steady state part of 

a transient response to an instantaneous load step. 

Finite Element Formulation 

Discretization of the balance equations by the finite element method leads to a vector 

equation (system of scalar equations), which in the case of a linear behavior relate the 

internal forces/ to the external forces F through a linear stiffness matrix K 

f(v) = Kv=F (6.18) 

where v is the vector of nodal displacements. For nonlinear problems, on the other hand, 

the relationship between the internal forces and the displacements is of an incremental 

nature 

Af(v) = KT(v)Av (6.19) 

where KT is the tangent stiffness matrix. Another alternative for treating nonlinear 

problems, consists in the introduction of a pseudo-force S(v) to account for the nonlinear 

behavior 

f(v) = Kv + S(v) (6.20) 

As we saw earlier with the finite element formulation of interface elements, nonlinearities 

are concentrated along the interface elements which contain a small number of degrees of 

freedom and that tractions derived from the constitutive models can be transformed into 

equivalent nodal internal forces. The resulting vector form is very suitable for a nonlinear 

dynamic analysis by an explicit method such as the one presented here. 

The motion equation that governs the dynamic response of a structure is given by 

Mv + Cv + f(v) = F(t) (6.21) 
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where M is the mass matrix, C the damping matrix, F the external excitation, and t is 

time. The transient solution is obtained through a direct integration approach using the 

central difference approximation formulae for the time derivatives 

•j-rn (-v'-'+v') 
h 

V h 

(6.22) 

where / denotes the i'h time increment, and h a constant time increment. A n 

approximation of the velocity at the i'h time increment is given by 

v' =-(vi~1/2 +vi+1/2 ) (6.23) 

A formulae for computing the next velocity and displacement vectors is obtained by 

simple introduction of equations (6.22) and (6.23) into (6.21). 

M 1 ' 
--C 

_~h~ 2 
M 1 ' 

+ -C 
. h 2 

[F- - f 
M C 
— + — 

2 . 
(6.24) 

|v , + 7=v ,' + hvi+112 

where F' =F(t') and / ' = f(v'). Since our physical problem is only a static one, the 

mass M and damping C matrices are fictitious and therefore are chosen to be diagonal 

with C= c M. This leads to 

^ = { £ z £ J ! l ^ + 2 A M - [ f ' - / ; ] 
[2 + ch] [2 + ch] (6.25) 

vul =v'+hvi+1/2 
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where M 1 denotes the inverse of M. It should be noticed that this assumption preserves 

the form of the central difference integration formulae. In order to use the algorithm, 

v~l! 2 must be defined. Introduction of equation (6.21) together with the following initial 

conditions 

\v°*0 

v°=0 
(6.26) 

leads to 

v1'2 =hM (6.27) 

A summary of this explicit central difference integration algorithm is 

ifi = 0 
v1/2 =hM 

\v> =v°+hv112 

ifi*0 

V = j i v'-"2 +2hM~' J £ — C r -
[2 + ch] [2 + ch] 

•MI2 _ [2-ch\.:i-i/2 

vM =v

i+hvi+"2 

(6.28) 

Stability Considerations 
A s mentioned earlier, the D R solver generates a fictitious dynamic problem in order to 

compute the static solution of the physical problem which corresponds to the steady state 

part of the dynamic solution. Thus, the dynamic properties of the problem (the damping 

c, time increment h, and the mass matrix M), can be selected so that fast convergence to 

static equilibrium is achieved. A t every step, the condition f(v) = F is checked to 

determine whether static equilibrium has been attained, where only F and f(v) are related 

to the physical problem. 
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The specification of appropriate values for the mass matrix elements mu, damping 

coefficient c, and time increment h determines whether there is convergence to the steady 

state of the dynamic solution and how fast it is attained. The explicit scheme presented 

above is conditionally stable. Thus, the time increment must be chosen so that stability 

conditions are satisfied. The time increment should represent a fraction of the lowest 

period. 

The time increment h is set to unity. Use of Gershgorin's theorem, provides a lower 

bound of the mass values [169] that guarantees numerical stability 

mn^lh2Y\Kij\ (6-29> 
^ j 

where Ktj denote the elements of the stiffness matrix K, and h is the time step. The mass 

matrix and time increment are chosen having in mind convergence as the main goal, 

whereas the damping coefficient is selected so that an almost critical damping behavior 

provides fast convergence to the steady state part of the dynamic solution. The damping 

factor can be adjusted at every iteration step from Rayleigh's quotient 

| (vl f f 

c,=2.\ ' J , (6.30) 

where superscript T denotes the transpose 

COHESIVE CRACK ANALYSIS 

A s seen before, L E F M is limited to the small scale yielding condition; the process zone 

surrounding the crack tip is small with respect to the zone of K dominance and any other 

geometric dimension. For some materials and specimen configurations, this condition is 

impossible. Therefore, nonlinear aspects of the fracturing process need to be examined. 

The goal of this section is to provide an introduction to such aspects. A more detailed 

description of the topics discussed here can be found in Kanninen [94]. 141 
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Strain Softening Zone 

Strain 

Crack 
Opening ! 

Figure 6.10 Schematic representation of stress-strain behavior 
associated with fracture behavior of strain softening 
materials 

A perfectly brittle material follows a straight stress-strain path until fracture is achieved. 

However, this type of behavior only occurs for a few materials associated with some 

special geometries. In general, materials behave as shown schematically in Figure 6.10. 

Because of the high stress concentrations ahead of the crack, the material around the 

crack tips is highly deformed. Three different zones can be identified around the tip 

(Figure 4.1). Zone I is the linear elastic zone or the K-dominant zone. The stress at a 

distance from the tip is low enough to allow the structure to behave elastically. Zone II 
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characterizes a region where inelastic effects take place with stresses increasing 

nonlinearly with increasing strains. Finally, zone HI represents the fracture zone where 

unloading occurs with strain localization or, in other words, the stress decreases as the 

strain increases. The process zone, defined as a region where nonlinear effects take place, 

comprises zones II and IH. 

The appropriate approach to study the fracturing process depends on the importance of 

one zone relative to the others. Thus, i f the inelastic and fracture zones are small 

compared to k-dominant region and the specimen dimensions, including the crack length, 

L E F M is used to model crack propagation and stability. This situation is usually referred 

to as brittle fracture behavior. However, i f the inelastic zone is large relative to other 

dimensions, elastoplastic fracture mechanics approaches are necessary. In yielding 

materials, like most metals, crack initiation is usually followed by stable crack growth, 

high plastic deformation occurs with blunting of the crack tip. This type of phenomenon 

is called ductile fracture. Due to blunting effects the order of strain singularity at the 

crack tip may change considerably. The exact order of singularity depends on the 

hardening parameters, reaching sometimes an order of 1/r. In other types of materials like 

concrete and other ceramics, zone II is characterized by extensive micro-cracking. 

Actually for these materials, the influence of the fracture zone (zone III) is much more 

pronounced. For a matter of distinction, this type of behavior is denoted here by cohesive 

fracture. In this circumstance, models capable of representing the effect of the fracture 

zone (zone Ul) on the fracture process must be used. The fictitious or cohesive crack is an 

example of such a model. 

In the case of concrete and cement-based composites, a cohesive crack model ( C C M ) is 

usually employed to take into account the softening strain localization phenomenon 

associated with this dissipation mechanism. 

A model, proposed by Hillerborg et al [77] considers the energy dissipation in the wake 

of the crack path, while neglecting the other two toughening mechanisms. C C M is the 

state of the art tool to analyze the fracture behavior of quasi-brittle materials, including 

concrete, cement-based composites, rocks, ceramics, and ceramic composites. 
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The applicability of C C M to general mixed-mode conditions has been the focus of recent 

attention. Throughout the 1980's, Ingraffea and coworkers have employed a strategy of 

singularity near-cancellation to handle mixed-mode crack propagation, with optional load 

or crack length control. Crack stability was controlled by iterating on the load or crack 

length until residual values of stress intensity factors were obtained at the tip of the 

fictitious crack. Direction of crack propagation was computed using these same residual 

values. This criterion sometimes failed to predict accurately the critical load to produce 

crack extension because the singular elements at the crack tip perturbed the stress field in 

the cohesive zone. Moreover, use of these elements was inconsistent with the assumption 

of singularity cancellation inherent in the C C M . 

Recently, an extension of the fictitious crack model to mixed mode propagation has been 

proposed by Bocca et al [36]. They employed a crack length control scheme with a stress 

based crack stability criterion. However, only linear softening behavior is possible in this 

approach. 

The Cohesive crack problem 

The principle of virtual work is used as the integral statement of equilibrium in the 

formulation of the cohesive crack problem: 

Where S is the geometric volume occupied by the body, dS defines the external surface 

of the body, a the stress tensor, Se is the incremental virtual strain tensor, b is the body 

force vector acting per unit volume, Su is the incremental virtual displacement vector, 

and p is the vector of applied tractions. Expression (6.31) is the weak form of the 

equilibrium equations and is valid for any stress-strain constitutive law. 

The cohesive crack model assumes that the process zone can be represented by closing 

tractions pz (Figure 6.11), acting on both crack faces (pz+ = - pz~). A t the tip of the 

(6.31) 
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process zone, the normal component of pc equals the ultimate tensile strength of the 

From (6.32) it is clear that the problem can be treated by superimposing the effects of the 

body forces, the applied external loads and the cohesive loads when the body volume 

behaves elastically. The cohesive problem can be stated as: 

a- for a given load factor A, find the process zone size so that the ultimate tensile 

strength is achieved at the tip of the process zone; 

or alternatively, 

b- for a given process zone size, find the load factor X that would allow the ultimate 

tensile strength to be achieved at the tip of the process zone. 

Approach (b) is used in this thesis. Due to the arbitrary nonlinear nature of the softening 

along 8SC (Figure 6.11), a numerical technique is usually employed to solve the cohesive 

crack problem. A finite element or boundary element approach is most frequently used to 

solve the equations of equilibrium. 

material. Noting that Sac = Sa+ = S 

One may rewrite (6.31) as 

(6.32) 

u 

Figure 6.11. Cohesive crack problem 
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The Influence method 

The fictitious crack model has to be treated numerically in general. Both the finite 

element method and the boundary element method can be applied to solve the 

equilibrium equations. However, due to the nature of the softening model that involves 

tractions and relative displacements, the boundary element method seems to be a more 

natural way to approach the problem. Petersson [134], however, used the finite element 

method to define his procedure called here the influence method. In fact, the influence 

method is independent of the numerical technique used to solve the equations of 

equilibrium. Crack displacements are considered through superposition. The contribution 

of each node along the crack path is taken individually as well as any contribution of the 

applied loads. The complete crack path is considered initially (Figure 6.12). This is a 

strong limitation since the crack trajectory needs to be known a priori. General boundary 

conditions are assumed with proportional loading. 

f2, u2 

Figure 6.12 Discretized cohesive crack problem 
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The opening of each node set along the crack is computed for applied opposite tractions 

or forces (depending on the numerical technique involved) at each node set on the crack 

path. The opening of each node set for the applied loads is also computed: 

where w(n) is the vector of crack openings, Q{n:n) is the influence matrix of crack 

tractions or forces, p(n) is the crack traction or force vector associated with the cohesive 

model, h(n) is the influence vector of the applied loads, and F is a load factor (scalar). 

Any response of the body can be obtained by superposition of the influence quantities. 

For example, the displacement d is obtained as 

where d is the influence vector of the cohesive tractions or forces, and dF is the 

displacement due to the applied loads. Proportional loading is controlled by the factor F. 

The main advantage of this method is that the equilibrium problem is decoupled from the 

crack problem. One can model propagation and compute load factor associated to each 

crack configuration simply by moving the fictitious crack tip along the defined crack 

path. Computation of the load factor must satisfy a stability criterion for the fictitious 

crack tip. Assuming that an initial notch is introduced from node 1 to k (Figure 6.12), 

node k defines then the true crack tip. The fictitious crack tip is then allowed to go from 

node k+1 to node n. If one moves the fictitious tip to node i while the true tip is still 

defined by node k, the problem can be solved i f the cohesive pressure acting on the crack 

surface is known. 

The objective is to find the load factor F, the traction or force and the opening at each 

crack node associated with the specific fictitious crack position. The boundary element 

method is used here to illustrate the solution of the problem. The same ideas could be 

w = n :p + h F (6.33) 

d =d.p + dF F (6.34) 
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formulated in an equivalent finite element approach in a similar manner. If the boundary 

conditions are introduced, equation (6.33) could be modified as follows 

Pi.k = Pi.k a n d 

Pk+i.j-i = sK + / . . ,w) 
p, = ft and 

Pi+i...n

 a r e unknowns 

where g is the function relating the closing pressure on the crack lips to the crack 

opening. Wi th the introduction of crack boundary conditions, the problem unknowns are 

reduced to n 

the openings of the initial notch (l,...,k), 

the openings at the cohesive zone (k+l,...,i-l), 

the tractions of the elastic zone, 

the load factor F. 

A nonlinear system of equations is usually generated due to the nonlinear nature of the 

function g. A Newton-Raphson or a modified Newton-Raphson procedure could be used 

to solve such a nonlinear system. The traction vector p, the opening vector w and the load 

factor F are then computed for the specified fictitious tip position. A n arbitrary response 

is retrieved by superposition of p and F. The displacement d for example, is computed 

through expression (6.34). A s the fictitious crack tip advances, the specimen's response 

can be recorded. This is a very useful procedure, but unfortunately cannot handle 

arbitrary crack propagation. The crack path has to be known a priori. It is interesting to 

notice that the loading may be controlled by imposing surface tractions or forces as well 

as prescribed displacements. 

Defined Crack Path Strategy 

Interface elements provide an alternative solution for the fictitious crack problem. Since a 

stress-opening displacement constitutive model is associated to interface elements, they 

hence can be incorporated along a known crack path and use the dynamic relaxation 

Wj k is known 

defined by the cohesive pressure 

w,. = 0 ( 6 ' 3 5 ) 

and wtJ_, „ =0 
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method to solve the cohesive crack problem. In this procedure, the fracture process zone 

is no longer controlled by the user, it is closely related to the constitutive behavior of the 

interface elements. The location of the fictitious crack tip may be estimated from the 

opening profile. 

n o r m a l 

s t r e s s 

Crack Opening 
Displacement 

> (COD) 

Figure 6.13. Example of a softening model of interface elements 

force 
excessive 
force 

d isp lacement d i sp lacement 
cont ro l 

Figure 6.14. Typical force displacement responses 
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The compressive stiffness of the interface model (Figure 6.13) provides continuity for the 

constitutive model. This property is crucial for the Dynamic Relaxation solver. 

Furthermore, overlapping of the crack faces may be prevented by using a very large value 

for kc. The elastic behavior ahead of the fictitious crack tip can be handled for small 

values of crack opening. The load capacity of the specimen or structural member should 

not be exceeded i f a load control procedure is used to deform the specimen. In this case, 

the solution is computed under force control and only the increasing load path is 

recovered because equilibrium may be impossible (see Figure 6.14). Therefore, it is 

preferable to use the alternative solution consisting in loading the specimen through a 

displacement control procedure. This procedure is known to handle fairly well the force 

softening with increasing displacements (Snap-through). Moreover, this procedure can 

allow detection of a snap back condition. A sudden jump in the force for a small 

displacement indicates the presence of Snap-back. 

Arbitrary Cohesive Crack propagation 

A more general alternative in modeling the growth of arbitrary cohesive cracks is given 

by the A C C method [35]. This approach combines fundamental capabilities for mesh and 

geometry representation, stress analysis and nonlinear fracture mechanics into a single 

procedure where interactive computer graphics and sophisticated data structures to 

visualize and control geometry evolution are used. 

It is well accepted that the load-displacement response of quasi-brittle structures is size 

dependent. Strain softening, as well as snap-back instabilities, may occur for the same 

material depending on the structure sizes. Whereas softening can be handled with a 

displacement control procedure, snap-back cases are more difficult to follow. Snap-back 

branches can be numerically captured [36] i f the loading process is controlled by an 

increasing function of the fracture process zone (FPZ) length. This procedure whish 

assures uniqueness of the solution, can handle both snap-through and snap-back 

instabilities. Traditional 2D elasticity finite elements are used in conjunction with zero 

thickness interface elements in the fictitious crack, the behavior of which is usually 
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specified as a nonlinear stress-displacement law. The dynamic relaxation (DR) solver has 

been shown to give good results in the case of highly nonlinear problems such as 

softening and snap-back [169]. The D R although robust, may be slow in some situations 

such as the case where finite elements with large aspect ratios are used in the mesh, but 

on the other hand this scheme has a great potential for implementation in parallel 

computations. 

In the A C C approach, the aim is to determine a loading condition that satisfies both 

global equilibrium and a crack stability criterion for a given fictitious crack length. A 

criterion based on the fictitious crack tip opening profile is used by A C C scheme. N o 

singular elements are used at the fictitious crack tip, nonlinear analyses are performed 

until a condition of zero slope of the C O D at the tip is reached. If linear strain 

isoparametric elements are used, the condition of zero-slope can be written 

dw 
~ds~ 

(4wB-wA) = 0, or 
i=0 
I 
4 

(6.36) 

where w is the opening of the fictitious crack, and A and B are nodes of the element 

adjacent to the crack tip. A n y one of the stability criteria that have been widely used in 

the literature, such as the tensile strength [63c], the fictitious stress singularity 

cancellation [147, 158] could be used in this approach. 

Monotonic and proportional loading is assumed in the computation of the load factor that 

satisfies the stability criterion for the current fictitious crack length. A n overestimate of 

the loading factor is initially assumed, so that the D R solver can be used to generate an 

equilibrated solution for that load factor. A n important issue in the load factor 

computation is the initial configuration used in the dynamic relaxation scheme. The 

fictitious crack tip is always considered completely open at the beginning of the 

iterations. The closing pressure is introduced within the dynamic iterative analysis. The 
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last positive gradient configuration is stored and used as the initial configuration for the 

next candidate load factor. This procedure allows the F P Z length control scheme to 

produce a unique solution. 

When the global equilibrium and stability criterion are satisfied for a given crack or 

fracture process zone length, the fictitious crack tip is propagated to a new position. 

Thanks to the introduction of automatic mesh generation, application of computational 

mechanics in the case of moving boundary problems has become much easier than 

before. This the case of using the finite element method for a discrete analysis of the 

crack growth. 

Among the reasons for using the discrete crack model with interface elements and 

singular crack tip elements, one can mention [35] 

Interface elements provide a consistent and natural way of describing the fictitious 

crack model 

Interface elements are economical since the crack is modeled with the minimum of 

degrees of freedom 

Mesh regeneration associated with crack propagation, and direction change, is 

accomplished automatically 

Figure 6.15. Zero-slope condition for the opening profile 
at the fictitious crack tip 

152 



Chapter 6 
Numerical Modeling of Fracture Growth 

The formation of a discrete crack is viewed as a problem of changing geometry rather 

than, as in the smeared crack approach, a change in mechanical properties. 

The most serious disadvantage of the discrete crack modeling is the computational cost. 

The method is computing intensive since large numbers of degrees of freedom are 

involved. This problem is more crucial when many cracks are present, like in the case of 

shear wall panels and concrete shells. In such cases of distributed damage, where 

thousands of cracks may be involved, the smeared crack approach is more practical. 

In the next section we wi l l see an applications of interface modeling in conjunction with 

F R C materials. In this application, an assessment of C F R C composites as potential 

candidates for concrete repairs is performed and both linear and nonlinear constitutive 

laws have been used. 

APPLICATION TO FRC MATERIALS 

Concrete structures under severe conditions often start showing symptoms of surface 

deterioration long before the end of their design lifetimes. This could become very 

detrimental to their main reinforcement and to the integrity of the whole structure i f not 

repaired fast and properly. Therefore, proper and timely rehabilitation is a crucial issue 

for preventing further deterioration of such structures. The inadequacy of the present 

repair materials in terms of durability and mechanical behavior renders such a task 

difficult and a new generation of high performance repair materials need to be developed. 

This section presents the evaluation of C F R C (carbon fiber reinforced cementitious 

composites) as potential candidates for such repairs. Both interfacial and bulk properties 

of the material are presented. Addition of fibers leads not only an enhancement in the 

bulk properties of the matrix by the exhibition of pseudo-strain hardening and 

development of a high toughness for high volume fractions of fibers, but also to a 

significant improvement of both the bond strength and bond fracture energy 

requirements, properties which are fundamental to any good repair material. A series of 

finite element analyses have been performed to quantify the major interfacial 
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mechanisms underlying this kind of interface behavior and to predict the debonding 

behavior. 

Overview of durability-related repairs in concrete 
The need for repairs to concrete structures has increased dramatically over the last few 

decades. A disturbing fact is that in many cases the structures have less than 25 years of 

existence especially in the case of structures operating under severe conditions of loading 

and aggressive environments. Once the diagnosis of the damaged structure has been 

made, a choice of the repair material must be made. This choice is based usually on 

which property or combination of properties one wants to restore or improve: 

structural strength, durability, appearance, fitness for use, etc. A n important feature in the 

long term durability of a reinforced concrete structure is the protection of steel 

reinforcement. 

Figure. 6.16. Spoiled concrete beam. 
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A very high percentage of the deterioration which has occurred arises from a failure to 

provide this protection. This paper is intended to deal mainly with non-structural repairs, 

or in other words, repairs which are intended to restore long-term durability, but which 

wi l l not increase to any significant degree the load bearing capacity of the structure. 

While no structure is absolutely maintenance free, large scale deterioration should not 

occur. This is why any repair material is usually required to satisfy the following 

properties: 

/. Impermeability to aggressive liquids and gases in order to prevent or slow down the 

corrosion of the reinforcing steel if present, 

2. Adequate durability in severe climatic conditions, 

3. Ability to bond properly with old concrete and restore structural integrity 

It is usually well accepted that executing a thick repair is easier than a durable thin repair 

tends to debond easily. The inadequacy of the present repair materials in terms of 

durability and mechanical behavior strengthen the need for a new generation of high 

performance repair materials which should mitigate the effects and slow down the rate of 

deterioration. C F R C materials (Carbon Fiber Reinforced Composites) are evaluated here 

as potential candidates for such repairs. But in order to obtain high performance repair 

materials, a clear understanding and quantification of the major mechanisms governing 

the repair material-substrate is needed to guide the optimization procedure. To this end, a 

combination of numerical modeling to experimental measurements should allow one to 

quantify phenomena or mechanisms that would be hard or impossible to access 

experimentally. Furthermore, numerical simulations are usually cheaper and faster than 

the corresponding experiments providing more cost-effective optimization procedures. 

However, it is imperative to realize that numerical analysis is not a substitute for 

experiments since only experimental results allow one to conclude. The present work can 

be divided in two parts. The first part deals with the identification of an overall tensile 

constitutive law of the interface between a concrete substrate and a C F R C repair material. 

This kind of constitutive relations could be useful when assessing the suitability of a 

C F R C as a repair material for a given concrete structure. In the second part, a fracture-
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based finite element analysis has been carried out to quantify the influence of interfacial 

cracking on the overall behavior of the repair composite with and without fibers in the 

system. 

Mechanical properties of CFRC materials 
The use of fibers to strengthen materials which are much weaker in tension than in 

compression goes back to the ancient times. For the purpose of this work, F R C is defined 

as a material made with hydraulic cement, aggregates of various sizes, incorporating 

discrete, discontinuous fibers. Traditionally macrofibers are not added to improve the 

strength, though modest increases in strength may occur [30]. Rather, their role is to 

control the cracking of F R C , and to alter the behavior of the material once the matrix has 

cracked, by bridging these cracks and thus providing some post-cracking ductility, or 

"toughness". 

Over the last few years, active research has been directed toward the development of 

cement-based composites with high volume fraction of microfibers (carbon, steel P V A 

etc.). Under an applied tensile load, these composites display a pseudo-strain hardening 

capability which was not possible in conventional fiber reinforced concrete, and develop 

strengths significantly higher than the parent matrix [13]. Moreover, such composites 

possess significantly improved tensile strengths, tensile strain capacities and toughness. 

In the context of repairs, it is usually desirable that the mechanical properties of the repair 

material resemble as closely as possible those of the structure being repaired. The elastic 

moduli and compressive strengths of F R C materials are not very different from the 

substrate, which makes them desirable for thin repairs [8, 150]. 

The effectiveness of fibers in enhancing the mechanical properties of the brittle 

cementitious matrix is controlled by the process by which load is transferred from the 

matrix to the fiber (before matrix cracking) and the bridging effect across the matrix 

cracks at a more advanced stage of loading. A n understanding of the mechanisms 
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responsible for stress transfer may permit the prediction of the stress strain curve of the 

composite and its mode of fracture (ductile vs brittle) and may also serve as a basis for 

developing composites of improved performance through modification of the fiber-

matrix interaction (changes in the fiber shape, treatment of the fiber surface, etc.). 

In brittle matrix composites, the stress transfer between fiber and the matrix should be 

considered for both the pre-cracking and the post cracking stages. Before any cracking 

has taken place, elastic stress transfer is the dominant mechanism. The longitudinal 

displacements of the fiber and the matrix at the interface are geometrically compatible. 

The stress developed at the interface is a shear stress which is required to distribute the 

load between the fibers and the matrix (since they differ in their elastic moduli) so that 

the strains of these two components at the interface remain the same. 

A t advanced stages of deformation, debonding across the interface usually takes place, 

and the process controlling stress transfer becomes one of frictional slip. Relative 

displacements between the fiber and the matrix take place. The frictional stress developed 

is a shear stress, usually assumed to be uniformly distributed along the fiber-matrix 

interface. This process is of great importance which controls the efficiency of fibers. 

Properties such as the ultimate strength and strain of the composite are determined by this 

mode of stress transfer. The transition from elastic stress transfer prior to debonding to 

frictional stress transfer after debonding is a gradual process. 

Interface Modeling 

The above mentioned mechanisms of fiber reinforcement, which are known to be true in 

the bulk of F R C materials, cannot take place at the interface between an F R C repair 

material and an old concrete substrate, since the latter one is in hardened state and no 

fiber bridging can occur through the interface. A n d yet, previous studies [169] have 

shown that addition of fibers still significantly improves the tensile behavior of the 

concrete-CFRC repair composite. Even though the tensile strength and the tensile strain 

capacity did not improve much with an increase in the fiber volume fraction, the 
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toughness of the repair composite, or more specifically its ability to absorb energy, 

improved in a significant way. 

In order to model the behavior of the interface, use of interface elements has been 

invoked because of their ability to represent and model both geometrical discontinuities 

and material nonlinearities [7]. Even though the nodal interface formulation (lumped) is 

equivalent to the continuous interface formulation (integrated), they lead to different 

element stiffness matrices. 

In this work, emphasis is on 2D (line) elements and a continuous (or numerically 

integrated) interface formulation has been adopted. Linear and nonlinear constitutive 

laws have been used. The constitutive models retained for the interface elements are the 

Normal traction-Displacement models. 

A n examination of the failure pattern of the specimens [7] suggests that the interface 

between the substrate and the repair material is the weakest link in the specimen. 

Addition of fibers to the system has been shown to improve significantly the post peak 

tensile behavior of the repair composite. 

One reason for such an improvement is the reduced initial cracking due to shrinkage 

where the presence of microfibers has been shown to play a major role in the bulk of the 

F R C material. In order to quantify the influence of initiation, propagation and 

coalescence of microcracks on the overall behavior of the repair composite, a series of 

finite element analysis are being performed. 

To account for the presence, weakness and degradation of the interface, interface 

elements are introduce. The interface assumed to be of zero thickness, its presence is 

modeled through the constitutive law of interface elements in terms of normal stress-

displacement and/or shear stress-displacement behavior. 
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Dealing with nonlinear interface models requires a reliable algorithm to determine 

accurate solutions. To this end, the Dynamic Relaxation solver has been adopted due to 

its simplicity and the potential to cope with the nonlinear behavior of materials. 

Smeared A p p r o a c h (Identification of interfacial constitutive laws) 

Assumption: 

All mechanisms leading to the observed behavior of the repair composite can be 

implicitly lumped into the constitutive law of the interface. 

At the microscopic level, these mechanisms could be related to the nucleation, 

propagation and coalescence of microcracks. A n analysis of Figures 6.17 and 6.18 shows 

that the experimental results and the numerical predictions are in very good agreement. 

This leads to the conclusion that the adopted interfacial constitutive laws are fairly 

accurate and that the adopted solver is robust enough to predict with a very high accuracy 

the softening behavior of CFRC-Concrete Repair composites. 

The constitutive laws used for this simulation are: 

Vf=0% (No fibers) 

(Linear elastic then exponential decay) 

Vf=l%. Vf=2% 

(Linear elastic then linear softening) 

8<8, 

8>S, 
mO 

mO i f 

i f 

where 
a '• stress transferred through the interface 

& '• interface opening 

kj: constant of proportionality (/ = 0,1,2) 

a : material characteristic 
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8^ : interface displacement associated with the peak load , i = 

cT; : a - intercept of the softening branch 

a; : slope of the softening branch 

The different values of coefficients retained in this investigation are as follow: 

• Smooth interface: (no surface preparation) 

k0=123, 8mo =0.006, cro=1450MPa, a = -43 

k, =68.5, 5ml =0.012, cr]=1610MPa 

k2 =113.65, Sm2 =0.01, a2 = 2230 MPa 

• Rough interface: (with surface preparation) 

ko = 95, 8mo = 0.004, CT0 = 2600 MPa, a = -25 

k,=85, 8ml =0.012, a }= 2000 MPa 

k2 =76.5, 8m2 =0.016, a2 =2400MPa 

Fracture-based approach 

Even though the smeared approach allows one to make very accurate predictions of the 

overall tensile behavior of the CFRC-Concrete Repair composite, it does not give any 

explanation as to why such a behavior occurs at the interface. What are the major 

mechanisms underlying such a behavior? How does the presence of fibers affect it? 

In an attempt to shed some more light on these questions, another finite element analysis 

has been carried out to evaluate the effect of interfacial cracking between the substrate 

and the repair material on the overall behavior of the repair composite. Since fibers are 

not expected to physically cross the interface, one explanation is the reduced shrinkage 

cracking in F R C materials as compared to the plain counterpart [7]. 
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Fig. 6.17. Direct Tensile behavior of a CFRC Reinforced Repair composite 
(No Surface Preparation) 

Fig. 6.18. Direct Tensile behavior of a CFRC Reinforced Repair composite 
(With Surface Preparation) 
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Assumptions: 

• The actual and complicated system of interfacial microcracks can be replaced by an 

"equivalent" crack along the interface 

• Interfacial behavior: (along all the interface but excluding the crack) 

- Linear elastic (No Strain softening): <r = k(S (i = 1,2,3) 

B y equivalent crack, we mean a crack that would have the same influence on the overall 

behavior of the specimen. A combined numerical-experimental procedure is introduced 

to quantify the effect of cracking on the observed behavior. This procedure consists in 

determining the length of the equivalent crack that would correspond to every point on 

the load-displacement experimental curve, which is provided to the finite element code as 

input. For a given crack length, the algorithm iterates on the displacements until the 

corresponding load is attained while the uncracked portion of the interface remains linear 

elastic. Once equilibrium is attained for the specified point, the crack is extended and 

another point is determined. The smaller the crack increments, the more accurate are the 

crack evolution curves. The properties of the interface away from the crack are 

determined according to the linear response of the material prior to strain softening. The 

constants of proportionality kt retained in this analysis to characterize the interface 

behavior are the same as the ones used in the previous analysis. 

A n analysis of Figures 6.20 and 6.21 suggests that interfacial cracking is the major 

mechanism controlling the response of the repaired specimen and shows how addition of 

fibers and surface preparation positively affect crack formation and evolution at the 

interface. 

Concluding Remarks 

• A n attempt is made to model the behavior of a fiber reinforced cement-based repair 

material through a smeared and a fracture based model. 
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• The smeared model, where all mechanisms leading to the observed behavior are 

lumped into the constitutive behavior of the interface, appears to predict the 

descending branch of the tensile load displacement curve quite well . 

• The numerical-experimental fracture-based approach gives a good quantitative insight 

into the mechanism of interface fracturing in the repaired specimen, thus providing a 

powerful tool for the analysis of experimental measurements. 

• The presence of fibers reduces the total width of the cracking and the rate of crack 

propagation 

Fig. 6.19. An example of the finite element mesh used in the 
fracture-based approach 
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Fig. 6.20. Numerical Prediction of Crack Evolution in the Tensile test 
(With Surface preparation) 

Fig. 6.21. Numerical Prediction of Crack Evolution in the Tensile Test 
(No surface preparation) 
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MICRO-MECHANICAL MODELING 
OF FRC MATERIALS 

INTRODUCTION 
In this section we shall present briefly some experimental observations that reveal the 

most important micromechanical mechanisms underlying the characteristic behavior of 

F R C composites. For a detailed account, the reader is referred to A . Bentur & S.Mindess 

[30] or N . Banthia and S. Mindess [6]. In this work the term F R C refers to any kind of 

fiber reinforced cementitious composite. 

A natural way of describing the response of F R C seems to lie in the idea of considering 

the macroscopic behavior of matter as a consequence of its microscopic behavior (i.e. at 

the scale of heterogeneities). If we admit the validity of such an assumption, it seems to 

be very natural to approach the behavior of such materials by studying friction at crack 

lips and at the fibber-matrix interface, propagation of cracks, fiber pull out... 

Plain concrete is a material that requires reinforcement because of its law tensile strength 

and strain capacities. Historically, continuous reinforcing bars have been used to provide 

that reinforcement by placing them at the appropriate locations in the structure to 

withstand the imposed tensile and shear stresses. On the other hand fibers are 

discontinuous and usually randomly distributed throughout the cementitious matrix. 

Therefore they tend to be more closely spaced, and consequently better at controlling 

cracking. However they are not as efficient in withstanding tensile stresses, even though 

modest increases in strength may occur. The fibers are not added to improve the strength, 

rather, their role is to affect the behavior of the material once the matrix has cracked and 

control the cracking of F R C . This is possible due to the bridging of the fibers across the 

cracks which helps improving the energy absorption capacity of the material. 

The structure of fiber reinforced cementitious materials has a great influence on the 

properties of the composite. Hence, the analysis of these composites, and prediction of 
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their performance in various loading conditions, require the characterization of their 

internal structure. The most important ingredients that must be considered include: the 

shape and distribution of the fibers, the structure of the bulk cementitious matrix, and the 

structure of the fiber matrix interface. 

The fiber reinforcing array can be classified as I D , 2D or 3D depending on their 

dispersion in the cementitious matrices. A n important parameter in controlling the 

performance of the composite is the spacing between the fibers. However the bulk 

cementitious matrix is not significantly different from that in other cementitious 

materials. The vicinity of the reinforcing inclusion in cementitious composites is 

characterized by a transition zone in which the microstructure of the paste-matrix is 

considerably different from that of the bulk paste away from the interface. Several effects 

which should be taken into account with respect to the fiber-matrix bond and the 

debonding process across the interface are exerted by these fiber-matrix interface 

characteristics. The matrix in the vicinity of the fiber is much more porous than the bulk 

paste matrix. The weak link between the fiber and the matrix is not necessarily at the 

actual fiber-matrix interface, it can be at the porous layer as well . 
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The pre-peak tensile behavior of F R C is characterized by the process of microcrack 

propagation in the matrix prior to the formation of a continuous crack system across the 

critical section at the peak load. The process by which load is transferred from the matrix 

to the fibers, and the bridging effect of the fibers across the matrix cracks which occurs at 

a later stage of loading are believed to be the main mechanisms controlling the 

effectiveness of fibers in enhancing the mechanical properties of the brittle cementitious 

matrix. The effects of cracking can be quite different in the precracking case and in the 

post cracking case. Therefore they should be considered separately. Before any cracking 

has taken place, the dominant stress transfer mechanism is mainly elastic, and a 

geometrical compatibility exists between the longitudinal displacement of the fiber and 

the matrix. The stress developed at the interface is a shear stress which is required to 

distribute the external load between the fibers and the matrix so that the strains of these 

two components remain the same at the interface. 

The pull-out action of fibers would be mobilized when a crack tends to widen at a critical 

section; this starts at peak load and tends to dominate the post-peak behavior. A n 

important amount of energy is consumed in the process of debonding and fiber pull-out. 

The pre-peak tensile behavior of S F R C (Steel Fiber Reinforced Concrete) deviates from 

linearity when microcrack propagation has already occurred. The elastic shear transfer is 

the major mechanism to be considered for predicting the limit of proportionality and the 

first crack of the composite. 

At advanced stages of loading, the process controlling stress transfer becomes one of 

frictional slip since debonding across the interface usually takes place. The frictional 

stress developed is a shear stress, and relative displacements between the fiber and the 

matrix take place. The post-peak tensile behavior in S F R C is marked by the opening of 

one crack at the critical section which transfers practically all tensile stresses to the fibers 

bridging the crack. From then on, it is the debonding and fiber pull-out that largely 

provide the post-peak tensile resistance. The matrix residual tensile strength has a 

relatively small effect in the post-peak regime. This process is of greatest importance in 
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the post cracking case. Properties such as the ultimate strength and strain of the 

composite are controlled by this mode of transfer 

The transition from elastic stress transfer prior to debonding to frictional stress transfer 

after debonding is a gradual process during which both processes are present. 

A comprehensive approach to stress-transfer problems requires simultaneous treatment of 

the elastic shear transfer, frictional slip, debonding and normal stresses and strains. 

It has been shown that the tensile behavior after peak strength of quasi-brittle materials 

such as concrete and rock and certain brittle matrix composites reinforced with short 

fibers or whiskers can be represented by a tension softening curve that describes the 

decreasing traction as a function of crack opening displacement and provides an estimate 

for the material's toughness through the area under the curve. Development of the 

fracture process zone and hence the R-curve behavior have been shown to be controlled 

by this softening curve. 

Different fiber types induce different failure mechanisms, leading to different shapes of 

the tension softening curve. In composites with good fiber dispersion, the failure 

mechanism is controlled by fiber pull-out or rupture depending on fiber geometry and 

interfacial bond strength. Such behavior is exhibited by low fiber volume fractions (<2%) 

of polypropylene fibers, and steel fibers. Two major motivations for the development of 

constitutive models relating the microstructural parameters to the mechanical behavior of 

fiber composites: 

guide the optimization of material behavior by tailoring the types and forms of the 

constituent components 

- predict the mechanical response of end products made of such materials 

While pre-peak stress-strain behavior and associated mechanical properties of fiber 

composites together with the post-peak tension-softening behavior have been extensively 

studied [6,30,108], the case of pseudo-strain hardening in F R C materials has not received 

enough attention. 
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It is generally accepted that for F R C s with Vf<2%, the major contribution of the fibers is 

after the matrix strain localization, which occurs around the peak of the tensile stress 

strain curve. However new processing techniques have helped in the manufacture of thin-

sheet products with fiber volume fractions (Vf) as high as 15%. In this type of materials 

fibers not only improve the ductility of the material, but lead to an important increase in 

the strength of the composite. This increase in strength termed strain hardening is 

associated with the appearance of multiple cracking in the specimen which requires a 

higher energy input to open the microcracks: See Figure 7.1 for a typical stress strain 

response of high V f with discontinuous fibers. The response consists of 3 regions: 

I - elastic region (up to matrix cracking) 

JJ - multiple cracking region (up to max. post cracking pt) 

III- Failure region (crack opening localization) 

MODEL DERIVATION 

The previous section shows the difficulty associated with the modeling of F R C 

composites. In an attempt to propose a model for these materials we w i l l consider the use 

a multi-scale approach in two steps. A micro-mechanics based model which allows the 

determination of a stress-crack opening displacement constitutive law for the composite 

after first cracking of the matrix is constructed. The model assumes that deformation of 

the material after matrix first cracking is mainly controlled by the microcrack nucleation 

and propagation even in the pre-peak zone. In a second step the F R C constitutive law is 

implemented in an interface element and used to compute the response of F R C structures. 

Such a procedure captures the essence of F R C materials, on the microscopic as well as on 

the macroscopic scales. 

The multi-scale approach leads one to consider three different scales: 

Microscopic Scale: fiber, matrix and fiber-matrix interface 

- Macroscopic Scale: Scale of structural components or material specimens 
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- Mesoscopic Scale: Intermediate scale between the microscopic and macroscopic 

scales 

B y nature of the problem, there exists an infinite number of mesoscopic scales. It is at 

this level the a choice of a representative volume element of the material is made. 

Transition from the microscopic scale to the macroscopic one is achieved through 

integrating the behavior of the microscopic scale. Since fibers are randomly distributed ib 

orientation as well as in location, we introduce a probabilistic density distribution to 

account for the random distribution of fibers in location and make use of a correction 

factor to account for the random orientation of fibers throughout the matrix. Experimental 

tests suggest that two fundamental mechanisms are behind the observed nonlinear 

behavior of F R C composites: 

Cracking of the cementitious matrix and debonding of fiber matrix interfaces, 

followed by 

- Fiber slippage. 

MICROMECHANICAL MODELING 

STRAIN HARDENING ZONE 

MODEL ASSUMPTIONS 

a- Fibers have a 3D random distribution in location and orientation 

b- Fibers are straight with cylindrical geometry 

c- Fibers behavior: linear elastic 

d- Fiber ruptures when its ultimate strength is reached 

e- Matrix crack is planar 

f- Fiber-Matrix bond: 

g- Average embedment length is — 
4 

elastic prior to debonding 

frictional shear in the debonded area 
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Figure 7.2. Single fiber bridging a matrix crack 

The last assumption implies that the embedment lengths are assumed to be uniformly 

Lf 

distributed between 0 and - j - . A t this stage, the model only predicts the tensile stress-

C O D curve, no assumptions regarding matrix bulk properties are made. Some of the 

above assumptions hold true only for certain fiber types, while others, at best, 

approximate the real behavior. For instance, the model should not be used for fibers 

which undergo extensive yielding prior to rupture. For jce[fl , /] , let us study the 

following free body diagram 

erf + do { 
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Equilibrium of forces together with application of boundary conditions at x = I and x = 0 

cr, = — a c at x = l 
vf 

allows the determination of the debonding length 

l =

 1~vfEHr 1 
vf E 2 x 

and the elastic strain in the fiber is given by 

sAx) = -^—(x-l)zm^ + ° 
1 rEf ™ EfVf 

The crack opening, or the relative displacement of the fiber with respect to the matrix is 

given by 

5= \{sf(x)-em{x))dx 

and can be written under the form 

5 = - cr with l<—!-
Efvf 4 

and consequently the expression of the stress as a function of crack opening for the strain 

hardening regime is given by 

cr = 
2v)EEf r ^ S 

V-Vf)rEm 
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STRAIN SOFTENING ZONE 

a) Case of a single fiber in the loading direction 

A- Assumptions a-fthat have been adopted in the previous model are assumed to be valid 

B- Fiber is assumed to be completely debonded at least on the shortest embedment length 

C- The frictional shear bond strength T(S) between the fiber and the matrix is allowed to vary 

with the slippage distance. 

Figure 7.3. Schematic representation of a fiber pull out 

Assumption C is made in order to account for phenomena such as fiber surface abrasion 

and accumulation of wear debries observed with synthetic fibers and/or breakdown of the 

cement at the fiber-matrix interface due to the stiffness and hardness of the steel fiber 

[107]. The frictional bond is however, assumed to be constant over the entire embedded 

length of the fiber. A s can be seen in Figure 7.4 : 
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r(x) = T[S] for x<lf -8 (inside matrix) 

r(x) = 0 for x>lf-S (outside matrix) 

BEFORE LOADING: 

DURING PULL-OUT : 

P 

Figure 7.4. Pull out analysis of a single fiber bridging a crack 

The x coordinate system in Figure 7.4 is with respect to the undeformed fiber geometry 

(prior to slippage) and is attached to the fiber end. Thus, in the pull out process the origin, 

x=0, w i l l be moving with the fiber so that it can remain on its end. The axial force P(x) at 

a given fiber section is therefore given by 

X 

P(x) = P0 + JT(S)TT df ds 
0 
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where P0 is a constant representing the fiber end anchorage effect when fiber end slips. 

In the case, where P0 is neglected, the pull-out force on a fiber with embedment lf is 

given by 

i,-e 
P(lr8)= \x(8)ndfdt 

x=0 

= r(8) n df (lf - 8) 

It is interesting to note that the graphical representation of this equation would be a 

straight line only i f the shear bond strength r(8) is assumed to be a constant during the 

entire pull-out process. Most previous models in the literature were based on such an 

assumption which usually leads to discrepancies with experimental observations. A 

model in the same spirit of this one [107] has been proposed where the bond strength at a 

given cross section of the fiber is assumed to depend on the displacement of its center, 

including the part due to fiber stretching. In this model an a priori law for the dependence 

of r on the displacement of its application point s is usually assumed and its parameters 

are determined such that the theoretical predictions are as close as possible to their 

experimental counterparts. In the model proposed here, which assumes a constant bond 

strength for a given slippage distance 8, the theoretical prediction can be chosen as close 

as desired, provided one chooses enough identification points, where the model and the 

experiment are forced to have the same results. The accuracy of this identification leads 

to the accuracy of the shear bond strength variation with fiber slippage. 

b- Case of a cracked cementitious composite 

Based on the above described fiber pull-out representation, a model is developed here for 

approximating the case of stress transfer across a crack in a cementitious composite 

containing short and randomly distributed fibers in both location and orientation. To this 

end the effects of fiber embedment length and fiber orientation have to be accounted for. 
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EFFECT OF EMBEDMENT LENGTH AND INCLINING ANGLE 

To take into account the effect of fiber embedment length we assume that these fibers 

follow a random uniform distribution given by 

p(lf) = — with lfe[0,Lf/2] 
Lf 

This distribution assumes that the fiber embedment lengths are uniformely distributed 

between 0 and Lf/2. Thus, the number of fibers dN located at z to z+dz bridging across 

the crack may be calculated from 

dN = N, p(lf) dlf for lf e [(9, Lf j2\ 

where JV, is the total number of fibers in the matrix of volume AcLf which contains 

fibers bridging the matrix crack plane of Area Ac. Consequently, 

total fiber volume ALfvf A„ 
Nt= - = c f f =—vf 

volume per fiber L/Af Af 

where Af denotes the fiber cross-sectional area and v / the fiber volume fraction. The 

load transmitted across the crack through all fibers having embedment lengths lf when 

the slippage distance is equal to S 

SF(lf,S) = P{lf,5)dN 

2Ayf 

= —^-LP(lf,S)dlf 

AfLf 

Thus the total load transmitted by all fibers ridging the crack is given by 

h 
——s 

F{8)= \SF{lf,5) 
/ / = o 
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Consequently, the total load transmitted by all fibers across the crack can be evaluated as 

a function of 8 

F 2 v 

A, L, A 

-i-S 2 

JV(s) n df (lf - 8) dlf 

crc(8) = ̂ ^-T(8)n df [L2

f - 8 L , 8 + 1282] 
kf Lf 

It is interesting to note that, even in the case where the frictional shear bond strength r is 

a constant (does not depend on 8), the transfer of stress across a crack in the composite 

is not a linear function of the crack opening. 

In a random distribution of fibers, only a fraction of the volume of fibers bridging the 

crack are actually parallel to the load direction, and many fibers contributing to 

enhancing the tensile strain and stress capacities bridge the crack at an angle with respect 

to the crack flanks. 

Figure 7.5. A fiber bridging a matrix crack at an angle 
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E F F E C T O F F I B E R I N C L I N A T I O N : 

The probability density function, p(0), corresponding to a 3D random orientation of 

fibers is given by 

p(0) = Sind 

This density function is derived by assuming that a fiber or its extension has an equal 

likelihood of crossing any point on a hemisphere centered at the point where the the fiber 

intercepts the crack. The stress transmitted through a fiber with angle 9 with respect to 

the loading direction is given by 

CT(8,9) = CT{8)COS26 

Thus, the stress transmitted through fibers with orientation 0 to 0 + d0 is given by 

dcrc(8,0) = crc(8)Cos20 p(0)d0 

and the total stress transferred across the crack can be obtained as 

crc (8,0) = | c r c (8) Cos20 p(0) d0 
0 

«/2 
= crc(8) \Sin0Cos20d0 

0 

erc(8) = f— T(8)xdf df [L2

f -SLf 8 + \282] 
3 A , Lf J J J J 

S U M M A R Y 

1- Linear Elastic Zone 

2- Strain Hardening Zone 

E = Emvm+Ef vf 

m m J J 

CT = 
2vl EE, T 8 

/ / max 

3- Strain Softening Zone 

16v 
<JC(8) = f—r(8)7tdf df [L 2, -SLf 8 + \282] 

3 A , L , 
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EXPERIMENTAL PROGRAM 

This program has been established for the double purpose of model identification and 

validation in the case of carbon fiber reinforced cementitious composites. Only the direct 

tensile test data are needed for the identification of the above described micromechanical 

model, whereas, both compression and direct tension tests are used to identify the 

parameters appearing in the continuum damage mechanics model. The bending tests 

presented here, together with other results relative to a double cantiliver beam [62] and 

plates under central loading [14], have been used for model validation by comparing the 

model's predictions to the experimental results. 

Two lengths (3mm and 10mm) of pitch-based carbon micro-fibers have been used in this 

investigation. Characteristics of these fibers along with the mix proportions are given in 

Table 7.1. 

Carbon Fiber 
Fiber Type Diameter 

(fjm) Specific Gravity Tensile Strength 
(MPa) 

E 
(GPa) Carbon Fiber 

Pitch-based 18 1.7 590 30 

Mortar W/C S/C SF/C 
Lf = 3 mm 0.35 0.5 0.2 

Lf =10 mm 0.35 1 0.15 

Table 7.1. Mix proportions and fiber characteristics 

Only Portland cement of type 10 has been used along with aggregates having a maximum 

size of 2.38 mm. These aggregates have been used as delivered with no particular pre-

treatment. Carbon fibers have a uniform cylindrical shape. Various fiber volume fractions 

have been incorporated into the mixes. For fiber length Lf =3mm, 0%, 3%, 5% and 7% 

fiber volume fractions have been used, whereas for Lf =10mm, 0%, 2%, 3% and 5% 
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have been used. Since we are dealing with high fiber volume fractions (V. > 1%) of very 

fine fibers and hence very high surface area, silica fume has been used as a dispersing 

agent and considerable amounts of superplasticizer (more than 3% by weight of cement 

in the case of Vf > 7%) have been incorporated into the mix. Use of the omni-mixer has 

greatly facilitated a uniform mixing and dispersion, especially in the case of the short 

fiber length (Lf =3mm). For volume fractions as high as 7%, the mix was very uniform 

with very good fiber dispersion suggesting that in the case of Lf =3 mm, even higher 

volume fractions could be achieved, whereas in the case of Lf = 10 mm, carbon fibers 

started to ball and show a non uniform dispersion at a volume fraction of 5%. 

To avoid microcracking due to plastic shrinkage, molds are covered with a plastic 

material and kept in the moisture room. After 24 hours, the specimen were demolded and 

put into water for one year. So the results presented in this chapter are relative to a one 

year old C F R C specimens. 

Direct Tensile Test 

2.5 I 
[cm] 

•CT 
19.5 

Figure 7.6. Shape and dimensions of the specimen 

• I 

In order to force cracking to take place in the central area of the specimen and away from 

the grips, the reduced section specimen shown on Figure 7.6. has been adopted. This way 

failure takes place in an area of uniform stress where the L V D T ' s have been placed to 

measure the displacement of the specimen (see Figure 7.7). The acquisition system is 
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composed of a micro-computer connected to a 2 K N load cell and two L V D T ' s recording 

the displacement and load values. The readings of the two 5mm L V D T ' s are later 

averaged to avoid possible disturbances due to the rotation of the specimen. The tests 

were performed at a loading rate of 0.1 mm/mn to simulate quasi-static loading 

conditions under displacement control. The displacement control of the loading is 

necessary in order to obtain the strain softening response of the specimen. 

The direct tensile test is one of the most difficult tests to carry and hence requires a lot of 

care during test preparation. Among the most important problems related to this test, one 

can mention 

Alignment of the specimen is difficult 

Correct positioning of the L V D T ' s 

Slippage at the grips 

As can be seen on Figure 7.8, there is a significant increase in both the strength and strain 

capacities as the fiber volume fractions become higher. A summary of the main results is 

presented in Table 7.2. 
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Figure 7.8. Stress-Strain Curves in Uniaxial Tension 

For Lf =3 mm and L , = 10 mm 
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Lf - 3 mm Peak Stress 
(MPa) 

Peak Strain 
(%) 

Tensile Test 

Vf=0% 3.48 0.031 

Tensile Test 
Vj=3% 4.50 0.082 

Tensile Test 
Vf=5% 5.61 0.11 

Tensile Test 

Vf=7% 6.99 0.14 

Lf = 10 mm Peak Stress 
(MPa) 

Peak Strain 
(%) 

Tensile Test 

Vj=0% 3.34 0.035 

Tensile Test 
Vf=2% 4.10 0.11 

Tensile Test Vf=4% 5.04 0.14 
Tensile Test 

Vf=5% 5.78 0.16 

Table 7.2. Effect of fiber volume fraction on the tensile behavior 

BENDING T E S T 

One of the simplest ways of studying fracture in CFRC materials is in flexure. The 

specimen sizes along with a schematic representation of the test setup are summarized on 

Figure 7.9. 

300 mm 

Figure 7.9. Schematic representation of the test setup 
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The test has been carried out in the Instron machine where an L V D T has been 

instrumented under the beam at mid-span. The L V D T has a maximum displacement of 5 

mm. The data acquisition system is composed of a computer connected to the L V D T and 

a 150 K N load cell, hence allowing the recording of both displacement as measured by 

the L V D T and load as measured by the load cell. A loading rate of 0.1 mm/mn has been 

used to simulate quasi-static loading conditions. 

The load displacement curves for the composites previously characterized in uniaxial 

tension are given on Figure 7.10. Four specimens have been used to estimate the bending 

response, as described in Figure 7.9, for each fiber length and fiber volume fraction of the 

F R C beams. A summary of the results is presented in Table 7.3. 

Lf = 3 mm Peak Load 
(KN) 

Peak 
Displacement 

(mm) 

Bending Test 

Vf=0% 350.072 0.331 

Bending Test 
Vf=3% 416.274 0.905 

Bending Test 
Vf=5% 464.451 1.239 

Bending Test 

Vj=7% 520.342 1.274 

Lf -10 mm Peak Load 
(KN) 

Peak 
Displacement 

(mm) 

Bending Test 

Vf=0% 350.318 0.342 

Bending Test 
Vf=2% 361.845 0.540 

Bending Test 
Vj=4% 461.276 0.867 

Bending Test 

Vj=5% 427.438 1.223 

Table 7.3. Effect of fiber volume fraction on the bending behavior 
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Figure 7.10. Load deflection Curves for 3 point Bending Test 
For Lf =3 mm and L , = 10 mm 
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COMPRESSIVE TEST 

Load cell 

LVDT holder 

LVDT 

Steel plate 

Figure 7.11. Schematic representation of the compressive test set up 

50 mm x 100 mm cylindrical specimens have been tested under quasi-static compressive 

loading conditions. This test has been used for the identification of the parameters 

appearing in the scalar variable continuum damage mechanics model presented in chapter 

4. 

The acquisition system is composed of a micro-computer connected to a 300 KN load 

cell and two LVDT's recording the displacement and load values. The readings of the 

two 5mm LVDT's are later averaged to avoid any possible local disturbances on the 

deformation of the specimen. The tests were performed at a loading rate of 0.1 mm/mn to 

simulate quasi-static loading conditions under displacement control. The displacement 

control of the loading has been adopted in order to capture the strain softening response 

of the specimen. 
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Results of this test are summarized in Table 7.4 and Figures 7.12 and 7.13. It is 

interesting to notice that unlike the case of the tensile response, the compressive strength 

of the CFRC materials investigated in this study did not increase in any significant way 

as the fiber volume fraction increases. Moreover, a decrease in the compressive strength 

has been noticed beyond a certain fiber volume fraction threshold. This threshold has 

been identified as being Vf = 7% for Lf = 3mm and Vf = 5% for Lf =10mm. The pseudo-

ductility exhibited by the carbon fiber reinforced cement composites investigated in this 

study has not been observed to improve in a significant fashion as higher fiber volume 

fractions are incorporated into the mix proportions. 

Lf = 3 m m Peak Stress 
(MPa) 

Peak 
Displacement 

(%) 

Compressive 
Test 

Vf=0% 41.276 0.66 

Compressive 
Test 

Vf=3% 39.342 0.759 Compressive 
Test Vj=5% 40.362 1.171 

Compressive 
Test 

Vf=7% 39.341 0.837 

Lf = 10 m m Peak Stress 
(MPa) 

Peak 
Displacement 

(%) 

Compressive 
Test 

Vj=0% 36.704 0.448 

Compressive 
Test 

Vf=2% 32.317 0.801 Compressive 
Test Vf=4% 32.319 0.803 

Compressive 
Test 

Vf=5% 28.079 0.924 

Table 7.4. Effect of fiber volume fraction 
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Figure 7.12. Stress-Strain Curves for Lf = 3 mm 
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NUMERICAL IMPLEMENTATION 

AND VALIDATION 

NLFM-BASED PREDICTIONS FOR FRC STRUCTURES 

The micromechanical models developed in the previous chapter are used here to predict 

the complete behavior of C F R C made structural components. To illustrate the combined 

use of a numerical analysis scheme for discrete cohesive crack modeling and the 

micromechanical constitutive laws for C F R C materials, the responses of a three point 

bending beam and contoured double cantiliver beam have been analyzed. The analysis, 

was able to predict the entire response up to ultimate failure of the specimens accounting 

for the effect of the fiber volume fraction as well as the type of fiber. The simulations 

were performed for two fiber types (pitch-based carbon microfibers and steel 

microfibers) and three volume fractions of fibers (vf=l%, 2%, and 3%). The crack path 

being known a priori in both cases, interface elements simulating cohesive cracks, have 

been introduced along the expected crack path. This has the advantage 

- of avoiding the explicit use of a stability criterion during the analysis 

- avoids remeshing as the crack propagates 

gives accurate predictions with a relatively low number of degrees of freedom. 

The main disadvantage of this approach is that, it can be used only when we have a 

previous knowledge of the crack path, which is the case in the two examples presented 

here. Since the simulation was related to the entire response, and therefore the 

performance of the F R C specimens up to failure, a displacement control scheme has been 

used to pilot the numerical test. This is the case, because a load controlled scheme would 

not be able to detect the strain softening exhibited by F R C composites in their post-peak 

behavior. To this end, the dynamic relaxation solver introduced in chapter 6, has been 

used again to solve the boundary value problem at hand. 
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BEAM BENDING 

A 3 point bending test has been carried out with high volume fractions of pitch-based 

carbon microfibers incorporated in a mortar matrix. Two fiber lengths were used (3 mm 

and 10 mm). 

300 mm 

Figure 8.1. Geometry and boundary conditions for the three point bending test 

A linear elastic stress analysis is performed in a first stage. This allows one to determine 

the most critical zones and the direction of the principal tensile stress. Once this 

information is available a series of nonlinear interface elements are inserted along the 

expected crack path. This information could be available from theoretical considerations 

or simple examination of failure patterns of tested specimens. Indeed i f there is strong 

experimental evidence that the crack path follows a certain curve or direction it is 

perfectly natural to force the crack to follow such a path without paying too much 

attention to the various criteria for determining the direction of propagation. 

Unfortunately, in many practical situations such an information is not available and 

propagation criteria still have all their usefulness. A s mentioned earlier, the presence of 

the nonlinear interface elements simulating the effect of fibers bridging the crack wi l l 

automatically open according to the cr(w) stress-COD constitutive law which is 

equivalent to a crack opening and propagation. 
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Lf =3 mm Peak Load 
(KN) 

Peak Displacement 
(mm) 

Experimental 

Vf = 3% 416.274 0.905 

Experimental Vf = 5% 464.454 1.239 Experimental 

Vf = 7% 520.343 1.274 

Model 

Vf = 3% 445.476 0.875 

Model Vf=5% 503.944 1.227 Model 

Vf =7% 549.884 1.282 

Lf = 10 mm Peak Load 
(KN) 

Peak Displacement 
(mm) 

Experimental 

Vf=2% 361.845 0.540 

Experimental Vf = 4% 461.276 0.867 Experimental 

Vf=5% 427.438 1.223 

j Model 

Vf=2% 375.283 0.507 

j Model Vf = 4% 473.927 0.622 j Model 

Vf = 5% 424.036 0.922 

Table 8.1. Comparison between model predictions and experimental results 
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Figure 8.3. Experimental results versus numerical predictions for Lf=3mm 
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Figure 8.4. Experimental results versus numerical predictions for Lf=10mm 
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4 

COUNTOURED DOUBLE CANTILIVER BEAM 

The 300 mm shown in Figure 8.5 (Banthia and Genois 1995), has been selected in order 

to assess the effectiveness of two types of fibers on the overall performance of the F R C 

composite. Pitch-based carbon microfibers as well as steel microfibers have been 

incorporated into the composite mixes Genois (1995). The test consisted in propagating a 

crack in a pre-notched specimen while recording the load required to open the crack and 

the corresponding displacement of the loading points. A wedge is driven between two 

pairs of wheels to split the specimen into two halves. The experiment is performed in 

displacement control. 

Figure 8.5. Specimen geometry and a schematic of the loading procedure 
(after Genois [62]) 
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Before a cohesive crack analysis is performed, a linear elastic stress analysis is performed 

to obtain the location and direction of the maximum tensile stress. This is usually a good 

indication about the area where a crack is likely to nucleate and/or propagate. Due to the 

symmetry of our specimen and strong evidence from experimental tests, the path of the 

major propagating crack is along the symmetry line of the specimen. Thus interface 

elements have been introduced along the crack path to simulate a cohesive crack 

propagation. The effect of the fiber type and volume fraction is accounted for through its 

specific CT(VV) constitutive law as presented in chapter 7. 

Figure 8.6. Numerical prediction of the crack growth at an intermediate stage 
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Steel fiber - Cement Paste Peak Load 
(N) 

Peak Displacement 
(um) 

Experimental 

Vf = 1% 1186.59 87.728 

Experimental Vf = 2% 1485.51 131.593 Experimental 

Vf = 3% 1884.06 167.06 

Model 

V, = 1% 1313.41 79.985 

Model Vf = 2% 1585.14 130.026 Model 

Vf = 3% 1992.75 142.559 

Table 8.2. Comparison between model predictions and experimental results 
(Steel fiber-Cement paste) 

Steel fiber - Mortar Peak Load 
(N) 

Peak Displacement 
(um) 

Experimental 
Vf = 2% 1616.07 97.488 

Experimental 
Vf = 3% 2125.01 155.023 

Model 
Vf = 2% 1651.79 84.703 

Model 
V, = 3% 2312.50 151.826 

Table 8.3. Comparison between model predictions and experimental results 
(Steel fiber - Mortar) 
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Figure 8.7. Numerical Prediction VS Experimental results 
(Steel fiber-Cement paste) 
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Figure 8.8. Numerical Prediction VS Experimental results 
(Steel fiber-Mortar) 
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Carbon fiber - Cement Paste Peak Load 
(N) 

Peak Displacement 
(urn) 

Experimental 

Vf =1% 1337 163.061 

Experimental Vf = 2% 1684.98 310.29 Experimental 

Vf = 3% 2106.23 351.45 

Model 

Vf = 1% 1419.41 128.232 

Model Vf=2% 1813.19 240.633 Model 

V,=3% 2274.9 301.544 

Table 8.4. Comparison between model predictions and experimental results 
(Carbon fiber-Cement paste) 

Carbon fiber - Mortar Peak Load 
(N) 

Peak Displacement 1 
(urn) 

Experimental 

Vf=l% 1675.72 157.859 | 

Experimental Vf = 2% 2010.87 197.722 Experimental 

Vf = 3% 2318.72 301.367 

Model 

Vf =1% 1784.40 132.346 

Model Vf=2% 2137.68 172.21 Model 

Vf = 3% 2841.88 234.396 

Table 8.5. Comparison between model predictions and experimental results 
(Carbon - Mortar) 
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Figure 8.9. Numerical Prediction VS Experimental results 
(Carbon fiber-Cement paste) 
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Figure 8.10. Numerical Prediction VS Experimental results 
(Carbon fiber- Mortar) 
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A COMBINED CDM-NLFM APPROACH 
From our previous chapters it is tempting to consider continuum damage mechanics and 

fracture mechanics as two correlated theories. The equivalence between the two 

approaches can be established i f one considers the situation where damage is equal to one 

at a material point, or in a small region defining the size of an initial flaw in the theories 

of fracture. Physically, this usually is related to the occurrence of strain softening, most 

of the time associated with the transition from a diffused damage of microcracks, in the 

case of cementitious materials, to localization into one macrocrack. A s we saw in chapter 

4, the local version of damage mechanics has been shown to be inadequate to describe 

this advanced stage of loading. Among the major problems that have been faced with the 

numerical implementation of such models is the fact that failure occurs without 

dissipation of energy. Indeed, damage models predict that the dissipated energy density is 

finite at each material point, but i f damage localizes into a region of zero volume, the 

total amount of energy dissipated to a crack viewed as a line along which damage is equal 

to one at each material point, vanishes. Most fracture theories use energy considerations 

or quantities as crack propagation criteria. Consequently, there is a major inconsistency 

between fracture mechanics which assumes that this quantity is finite and greater than 

zero, and classical damage theories which predict that this same quantity is zero. 

On the other hand, progressive cracking, is usually introduced in fracture mechanics as 

cohesive zone along the crack lips which results in the so-called fictitious crack models. 

This is actually a way of lumping the volume distribution of microcracks into a surface 

[57], and the equivalence between damage and fracture is obtained through energy 

considerations: the energy dissipated during fracture is equal to the work of the pressure 

introduced on the crack surfaces. Since the fracture process zone is collapsed into a line, 

the distribution of damage in this zone cannot be obtained and this approach is inadequate 

if one is interested in predicting the size and shape of a diffused damage. 

A bridge between damage mechanics and fracture mechanics theories can be established 

in a consistent way through nonlocal damage models or gradient dependent theories. 
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Choice between the gradient-type theories making use of higher gradient of relevant 

variables and nonlocal theories where some variables are made dependent on what is 

happening in an entire neighborhood surrounding a given material point, is most of the 

time a matter of preference of the model builder. Use of higher order theories usually 

leads to the introduction of "nice" (although of higher order) differential equations, 

whereas use of nonlocal theories yields integrodifferential equations. Physically, the two 

approaches are still expected to yield the same finale solution. Nonlocal damage theories 

have solved the problem of spurious mesh dependency due to damage localization and 

have the capability of capturing the diffused deterioration of materials and predicting the 

complete response of a specimen or structural member up to failure. 

Even though CDM-based and fracture theories are usually applied to the same problems 

and expected to yield similar predictions, it is physically more appealing or more realistic 

to use damage mechanics when dealing with pre-peak response where no major initial 

flaw is supposed to exist until peak load where usually the material has undergone some 

deterioration and flaws become apparent. Once the damaged areas have been identified 

and quantified, equivalent crack-like flaws can be introduced into the structure and the 

concepts of fracture mechanics can be invoked to resume the response of the specimen or 

structural component up to ultimate failure. This is physically more sound, since after 

peak load the response of a given structure is usually controlled by the opening and 

propagation of a major crack rather than a diffused damage. This idea of combining the 

two theories is illustrated in this section through the prediction of the complete response 

of a fiber reinforced double cantiliver beam. Similar results have been performed in the 

previous section performing a pure numerical N L F M approach. A theoretical justification 

for the connection between the two approaches is provided here in the framework of 

thermodynamics for the simple case of linear elasticity. 

BRIDGE BETWEEN DAMAGE AND FRACTURE 

A unified framework for presenting damage and fracture is provided by the 

thermodynamics of continuous media [ 1 0 2 ] , since this theory deals with energetic 

considerations, which allow a consistent link between local damage variables and global 
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fracture variables. These considerations are usually based on a particular choice of the 

free (reversible) energy stored in the material during the deformation process. The state 

equations are deduced from the free energy defined as 

<F = U-TS 

where U is the internal energy, T temperature and S the entropy. For a given state of 

damage D, the strain energy of an elementary volume element and its associated specific 

free energy are given by 

U =~^Cijkl£ij£kt 

i// = u-Ts 

where Cj]kl is the local stiffness matrix at a given state of damage and stj is a component 

of the strain tensor. If a structural component or a finite continuum is subjected to a load 

Q, the strain energy, associated with the damaged and/or cracked material, stored in the 

entire body is given by 

U=-Kq2 

2 

where K is the global stiffness and q the displacement corresponding to the applied load 

Q. In the simple case of linear elasticity and isotropic damage, the relationship between 

the current stiffness matrix C°u and the initial stiffness of the undamaged material Cfjkl is 

given by 

C°t=C°kl(l-D) 

Assuming a constant and uniform temperature the state laws for the damaged and cracked 

bodies are respectively given by: 

The damaged material 

^=f^- = C°kl{l-D)ekl 

dD 2 1 1 
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The cracked structure 

dW 

dq 

„ dW I 2 dK 
G = = —q — 

dA 2 dA 

Wher e A is the actual area of the crack and -G is the fracture energy release rate. A s we 

saw in chapter two, the first and second principle are respected i f the Clausius-Duhem 

inequality is satisfied. For the two cases in which we are interested, this inequality yields 

YD>0 

GA>0 

-CIIU sa shlD>0 

L2< dA J 

Noticing that K is a quadratic form and that K decreases when the fractured surface A 

increases, these equations lead to 

D>0 

A>0 

Clearly showing that irreversibilities correspond to increase in either diffused (damage 

mechanics) or localized damage (macrocracking in fracture mechanics). When a cracked 

concrete structure is subjected to loading, the applied load results in an energy release 

rate Gq at the tip of the effective quasi-brittle crack that could be split up into two parts: 

i- the energy rate consumed during material fracturing in creating two surfaces, G[c and 

ii- the energy rate to overcome the cohesive pressure CT(VV) in separating the surfaces, Ga. 

G =G, +G 
q Ic a 

(5.22) 

According to its definition, the value of Ga can be computed as follows 

dxdw (5.23) 
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where CT(W) is the normal cohesive pressure and wc is the crack separation 

corresponding to cr(w) = 0 . In the case where the crack opening profile (shape) does not 

depend significantly on the crack length, the above equation becomes 

Ga = %'a(w)dw (5.24) 

Eq. (5.22) is a general energy balance condition indicating that for quasi-brittle 

fracturing, the energy release rate due to the applied load Gq is balanced by two fracture 

energy dissipation mechanisms. 

A bridge from damage mechanics to fracture theories can be established by defining the 

way of transforming a given damage zone into an equivalent crack. Assuming that the 

equivalent infinitesimal crack extension dA of a crack to a given damage increment dD(x) 

at point x is given by 

^YdD(x)dx 
dA = 

where V is the volume occupied by the damaged zone. For the total evolution of damage, 

from D(x) = Do=0 to Dj(x) >0 at point x, the equivalent crack is 

^ ' ( X ) Y dD(x)dx 
A e = G 

i 

A e denotes the crack, the growth of which would have consumed the same energy as the 

energy consumed during damage propagation in the structure. To illustrate, this 

combined C D M - N L F M approach, the case of the contoured double cantiliver beam has 

been reconsidered in this section. Figure 8.11.bis, shows that the numerical predictions 

agree fairly well with the experimental results. In conclusion it is interesting to keep in 

mind, that C D M approaches do not assume the presence of any pre-existing flaws and 

can help identifying areas where cracking is likely to occur setting the stage for a fracture 

analysis after peak load which is usually a more appropriate approach once microcracks 

have localized into a given major crack. 
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A. = 

True Crack Interface Elements 

Figure 8.11. Schematic representation of the CDM-NLFM 
equivalence 
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(b) 
Figure 8.11.bis. Numerical Prediction VS Experimental results 

for Carbon fiber- Mortar and steel fiber-Mortar mixes 
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ON THE OVERALL BEHAVIOR OF FRC MATERIALS 
As we saw in chapter 2, the macroscopic behavior of a damaged material may be 

completely known once the specific Helmholtz free energy y/ and the damage evolution 

laws D are known. Indeed, given the specific free energy 

y/ = y/(eij,T,Dij) 

one can compute the associated thermodynamic forces and the stiffness tensor 

dy/ 

des, 

s = -
dy/ 
~8T 

dy/ 
5D, 

cm = P 
a y 

dei}dsa 

The rate of change of the internal state of the solid is governed by the damage evolution 

equations as independent equations of evolution for every internal damage variable (6). 

D. = D (e ,T,D ) 

Another alternative for writing the kinetic equations describing damage evolution may be 

as derivatives of a suitably chosen potential function [141], making use of the generalized 

normality postulate. The Clausius-Duhem inequality which ensures that the first and 

second principle of thermodynamics are satisfied leads to 

Y.D.. >0 
IJ IJ 

Up to this point we have been dealing with phenomenological continuum damage models 

which do not reflect explicitly any of the dissipative or energy transfer taking place at the 

mesoscale since they do not account for the specific arrangement and organization of 
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damage entities. However, they are still able to predict the macroscopic stiffness in a 

rather accurate way. In a micromechanics-based formulation, on the other hand, damage 

variables are chosen in such a way that the most important aspects of damage 

morphology are explicitly incorporated into the model. Among the many damage 

descriptors that have been proposed in the literature one can mention the second rank 

tensor proposed by Kachanov [91] for the characterization of deterioration due to 

cracking 

7 M 

=̂TEfli>»«(8XB) (1Q) 
a=l 

where A is the area of the 2D R V E , a index denoting the number of the crack under 

consideration (0 <a <M ), M being the total number of cracks, n ( a ) t he unit vector 

normal to crack number a, a is the half length of crack a. Similar damage variables 

have been developed to account for different mechanisms taking place in a whole variety 

of single phase materials and composites [1,158,161, 162] A major shortcoming in this 

approach, resides in the fact that macroscopic damage variables obtained through a 

spatial average of individual damage entities, assumes that damage is uniformly 

distributed throughout the R V E . This reprents a serious limitation in formulating damage 

evolution laws that include sub-RVE length scale interaction effects. The nonlinear 

response of engineering materials depends on the type, size, distribution and orientation 

of microdefects in the materials. With an increasing load, microdefects in a material 

evolve, and the effects of interaction among the microdefects become dominant, 

governing the macroscopic failure. Hori i ' s theoretical work, based on micromechanics, 

has revealed that the dominant mechanism of localization is the effects of interaction 

among microdefects. Practically, the damage growth kinetic equations are usually 

postulated based on empirical evidence or computational suitability. A number of 

simplifying assumptions to make the problem tractable are often made. These have 

usually the inconvenient of restricting the validity of the analysis to the dilute damage 

case under a single specific type of loading. In an attempt to estimate some of the effects 

of the simplifying assumptions on the determination of effective moduli and damage 
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evolution in classical closed form homogenization techniques a numerical analysis is 

performed in this section. 

Figure 8.12. Numerical visualization of the main difference 
between dilute and interacting cracks in an RVE 

The effect of initial crack patterning on the RVE-effective stiffness and thermodynamic 

force associated with the chosen damage variable has been investigated through 

parametric studies for a number of periodic crack distributions of parallel cracks in a two-

dimensional case. Both brittle and fiber reinforced cementitious materials have 

considered. Overall moduli and thermodynamic forces associated with damage were 

calculated at each damage increment within a numerical simulation of evolving cracks. 

The aim of this section is an attempt to illustrate 

the effect of the relative size of cracks length with respect to the RVE size on the 

effective stiffness and thermodynamic forces. 

The inability of a low-order damage measures to capture the difference between 

crack distributions that yield markedly different global behaviors. 
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A.schematic representation of a typical R V E used in the numerical study is shown on 

Figure 8.13. where a distribution of traction free or cohesive cracks parallel to the x, 

direction in a R V E consisting of a linearly elastic, homogeneous, isotropic matrix is 

presented. The traction-free cracks were used to simulate the case of unreinforced 

matrices, whereas the cohesive cracks were introduced to account for the presence of 

fibers in the cementitious composite. Periodic boundary conditions were applied to 

simulate a repeating mesostructure. It is interesting to note that periodicity of the R V E 

does not necessarily mean periodicity of inclusions distribution within the R V E . One can 

easily immagine the genesis of a macroscopic material by joining together a large number 

of R V E ' s containing randomly distributed defects or inclusions. A displacement u2 was 

applied in the x2 direction to the upper R V E boundary. Crack whose propagation 

criterion is satisfied are extended in a self-similar manner. The propagation criterion is 

K, = KIC for traction-free cracks 

(Tj = ft for the cohesive case, with CT; being the tensile principal stress and ft the 

tensile strength of the material 

The effective moduli and damage thermodynamic force together with local driving 

forces, were computer at each stable damage configuration. 

Damage distribution is characterized by the crack density tensor in equation (10) which 

gives a typical low order damage representation [92]. For the particular configuration 

considered in this study, this tensorial damage tensor has only one non-zero component 

given by 

7 N 

D = D 2 2 - - E«, 
j=l 

and the damage thermodynamic force, also has only one non-zero component, 

oD22 
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A n expression for Young's modulus E2 in the x2 direction can be derived using Hooke's 

law for orthotropic media and associated symmetry properties [102] to yield 

(15) e22 E2 -a22 E2+v0 E0G22 =0 

where E0 and v0 are the initial Young's modulus and Poisson's ratio. e22 and a22 are the 

average normal strain and stress, acting on the R V E boundary in the x, direction. 

Figure 8.13. A typical RVE prior to strain localization 

Continuous damage evolution in a damaged R V E may be numerically simulated through 

a sequence of N steps of damage increments associated with N+l stable damage states, 

DU), where i=0, ,N. Each stable damage state, DU), has a strain energy density 

threshold, W0), necessary for damage evolution to take place under a given load. If the 

strain density is chosen to be the thermodynamic potential, then equation (14) can be 

approximated using the three-point formula [79] 

y(0 _ 
D (>+/) •D (i-I) 

(16) 
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where i denotes the i' stable damage state, Y the damage thermodynamic force. Two-

point formulas analogous to Equation (16) can be used to evaluate YU) and 7 ( J V ) [79] 

Equations (15) and (16) may therefore be used to compute the averaged modulus and the 

damage thermodynamic force. 

Uniformly distributed crack patterns are used to illustrate the effect of the relative 

distribution of crack lengths on the effective moduli and damage thermodynamic force. 

Figure 8.14 shows three uniform crack distributions over the R V E consisting of one, four 

and sixteen cracks, respectively. Each distribution has the same initial normalized 

horizontal and vertical spacing between neighboring cracks, whereas the initial crack 

length of the second and third are about Vi and lA of that of the first configuration. 

Figure 8.15 reveals that, whereas the evolution of the normalized stiffness E2/E0 is 

practically the same for all configurations over the entire range of damage variation, the 

damage thermodynamic force is different for each case. A s can be seen on Figure 8.17, 

the normalized thermodynamic force, Y/YREF , necessary for damage evolution decreases 

as the characteristic crack size of the distribution increases, where Y is the damage 

thermodynamic force and YREF is the thermodynamic force associated with the initial 

damage (crack density) shown in pattern HI chosen as a reference. Despite the difference 

in the value of the normalized damage thermodynamic force, the three configurations 

show a similar tendency in that, YJYREF decreases rapidly with increasing damage, then 

assumes an asymptotic value which is crack size dependent. This might be caused by the 

increasing interaction between parallel cracks as they evolve within the R V E . A physical 

interpretation of the aforementioned results could be achieved i f the damage 

thermodynamic force is thought of as the critical energy threshold per increment of 

damage that must be exceed for deterioration to occur. Recall that in chapter 4, the 

thermodynamic force associated with the continuum scalar damage variable has been 

shown to play the equivalent role of the critical strain energy release rate in fracture 

mechanics. Having this analogy in mind, one could say that configurations with larger 

cracks reach a critical value and evolve at lower load levels and lower strain energy 
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release rates than configurations with smaller cracks for the same damage state (crack 

density), despite the fact that they have the same macroscopic stiffness. 

Up to this stage, we have been dealing mainly with the effect of relative crack size on the 

R V E response. Another important issue influencing the overall behavior is the spatial 

distribution of flaws. Crack configurations that tend to prefer a horizontal or vertical 

distribution may display a sensibly different overall behavior. Four crack distributions 

with a non uniform distribution are used to investigate this effect (see Figure 8.18). 

Unlike the case of uniformly distributed cracks, Figure 8.18 suggests that the stiffness 

deterioration strongly depends on the initial configuration of cracks. Distributions with a 

preference towards horizontal patterns (/ and III) exhibit a relatively fast decrease in 

stiffness as damage evolves compared to those leaning towards a vertical pattern (// and 

IV). Compatible results with the ones obtained in this section were observed by Lacy et 

al. [100] and by Deng and Nemat-Nasser [52]. 

Pattern I Pattern II Pattern III 

h/w 1 1 1 

AJWRVE 0.3 0.14 0.14 

Pattern I Pattern II Pattern III 

Figure 14. Influence of uniform crack distributions 
on the overall response of the RYE 
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Figure 8.15. Effect of uniform crack distribution on the effective moduli 
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Figure 8.16. Effect of fiber volume fraction on the effective moduli 
(uniform crack distribution) 
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Figure 8.17. Effect of uniform crack distribution on the 
Thermodynamic force associated with damage 
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Pattern I Pattern II Pattern III Pattern IV 

h/w 2 0.5 8 1/8 
a/wRVE 0.1 0.1 0.05 0.08 

II 

Figure 8.18. Crack patterns used to assess the influence of 
crack distributions on the overall response of the RVE 
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Figure 8.19. Effect of non uniform crack distribution on the effective moduli 
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CONCLUSIONS AND RECOMMENDATIONS 

SUMMARY 
High fiber volume fraction cementitious composites are a new construction materials 

which exhibit high performance when subjected to a judicious mechanical tailoring. They 

can be optimized for either a high ductility or a high strength. The effect of fiber addition 

is no longer limited to the softening stage, but there is a significant pseudo-strain 

hardening phase prior to strain localization. A t this stage of loading, it becomes easier to 

open a new crack than to propagate an existing one, and the phenomenon of multiple 

cracking occurs leading to the observed pseudo-strain hardening. 

Extensive experimental and analytical studies have been conducted on understanding the 

behavior of fiber reinforced cementitious composites at the materials level. Even though, 

much work is still needed in order to understand the fundamental behavior of the 

material, there is a noticeable lack of analytical models that close the link between the 

material behavior and the structural response of components making use of those 

materials. Although, it is possible to experimentally investigate the performance of fiber 

reinforced structural members, analytical modeling remains the most attractive approach 

due to the difficulty of carrying out test at the structural level. 

Based on the understanding of F R C ' s fracture behavior and in the light of the above 

background, an analytical model has been proposed to give some basic understanding of 

the material's behavior. The model is later injected into a finite element code to provide a 

link between the material behavior and the structural performance. Numerous 

experimental studies, show that under a tensile load, cracking is initiated on faces normal 

to the maximum principle stress when its magnitude reaches the first crack strength. The 

crack opens then with increasing bridging stress, due to the high volume fraction of fibers 

bridging the crack, which leads to a pseudo-strain hardening. Once a certain crack 
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opening displacement is reached, localization occurs and the crack response becomes one 

of strain softening. 

The strain hardening zone where there is multiple cracking is accounted for through the 

introduction of an "equivalent" cohesive crack which would exhibit the same behavior as 

a representative volume element of the microcracked material at this stage of loading. In 

other words, the tensile behavior of an rve containing several microcracks and short 

fibers randomly distributed within a cementitious matrix is assumed to be equivalent to 

the behavior of a cohesive crack embedded into the same matrix. The problem is thus 

reduced to the determination of the cohesive pressure in terms of the crack opening 

displacement. 

The post-peak behavior is characterized by localization of strains into a major crack, due 

to the propagation and coalescence of microcracks that have been developed in the 

previous phase (multiple cracking). This phase exhibits a strain softening, and the 

response of the material is mainly controlled by the opening of the crack that wi l l 

eventually lead to the ultimate failure of the specimen. Following the traditional approach 

for this stage of loading, a micromechanical model is proposed for the determination of a 

cohesive pressure. 

Using the above mentioned micromechanical models, a nonlinear boundary value 

problem is defined and solved numerically using a discrete crack analysis. The cohesive 

cracks are modeled trough the introduction of nonlinear interface elements along the 

crack path. The dynamic relaxation solver is used to solve the problem. This procedure 

was used to analyze the effect fiber content on 

the response of a three point bending CFRC beam 

the response of a countoured double cantiliver beam 

the performance of CFRC composites as repair materials 
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Moreover, the effect of crack patterns and fiber volume fraction on 

the effective moduli of FRC materials 

the damage variable and its associated thermodynamic force have been analyzed 

CONCLUSIONS 

The major conclusions obtained from this investigation are as follows. 

A continuum damage mechanics approach has been considered for the analysis of the 

three point bending tests. A s far as the overall response is concerned, one could say 

that both approaches yield fairly accurate results. However, one point needs to be 

mentioned, that is, the use of a stress-strain functional to characterize the post peak 

behavior is a questionable formulation. This is because after the peak load, the 

diffused strain due to microcracking localizes into a major macrocrack, and any 

subsequent deformation of the structure or the specimen is more related to the 

opening of the crack rather than to a bulk deformation of the material. 

- Micromechanical-based constitutive models have been developed for both the strain 

hardening and the strain softening zones for cementitious composites containing 

randomly oriented and distributed microfibers. These models have been implemented 

in a finite element code and a discrete cohesive fracture analysis has been performed. 

The obtained results are shown to be in a very good agreement with experimental data 

for all fiber volume fractions and the fiber types investigated in this study. 

- A more physically sound procedure would be to use a combined C D M - N L F M 

approach, where damage mechanics would be used up to peak load and N L F M for the 

prediction of the subsequent response. Such a procedure has been proposed through 

the introduction of an energy equivalence between a diffused deterioration like that 

predicted by a continuum damage model and a localized cut through the material like 

it would be predicted by a fracture mechanics analysis. A s expected, the results 

obtained here were in very good agreement with the experimental data. 
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- Although either N L F M or C D M concepts can be used to predict the entire structural 

response of F R C materials, the choice of which one to use depends on the expected 

results from the analysis. If one, is only interested in the global response of a 

structural component, either one is good, and i f the knowledge of the damaged zones 

has to be known at any stage of loading then, the combined approach provides the 

best alternative. If on the other hand one is interested in optimizing the reinforcing act 

of the fibers within the composite, then the micromechanics-based N L F M approach is 

the best alternative since it provides some quantification of the fiber efficiency 

through its effect the stress-COD constitutive law governing the opening of the 

cracks. 

A numerical homogenization procedure has been used to compute the evolution of the 

effective moduli and damage together with its associated thermodynamic force in the 

case of F R C materials. The generality of the finite element analysis allowed the 

investigation of parameters which are usually ignored or oversimplified in closed 

form solutions. Crack interaction and presence of fibers are two examples of such 

parameters. Such an investigation allows one to quantify the a priori assumptions 

used in the closed form solutions and help in the proper selection of potential damage 

variables for the construction of micromechanics-based continuum damage models. 

In summary one could say that damage evolution is far more sensitive to crack 

patterns than the effective moduli due to the nature of the two quantities. 

RECOMMENDATIONS FOR FUTURE RESEARCH 

- Refinement of the micromechanical constitutive laws would certainly yield a better 

understanding and quantification of the fiber reinforcing mechanism which could 

eventually lead to an accurate optimization of the fibers at the industrial level. As we 

saw earlier, despite the use of relatively simple mechanisms to develop such models, 

the overall response is in very good agreement with the experimental data. 
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- In the N L F M predictions of the F R C beam structures it has been assumed that the 

opening and propagation of a cohesive crack occurring in the lower part of the beams 

is the main mechanism controlling the degradation of the structure while any 

deterioration due to the compressive loading has been neglected. This assumption, 

clearly more suitable for the case of the double cantiliver beam than for the beam 

bending case, has led to fairly accurate results in both cases. A little improvement, 

however, could be expected in the case of beam bending i f one incorporates the 

damage in the compressive part of the beam by considering the bulk F R C material to 

be elastic damageable through the use of some kind of P C D M instead of a simple 

linear elastic behavior as it has been assumed in this study. 

- A n interesting extension would be to determine the complete stiffness tensor for F R C 

materials. This actually should not be very difficult, since experimental results in the 

literature have shown that the shear behavior of F R C materials can be reduced to their 

tensile behavior since the cracking is controlled by the maximum principal tensile 

stress just like in the pure tensile case. Thus it should be only a matter of bases 

rotations and some mechanical judgement to get the full response. This could be 

useful for somebody who wants to use a traditional finite element code for instance to 

compute the behavior of an F R C structural component. 

- A consistent underprediction of the post peak response has been observed in the case 

of beam bending as well as the case of the contoured double cantiliver beam for all 

fiber types and fiber volume fractions investigated in this study. It is thought that such 

a consistent discrepancy is due to the introduction of errors during the identification 

of the model parameters characterizing the material at hand. Indeed, despite the use of 

a very small displacement loading rate (0.1 mm/mn) to record the direct tensile 

response of cementitious composites, the true post-peak behavior is very difficult to 

capture due to a lack of control over the propagation of cracking within the material 

leading to an underprediction of the material's response. This tensile response is 

subsequently used to identify the model parameters for both the P C D M and the 

N L F M approaches. Better predictions should be achieved with the use of more 
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accurate tests such as closed loop testing procedures, where crack opening within the 

material is used as a feed-back to control the loading rate to avoid any sudden fracture 

of specimens. 

- Over the last few years, durability of concrete has been identified as one of the major 

parameters controlling the long term behavior of concrete structures. Unfortunately, 

at the present stage of knowledge, durability design is practically independent from 

the structural design. Moreover, there is no rational design method for durability and 

only few rule of thumb prescriptions are being used and a rational integrated 

structural-durability design method needs to be developed. Such a method should lead 

to a performance-based design procedure. 

Durability of concrete structures in harsh environments has been shown to be 

controlled by the phenomena of mass transport within concrete, such as acids, sulfates 

etc. A n integrated durability-structural design procedure could be established with the 

development of a long term constitutive law that couples reactive flow in porous 

media with continuum damage mechanics. With such a law, the combined effect of 

deterioration due to loading and that due to the environment could be estimated, thus 

allowing to track the evolution of the mechanical properties of the material with time. 

In the P C D M model proposed in this thesis for the modeling of F R C materials, it has 

been shown that the state of strain within a certain neighborhood of any material point 

can be used as the quantity piloting the evolution of damage due to loading. A similar 

quantity needs to be identified to characterize the evolution of damage due to the 

environmental attacks. It is believed that permeability of the material could be 

considered as a potential parameter for the characterization of damage due to 

environmental attacks. The combination of C D M with reactive flow in porous media 

should allow monitoring the evolution of mechanical properties of concrete structures 

with time. 
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