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A B S T R A C T 

The main objective of this thesis is to develop Accident Prediction Models (APM) for estimating 

the safety potential of urban unsignalized (T and 4-leg) intersections in the Greater Vancouver 

Regional District (GVRD) and Vancouver Island on the basis of their traffic characteristics. The 

models are developed using the generalized linear regression modeling (GLIM) approach, which 

addresses and overcomes the shortcomings associated with the conventional linear regression 

approach. The safety predictions obtained from GLIM models can be refined using the Empirical 

Bayes' approach to provide, more accurate, site-specific safety estimates. The use of the 

complementary Empirical Bayes approach can significantly reduce the regression to the mean bias 

that is inherent in observed accident counts. 

The thesis made use of sample accident and traffic volume data corresponding to unsignalized 

(both T and 4-leg) intersections located in urban areas of the Greater Vancouver Regional 

District (GVRD) and Vancouver Island. The data included a total of 427 intersections located in 

the cities of Victoria, Surrey, Nanaimo, Coquitlam, Burnaby and Vancouver. The information 

available for each intersection included the total number of accidents in the 1993-1995 period, 

traffic volumes for both major and minor roads given in Average Annual Daily Traffic (AADT) 

and type of intersection (T or 4-leg). Four categories of models were developed in this study: (1) 

models for the total number of accidents; (2) separate models for T and 4-leg intersections; (3) 

separate models for different regions (Vancouver Island, the Lower Mainland and Surrey); and 

(4) a model for Surrey including intersection control. 

Five applications of APM were used in this thesis. Four of them relate to the use of the Empirical 

Bayes refinement: identification of accident-prone locations, developing critical accident 

frequency curves, ranking the identified accident-prone locations and before and after safety 

evaluation. The fifth application provides a safety-planning example, comparing the safety of a 

4-leg intersection to two staggered T-intersections. These applications show the importance of 

implementing APM as a tool to assess in a reliable fashion traffic safety, and design different 

safety strategies. 
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C H A P T E R I 

I N T R O D U C T I O N 

1.1 Background 

Since the dawn of the automobile age about a century ago, traffic safety problems have been a 

serious concern: an enormous economic and human toll has been exacted as a result of the 

public's ongoing love affair with the motor vehicle. It is commonly accepted that there are many 

costs associated with vehicular mobility such as air pollution, noise, and accidents. However, the 

economic and social costs associated with road accidents greatly exceed other mobility costs due 

to the loss of property, injury, pain, grief and deaths attributed to road accidents. 

In British Columbia, 500 people are killed and 50,000 injured as a result of road accidents. The 

annual direct claim costs for the Insurance Corporation of British Columbia (ICBC) due to road 

accidents are estimated to exceed $2 billion (ICBC, 1996 Annual Report), themselves far 

exceeded by their related social costs. Consequently, the importance of reducing the social and 

economic costs of road accidents can not be overstated. 

Recognizing the traffic safety problem and the importance of reducing the frequency and severity 

of road accidents, the majority of road authorities have established Road Safety Improvement 

Programs (RSIPs). The objective of these programs is to identify accident-prone locations, 

determine possible causes and countermeasures, and to implement the most effective 

countermeasures in order to alleviate the problems at these locations. The success of these RSIPs 

can be enhanced by developing statistically reliable accident prediction models, which provide 

1 



Chapter I: Introduction 

accurate estimates for the traffic safety at road sections and intersections. These safety estimates 

can be used in identifying accident prone locations and evaluating the effectiveness of remedial 

measures. 

The main objective of this thesis is to develop accident prediction models for estimating the 

safety potential of urban unsignalized intersections as functions of traffic volumes on both major 

and minor roads, and type of intersection (T and 4-leg). The data used for this thesis included 

accident records and traffic volume data for intersections located in the G V R D and urban areas 

of Vancouver Island. The methodology used to derive these models is based on the Generalized 

Linear Regression Models (GLIM) approach. The GLIM approach addresses and overcomes the 

problems associated with conventional linear regression. Several researchers have shown that 

conventional linear regression lack the distributional property to describe the occurrence of 

accidents. Some of the potential applications of accident prediction models include: Identifying 

and ranking accident prone locations, before and after safety evaluation, and safety planning. 

The work reported in this thesis is part of the ongoing research at the Civi l Engineering 

Department of the University of British Columbia on accident prediction models. Models have 

been developed for urban signalized intersections (Feng and Sayed, 1997). Currently, models are 

being developed for rural signalized intersections, urban and rural corridors. 

1.2 Thesis Structure 

This thesis is divided into six chapters. Chapter One provides an overview of the thesis and its 

structure. Chapter Two summarizes previous work on accident prediction models, the theoretical 

2 



Chapter I: Introduction 

background of the GL IM approach, and its applications to accident prediction models. Chapter 

Three describes with the accident and traffic volume data used and the models developed. 

Chapter Four discusses several statistical issues related to the GL IM approach. Chapter Five 

discusses several applications of the models. The applications include: identification of accident 

prone locations; developing critical frequency curves, ranking of accident prone locations; 

before-and-after safety evaluation; and the use of the models in safety planning. Chapter Six 

provides suggestions for follow up work and the summary and conclusion of the thesis. 

3 



C H A P T E R II 

L I T E R A T U R E R E V I E W 

2.0 Introduction 

The relationship between traffic accidents and traffic volumes has been the subject of numerous 

studies. Most of the earlier studies used the conventional linear regression approach to develop 

models relating accidents to traffic volumes. However, the past decade has seen a significant 

development and advances in accident data analysis and modeling. Accident prediction models 

are no longer limited to conventional linear regression approach, as more accurate and less 

restrictive nonlinear models are considered. In addition, the use of Empirical Bayes' approach for 

refining the estimates obtained from accident prediction models has also been an important 

development. This chapter describes the statistical theory behind the accident prediction models, 

as well as previous research and developments. 

2.1 Shortcomings Associated with Conventional Linear Regression Models 

The conventional linear regression model is defined as follows: 

k 

Yi =a0+Hajxij + £i 

where, 

7, = estimated or dependent variable 

a0, a-, = estimated coefficients 

Xy = independent variables 

4 



Chapter II: Literature Review 

Si = estimated error, assumed to be normally distributed 

Several researchers (Jovanis and Chang, 1986, Saccomanno and Buyco, 1988, Miaou and Lum, 

1993) have shown that conventional linear regression models lack the distributional property to 

adequately describe random, discrete, non-negative, and typically sporadic events which are all 

characteristics of traffic accidents. 

Jovanis and Chang (1986) identified three shortcomings associated with the assumption of a 

normal distribution error structure. The first shortcoming is found in the relationship between the 

mean and the variance of accident frequency. Jovanis and Chang (1986) demonstrated that as 

volume of traffic increases, so does the variance of accident frequency. Under a normal 

distribution assumption, the variance remains constant. The second shortcoming is associated 

with the non-negativity of accident occurrence. Predicted negative values under conventional 

linear models might occur when there exists low accident frequencies in the data set. A way to 

avoid this problem is by using non-linear models, which are linearized in a logarithm fashion in 

order to estimate their parameters. The third problem is related with the non-normality of the 

error distribution, due to the characteristics of non-negativity and small value of discrete 

dependent variable. Jovanis and Chang (1986) found that the best way to overcome these 

problems is to assume a Poisson distribution error structure. Their results were demonstrated by 

modeling accidents at highway sections in Indiana. 

Miaou and Lum (1993) identified the same shortcomings when performing a comparison 

between four accident prediction models applied to trucks on highways. Two of these models 

5 



Chapter II: Literature Review 

were developed under the assumption of normal distribution error structure, while the others 

were assumed to be Poisson distributed. It was found that predicted values, from models using 

the Poisson distribution assumption were much closer to the observed values and its estimated 

coefficients had higher t-statistics, which denote higher significance. For the normally distributed 

models, it was found that some of the estimated coefficients had signs contrary to the 

expectation. These results confirmed all the shortcomings associated with the conventional linear 

regression technique and its applicability for developing accident prediction models. 

2.2 Generalized Linear Models (GLIM) 

As seen in the previous section, GL IM has the advantage of overcoming all the shortcomings 

associated with the conventional linear regression approaches. As well, GL IM has the flexibility 

of assuming different error distributions and link functions that allow the conversion of non

linear models into linear models. Recognizing the advantages of the GLIM approach, it will be 

utilized in this thesis. 

The GL IM approach used herein is based on the work of Kulmala (1995) and Hauer et-al, 

(1988). Assuming that Y is a random variable that describes the number of accidents at an 

intersection in a specific time period, and y is the observation of this variable during a period of 

time. The mean of Y is A which can also be regarded as a random variable. Then for A=A, Y is 

Poisson distributed with parameter X: 

Xye -I 
; E(Y\A = 4 Var(Y\A = x) = X P(Y = y\A = X) (2.2) 

6 



Chapter II: Literature Review 

Since each site has its own regional characteristics with a unique mean accident frequency A, 

Hauer et-al, (1988) have shown that for an imaginary group of sites with similar characteristics, 

A follows a gamma distribution (with parameters K and K/JJ), where K is the shape parameter of 

the distribution. That is: 

r(K) 

with a mean and variance of: 

.2 
E(A) = / / ; Var(A) = ^— (2.4) 

K 

Kulmala (1995) has also shown that the point probability function of Y based on equations (2.3) 

and (2.4) is given by the negative binomial distribution: 

P(Y = y): 
r{K)y\ 

K 

\tc + juj 
(2.5) 

with an expected value and variance of: 

E(Y) = ju; Var(Y) = /u-tL 
K 

(2.6) 

As shown in equation (2.6), the variance of observed accidents for the entire sample has two 

sources: the second term (JJ/K) from the variance of the predicted number of accidents, and the 

first term (JJ) from the variation of the number of accidents (Kulmala, 1995). Notice that when 
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Chapter II: Literature Review 

k—>co, the variance of equation (2.6) equals the mean, which is identical to the Poisson 

distribution. 

As described earlier, for the GL IM approach, the error structure that best fits the accident 

occurrence is usually assumed to be Poisson or negative binomial. The main advantage of the 

Poisson error structure is the simplicity of the calculations, because the mean and variance are 

equal and its method for calculation is readily included in the GL IM software package (NAG, 

1994). However, this advantage is also a limitation. It has been shown (Kulmala and Roine, 

1988, and Kulmala, 1995) that most accident data is likely to be overdispersed (the variance is 

greater than the mean) which indicate that the negative binomial distribution is the more realistic 

assumption. 

Miaou and Lum (1993) identified three possible sources of overdispersion in accident data. The 

first is related to omitted variables that explain accident occurrence. Traffic accidents depend on 

numerous variables including geometric characteristics, weather, time of day, and human factors. 

Many of these variables are not discernible from accident records. The second possible source of 

overdispersion is related to uncertainties in vehicle exposure data, derived from error during 

collection of data. The third source comes from non-homogeneous roadway environments, 

which can explain why accident rates are different during daylight and night times or during 

rainy versus sunny days. 

The main difficulty associated with using the negative binomial distribution error structure is the 

determination of the shape parameter k. Kulmala (1995) proposed an iterative approach using the 
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method of moments. The GLIM software package (V 4.0) includes a macro library in which the 

parameter k is calculated by three different iterative methods: the maximum likelihood, the mean 

deviance estimate, and the mean %2 estimate (NAG, 1996). A comparison between the four 

methods wil l be provided in Chapter 4. The method of the maximum likelihood is used in this 

thesis. 

Bonneson and McCoy (1993) proposed a methodology to decide whether to use a Poisson or 

negative binomial error structure. First, the model parameters are estimated based on a Poisson 

distribution error structure. Secondly, a dispersion parameter (o~d) is calculated. The dispersion 

parameter is defined as: 

Pearson %2 

crd = (2.7) 
n — p 

where n is the number of observations and p is the number of model parameters (The Pearson % 

test wil l be described in detail in next section). 

If a d is greater than 1.0, then the data have greater dispersion than is explained by the Poisson 

distribution, and a further analysis using a negative binomial distribution is required. If o~d is near 

1.0, then the assumed error structure approximately fits the Poisson distribution. This method has 

the advantage of testing the model under the Poisson distribution first, which is easier to estimate 

than the negative binomial distribution. 

9 
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2.3 Testing the Models Significance 

The significance of GL IM models is usually assessed using the Scaled Deviance (SD) and the 

Pearson test. The SD is defined as the likelihood test ratios measuring the difference between 

the log likelihood of the studied model, and the saturated model (Kulmala, 1995). The general 

equation for SD is defined as follows: 

SD = 21og/(y,y)-21og/(E(yl) ,y) (2.8) 

where log/(E(A),y) is the natural logarithm for the probability density function. 

Mc Cullagh and Nelder (1983) have shown that for the Poisson the SD is defined as: 

f \ 

(2-9) 

and for the negative binomial distribution the SD is defined as: 

i=l 

( , A 
yt + K (2.10) 

The scaled deviance is asymptotically distributed with n-p-1 degrees of freedom. Therefore, 

for a well-fitted model with appropriate link function, error distribution and functional form, the 

expected value of SD will approximately equal the number of degrees of freedom (Maycock and 

Hall, 1984) 

10 
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Another measure to assess the significance of the GL IM models is the Pearson statistic 

defined as (Bonneson and McCoy, 1993): 

where yt is the observed number of accidents at intersection i, E(A) is the predicted number of 

accidents obtained from the accident prediction model, and Var(y) is the variance of the 

observed accidents defined in equation (2.2) and (2.6) for Poisson and negative binomial 

distributions, respectively. The Pearson statistic follows the distribution with n-p-1 degrees 

of freedom, where n is the number of observations, and p is the number of model parameters. 

In addition, useful subjective measures of the model goodness of fit are graphical methods. One 

of them is to plot the predicted accident frequency versus the observed accident frequency. A 

well fitted model should have all points in the graph clustered symmetrically around the 45° line. 

A second graphical method is to plot the average of squared residuals versus the predicted 

accident frequency. For a well fitted model, all points should be around the variance function line 

as defined in equation (2.6) for the negative binomial distribution. 

Another graphical method is to calculate the Prediction Ratio (PR) and plot it against the 

predicted values. PR is defined as the normalized residual, which is the difference between the 

predicted and observed accidents, divided by the standard deviation (Bonneson and McCoy, 

1997). PR can be calculated according to the following equation: 

(2.11) 

11 



Chapter II: Literature Review 

For a well fitted model Pi?,- should be clustered around the zero axis in a Predicted Accidents vs. 

PR graph. 

Finally, the T-ratio test is used to measure the statistical significance of the variable coefficients. 

The t-ratio test is defined as the ratio between the estimated GL IM parameter and its standard 

error. For a significant variable at 95% level of confidence, the t-ratio should be greater than 

1.96. 

A l l six tests described in this section were used to access the significance of the models 

developed for this thesis. 

2.4 Model Structure 

Intersection accident prediction models can be generally classified into two types. The first type 

relates accidents to the sum of traffic flows entering the intersection, while the second relates 

accidents to the product of traffic flows entering the intersection. The latter type has been shown 

to be more suitable to represent the relationships between accidents and traffic flows at 

intersections (Hauer et-al, 1988). In this kind of structure, accident frequency is a function of the 

product of traffic flows raised to a specific power (usually less than one). This approach has been 

used in this thesis. That is: 

12 



Chapter II: Literature Review 

E(A) = a0 x V°l x Vj2 (2.13) 

where, 

E(A) predicted accident frequency 

V, major road traffic volume 

minor road traffic volume 

model parameters 

As mentioned earlier, accident occurrence is not a function of traffic flows only, but also other 

variables (e.g. weather, intersection type, geometric features, etc.). Kulmala (1995) and Maher 

and Surnmersgill (1996) proposed to model these additional variables along with traffic flows as 

follows: 

where Xj represents any of the m additional variables. 

2.5 Location Specific Prediction: The Empirical Bayes Refinement 

There are two types of clues to the safety of a location: its traffic and road geometric design 

characteristics, and its historical accident data (Hauer, 1992, Briide and Larsson, 1988). The 

Empirical Bayes (EB) approach makes use of both clues. The EB approach is used to refine the 

estimate of the expected number of accidents at a location by combining the observed number of 

accidents at the location with the predicted number of accidents obtained from the GL IM model, 

to yield more accurate, location-specific safety estimate. 

m 

E(A) = a0 x x x ej (2.14) 
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Chapter II: Literature Review 

The EB estimated number of accidents for any intersection can be calculated by using the 

following equation (Hauer et-al, 1992): 

EBsafety estimate =ax E(A) + (1 - a) x count (2.15) 

where, 

1 
a Var(E(A)) 

(2-16) 
1 + 

E(A) 

count = observed number of accidents 

E(A) = predicted number of accidents as estimated from the GL IM model 

Var(E(A)) = variance of the GL IM estimates 

Using the variance of the predicted accidents, Var(E(A)), defined in equation (2.4), equation 

(2.15) can be rearranged to yield: 

safety estimate xE(A)+ ^ - L -
KK + E(A)) \K + E(A). 

x count (2.17) 

In addition, the variance of the EB refined estimate can be calculated using the following 

equation (Kulmala, 1995): 

Var(EBsaj-ety estimate) 
E(A) 

KK + E(A), 

( EV A\ \ 
X K + 

E{A) 
KK + E(A)J 

x count (2-18) 
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Chapter II: Literature Review 

Equation (2.17) shows that the EB refined estimate lies between the observed and the predicted 

number of accidents, combining both the individual accident history of the location and the 

GL IM model prediction (Figure 2.1). 

The K parameter also plays an important role in the calculation of the EB estimate. Kulmala 

(1995) showed that for high values of K, the variance of the predicted accidents is low (equation 

2.4), and therefore, there is a small uncertainty and the EB estimate is closer to the GL IM 

estimate. Conversely, when K is low, the variance of the predicted value is high as is the 

uncertainty of the GL IM model. Therefore, the EB estimate is closer to the observed value. 

Figure 2.1 shows how the K value affects the EB estimate. 
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12 

11 
Observed Number of Accidents (11 acc/3 years) 

Predicted Number of Accidents (6.88 acc/3 years) 

—i 1 1 1 1 1 1 1 1 

10 20 30 40 50 60 70 80 90 100 

k value 

Figure 2.1 Empirical Bayes' Estimate for Different k Values 

In addition to combining the two types of safety clues and providing site-specific safety 

estimates, it has also been shown that the EB procedure significantly reduces the regression to 

the mean effects that are inherent in observed accidents count (Briide and Larsson, 1988). The 

regression to the mean is a statistical phenomenon by which a randomly large number of 

accidents for a certain entity during a before period, is normally followed by a reduced number of 

accidents during a similar after period, even if no measures have been implemented (while the 

opposite applies in the case of a randomly small number of accidents). 

The EB refinement is important for various applications of GL IM models, such as identification 

and ranking of accident-prone locations, and assessment of effectiveness of safety measures. The 
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EB estimate combined with reliable GL IM models, has the advantage of overcoming the 

difficulties associated with defining reference groups to perform before and after studies 

(Mountain and Fawaz, 1996). 

2.6 Previous work 

There are few studies dealing with accident prediction models at junctions, even though most of 

accidents occurs at these kind of locations. 

Satterthwaite (1981), made an extensive review of over 80 studies dealing with the relationship 

between traffic accidents and traffic volumes. Most of models reported in this study consider 

accidents at road sections, and only 14 of the references reported deal with accident models at 

intersections. 

For accident at intersections Satterthwaite (1981) found some non-linear relationships between 

accidents and traffic volumes at T-intersections located in rural areas. The proposed models are 

desegregated in accidents of vehicles turning left and right from the minor road (non-through 

road) to the major road (through road). The relationships found are similar to equation (2.13) but 

in one study it was found that the a, and a2 coefficients are approximated to 0.5, while in a 

subsequent study a, is approximated to 1 while a2 is again approximated to 0.5. These models 

were developed during the 50's and 60's and were estimated by using the conventional 

regression analysis. 
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Also reported were similar studies conducted at other intersections where traffic control and 

layout variables were taken into account, however there is no report related to accident prediction 

models at urban unsignalized intersections. At the conclusion of the study, it was found that 

results concerning accidents at intersections were not consistent and it was suggested that more 

research should be done. 

Bonneson and McCoy (1993), using data from 125 two-way stop controlled intersections in 

Minnesota, developed the following model: 

Accidents I year = 0.692 
r AADTmajor r o a d \ ( AADTminor r o a d

 x 0 8 3 

1000 ^ 1000 
(2.19) 

Using a similar approach, Belanger (1994) developed several models using data from 149 4-leg 

unsignalized intersections in western Quebec. The models included the "total-accidents model" 

for different ranges of speed; "accident-type models" such as right angle, rear end etc.; and 

models including other variables such as the existence of flashing beacons, sight distance and 

turning lanes. For instance, the total-accidents model for all speeds developed by Belanger is as 

follows: 

Accidents I year = 0.00l93(AADTmajor roadf'^W^^minor road?'51 (2-20) 

Both Bonneson and McCoy and Belanger models were developed for intersections in rural areas 

assuming a negative binomial distribution error. 
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In a more recent study, Maher and Summersgill (1996), using selected data recorded all over the 

U K , developed the following model for T-intersections on urban single carriageways based on 

the negative binomial distribution: 

Accidents I year = 0.049 
r AADTmajor roaA ( AADTminor road^°'36 

1000 1000 
(2.21) 

In addition, Mountain and Fawaz (1996), using the same approach (negative binomial), derived a 

model for 390 unsignalized intersections located in 12 U K counties. Out of the 390 intersections, 

338 were T-intersections and approximately 35% were located in urban areas. The model 

developed is as follows: 

Accidents I year = 0.141 
f AADT • ^ ° ' 6 4 

f*^* major road 

iooo 
'AADTr 

v 

\ 
minor road 
1000 

0.24 

J 
(2.22) 

Since this thesis deals only with intersections located in urban areas, only the models in 

equations (2.21) and (2.22) will be compared with the models developed in this thesis. This 

comparison is shown in next chapter. 

2.7 Conclusion 

Developing accident prediction models has been a concern for the last four decades. During the 

50's 60's, 70's, the models were limited by the use of the conventional linear regression analysis, 
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leading to inconsistencies and misinterpretation in describing traffic accidents occurrence. The 

advancements in computer and software technology during the last two decades, and the 

development of more sophisticated statistical tools, has resulted in the development and release 

of software packages such as GL IM and SAS, which are capable of solving non-linear regression 

models by specifying any type of error structure consistent with the data. 

Several researchers have found that accident occurrences follow the negative binomial 

distribution, rather than the Poisson distribution, because it has been shown to be the most 

appropriate way to model overdispersion. 

With respect to the use of GL IM to develop safety models for unsignalized intersections, only a 

few studies were found. Most of these studies deal with the rural environment. Most of GL IM 

accident prediction models have been developed during the last 10 years and are focused on 

signalized intersections, rural areas, and road sections. More work is needed in developing 

accident prediction models for urban unsignalized intersections. 

20 



C H A P T E R III 

D A T A C O L L E C T I O N A N D M O D E L D E V E L O P M E N T 

3.0 Introduction 

This chapter is divided into three sections. The first section contains a detailed description of the 

data used to develop the accident prediction models. It also includes a procedure to identify 

outliers which may affect the quality of the models. The second section describes the models 

developed and their goodness of fit. Finally, the third section shows a comparison between the 

developed models and similar models found in the literature. 

3.1 Data Collection 

This thesis made use of sample accident and traffic volume data corresponding to unsignalized 

(both T and 4-leg) intersections located in urban areas of the Greater Vancouver area and the 

Vancouver Island. 

3.1.1 Accident and Traffic Volume Data 

Three years of accident data was available for analysis on each intersection (1993-1995). The 

source of the accident data is the M V 104 accident reporting form, British Columbia's accident 

police report. The data set contained 427 intersections from the cities of Surrey, Victoria, 

Coquitlam, Vancouver, Burnaby and Nanaimo. The information available for each intersection 

includes the total number of accidents that occurred during the 1993-1995 period. The 

explanatory variables of accident occurrence included the traffic volumes on the both the major 
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and minor roads given in Average Annual Daily Traffic (AADT), and the type of intersection (T 

or 4-leg). 

Another explanatory variable taken into account for this thesis, is the type of intersection control, 

which was only available for Surrey intersections. Traffic control types included 2-way Stop, 4-

way Stop, and one-way Stop at T-intersections. Tables 3.1 and 3.2 provide a statistical summary 

of the data. 

City Number of Intersections Number of Accidents Average AADT City 
Total T 4-leg Acc/year Acc/yr/Int. Major Road Minor Road 

Surrey 56 18 38 285 5.08 17,937 3,075 
Victoria 340 162 178 360 1.06 12,355 1,494 
Nanaimo 10 0 10 23 2.25 7,172 3,242 
Coquitlam 8 2 6 34 4.25 10,004 1,514 
Burnaby 9 3 6 36 4.04 12,984 2,837 
Vancouver 4 1 3 17 4.33 22,191 1,408 
Total 427 186 241 755 1.77 13,186 1,770 
Table 3.1 Summary of Accident, ntersection Control and Traffic Volume Data 

City Number of Accidents* AADT minor Road AADT Major Road City 
Max. Min. Std. Dev. Max. Min. Std. Dev. Max Min Std Dev 

Surrey 11.0 1.7 2.3 9,300 500 2,060 42,600 2,100 10,385 
Victoria 8.3 0.0 1.2 11,000 100 1,483 47,800 500 9,397 
Nanaimo • 4.8 0.6 1.5 6,025 1,968 1,307 15,739 2,771 4,132 
Coquitlam 8.7 1.0 2.7 2,360 730 542 32,310 730 10,642 
Burnaby 10.3 0.3 3.0 7,415 365 2,252 29,020 5,715 7,492 
Vancouver 8.3 0.3 3.5 2,550 860 775 37,295 7,835 12,070 
Total 11.0 0.0 2.1 11,000 100 1,673 47,800 500 9,673 
* Indicates average annual accidents per intersection 

Table 3.2 Statistical Summary of Accidents 

As shown in Table 3.1, the average number of accidents per intersection for the cities located in 

the Lower Mainland (Surrey, Coquitlam, Burnaby and Vancouver) is much higher than the 

average of number of accidents per intersection for the cities located in Vancouver Island 

(Victoria and Nanaimo). About 44% of the intersection are T-intersections, while the rest 56% 
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are 4-leg intersection. This indicates that there is not an absolute predominance of either one of 

the intersection types in the database, unlike the studies made by Mountain and Fawaz (1996) 

and Maher and Summersgill (1996), where their data set included mainly T-intersections. This 

condition is desirable when developing a total model of accidents as the model will not be biased 

in favor of one of the intersection types. 

As previously mentioned, intersection control type data is available only for Surrey intersections. 

Of the 56 intersections, 32 are two-way Stop controlled, 8 are 4-way Stop controlled, and the 

remainders 16 intersection are classified as one-way Stop-T intersections. 

3.1.2 Outlier Analysis 

Outliers are defined as data points that split off or are very different from the rest of the data 

(Stevens, 1986). Outliers can be caused by irregularities or errors occurred during the data 

recording or observation process or when the data is genuinely different from the rest. These 

points deserve further investigation in order to decide whether or not to remove them. 

Kulmala (1995) proposed a procedure to identify outliers based on the calculation of the leverage 

statistic. The leverage of a point is a measure of how far the x-value of the point is away from the 

average of the rest of the x-yalues (NAG, 1994). The leverage values are the diagonal elements 

of the hat matrix, which is the matrix that multiplies the observed vector in order to yield the 

predicted vector. One of the properties of the leverage values, hh is that the sum over the n-

values, yields the number of parameters, p, in the model. According to this statement the average 
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value of the leverage is p/n, and many authors (NAG, 1994, Stevens, 1988) consider that a high 

leverage is one that exceeds 2p/n, and should be subject to further examination. 

However, it has been shown (NAG, 1994) that the leverage alone is not a good indication of 

whether the parameters estimate is being affected by specific observations. A measure which 

does this is the Cook's distance (NAG, 1994). The Cook's distance measures the influence of 

observations on the model. The higher the Cook's distance value for a given observation, the 

stronger its influence on the model. The Cook's distance is calculated as follows: 

< * = — M H 2 (3-D 

where, 

ht = leverage value 

p = number of parameters 

rt = standardized residual 

The main disadvantage of using the Cook's distance is that there is no clear rule for what 

constitute a high c,. N A G (1994) proposes to sort the data according to the Cook's distance 

values, and in a stepwise procedure, remove the points with the highest values, and for every 

point removed, assess the change in the scaled deviance. 

Maycock and Hall (1984) have found that the difference in scaled deviance in two models with 

degrees of freedom df, and df2, is %2 distributed with parameters (df, - df2). This means that if 
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only one point with a high Cook's distance is removed, then the difference in the scaled deviance 

must be greater than 3.8 (the %2 value for 95% level of confidence and 1 degree of freedom). 

GL IM has the capacity of extracting both leverage and Cook distance values, from each model. 

The procedure to identify outliers in the models developed in this thesis is to visually examine 

the relationship between the observed number of accidents for each intersection and the Cook's 

distance. Intersections with exceptionally large values of c, are then removed and the change in 

scaled deviance is determined. If this change is significant the intersections are removed. 

The previous analysis was performed to all models of this thesis. After the analysis none of the 

critical points were classified as outliers that should be removed. Figure 3.1 and Table 3.3 show 

the results of this procedure for the total accident model. From visual examination of Figure 3.1 

it was determined to select five intersections for removal (Cook's Distance greater than 0.02 and 

the intersections are tagged 1 through 5 in the figure). As shown in Table 3.3, the cumulative 

drop in scaled deviance is always below the x2 statistics. This indicates that removing these 

intersections from the data set is not warranted. The analysis summarizing the results for the 

remaining models is shown in Appendix I. 
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Figure 3.1 Identification of the Highest Cook's Distance Values for Total Model 

Rank Cook's 
Distance 

Intersection 
Number 

Sample Size Scaled Dev. SD Drop Cumulative SD 
Drop 

x2 

1 14 426 397.4 1.5 1.5 3.8 
2 22 425 395.3 2.1 3.5 6.0 
3 157 424 393.2 2.1 5.7 7.8 
4 5 423 391.0 2.2 7.8 9.5 
5 33 422 389.0 2.0 9.8 11.1 

Table 3.3 Identification of Outliers for Total Model 

3.2 Model Development 

The main task of this research is to develop multivariate models to estimate the predicted number 

of accidents. Four categories of models were developed in this thesis: (1) models for the total 

number of accidents; models for T and 4-leg intersections; (3) separate models for every region 
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(Vancouver Island, the Lower Mainland, and Surrey); and (4) a model for Surrey including 

intersection control type. 

Since the average number of accidents per year per intersections is relatively small (especially 

for intersections in Victoria and Nanaimo), it was decided to use the number of accidents in a 

three year period. 

The models developed are assumed to follow the negative binomial distribution, which is 

included in the GL IM software package, through a macro designed by N A G (1996). Out of the 

six goodness of fit tests described in section 2.3, the graphs describing the predicted accidents vs. 

the Prediction Ratio for every model are shown in Appendix II, while the rest of tests are shown 

with the description of each model. In general, the Prediction Ratio graphs show similar 

dispersions as the ones obtained for the observed vs. predicted accident graphs. Appendix III 

shows the GL IM output of all models, which in addition to the models' parameters, includes the 

scaled deviance, the K value (represented by THETA in the GL IM output), and the standard error 

of the parameters. Note that the model under Poisson distribution assumption is developed first. 

3.2.1 Model for the Total Number of Accidents 

A model relating the total number of accidents to the traffic volumes for minor and major roads 

was developed. The whole data set is used for this analysis and Table 3.4 shows the parameter 

estimates of the model and its goodness of fit. 
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Model Form t-ratio S D K Pearson x 2 

(dot) (X 2 test)* 

V 1000 ) V 1000 ) 

a0 

a, 
a. 

3.2 
7.8 
12.4 

399 
(424) 

1.97 459 
(472) 

* Denotes significance at a 95-percent confidence level 
Table 3.4 Model for the Total Number of Accidents 

The Pearson %2 indicates significance at the 5% confidence level. The t-ratios are significant for 

all the variables included in the model, and the scaled deviance value is smaller than the number 

of degrees of freedom. Figure 3.2 shows the relationship between the observed and predicted 

number of accidents for the model. The results are symmetrically clustered around the 45° line to 

a reasonable extent, which is desirable. In addition, Figure 3.3 shows the fit of the variance of the 

observed accidents (assuming a negative binomial distribution) to the average squared residuals. 

Each point represents the average of predicted accident frequency for a sequenced group of 

intersections (e.g. the first twenty intersections sorted by predicted accident frequency). The 

figure shows a reasonably good fit. 
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Figure 3.2 Total Model: Observed vs. Predicted Number of Accidents 
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Figure 3.3 Total Model: Predicted Accidents vs Estimated Variance 

29 



Chapter III: Data Collection and Model Development 

Figure 3.2 also indicates that intersections in the Lower Mainland are generally different from 

those in Vancouver Island. Therefore, separate models for the Lower Mainland and Vancouver 

Island intersections should be developed. 

3.2.2 Models for T and 4-leg Intersections 

There are two ways to approach to these kinds of models. The first is to develop separate models 

for T and 4-leg intersections. Alternatively, one model can be developed using the entire sample 

size as the total model with the intersection type variable (T or 4-leg intersection) included 

within the model. 

Using the first approach, the sample size for T intersections is 186, and for 4-leg intersections is 

241. Table 3.5 shows the parameter estimates for each model, as well as the different goodness of 

fit test. Both models have a relatively good fit with respect to the scaled deviance, and the %2 

values are significant at the 95% confidence level. The t-test ratios for all the independent 

variables are significant, which indicates that the models are more dependent on the explanatory 

variables rather than a constant coefficient, which is also desirable. 

Model Form t-ratio SD K Pearson x2 

(dof) (X2 test)* 
T-intersection model a0 

-0.3 164 2.34 205 

1, 1000 J V 1000 J 

a, 
a. 

5.5 
7.4 

(183) (214) 

4-leg intersection model a0 
3.6 230 2.17 251 

(AADT • A 0 - 4 0 9 9
 fAAnr \0.1065 

{ 1000 J \ 1000 J 

a, 
a2 

6.8 
9.1 

(238) (274) 

* Denotes significance at a 95-percent confidence level 
Table 3.5 Models for T and 4-leg Intersections 
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Figures 3.4 through 3.7 show the relationships between the observed and the predicted number of 

accidents, and the fit of the variance of the observed accidents to the average squared residuals, 

for both models. The results for both models are symmetrically clustered around the 45° line and 

the average squared residuals fits the variance equation well. 
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Figure 3.5 T-lntersection Model: Predicted Accidents vs Estimated Variance 
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Figure 3.6 4-leg Intersection Model: Observed vs. Predicted Number of Accidents 
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Figure 3.7 4-leg Intersection Model: Predicted Accidents vs Estimated Variance 
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Using the second approach a total model with the effect of intersection type model was 

developed by using only one equation that includes the effect of both T and 4-leg intersections. 

This model follows the same structure described in equation (2.14). Table 3.6 shows the 

estimates results of this model as well the goodness of fit test. The variable Type, which indicates 

the intersection type, has two values: 1 for T-intersections and 2 for 4-leg intersections. 

According to the results described in Table 3.6, all variables are significant in the model, the 

scaled deviance is also closed to the degrees of freedom, and the Pearson %2 test indicates a 

significance at the 95% confidence level. 

Model Form t-ratio SD K Pearson %2 

(dof) (l2 test)* 
Total Model with Intersection Type aa 

-2.8 394 2.23 449 
fJJIlT "\ 0.4221 \ 0.6480 

Acc 12yrs = 0.5116^ D m a i r d \ JAADT^">) xe^19,TyPe 
V 1000 ) \ 1000 > 

a, 
a, 
b, 

8.7 
11.7 
6.3 

(423) (471) 

* Denotes significance at a 95-percent confidence level 
Table 3.6 Total Model Including the Effect of Intersection Type 

A brief comparison between this model and the total model developed in section 3.2.1 shows a 

smaller scaled deviance and Pearson %2 for the first model. Note that decreasing the degrees of 

freedom by 1, lead to a drop in scaled deviance of 5, which is greater than 3.8 (the 95-percent 

value of the %2 square distribution with 1 degree of freedom). This indicates the importance of 

including in the model as many explanatory variables as possible in order to get a better fit. 

Figures 3.8 and 3.9 show the relationships between the observed and the predicted number of 

accidents, and the fit of the observed accidents variance to the average squared residuals, 
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respectively. The results in Figure 3.8 show that the points are closer to the 45° line than the 

results displayed in Figure 3.3 (Total Model). Figure 3.9 also shows the tendency of the model's 

average squared residual to follow the variance equation. 
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gure 3.9 Total Model with the Effect of Intersection Type: Predicted Accidents 
vs Estimated Variance 

36 



Chapter III: Data Collection and Model Development 

A comparative analysis between the two approaches developed in this section for intersection 

type model is shown in Table 3.7. The analysis made use of the entire sample of this study (427 

intersections), and the number of predicted accidents was calculated by using the separate models 

and the total model including the intersection type. The results obtained in this analysis shows 

that using the single model provides a slightly lower Pearson %z test, and sum-of-squared error. 

This indicates that the total model with intersection type variables performs slightly better than 

using the two separate models. However the difference between both approaches is not 

significant, since the single model fits better only for 51% of the data. 

Parameters Separate Models Single Model 
Pearson %2 456 449 
X test0 0 5 j n_p_! 472 471 
Sum of Error2 12,117 11,882 
Closer Estimates 208 (49%) 219(51%) 

Table 3.7 Intersection Type Model: 2 Separate Models vs Single Model 

Figure 3.10 shows the predicted accidents as a function of major road traffic volume, for both 

approaches. This figure shows that for 4-leg intersections, the separate model curve is slightly 

above the single model curve. For T-intersections, at low major road traffic volumes 

(AADT<12,000 veh/day), both curves are practically the same, but at high traffic volume the 

separate model curve is also slightly above the single model curve. 

The results of the comparison show that using a single model seems to be slightly accurate than 

using separate models. The differences between these two approaches are relatively small. 
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Therefore, using either single or separate models will yield practically the same results, and both 

approaches are valid. 

16 

14 
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Major Road AADT (thousands) 

-e— Single T-Int - B — Single 44eg - A - Separate T-Int -*— Separate 44eg 

Figure 3.10 Intersection Type Model: Separate vs. Single Models' 

In addition, Figure 3.10 shows that T-intersections are approximately 50% safer than 4-leg 

intersections. A more detailed analysis regarding this point will be introduced in Chapter 5. 

3.2.3 Regional Models 

As described earlier, intersections in the Lower Mainland are generally different from those in 

Vancouver Island. Therefore, three regional models were developed: (1) a model for the Lower 

Mainland which comprises intersections located in the cities of Surrey, Coquitlam, Vancouver 
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and Burnaby; (2) a model for the Vancouver Island which comprises intersections located in 

Victoria and Nanaimo; and (3) a model for Surrey. It was decided to develop a model for Surrey 

because it has the highest average number of accidents per intersection. 

The sample size are 77, 350, and 56 for the Lower Mainland, Vancouver Island and Surrey 

models respectively. Table 3.8 shows the results of each model. For all models, the Pearson x2 

values indicate significance at the 95% confidence level. The scaled deviance is also smaller than 

the degrees of freedom. The t-ratios are significant at 95% confidence level for all parameters, 

except for the major road traffic volume for the Surrey model, which is significant only at the 

90% confidence level. Therefore, it is suggested that a larger sample size be used for the Surrey 

model or more explanatory variables should be added in order to obtain a more reliable model. 

Model Form t-ratio SD 
(dof) 

K Pearson %2 

(X2 test)* 
Vancouver Island model 

1. 1000 ) \ 1000 ) 

aa 

a, 
2.6 
6.0 
9.0 

302 
(347) 

2.92 383 
(390) 

Lower Mainland model 

1. 1000 J \ 1000 J 

aa 

a, 
a. 

7.6 
2.4 
3.7 

81 
(74) 

6.27 76 
(94) 

Surrey model 

, ,„ (AADTmaJrd)0A5]6 (AADTminrA°mi 

Acc/3 yrs = 8.441 x -— x 
\ 1000 ) \ 1000 ) 

a0 

a, 
a2 

8.7 
1.8 
2.3 

56 
(53) 

8.89 58 
(70) 

Denotes significance at a 95-percent confidence level 
Table 3.8 Regional Models 

Figures 3.11 through 3.16 show the relationships between the observed and the predicted number 

of accidents, and the fit of the variance of the observed accidents to the average squared 

residuals. The results for Vancouver Island and Mainland models (Figures 3.11 through 3.14) are 

symmetrically clustered around the 45° line and the average squared residuals follow the variance 
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to a satisfactory extent. For Surrey model, the results shown in Figures 3.15 and 3.16, indicates a 

larger dispersion, which confirms the need either use a larger sample or add more explanatory 

variables to the model. 
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Figure 3.12 Vancouver Island Model: Predicted Accidents vs Estimated Variance 
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Figure 3.14 Lower Mainland Model: Predicted Accidents vs Estimated Variance 
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Figure 3.15 Surrey Total Model: Observed vs Predicted Number of Accidents 
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Figure 3.16 Surrey Total Model: Predicted Accidents vs Estimated Variance 
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Figure 3.17 shows a comparison of the total model estimated in section 3.2.1 with the three 

regional models. It should be noted that the total model lies between the Vancouver Island and 

the Lower Mainland models, which is expected. The total model curve is closer to the Vancouver 

Island model because more than 80% of the data comes from the cities of Victoria and Nanaimo. 

10 15 20 25 30 

Major Road AADT (thousands) 

35 40 

-©—Total -a-Surrey Vancouver Island -*— Lower Mainland 

Figure 3.17 Comparison of Total Model with Regional Models 

3.2.4 Effect of Intersection Control Type 

Since data on intersection control type was only available for Surrey intersections, a Surrey total 

model including control type was estimated. As mentioned earlier, of the 56 intersections for 

Surrey data, 32 are classified as 2-way controlled, 8 as 4-way controlled and the remainders 16 as 
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one-way stop controlled T intersections. The type variable in the equation is denoted by 1, 2 and 

3 respectively for each control type. 

Table 3.9 shows the results of this model. It can be noted that the a0 parameter is much more 

significant than the three variables included in the model. This parameter also has a relatively 

high value. This is considered a deficiency since it indicates that the number of accidents is less 

dependent on traffic volumes and the control type. The t-ratio for the control type is not 

significant. As in the previous Surrey total model, it is therefore suggested that a larger size be 

used to develop this model. 

Model Form t-ratio SD K Pearson %2 

(dot) (X2test)* 
(AADT • A0A64S (AAHT N 0.2256 

Acc/3yrs-S.&906x\ m"Jrd\ x [ A A D T ^\ x ,-0.06994*00^ V 1000 J V 1000 J 
aa 

a, 
a, 
b] 

8.8 
2.0 
2.6 
-1.0 

55 
(52) 

9.01 58 
(69) 

* Denotes significance at a 95-percent confidence level 
Table 3.9 Surrey Total Model with Control Type 

Figures 3.18 and 3.19 show the relationship between the observed and the predicted number of 

accidents, and the fit of the variance of the observed accidents to the average squared residuals. 

In both figures the points are dispersed around the lines, which indicates a relatively poor fit. 
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Observed Accidents (acc/ 3 yrs) 

Figure 3.18 Surrey Total Model with Control Type: Observed vs Predicted Number 
of Accidents 

140 -, , 

0 5 10 15 20 25 30 

Predicted Accidents (acc /3 yrs) 

Figure 3.19 Surrey Total Model with Control Type: Predicted Accidents vs 
Estimated Variance 
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3.3 Comparison with Previous Results 

As mentioned in Chapter 2, there are few studies which developed accident prediction models for 

urban unsignalized intersections. Therefore, this section will only compare the models developed 

herein to those developed by Maher and Summersgill (1996), and Mountain and Fawaz (1996). 

Since the dada base used to obtain these models comprised mainly of T-intersections, then the 

comparison was performed on the separate T-intersection model described in section 3.2.2. 

Figure 3.20 shows the results of these three models for a constant minor traffic volume of 2,000 

vehicles per day. The T-intersection model developed in this thesis has higher frequencies than 

the other two models. The difference in results may be attributed to the fact that Maher and 

Summmersgiir model included only T-intersections on urban single carriageways while 

Mountain and Fawaz's model include both urban and rural intersections. As well, there are 

differences in regional characteristics and the accident reporting practice between the U K and 

British Columbia (different reporting limit, police attendance, etc.) 
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Figure 3.20 Comparison of T-Intersection model with Previous Studies 

3.4 Conclusion 

Using the negative binomial distribution approach eight different accident prediction models 

were developed. The first model developed included the entire data set and related accident 

frequency with traffic volumes for the major and minor roads. The rest of the models were 

classified according to certain characteristics such as intersection type (T and 4-leg intersections), 

regional characteristics, and intersection control type. 

According to the various quality tests performed in this chapter, six out of the eight models 

showed a good statistical fit. The two models that showed poor fit, were characterized by having 
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a lower sample size. It was suggested to increase the sample size or to include more explanatory 

variables into the models. 

For the intersection type model, two different approaches were utilized: (1) by developing two 

separate models for each intersection type and; (2) by developing a single model that includes the 

intersection type as one of the variables. The differences between these two models were 

relatively small, and the effect of intersection type can be measured by using either approach. 

Finally, a procedure to identify outliers in the data set was performed according to the Cook's 

distance values. The procedure indicated that there were no outliers in the data. 
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C H A P T E R I V 

S T A T I S T I C A L C O N S I D E R A T I O N S 

4.0 Introduction 

In this chapter several statistical issues will be discussed. The first issue relates to the error 

structure distribution. As described earlier, for the GLIM approach, the error structure is usually 

assumed to be Poisson or negative binomial. A comparison will be made between the two error 

structure distributions. The second issue relates to the method of calculating the parameter K of 

the negative binomial distribution. A comparison of several approaches to calculate K wil l be 

presented. 

4.1 Poisson vs. Negative Binomial Distribution Error Structure 

As mentioned in Chapter Two, dispersion parameters (crd, defined in equation 2.7) can be used to 

decide whether to use the Poisson or the negative binomial distribution error structure. If the 

dispersion parameter in the Poisson distribution model is greater than one, then going for the 

negative binomial distribution is recommended. 

The Poisson distribution was used as a first step to develop all eight models discussed in Chapter 

3. Appendix 2 shows the GLIM session results of the Poisson distribution. Table 4.1 shows a 

comparative analysis between these two approaches. Note that the dispersion parameter for the 

Poisson distribution is considerable high for all models, ranging from 2.57 for the Vancouver 

Island model, to 4.38 for the 4-leg intersection model. These high values are explained, by the 

lack of significance of the Pearson tests. This indicates that for all models the data has greater 
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dispersion than can be explained by the Poisson distribution, and it is necessary to assume a 

negative binomial distribution error structure. Under the latter distribution, a d ranges from 1.02 

for the Lower Mainland model, to 1.12 for T-intersection and Surrey control type models. This 

indicates that the data dispersion is satisfactorily explained by the negative binomial distribution. 

PARAMETERS Poisson Neg bin Poisson Neg bin Poisson Neg bin Poisson Neg bin PARAMETERS 
Total Model Total Intersection Type T-lntersection 4-Leg Intersection 

aa 
1.4833 1.4929 0.5906 0.5776 0.6717 0.9333 1.9007 1.6947 

a, 0.4067 0.3839 0.4336 0.4221 0.5809 0.4531 0.3884 0.4099 
a. 0.6086 0.7044 0.5937 0.6480 0.5902 0.5856 0.5944 0.7065 
b, 0.5268 0.5379 
Dispersion Parameter, <r(l 

4.30 1.08 3.86 1.06 3.26 1.12 4.38 1.06 
K 1.97 2.2 2.35 2.17 
Scaled Deviance 1577 399 1436 394 485 164 942 230 
Deg. of Freedom 424 424 423 423 183 183 238 238 
Pearson % 1823 459 1634 449 597 205 1042 251 
r(95%) 472 472 471 471 214 214 274 274 
Error2 12494 12996 11687 11883 3267 3347 8272 8770 
Closer Estimates 44% 56% 44% 56% 52% 48% 43% 57% 

Vancouver Island Lower Mainland Surrey Total Surrey Control Type 
a0 

1.3327 1.3807 6.7666 6.5929 8.5677 8.4401 8.9442 8.8906 
a, 0.3231 0.3042 0.2036 0.2011 0.1529 0.1516 0.1647 0.1645 
a, 0.5240 0.5488 0.2474 0.2864 0.1720 0.1907 0.1958 0.2256 
b, -0.0570 -0.0699 
Dispersion Parameter, ud 

2.57 1.10 3.35 1.02 2.97 1.10 3.00 1.12 
K 2.92 6.27 8.89 9.10 
Scaled Deviance 734 302 250 81 152 56 150 55 
Deg. of Freedom 347 347 74 74 53 53 52 52 
Pearson % 893 383 248 76 158 58 156 58 
r(95%) 390 390 94 94 70 70 69 69 
Error2 3879 3892 3633 3681 2431 2440 2417 2438 
Closer Estimates 42% 58% 44% 56% 41% 59% 52% 48% 

Table 4.1 Comparison between Poisson and Negative Binomial Distribu ion 

In addition to the dispersion parameter, Table 4.1 also shows other parameters to compare both 

model approaches such as the scaled deviance, Pearson x2, error squared and the share of the 

predicted accidents closer to the observed accidents. 
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The scaled deviance in the Poisson distribution is considerably greater for all models and exceeds 

the number of degrees of freedom from 112% for the Vancouver Island model, to 296% for 4-leg 

model. In contrast, for the negative binomial distribution models, the scaled deviance is 

relatively close to the degrees of freedom, which indicates a reasonably good fit. 

Regarding the other comparative tests such as the sum of error squared and the closer predicted 

values, Table 4.1 shows that the sum of error squared is slightly smaller in the Poisson models 

than in the negative binomial models. However, for this latter assumption, there are more 

predicted values closer to the observed data. This indicates that, while most of the data fits the 

negative binomial distribution model better, the estimates that fit the Poisson distribution better 

have higher differences with the observed values when using negative binomial distribution 

models. 

4.2 Approaches for Estimating the Negative Binomial Distribution Parameter K 

There are several approaches to estimate the parameter K of the negative binomial distribution 

error (Famoye, 1997). The macro library of the GL IM software package contains three methods: 

maximum likelihood and two methods of moments called mean x2 and mean deviance. In 

addition Kulmala (1995), following Maycock and Hall (1984), proposed a method of moments, 

in which the parameter K is initially calculated from the estimates obtained from the Poisson 

distribution model. A l l these methods are iterative. 

The method of maximum likelihood has been the most widely used (Hauer et-al, 1988, Bonneson 

and McCoy, 1993, Maher and Summersgill, 1996). According to Lawless (1987) this method is 
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based on the log-likelihood function, which is the natural logarithm of the joint probability 

function of the negative binomial distribution (equation 2.5). This is a function of p. and K, where 

ju is also a function of the parameter estimates, ar The iterative process is aimed at maximizing 

the log-likelihood function with respect to the parameter estimates, ap for selected values of K . 

The iterative process continues until the maximum value of K has been reached. 

The mean %2 method consists of fitting the Pearson %2 value to the number of degrees of freedom. 

As a first iteration, K is solved from the Pearson %2 equation, and the initial estimates are 

calculated by using the Poisson distribution. Having an initial value of K , the new parameters are 

estimated. Then the process is repeated until convergence. . 

The mean deviance method is similar to the mean %2 with the main difference being that the 

scaled deviance is forced to equal the number of degrees of freedom. 

The method of moments proposed by Kulmala (1995) and Maycock and Hall (1984) consists of 

estimating a first value of K , based on the following equation: 

tz^i 
ic* ^ (4.1) 

t(error?-E(A)i) 
i=\ 

where the predicted values E(A); are initially estimated based on the Poisson distribution model. 

Then, the K value is the run to a G L I M macro to estimate the parameters under the negative 

binomial distribution. As the previous methods of moments, the process is repeated until 
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convergence. According to Kulmala (1995) the estimates obtained in this method deviate less 

than 5% from those produced by the maximum likelihood method. 

The previous four methods were used to estimate the parameter K. The results obtained in the 

GLIM sessions are shown in Appendix IV. Table 4.2 summarizes the results obtained for each 

method. The table shows that the parameters' values are equal up to the first two decimal points 

for all methods, and the t-ratios show that for all cases the variables are significant. This shows a 

relative similarity between the four methods. 

PARAMETER MAXIMUM MEAN x 2 MEAN DEVIANCE MOMENTS 
LIKELIHOOD (KULMALA) 
Value t-ratio Value t-ratio Value t-ratio Value t-ratio 

a„ 1.4929 3.2 1.4963 3.1 1.4905 3.3 1.4947 3.4 

a, 0.3839 7.8 0.3827 7.5 0.3850 8.0 0.3832 8.0 
a2 0.7044 12.4 0.7058 12.0 0.7023 12.8 0.7054 12.8 

K 1.97 1.76 2.15 1.85 
Scaled Deviance 399 370 424 382 
Deg. of Freedom 424 424 424 424 

Pearson % 459 424 489 439 

^(95%) 472 472 472 472 
Error2 12996 13006 12981 13003 

able 4.2 Results of Different Negative Binomial Methods in the Total Model 

With Regard to the parameter K , there are more differences than the model's parameters. The 

highest K value is obtained through the method of mean deviance, followed by the method of 

maximum likelihood. According to the criteria of maximizing K , which reduces the variance, the 

best method would be the mean deviance, while the worst would be the mean yj method. 

However, by analyzing the Pearson %2 statistic, the method with the highest K is not significant at 

the 95% confidence level. Therefore, the best method would be the maximum likelihood, which 

has the second highest K parameter. 

54 



Chapter IV: Statistical Considerations 

Table 4.2 also shows that, the scaled deviance value for all methods is significant compared with 

the degrees of freedom. The Pearson x2 statistic is significant at 95% of confidence level for all 

models, except the mean deviance model, and the sum of error squared show that the estimates 

are quite similar, which is a result of the similarity in the model's parameters. 

Figure 4.1 shows the predicted accidents of the total model as a function of major road traffic 

volume for the different methods. This Figure shows all curves turning into one curve, which 

confirms the similarities, found in Table 4.1. 

This analysis shows that with exception of the mean deviance method, which was not significant 

according to the Pearson x2 statistic, the other three methods yield approximately the same 

results. However, out of the three significant methods, the maximum likelihood yields the 

highest K value, and for this reason it is regarded as the most appropriate method. 
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Figure 4.1 Predicted Accidents using Different Methods to Obtain K 

4.3 Conclusion 

This chapter was intended to demonstrate the advantages of the methodology used in chapter 

three to derive the accident prediction models. First, it was demonstrated in a comparative 

fashion that the accident prediction models for urban unsignalized intersections follow the 

negative binomial distribution rather than the Poisson distribution. 

Next, it was also demonstrated that the maximum likelihood method is the most appropriate to 

calculate the negative binomial model's parameter because it yields the maximum value of K for 

significant models. However, it was found that the methods of the mean %2 and the method of 

moments proposed by Kulmala, yielded significant results which were similar to the maximum 

likelihood method. 
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APPLICATIONS 

5.0 Introduction 

As described earlier, there are several applications of accident prediction models. This chapter 

describes five different applications. The first four applications relate to the use of the Empirical 

Bayes refinement: identification of accident-prone locations, developing critical accident 

frequency curves, ranking the identified accident-prone locations and before and after safety 

evaluation. The fifth application provides a safety-planning example, comparing the safety 

performance of a 4-leg intersection and two staggered T-intersections for the same traffic 

volume. 

Empirical Bayes refinement applications are demonstrated using the model relating the total 

number of accidents to traffic flows (Table 3.4) because it is the most general model. The 

Vancouver Island and the Lower Mainland models are also used in the identification and ranking 

of accident-prone locations. 

5.1 Empirical Bayes Refinement 

As mentioned in Section 2.5, the main goal of using the Empirical Bayes refinement is to yield 

more accurate, location-specific safety estimate by combining the observed number of accidents 

at the location, with the predicted number of accidents obtained from the GL IM model. 

To illustrate this process, assume that an unsignalized intersection has the following data: 
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Major road ADT = 15,000 veh/day 

Minor road ADT = 2,000 veh/day 

Observed accidents = 11 acc/3 years 

Using the model from Table 3.4, the safety of this intersection is: 

pred = 1.4929 x 
' 15,000" 
v 1,000 y 

0.3839 ^2,000A 

a,ooo. 

0.7044 

6.88 acc I'3 years 

Using equations 2.17 and 2.18 the empirical safety estimate and its variance respectively, can be 

calculated as: 

EB, safety estimate 
1.97 

U.97 + 6.88 
x6.88 + 

6.88 
1.97 + 6.887 

x 11 = 10.08 acc /3 years 

Var(EBsayety estimate) 
f 6.88 ^ 2 

^6.88 + 1.97/ 
xl .97 + 

6.88 \ 2 

6.88 +1.97^ 
x 11 = 7.84 (acc/3 years)" 

In this example the expected number of accidents is reduced from 11 to 10.08 which corresponds 

to about eight percent regression to the mean correction. 

Figure 5.1 illustrates the Empirical Bayes refinement estimation versus the values predicted from 

the G L I M model. Notice that the EB estimates are much closer to the 45° line, indicating an 
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average regression to the mean correction of 35% although for some extreme cases, the 

corresponding correction is up to 150%. 
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0 5 10 15 20 25 30 35 
Observed Accidents (acc/ 3 yrs) 

Figure 5.1 Predicted vs. EB Refined Number of Accidents for Total Model 
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5.2 Identification of Accident Prone Locations 

Accident prone locations (APLs) are defined as the locations that exhibit a significant number of 

accidents compared to a specific norm. Because of the randomness inherent in accident 

occurrence, statistical techniques that account for this randomness should be used when 

identifying APLs. The EB refinement method can be used to identify APLs according to the 

following process (Belanger, 1994): 

1. Estimate the predicted number of accidents and its variance for the intersection, using the 

appropriate GL IM model. This follows a gamma distribution (the prior distribution) with 

parameters a, and /?„ where: 

= E(A) = _ K _ ^ a E(A) = K (5.1) 

2. Determine the appropriate point of comparison based on the mean and variance values 

obtained in step (1). Usually the 50 t h percentile (P50) is used as a point of comparison. P 5 0 

is calculated such that: 

0 ™ 
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3. Calculate the EB safety estimate and its variance from equations (2.17) and (2.18) 

respectively. This is also a gamma distribution (posterior distribution) with parameters a2 

and p2: 

EB K 
/J? : = h 1 and aj = • EB = K + count (5.3) 

1 Var(EB) E(A) 1 H l 

Then, the probability density function of the posterior distribution is: 

r ,* ( K l E ( A ) + lfc+count)f+comt-\e-{KIE{A)+\)X 

J EB W = r=— (5 -4) 
1(K + count) 

4. Identify the location as accident-prone i f there is a significant probability that the 

intersection's safety estimate exceeds the P 5 0 value. Thus, the location is identified as 

accident prone if: 

^50 {KI E(A) + \ J.K+COUNT) A\K+count~^e~^K ^ E(A)+\)X 
1 — I dA, 

* r(K + count) 
>5 (5.5) 

where ^represents the confidence level desired (usually 0.95) 

For the example given in the previous section, the predicted number of accidents and its variance 

is 6.88 acc/3yr and 24.67 (acc/3yr)2 respectively. Then using equation 5.2 to obtain the P 5 0 value: 
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Pf (1.97/6.88)1 9 7 - i 9 7 - 1 .e-d-97/6.88)A 
a A = 0.5 

0 A l -97 ) 

solving the integral for 0.5, the P 5 0 value is 5.75 acc/3yr. 

From the pervious section, the EB estimate and its variance is 10.08 acc/3yr and 7.84 (acc/3yr)2 

respectively. Using equation 5.5 the left-hand side of the equation is: 

5 f (1.97 / 6.88 + if 9 7 + 1 1 } A1 ' 9 7 + 1 X-Xe^ 9 7 1 6 8 8 + 1 ^ A , n n c 1- '- <3/t = 0.96 
{ A l . 9 7 + 11) /TL97 + 11) 

This indicates that there is a significant probability (96%) of exceeding the P 5 0 value and the 

intersection can be considered accident-prone. Figure 5.2 shows a graphical representation of this 

example: 
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0.16 

Accidents/3 years 

Figure 5.2 Identification of Accident Prone Locations 

5.3 Critical Accident Frequency Curves 

The process of identifying accident-prone locations, as described in the previous section, 

involves considerable computational effort. To facilitate this process, critical accident frequency 

curves can be developed for each GL IM model. A critical curve is one that indicates the number 

of observed accidents that must be exceeded in order to classify the location as accident-prone 

for a given GL IM model and a confidence level. 

The procedure to obtain these critical curves is iterative and makes use of equations (5.2) and 

(5.5). The initial data is the number of predicted accidents based on a GL IM model with its K 

parameter. For every predicted accident, the P 5 0 value is calculated by using equation (5.2). This 
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value is used in equation (5.5), where for a given level of confidence, the equation is solved in an 

iterative fashion, in order to find the observed number of accidents (variable count in equation 

(5.5)) that fits the given level of confidence. The critical curve is obtained by joining all the 

critical points in a Predicted versus Observed Accidents chart. 

As an example, Figures 5.3, 5.4 and 5.5 show these curves for the total model (Table 3.4), 

Vancouver Island and Lower Mainland models (Table 3.8). Three curves are shown in each 

figure, representing the 90%, 95%, and 99% confidence levels. To illustrate the use of these 

curves, consider the example described in Section 5.1. Using the total model and the given traffic 

volumes, 6.88 accidents/3 years, are estimated. For this number of accidents and for 99% 

confidence level, at least 13 accidents/3 years need to be observed to consider this intersection as 

accident-prone (Figure 5.3). Table 5.1 shows the number of APLs identified by the three models 

for different significance levels. 

MODEL L E V E L OF CONFIDENCE MODEL 
90% 95% 99% 

Total Model 82 67 51 
Vancouver Island Model 38 30 21 
Lower Mainland Model 21 14 6 

Table 5.1 Number of Accident Prone Locations 
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Figure 5.3 Critical Curves for Total Model 
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o Victoria • Nanaimo 

Figure 5.4 Critical Curves for Vancouver Island Model 
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Figure 5.5 Critical Curves for Lower Mainland Model 
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An extension of the critical curves can be also applied for different K values. Figure 5.6 shows 

the critical curves for eight different values of K and a confidence level of 95%. The advantage of 

this kind of curves is that they can be used for any negative binomial model. The data required to 

use this curve is a negative binomial model from which the predicted number of accidents is 

calculated and according to the model's K value, the critical number of accidents is estimated by 

using the curve for the corresponding K . The disadvantage of this method is that the results are 

not as accurate as the previous ones, because in most cases there is not a curve for the specific K 

value (i.e. K=2.17) and the critical value is estimated by approximating the K value to the closest 

curve. 
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0 5 10 15 20 25 30 35 40 45 50 
Predicted Accidents 

Figure 5.6 Critical Curves for Different Values of K 
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Note that the higher the K value, the higher the critical number of accidents. The rationale for this 

is illustrated in Figure 5.7. 

Figure 5.7-a shows the same example as in Section 5.1, but in this case it is assumed to have a K 

value of 1.0 (low K) and an observed number of accidents of 9.05 acc/3 years (this is the critical 

number of accidents at 95% of confidence level). Under these conditions the predicted number of 

accidents is the same 6.88 acc/3 years, but due to the change in the K value and the observed 

number of accidents, the P 5 0 is 4.77 acc/3 years and the EB estimate is 8.77 acc/3 years. The 

probability of having accidents greater than P 5 0 value is 95%, a critical condition. 

Figure 5.7-a shows that at low values of K , the prior distribution is skewed left, and the EB 

estimate is close to the observed number of accidents. The reason of this is that low K values 

increase the variance leading to more uncertainty about the predicted value. Therefore, the EB 

estimate is closer to the observed value rather than the predicted one. 

Figure 5.7-b, shows the same model but the K value is considerably higher (K=20). The observed 

number of accidents is the same as in Figure 5.7-a, but in this case due to the increase in K , this 

value is no longer critical. The EB estimate is now closer to the predicted number of accidents 

instead of the observed one, because the variance has decreased leading to more reliability about 

the GL IM model estimate. The prior distribution is less skewed and closer to the posterior 

distribution. 
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In order to find the critical number of accidents for the conditions in this case (Figure 5.7-b), it is 

necessary to raise considerably the observed number of accidents. Figure 5.7-c shows that the 

critical value is 15.65 accidents/3 years, which represents an increase of 6.5 accidents/3 years 

compared with the previous conditions, while the EB estimate has also increased but only by 1.6 

acc/3 years. This latter value remains closer to the predicted number of accidents. 
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a) K=1.0 and Observed Accidents=Critical 

Accidents/3 years 

b) K=20 and Observed Accidents=Critical for K=1 
0.30 -i - 1 

Accidents/3 years 

c) K=20 and Observed Accidents=Critical 
0.30 -, - 1 

Accidents/3 years 

ure 5.7 Comparison of Critical Accidents for Different K Values 
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5.4 Ranking of Accident Prone Locations 

The methods used to identify accident-prone locations explained in the previous two sections can 

be also useful in ranking these locations. Two ranking criteria can be used. The first is to 

calculate the ratio between the EB estimate and the predicted frequency (as obtained from the 

GL IM model) for the accident prone locations identified in the previous section. This ratio 

represents the deviation of the intersection from the "norm". The higher this ratio the more 

accident prone the intersection is. The justification for using this ranking criterion is to ensure 

that the safety level at each criterion is comparable to other intersections with similar 

characteristics. 

Another criterion is to calculate the difference between the EB estimate and the predicted 

frequency for the accident prone locations. This difference is a good indication of the expected 

safety benefits and is useful for carrying out the estimation of the pre-implementation safety 

benefits of countermeasures. Unlike the previous criterion, this one is useful to quantify 

economical benefits. 

A comparison of the two ranking criteria is shown in Table 5.2 for the Vancouver Island Model. 

Twenty-one accident prone locations (APLs) were identified at the 99% confidence level. The 

table shows the values of both the difference (EB - Predicted) and ratio (EB/Predicted) for all 

APLs. As shown in Table 5.2, the difference in rank between the two criteria ranges between 1 

and 15 with an average value of 4.9. The difference in rank seems to be higher for the top ranked 

intersections. The reason for this difference can be explained by the different goals of the two 

criteria. The first criterion favors intersections with high accident frequency which are usually 
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more cost-effective to treat. The second criterion considers the deviation from the expected 

values and its variance regardless of the number of accidents observed. This criterion can be 

considered by road authorities to ensure that the safety of different locations is within acceptable 

levels. 

Int. Intersection Observed Predicted EB EB-Pred EB/Pred Rank Rank Diff 
No. Frequenc 

y 
Accidents Refined EB-Pred EB/Pred Rank 

1 Blanshard-Topaz 24 7.3 19.2 11.9 2.6 1 5 4 
2 Cook-Kiwanis 25 9.9 21.6 11.7 2.2 2 14 12 
3 Douglas-Tolmie 24 11.1 21.3 10.2 1.9 3 18 15 
4 Finlayson-Nanaimo 18 4.3 12.4 8.2 2.9 4 3 1 
5 Government-Discovery 18 3.4 11.3 7.9 3.3 5 1 4 
6 Vancouver-Balmoral 15 4.1 10.5 6.4 2.5 6 7 1 
7 Douglas-Princess 15 3.9 10.3 6.4 2.6 7 6 1 
8 Cook-View 15 3.7 10.0 6.3 2.7 8 4 4 
9 Southgate-Vancouver 14 4.7 10.4 5.7 2.2 9 12 3 

10 Bowen-Pine-Access 16 8.6 14.1 5.5 1.6 10 21 11 
11 Dallas-Douglas 14 2.4 7.6 5.2 3.2 11 2 9 
12 Douglas-Discovery 13 3.9 9.1 5.2 2.3 12 11 1 
13 Albert-Fourth-Pine-Park 13 3.7 8.9 5.2 2.4 13 9 4 

14 Quadra-Topaz 13 3.6 8.7 5.2 2.5 14 8 6 
15 Wakesiah-Fourth 13 4.8 9.9 5.1 2.1 15 17 2 
16 Fairfield-Foulbay 12 4.1 8.7 4.6 2.1 16 15 1 
17 Douglas-Spruce 12 5.4 9.7 4.3 1.8 17 20 3 
18 Shelbourne-Pearl 11 3.4 7.5 4.1 2.2 18 13 5 
19 Quadra-Burdett 11 3.7 7.8 4.1 2.1 19 16 3 
20 Hillside-Graham 11 2.9 6.9 4.0 2.4 20 10 10 
21 Quadra-Pembroke 11 4.6 8.6 3.9 1.8 21 19 2 

Table 5.2 Ranking of APLs for The Vancouver Island Model 

Figure 5.8 shows the values of the two ranking criteria for the top 10 APLs. The figure shows 

that intersections 1, 3, 4, 5, 6, and 7 are among the top 10 intersections for both methods with an 

average ranking difference of 5.6. Intersections 2, 8, 9, and 10 are included in the top 10 using 

the "difference" ranking, but are not included in the "ratio" ranking. The degree of proneness of 

these intersections, despite of showing high expected benefits, is not among the top 10 
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intersections. The same applies to intersections 12, 14, 18 and 21 which show a high degree of 

proneness, but its indication of expected benefits is not among the top 10 intersections. 

co 
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CD 
o c 
CD 

I 
TJ CD 

•o 

«8 
m 
LU 

Difference Ranking Ratio Ranking 

Number inside bar denotes intersection number according to Table 5.2 

Figure 5.8 Ranking of Top10 APL for Island Model 

There are other ranking criteria relating both a ratio and a difference. These other methods 

involves parameters of accident prediction models such as the predicted vs. observed number of 

accidents, observed vs. critical curve value, observed vs. EB estimates, etc. These criteria can be 

implemented by using the same methodology of this section. There is little research concerning 

the ranking criteria when using accident prediction models. This is an area that surely needs 

further research. 

76 



Chapter V: Applications 

5.5 Before and After Studies 

The effect of a safety measure is often studied by comparing the number of accidents observed 

after the implementation of the measure, to the expected number of accidents had the measure 

not been implemented. In simple before and after studies, the observed number of accidents in 

the period before the implementation is used to estimate the latter value. However, because of the 

random variations in accident occurrence (e.g. the regression to the mean effect), the observed 

number of accidents before the implementation may not be a good estimate of what would have 

happened had no measure been implemented. An alternative and more accurate approach is to 

use the EB refinement process. 

Using the same example as before, assume that a specific safety measure to reduce the number of 

accidents at the intersections was implemented. The observed number of accidents in the next 

three years following the implementation is 8. Therefore, the effectiveness of the measure can be 

calculated as: 

g 
Measure of Effectiveness = 1 = 0.21 

10.08 

which indicates a reduction by 21% in total accidents because of the treatment. 

The importance of using accident prediction models in before and after studies is highlighted by 

the difficulty associated in developing this analysis in a traditional fashion, via a reference group 

of comparison. This group should be of sufficient size and homogeneity to carry out an accurate 

analysis. The difficulty lies in defining a group with these features. Accident prediction models 
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overcome this difficulty, since they represent of local conditions and replace the role of the 

traditional reference group. 

5.6 Safety Comparison of Staggered T and 4-leg Intersections 

Several researches have compared the safety performance of 4-leg intersections and staggered T-

intersections. Kulmala (1995) found that, in general, the staggering of 4-leg intersections into 

two staggered T-intersections reduces the number of injury accidents if the percentage of traffic 

entering the junction form the minor road is greater than 5% of the total traffic. He also found 

that i f 50% of the total traffic enter the junction from the minor road, the staggering would 

reduce the number of injury accidents by 23%. Kulmala (1995) found his results consistent by 

comparing them with some Nordic studies, where the staggering was found to decrease the 

number of injury accidents by 0% to 20%. 

In order to confirm these results, a safety comparison of 4-leg and staggered T-intersections was 

carried out using the models developed in Table 3.5 (the separate T and 4-leg intersection 

models). According to the analysis made in Section 3.2.2, it is also valid to use the total model 

with intersection type (Table 3.6) which yields approximately the same results. The following 

assumptions were made: 

1. The traffic volumes on the major and minor roads for the 4-leg intersections are V, and 

V 2 , respectively (expressed in AADT). 
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2. For the two staggered T-intersections, the traffic volume on the major road is V „ while 

the minor approaches have traffic volumes of V 2 /2 (expressed in AADT). This 

assumption ensures that the traffic volume in both scenarios is the same. 

3. The two staggered intersections will not affect each other (isolated intersections). This 

assumption depends, of course, on the distance between the two intersections. 

The results of the comparison are shown in Figure 5.9 for three different minor road traffic 

volumes. The results indicate that the staggering is effective in reducing the predicted number of 

accidents. This reduction increases as the traffic volume on the major or minor road increases. It 

should be noted that the degree of reduction would vary with different ratios of traffic volumes 

on the major and minor roads. 
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Figure 5.9 Staggered T vs 4-leg Intersections Safety Comparison 
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5.7 Conclusion 

This chapter has shown five applications of accident prediction models. Most of these 

applications make use of the EB refinement methods, in order to reduce the regression to the 

mean phenomenon. 

It has been shown that accident prediction models are useful in identifying accident prone 

locations (APLs) with a probabilistic confidence level by using both analytical and graphical 

methods. It is also possible to rank the APLs by two different criteria, difference and ratio, 

according to the particular objectives of the road's authorities. 

In addition, accident prediction models can be used for evaluating the safety of a 

countermeasure, without having to define a reference group, because the GL IM models contains 

the characteristics of the location. 

Finally, it was found that staggered T-intersections are safer than 4-leg intersections, a finding 

that should be taken into account by road planning authorities. These results agree with those 

found in the literature. 
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CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The main objective of this project is to develop accident prediction models for estimating the 

safety potential of urban unsignalized (T and 4-leg) intersections in the Greater Vancouver 

Regional District (GVRD) and Vancouver Island on the basis of their traffic characteristics. The 

models are developed using the generalized linear regression modeling (GLIM) approach, which 

addresses and overcomes the shortcomings associated with the conventional linear regression 

approach. The safety predictions obtained from GLIM models can be refined using the Empirical 

Bayes' approach to provide, more accurate, site-specific safety estimates. The use of the 

complementary Empirical Bayes approach can significantly reduce the regression to the mean bias 

that is inherent in observed accident counts. 

This study made use of sample accident and traffic volume data corresponding to unsignalized 

(both T and 4-leg) intersections located in urban areas of the Greater Vancouver Regional 

District (GVRD) and Vancouver Island. The data included a total of 427 intersections located in 

the cities of Victoria, Surrey, Nanaimo, Coquitlam, Burnaby and Vancouver. The information 

available for each intersection included the total number of accidents in the 1993-1995 period, 

traffic volumes for both major and minor roads given in Average Annual Daily Traffic (AADT) 

and type of intersection (T or 4-leg). 
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Four categories of models were developed in this study: (1) models for the total number of 

accidents; (2) separate models for T and 4-leg intersections; (3) separate models for different 

regions (Vancouver Island, the Lower Mainland and Surrey); and (4) a model for Surrey 

including intersection control. Table 6.1 summarizes the models' results. 

Models developed in this thesis used the negative binomial distribution approach, which has the 

advantage of explaining the dispersion characteristic of the observed data compared with the 

Poisson distribution. In addition, different tests showed that the maximum likelihood method 

yields the most appropriate parameters under the negative binomial distribution assumption. 

Model Form t-ratio SD 
(dof) 

K Pearson x 2 

(X2 test)* 
Model for the total number of accidents 

(AADTmairA03m (AADT - . f 7 0 4 4 

Acc / 3 yrs-1.4929 x\ m a j r d \ x\AAU1mmrd\ 
\ 1000 ) \ 1000 J 

a, 
a2 

3.2 
7.8 
12.4 

399 
(424) 

1.97 459 
(472) 

T-intersection model 
(AADT • A 0 - 4 5 3 1 / J j n T \0.5806 

A /-> nn-,-,1 AAU1ma]rd\ [ AADTminrd\ 
Acc 13 yrs = 0.9333 x - — x m m r a 

V 1000 J V 1000 J 

aa 

a, 
a2 

-0.3 
5.5 
7.4 

164 
(183) 

2.34 205 
(214) 

4-leg intersection model 

(AADTmaird\Mm (AADT - A*™65 

Accllyrs = 1.6947x m a j r d x A A U 1 ^ r d 
\ 1000 J V 1000 J 

a„ 
a, 
a2 

3.6 
6.8 
9.1 

230 
(238) 

2.17 251 
(274) 

Total Model with Intersection Type 

AccHyrs = 0 . 5 7 7 6 x { A A D T » > « J " i t ™ JAADTminnA06m ^ ^ i l 9 x T y p e 

\ 1000 ) I 1000 J 

a0 

a, 
a, 
b, 

-2.8 
8.7 
11.7 
6.3 

394 
(423) 

2.23 449 
(471) 

Vancouver Island model 

(AADT . A 0 3 0 4 2 ( AAV,T \0.5488 
Accllyrs = 1.3807x * AADTn>inrd] 

V 1000 J V 1000 J 

a0 

a, 
a2 

2.6 
6.0 
9.0 

302 
(347) 

2.92 383 
(390) 

Lower Mainland model 

. „ » m n ( A A D T m a j r d ) 0 2 m (AADTminrdtnM 

Acc/3 yrs = 6.5929 x — x m m m 

\ IOOO ) v IOOO ; 

aa 

a, 
a. 

7.6 
2.4 
3.7 

81 
(74) 

6.27 76 
(94) 

* Denotes significance at a 95-percent confidence level 

Table 6.1 Summary of Accident Prediction Models 
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Chapter VI: Conclusions and Recommendations 

Five applications of accident prediction models were used in this thesis. Four of them related to 

the use of the Empirical Bayes refinement: identification of accident-prone locations, developing 

critical accident frequency curves, ranking the identified accident-prone locations and before and 

after safety evaluation. The fifth application provided a safety-planning example, comparing a 4-

leg intersection to two staggered T-intersections. 

It was shown that accident prediction models are useful in identifying accident prone locations 

(APLs) with a probabilistic confidence level by using both analytical and graphical methods. It is 

also possible to rank the APLs by two different criteria, difference and ratio, according to the 

particular objectives of the road's authorities. 

In addition, accident prediction models can be used to evaluate the safety benefits of a 

countermeasure, without having to define a reference group, because the GL IM models contains 

the characteristics of the location. 

Finally, it was found that staggered T-intersections are safer than 4-leg intersections, a finding 

that should be taken into account by road planning authorities. These results agree with previous 

researches made in the Scandinavian countries. 

6.2 Recommendations for further research 

This thesis has developed accident prediction models for urban unsignalized intersections that 

included independent variables such as traffic volumes and control type. It is recommended that 

these models be further refined by adding more variables such as: 
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Intersection control type: An attempt to develop this model was made in this thesis, but the 

results showed a poor fit. Therefore it is recommended to use a larger sample size to obtain a 

significant model, in order to assess the safety effect of intersection control type in a similar 

fashion that this thesis assessed the safety effect of T and 4-leg intersections. 

Intersection Layout variables: Accident occurrence can be explained by several variables. 

Including intersection layout variables (e.g. number of lanes of each road, number of left and 

right turn lanes, pedestrian crosswalks, speed limit, etc) should enhance our understanding of the 

relationships between accident occurrence and geometric design. 

Accident Type: In safety evaluation of countermeasures it may be necessary to look at individual 

accident types (e.g. rear-end, right angle, etc.) as opposed to the total number of accidents. 

Therefore, it is recommended that models for specific accident types be developed. 

Finally, as explained earlier, there is a need for more research on ranking accident prone 

locations. This is very important in situations when the road authority has resources to address 

only a limited number of accident prone locations, it is important to focus on those with the 

highest potential of accident reduction or those which deviates from the normal safety levels for 

similar locations. 
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APPENDIX I 

RESULTS OF OUTLIERS IDENTIFICATION 
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Figure AM Identification of the Highest Cook's Distance Values for Total Model 
with Intersection Type 

Rank Cook's 
Distance 

Intersection 
Number 

Sample Size Scaled Dev. SD Drop Cumulative SD 
Drop 

x2 

1 157 426 390.69 3.63 3.63 3.84 

2 45 425 389.49 1.20 4.83 5.99 

3 51 424 388.36 1.13 5.96 7.81 

4 14 423 387.19 1.17 7.13 9.49 

5 44 422 385.66 1.53 8.66 11.07 

6 22 421 383.85 1.81 10.47 12.59 

7 5 420 382.25 1.60 12.07 14.07 

8 224 419 380.45 1.80 13.87 15.51 

Table Al- Identification of Outliers for Total Model with Intersection Type 
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Figure AI-2 Identification of the Highest Cook's Distance Values for T-lntersection 
Model 

Rank Cook's 
Distance 

Intersection 
Number 

Sample Size Scaled Dev. SD Drop Cumulative SD 
Drop 

x2 

1 66 185 160.61 3.00 3.00 3.84 

2 9 184 159.54 1.07 4.07 5.99 

3 14 183 158.15 1.39 5.46 7.81 

4 53 182 157.21 0.94 6.40 9.49 

5 8 181 156.03 1.18 7.58 11.07 

6 103 180 154.62 1.41 8.99 12.59 

Ta ble AI-2 Identification of Outliers 1 or T-lntersection Model 
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Figure AI-3 Identification of the Highest Cook's Distance Values for 4-leg 
Intersection Model 

Rank Cook's 
Distance 

Intersection 
Number 

Sample Size Scaled Dev. SD Drop Cumulative SD 
Drop 

x2 

1 12 240 229.12 1.18 1.18 3.84 

2 20 239 227.18 1.94 3.12 5.99 

3 3 238 225.32 1.86 4.98 7.81 

4 29 237 223.38 1.94 6.92 9.49 

5 223 236 221.94 1.44 8.36 11.07 

6 159 235 219.83 2.11 10.47 12.59 

7 133 234 218.25 1.58 12.05 14.07 

8 231 233 217.27 0.98 13.03 15.51 

Table AI-3 Identification of Outliers for 4-Leg Intersection Model 
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Figure AI-4 Identification of the Highest Cook's Distance Values for Vancouver 
Island Model 

Rank Cook's Intersection Sample Size Scaled Dev. SD Drop Cumulative SD x1 

Distance Number Drop 
1 101 349 298.88 2.97 2.97 3.84 

2 41 348 298.01 0.87 3.84 5.99 

3 73 347 297.44 0.57 4.41 7.81 

4 200 346 295.41 2.03 6.44 9.49 

5 326 345 294.14 1.27 7.71 11.07 

6 222 344 291.91 2.23 9.94 12.59 

7 89 343 290.04 1.87 11.81 14.07 

Table AI-4 Identification of Outliers for Vancouver Island Model 
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Figure AI-5 Identification of the Highest Cook's Distance Values for Lower 
Mainland Model 

Rank Cook's 
Distance 

Intersection 
Number 

Sample Size Scaled Dev. SD Drop Cumulative SD 
Drop 

x2 

1 14 76 80.08 0.95 0.95 3.84 

2 5 75 78.81 1.27 2.22 5.99 

3 22 74 77.47 1.34 3.56 7.81 

4 74 73 73.99 3.48 7.04 9.49 

5 66 72 70.52 3.47 10.51 11.07 

6 10 71 69.49 1.03 11.54 12.59 

7 57 70 67.94 1.55 13.09 14.07 

Table AI-5 Identification of Outliers for Lower Mainland Model 
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Figure AI-6 Identification of the Highest Cook's Distance Values for Surrey Total 
Model 

Rank Cook's Intersection Sample Size Scaled Dev. SD Drop Cumulative SD x2 

Distance Number Drop 
x2 

1 14 55 54.60 1.12 1.12 3.84 

2 5 54 53.14 1.45 2.58 5.99 

3 4 53 52.26 0.88 3.45 7.81 

Table AI-6 Identification of Outliers for Surrey Total Model 
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Figure AI-7 Identification of the Highest Cook's Distance Values for Surrey Total 
Model with Intersection Control Type 

Rank Cook's Intersection Sample Size Scaled Dev. SD Drop Cumulative SD x1 

Distance Number Drop 
1 14 55 54.40 1.08 1.08 3.84 

2 51 54 53.40 1.00 2.08 5.99 

3 45 53 52.40 1.00 3.08 7.81 

4 10 52 51.49 0.90 3.98 9.49 

5 5 51 50.15 1.35 5.33 11.07 

6 49 50 49.35 0.80 6.13 12.59 

7 4 49 48.40 0.95 7.08 14.07 

Table AI-7 Identification of Outliers for Surrey Total Model with Intersection 
Control Type 
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PREDICTION RATIO VS. ACCIDENT FREQUENCY 
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Appendix II: Prediction Ratio vs. Accident Frequency 
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Appendix II: Prediction Ratio vs. Accident Frequency 
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APPENDIX III 

GLIM SESSION FOR ESTIMATING APM 

[o] GLIM 4, update 8 for IBM etc. 80386 PC / DOS on 28-Oct-1997 at 09:33:59 
[o] (copyright) 1992 Royal S t a t i s t i c a l Society, London 
[o] 
[i] ? $C ACCIDENT PREDICTION MODELS FOR UNSIGNALIZED INTERSECTIONS$ 
[i] ? $C TOTAL MODEL$ 
[i] ? $Units 427$ 
[i] ? $Data VI V2 Total Total_3yr Type$ 
[i] ? $Dinput 'unsigall.txt'$ 
[i] ? $Calc LVl=%log(Vl) : LV2=%log(V2)$ 
[i] ? $Yvar Total_3yr $Error P $Link L$ 
[i] ? $Fit LV1+LV2 $D E$ 
[o] scaled deviance = 1576.8 at cycle 4 
[o] r e s i d u a l df = 424 
[o] 
[o] estimate s.e. parameter 
[o] 1 0.3943 0.07586 1 
[o] 2 0.4067 0.02814 LV1 
[o] 3 0.6086 0.02636 LV2 
[o] scale parameter 1.000 
[o] 
[i] ? $Input %plc 80 NEGBIN.MAC$ 
[ e ] i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

[ e ] i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

[e] $echo off$ 
[h] 
[i] ? $Number theta=0$ 
[i] ? $Use negbin theta $D E$ 
[o] scaled deviance = 398.83 (change = -1178.) at cycle 3 
[o] r e s i d u a l df = 424 (change = 0 ) 
[o] 
[o] ML Estimate of THETA = 1.966 
[o] Std Error = ( 0.1828) 
[o] 
[o] NOTE: standard errors of fi x e d e f f e c t s do not 
[o] take account of the estimation of THETA 
[o] 
[o] 2 x Log-likelihood = 4697. on 424 df 
[o] 2 x F u l l Log-likelihood = -2138. 
[o] 
[o] estimate s.e. parameter 
[o] 1 0.4007 0.1233 1 
[o] 2 0.3839 0.04940 LV1 
[o] 3 0.7044 0.05676 LV2 
[o] scale parameter 1.000 
[o] 
[i] ? $C END OF TOTAL MODEL$ 
[i] ? $C TOTAL MODEL INCLUDING INTERSECTION TYPE$ 
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o] estimate s. e .- parameter 
o] 1 -0.5266 0.1114 1 
o] 2 0.4336 0 . 02801 LV1 
o] .3 0.5937 0 . 02721 LV2 
o] 4 0.5268 0 . 04564 TYPE 
o] scale parameter 1.000 

. 0 ] 

i] ? $Number theta=0$ 
i] ? $Use negbin theta $D E$ 
.0] scaled deviance = 394 3 2 (change -1042. 
0 ] r e s i d u a l df = 423 (change 0 

. O J 

.0] ML Estimate of THETA = 2 .228 

.0] Std Error = ( 0. 2170) 

? $Yvar Total_3yr $Error P $Link L$ 
-- model changed 
? $Fit LVl+LV2+Type $D E$ 
scaled deviance = 1435.8 at cycle < 

res i d u a l df = 423 

at cycle 2 

NOTE: standard errors of f i x e d e f f e c t s do not 
take account of the estimation of THETA 

.0] 2 x Log-l i k e l i h o o d = 4734. on 423 

.0] 2 x F u l l L og-likelihood = -2100. 

. 0 J 

.0] estimate s. e. parameter 

.0] 1 -0. 5488 0 . 1920 1 
0 ] 2 0.4221 0 . 04843 LV1 
0 ] 3 0 . 6480 0 . 05534 LV2 

' 0 ] 4 0 . 5379 0 . 08504 TYPE 
.0] scale parameter 1.000 

? $C END OF TOTAL MODEL INCLUDING INTERSECTION TYPE$ 
? $C MODEL FOR T INTERSECTIONS$ 
? $Units 186$ 
? $Data VI V2 Total Total_3yr$ 
? $Dinput 'unsigt.txt'$ 
? $Calc LVl=%log(Vl) : LV2=%log(V2)$ 
? $Yvar Total_3yr $Error P $Link L$ 
? $Fit LV1+LV2 $D E$ 
scaled deviance = 485.10 at cycle 4 

res i d u a l df = 183 

estimate s.e. parameter 
1 -0.3980 0.1675 1 
2 0.5809 0.05957 LV1 
3 0.5902 0.04250 LV2 

scale parameter 1.000 

? $Input %plc 80 NEGBIN.MAC$ 
1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
$echo off$ 
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h] 
i] ? $Number theta=0$ 
i] ? $Use negbin theta $D E$ 
o] scaled deviance = 163.61 (change = -321.5) at cycle 4 
o] r e s i d u a l df = 183 (change = 0 ) 
o] 
o] ML Estimate of THETA = 2.345 
o] Std Error = ( 0.3825) 
o] 
o] NOTE: standard errors of fi x e d e f f e c t s do not 
o] take account of the estimation of THETA 
o] 
o] 2 x Log-likelihood = 995.9 on 183 df 
o] 2 x F u l l Log-likelihood = -805.6 
o] 
o] estimate s.e. parameter 
o] 1 -0.06907 0.2149 1 
o] 2 0.4531 0.08263 LV1 
o] 3 0.5856 0.07892 LV2 
o] scale parameter 1.000 
o] 
;i] ? $C END OF T INTERSECTION MODEL$ 
i ] ? $C FOUR LEGGED INTERSECTION MODEL$ 
;i] ? $Units 241$ 
;i] ? $Data VI V2 Total Total_3yr$ 
;i] ? $Dinput 'unsig4.txt'$ 
;i] ? $Calc LVl=%log(Vl) : LV2=%log(V2)$ 
i] ? $Yvar Total_3yr $Error P $Link L$ 
;i] ? $Fit LV1+LV2 $D E$ 
o] scaled deviance = 942.2 9 at cycle 4 
ô] r e s i d u a l df = 238 
o] 
o] estimate s.e. parameter 
o] 1 0.6422 0.08496 1 
;o] 2 0.3884 0.03194 LV1 
o] 3 0.5944 0.03557 LV2 
'o] scale parameter 1.000 
io] 
l] ? $Input %plc 80 NEGBIN.MAC$ 
g] i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
g] i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

>] $echo off$ 
:h] 
ii] ? $Number theta=0$ 
ii] ? $Use negbin theta $D E$ 
o] scaled deviance = 230.30 (change = -712.0) at cycle 3 
io] r e s i d u a l df = 23 8 (change = 0 ) 
.o] 
[o] ML Estimate of THETA = 2.172 
!o] Std Error = ( 0.2647) 
'o] 
o] NOTE: standard errors of fi x e d e f f e c t s do not 
o] ' take account of the estimation of THETA 
'o] 
;o] 2 x Log-likelihood = 3740. on 238 df 
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o] 2 x F u l l Log-likelihood = -1293. 
o] 
o] estimate s.e. parameter 
o] 1 0.5275 0.1481 1 
o] 2 0.4099 0.06025 LV1 
o] 3 0.7065 0.07740 LV2 
o] scale parameter 1.000 
o] 
i ] ? $C END OF FOUR LEGGED INTERSECTION MODEL$ 
i ] ? $C ISLAND MODEL$ 
i] ? $Units 350$ 
i] ? $Data VI V2 Total Total_3yr$ 
i] ? $Dinput 1 i s l a n d . t x t 1 $ 
i] ? $Calc LVl=%log(Vl) : LV2=%log(V2)$ 
i] ? $Yvar Total_3yr $Error P $Link L$ 
i] ? $Fit LV1+LV2 $D E$ 
o] scaled deviance = 734.32 at cycle 4 
o] r e s i d u a l df = 347 
o] 
o] estimate s.e. parameter 
o] 1 0.2872 0.09310 1 
o] 2 0.3231 0.03632 LV1 
o] 3 0.5240 0.03783 LV2 
o] scale parameter 1.000 
o] 
i] ? $Input %plc 80 NEGBIN.MAC$ 
g i i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
g i i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

e] $echo off$ 
h] 
i] ? $Number theta=0$ 
i] ? $Use negbin theta $D E$ 
o] scaled deviance = 301.85 (change = -432.5) at cycle 2 
o] r e s i d u a l df = 347 (change = 0 ) 
o] 
o] ML Estimate of THETA = 2.920 
o] Std Error = ( 0.3861) 
o] 
o] NOTE: standard errors of f i x e d e f f e c t s do not 
o] take account of the estimation of THETA 
o] 
o] 2 x Log-likelihood = 985.9 on 347 df 
o] 2 x F u l l Log-likelihood = -1473. 
o] 
o] estimate s.e. parameter 
o] 1 0.3226 0.1224 1 
o] 2 0.3042 0.05025 LV1 
o] 3 0.5488 0.06123 LV2 
o] scale parameter 1.000 
o] 
i ] ? $C END OF ISLAND MODEL$ 
i ] ? $C MAINLAND MODEL$ 
i ] ? $Units 77$ 
i] ? $Data VI V2 Total Total_3yr$ 
i] ? $Dinput 'mainland.txt'$ 
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i ] ? $Calc LVl=%log(Vl) : LV2=%log(V2)$ 
i] ? $Yvar Total_3yr $Error P $Link L$ 
i] ? $Fit LV1+LV2 $D E$ 
o] scaled deviance = 249.82 at cycle 4 
o] r e s i d u a l df = 74 
o] 
o] estimate s.e. parameter 
o] 1 1.912 0.1410 1 
o] 2 0.2036 0.04688 LV1 
o] 3 0.2474 0.04259 LV2 
o] scale parameter 1.000 
o] 
i] ? $Input %plc 80 NEGBIN.MAC$ 

g] r * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

e] $echo off$ 
h] 
i] ? $Number theta=0$ 
i] ? $Use negbin theta $D E$ 
'o] scaled deviance = 81.024 (change = -168.8) at cycle 3 
o] r e s i d u a l df = 74 (change = 0 ) 
o] 
o] ML Estimate of THETA = 6.265 
o] Std Error = ( 1.486) 
o] 
o] NOTE: standard errors of fi x e d e f f e c t s do not 
o] take account of the estimation of THETA 
o] 
o] 2 x Log-likelihood = 3870. on 74 df 
o] 2 x F u l l Log-likelihood = -505.9 
o] 
o] estimate s.e. parameter 
o] 1 1.886 0.2478 1 
o] 2 0.2011 0.08382 LV1 
o] 3 0.2864 0.07817 LV2 
o] scale parameter 1.000 
o] 
i ] ? $C END OF MAINLAND MODEL$ 
i ] ? $C TOTAL MODEL FOR SURREY$ 
i] ? $Units 56$ 
;i] ? $Da VI V2 Total_3yr TControl$ 
i i ] ? $Dinput 'unsry.txt'$ 
i] ? $Calc LVl=%log(Vl) : LV2=%log(V2)$ 
i] ? $Yvar Total_3yr $Error P $Link L$ 
i] ? $Fit LV1+LV2 $D E$ 
o] scaled deviance = 151.51 at cycle 3 
o] r e s i d u a l df = 53 
o] 
'o] estimate s.e. parameter 
o] 1 2.148 0.1532 1 
o] 2 0.1529 0.05082 LV1 
o] 3 0.1720 0.05030 LV2 
o] scale parameter 1.000 
'o] 
i] ? $Input %plc 80 NEGBIN.MAC$ 
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i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

$echo off$ 

? $Numer theta=0$ 
? $Use negbin theta $D E$ 
scaled deviance = 55.716 (change = 

resi d u a l df = 53 (change = 
-95.80) at cycle 3 
0 ) 

ML Estimate of THETA = 8.893 
Std Error = ( 2.639) 

NOTE: standard errors of f i x e d e f f e c t s do not 
take account of the estimation of THETA 

2 x Log-likelihood 
2 x F u l l Log-likelihood 

3007. on 53 df 
-360 . 5 

estimate 
2 .133 

0.1516 
0.1907 

scale parameter 1.000 

s.e. 
0 .2439 

0.08195 
0.08343 

parameter 
1 
LV1 
LV2 

? $C END OF SURREY TOTAL MODEL$ 
? $C MODEL FOR SURREY INTERSECTION INCLUDING TYPE OF CONTROL$ 
? $Units 56$ 
? $Da VI V2 Total_3yr TControl$ 
? $Dinput 'unsry.txt'$ 
? $Calc LVl=%log(Vl) : LV2=%log(V2)$ 
? $Yvar Total_3yr $Error P $Link L$ 
? $Fit LVl+LV2+TControl $D E$ 
scaled deviance = 149.55 at cycle 3 

resi d u a l df = 52 

estimate s.e. parameter 
1 2.191 0 .1571 1 
2 0.1647 0 . 05173 LV1 
3 0.1958 0 . 05310 LV2 
4 -0.05703 0 . 04071 TCONTROL 

scale parameter 1.000 

? $Input %plc 8 0 NEGBIN.MAC$ 
i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

j * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
$echo off$ 

? $Number theta=0$ 
? $Use negbin theta $D E$ 
scaled deviance = 55.476 (change = 

resi d u a l df = 52 (change = 
-94.07) at cycle 3 
0 ) 

ML Estimate of THETA = 9.096 
Std Error = ( 2 . 714) 
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[o] NOTE: standard errors of fi x e d e f f e c t s do not 
[o] take account of the estimation of THETA 
[o] 
[o] 2 x Log-likelihood = 3008. on 52 df 
[o] 2 x F u l l Log-likelihood = -359.4 
[o] 
[o] estimate s.e. parameter 
[o] 1 2.185 0.2491 1 
[o] 2 0.1645 0.08265 LV1 
[o] 3 0.2256 0.08752 LV2 
[o] 4 -0.06994 0.06764 TCONTROL 
[o] scale parameter 1.000 
[o] 
[i] ? $C END OP SURREY MODEL$ 
[i] ? $Stop 
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GLIM SESSION FOR DIFFERENT NEGATIVE BINOMIAL METHODS 

[o] GLIM 4, update 8 for IBM etc. 80386 PC / DOS on 09 -NOV-1997 at 01:14:42 
[o] (copyright) 1992 Royal S t a t i s t i c a l Society, London 
[o] 
[i] ? $!TOTAL MODEL ESTIMATION OF NEGATIVE BINOMIAL DISTRIBUTION PARAMETERS! 
[i] ? $!METHOD OF MAXIMUM LIKELIHOOD (NAG, 1996)! 
[i] ? $units 427$ 
[i] ? $data v l v2 t o t a l t o t a l _ 3 y r type$ 
[i] ? $dinput 'unsigall.txt'$ 
[i] ? $calc lv l = % l o g ( v l ) : Lv2=%log(V2)$ 
[i] ? $Yvar t o t a l _ 3 y r $error P $link L$ 
[i] ? $Fit LV1+LV2 $D E$ 
[o] scaled deviance = 1576.8 at cycle 4 
[o] r e s i d u a l df = 424 
[o] 
[o] estimate s.e. parameter 
[o] 1 0.3943 0.07586 1 
[o] 2 0.4067 0.02814 LV1 
[o] 3 0.6086 0.02636 LV2 
[o] scale parameter 1.000 
[o] 
[i] ? $input %plc 80 NEGBIN.MAC$ 
fe] |****************************************************** 
[e] ! Author: John Hinde, MSOR Department, U n i v e r s i t y of Exeter 
[e] ! jph@msor.ex.ac.uk 
[e] ! Version: 1.1 GLIM4 February 1996 
[e] ! 
[e] ! Main Macros: 
[e] ! NEGBIN F i t s a negative binomial d i s t r i b u t i o n f o r 
[e] ! overdispersed count data. For d e t a i l s on the 
[e] ! negative binomial d i s t r i b u t i o n see Lawless (1987) 
[e] ! Canadian J. of Stats, 15, 209-225. 
[e] ! The overdispersion parameter theta can be f i x e d 
[e] ! or estimated, using an inner loop embedded 
[e] ! within the model f i t t i n g process. If the 
[e] ! s p e c i f i e d parameter value i s zero, estimation 
[e] ! i s performed using e i t h e r maximum l i k e l i h o o d (default), 
[e] ! the expected value of the chi-squared s t a t i s t i c 
[e] ! as i n Breslow, N.E. (1984) Applied S t a t i s t i c s 
[e] ! 33, p38-44, or the mean deviance. 
[e] ! 
[e] ! P r i o r to using t h i s macro the following model 
[e] ! aspects need to be declared: 
[e] ! 
[e] ! y-variate: use $YVAR <yvariate> 
[e] ! 
[e] ! model formulae: t h i s w i l l be taken from the l a s t f i t 
[e] ! d i r e c t i v e , or can be e x p l i c i t l y set using 
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[e] ! $TERMS <model formula> 
[e] ! 
[e] ! l i n k function: set using $LINK 
[e] ! permissible values i , 1, s 
[e] ! 
[e] ! Formal arguments: 
[e] ! theta (obligatory) scalar f o r negative binomial 
[e] ! parameter estimate 
[e] ! i f theta=0 estimation i s performed 
[e] ! i f theta /=0 used as f i x e d value i n negative 
[e] ! binomial f i t 
[e] ! method (optional) Scalar c o n t r o l l i n g estimation method when 
[e] ! appropriate 
[e] ! 1 = maximum l i k e l i h o o d (default i f theta=0) 
[e] ! 2 = mean chi-square estimation 
[e] ! 3 = mean deviance estimation 
[e] ! 4 = use f i x e d value of theta (default i f theta /=0 ) 
[e] ! t o l (optional) Scalar s p e c i f i e s tolerance c r i t e r i o n to 
[e] ! control convergence of i t e r a t i o n on theta. 
[e] ! Defaults to 0 .0001 . 
[e] ! If tol<=0 then convergence c r i t e r i o n i s set to %cc, 
[e] ! the system convergence c r i t e r i o n , 
[e] ! 
[e] ! Output: 
[e] ! Displays the negative binomial deviance, the degrees of 

freedom 
[e] ! for the f i t t e d regression model, the estimate of theta, i t s 
[e] ! standard error when using maximum l i k e l i h o o d estimation, 
[e] ! and values of the l o g - l i k e l i h o o d . The deviance provides a 
[e] ! goodness-of-fit measure f or a negative binomial 
[e] ! d i s t r i b u t i o n with the current value of theta. 
[e] ! When theta i s fi x e d deviance differences can be used to 
[e] ! assess the importance of model terms. 
[e] ! To compare models with d i f f e r e n t values of theta the 
[e] ! l o g - l i k e l i h o o d must be used. 
[e] ! In p a r t i c u l a r , t h i s applies f o r comparisons with 
[e] ! the standard Poisson model (theta=infinity) 
[e] ! The lo g - l i k e l i h o o d s are those f o r the negative binomial 
[e] ! d i s t r i b u t i o n , the f u l l version including the y! terms. 
[e] ! 
[e] ! Side E f f e c t s : 
[e] ! On ex i t from the macro the model i s s t i l l defined with 
[e] ! a negative binomial variance function. Submodels can then 
[e] ! be f i t t e d d i r e c t l y with $FIT d i r e c t i v e s . This w i l l work 
[e] ! f i n e following a fi x e d parameter f i t , but should be 
[e] ! used with caution i f theta was estimated - use of $RECYCLE 
[e] ! could help things i n t h i s case. 
[e] ! 
[e] ! Example of use: 
[e] ! $yvar y $link 1 $terms 11$ 
[e] ! $number theta=0 $ 
[e] ! $use negbin theta$ 
[e] ! 
[e] ! NB_OUT Can be used a f t e r subsequent $FIT d i r e c t i v e s to obtain 
[e] ! output given by NEGBIN, i . e . the estimate of theta, i t s 
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[e] ! standard error for maximum l i k e l i h o o d f i t s and the 
[e] ! l o g - l i k e l i h o o d values, 
[e] ! 
[e] ! Formal arguments: 
[e] ! theta (obligatory) scalar f o r negative binomial 
[e] ! parameter estimate 
[e] ! 
[e] ! Example of use: 
[e] ! $yvar y $link 1 $terms 11$ 
[e] ! $number theta=0 $ 
[e] ! $use negbin theta$ 
[e] ! $recy $ f i t -11$ 
[e] ! $use nb_out$ 
[e] ! 
[e] ! 
[e] ! To delete macros and global v a r i a b l e s , type 
[e] ! $delete #d_negbin d_negbin $ 
[e] ! 
[g] i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

[e] $echo off$ 
[f] ** i d e n t i f i e r expected but not found, at [80 NEGBIN.] 
[f ] 
[h] The $INP d i r e c t i v e expected an i d e n t i f i e r but found the character 
nstead. 
[h] Check the syntax of the d i r e c t i v e , 
[h] 
[i] ? $number theta=0$ 
[i] ? $number mode=l$ 
[i] ? $use negbin theta mode $D E$ 
[w] -- model changed 
[w] -- model changed 
[o] scaled deviance = 398.83 (change = -1178.) at cycle 3 
[o] r e s i d u a l df = 424 (change = 0 ) 
[o] 
[o] ML Estimate of THETA = 1.966 
[o] Std Error = ( 0.1828) 
[o] 
[o] NOTE: standard errors of f i x e d e f f e c t s do not 
[o] take account of the estimation of THETA 
[o] 
[o] 2 x Log-likelihood = 4697. on 424 df 
[o] 2 x F u l l Log-likelihood = -2138. 
[o] 
[o] estimate s.e. parameter 
[o] 1 0.4007 0.1233 1 
[o] 2 0.3839 0.04940 LV1 
[o] 3 0.7044 0.05676 LV2 
[o] scale parameter 1.000 
[o] 
[i] ? $!METHOD OF MEAN CHI-SQUARE (NAG, 1996)! 
[i] ? $number theta=0 : mode=2$ 
[i] ? $use negbin theta mode $D E$ 
[w] model changed 
[w] -- model changed 
[o] scaled deviance = 370.24 (change = -1207.) at cycle 3 
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[o] r e s i d u a l df = 424 (change = 0 ) 
[o] 
[o] Mean Chi-squared estimate of THETA = 1.764 
[o] 
[o] NOTE: standard errors of fi x e d e f f e c t s do not 
[o] take account of the estimation of THETA 
[o] 
[o] 2 x Log-likelihood = 4696. on 424 df 
[o] 2 x F u l l Log-likelihood = -2139. 
[o] 
[o] estimate s.e. parameter 
[o] 1 0.4030 0.1269 1 
[o] 2 0.3827 0.05104 LV1 
[o] 3 0.7058 0.05905 LV2 
[o] scale parameter 1.000 
[o] 
[i] ? $!METHOD OF MEAN DEVIANCE (NAG, 1996)! 
[i] ? $number theta=0 : mode=3$ 
[i] ? $use negbin theta mode $D E$ 
[w] -- model changed 
[w] -- model changed 
[o] scaled deviance = 424.00 (change = -1153.) at cycle 2 
[o] r e s i d u a l df = 424 (change = 0 ) 
[o] 
[o] Mean Deviance estimate of THETA = 2.154 
[o] 
[o] NOTE: standard errors of fi x e d e f f e c t s do not 
[o] take account of the estimation of THETA 
[o] 
[o] 2 x Log-likelihood = 4696. on 424 df 
[o] 2 x F u l l Log-likelihood = -2139. 
[o] 
[o] estimate s.e. parameter 
[o] 1 0.3991 0.1201 1 
[o] 2 0.3850 0.04803 LV1 
[o] 3 0.7023 0.05490 LV2 
[o] scale parameter 1.000 
[o] 
[i] ? $!TOTAL MODEL ESTIMATION OF NEGATIVE BINOMIAL DISTRIBUTION PARAMETERS! 
[i] ? $!FOLLOWING THE METHOD OF MOMENTS PROPOSED BY KULMALA(1995) AND 

MAYCOCK! 
[i] ? $! AND HALL (1984)! 
[i] ? $Units 427$ 
[i] ? $Da VI V2 Total Total_3yr Type$ 
[i] ? $Dinput 'unsigall.txt'$ 
[i] ? $Calc LVl=%log(Vl) : LV2=%log(V2)$ 
[i] ? $Yvar Total_3yr $Error P $Link L$ 
[i] ? $Fit LV1+LV2 $D E$ 
[o] scaled deviance = 1576.8 at cycle 4 
[o] r e s i d u a l df = 424 
[o] 
[o] estimate s.e. parameter 
[o] 1 0.3943 0.07586 1 
[o] 2 0.4067 0.02814 LV1 
[o] 3 0.6086 0.02636 LV2 
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Appendix IV: GLIM Session for Different Negative Binomial Methods 

[o] scale parameter 1.000 
o] 
ii] ? $Number k=1.733$ 
!i] ? $MACRO NEGBIN! 
ii] $MAC? $Calc %va=%fv+(%fv**2)/k$ 
!i] $MAC? $Calc %di=2*(%yv*%log(%yv/%fv)-(%yv+k)*%log((%yv+k)/(%fv+k)))$ 
!i] $MAC? $ENDMAC$ 
!i] ? $Edit 74 Total_3yr 0.0001 : 118 Total_3yr 0.0001 : 228 Total_3yr 
0001$ 
V] -- change to data values a f f e c t s model 
;i] ? $Edit 238 Total_3yr 0.0001 : 375 Total_3yr 0.0001$ 
!i] ? $Yvar Total_3yr $Error Own NEGBIN $Link L$ 
!i] ? $Fit LV1+LV2 $D E$ 
,o] deviance = 365.66 at cycle 5 
[o] r e s i d u a l df = 424 
o] 
,o] estimate s.e. parameter 
o] 1 0.4033 0.1184 1 
o] 2 0.3825 0.04765 LV1 
O] 3 0.7061 0.05520 LV2 
o] scale parameter 0.8624 
o] 
i] ? $Number k=1.8474$ 
,i] ? $Yvar Total_3yr $Error Own NEGBIN $Link L$ 
!w] -- model changed 
i] ? $Fit LV1+LV2 $D E$ 
o] deviance = 382.23 at cycle 5 
o] r e s i d u a l df = 424 
o] 
o] estimate s.e. parameter 
o] 1 0.4019 0.1190 1 
o] 2 0.3832 0.04779 LV1 
O] 3 0.7054 0.05513 LV2 
o] scale parameter 0.9015 
'o] 
;i] ? $Number k=1.8472$ 
;i] ? $Yvar Total_3yr $Error Own NEGBIN $Link L$ 
w] -- model changed 
!i] ? $Fit LV1+LV2 $D E$ 
o] deviance = 382.20 at cycle 5 
[o] r e s i d u a l df = 424 
'o] 
,o] estimate s.e. parameter 
o] 1 0.4019 0.1190 1 
!o] 2 0.3832 0.04779 LV1 
o] 3 0.7054 0.05513 LV2 
.o] scale parameter 0.9014 
o] 
i] ? $Stop 
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