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A B S T R A C T 

This thesis describes the development of accident prediction models for signalized 

intersections in the Greater Vancouver Regional District (GVRD). The traffic and road-

related factors which appeared to underlie the occurrence of accidents are examined and 

models which explain, in a statistical sense, the generation of accidents as a function of 

these factors are developed. Recognizing the statistical and practical shortcomings 

associated with the use of the Conventional Linear Regression approach to develop 

accident prediction models, it was decided to utilize the Generalized Linear Regression 

Models (GLIM) approach. This approach addresses and overcomes the error structure 

problems that are associated with the conventional linear regression theory and allows for 

the use of nonlinear relationships in the model. In addition, the safety predictions obtained 

from the G L I M models can be refined using the Empirical Bayes' approach to provide, 

more accurate, site-specific safety estimates. The use of the complementary Empirical 

Bayes approach can significantly reduce the regression to the mean bias that are inherent in 

observed accident counts. 

The study made use of sample accident, traffic and intersection design data corresponding 

to signalized intersections located in the Greater Vancouver Region. The accident data set 

contained 67 urban intersections from the City of Richmond and 72 urban intersections 

from the City of Vancouver giving a total of 139 intersections. Three different types of 

models were developed: (1) models relating the total number of accidents to traffic 



volume; (2) models relating accidents of a specific type to traffic volume; and (3) models 

incorporating other geometric design variables such as the existence of left turn lanes, 

right turn lanes, pedestrian crossings, etc. The goodness of fit of the models was 

evaluated using two statistics: the Scaled Deviance (SD) and the Pearson %2 statistics. 

The overall fit of the models was adequate. Three applications of the G L I M models and 

the Empirical Bayes refinement process were described. The first related to the 

identification of accident prone locations. The second related to the before and after 

safety analysis and the third to safety planning. The usefulness of the G L I M model 

estimates in accounting for the randomness inherent in the accident occurrence process 

and the regression to the mean bias was documented and discussed. 
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1.0 INTRODUCTION 

1.1 Background 

Traffic safety in British Columbia is a serious concern of traffic analysts and road 

authorities. In 1995, there were 534 fatalities, about 50,000 injuries and 180,000 property 

damage only accidents. The direct annual cost to the province exceeds 2.0 billion dollars 

(ICBC 1995 Annual Report, Vancouver, B.C.). 

Recognizing these safety problems and the need to reduce the social and economic costs 

associated with them, road safety authorities have established Road Safety Improvement 

Programs (RSIPs). The objective of these programs is to monitor traffic conditions, 

collect and analyze accident data, locate trouble spots with abnormally high accident 

occurrences and implement appropriate and effective countermeasures in order to 

improve the safety potential of these sites. The success of these Road Safety 

Improvement Programs can be enhanced by developing reliable accident prediction 

models, which provide accurate estimates for the long-term safety potential at the 

locations under study. The development of such models is the focus of this thesis. 

1.2 Aims and Objectives 

The main objective of this thesis is to develop accident prediction models for estimating 

the long-term safety potential for signalized intersections in the Greater Vancouver 
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Regional District (GVRD). This research stemmed from the apparent need to estimate the 

safety potential of these intersections on the basis of their traffic and road geometric 

design characteristics. The aim, therefore, is to examine the traffic and road-related 

factors that appeared to underlie the occurrence of accidents and explain, in statistical 

sense, the generation of accidents as a function of these factors. The specific objectives of 

the study evolved as follows: 

• Analyze the road, traffic and accident data available for signalized intersections under 

study in order to establish statistical models describing the empirical relationships 

between accident measures and the road and traffic variables. The accuracy and 

significance of each model and its coefficient estimates are investigated and 

discussed. 

• Investigate the importance of various road geometric design variables in affecting the 

safety of signalized intersections. Some of these variables include: number of lanes, 

existence of left/right turning lanes and pedestrian crosswalk. 

• Develop time-specific accident prediction models. These models may serve to address 

safety issues such as, comparing the intersection safety during peak hour to off peak 

hour, night to day, or A M peak hour vs. P M peak hour. Such time-specific models 

may be useful for evaluating strategies that affect traffic volumes or safety during 

certain time periods of the day and identifying potentially hazardous operating 

conditions. 
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• Develop type-specific accident prediction models. These models may be useful in 

estimating the occurrence of specific types of accidents such as left-turn and rear-end 

accidents. Often these specific types of accidents can be targeted by specific 

measures. For instance, the safety of an intersection that exhibits an abnormally high 

occurrence of left-turning accidents may be improved by implementing a left-turn 

lane or phase. 

• Assess the reliability and interpret the significance of various models and detect any 

patterns in accident occurrence, identify and relate high-risk traffic and road 

characteristics to unsafety, estimate the safety potential of the implementation of 

certain road features and provide a global as well as local assessment of traffic safety 

of the G V R D signalized intersections. 

There are several potential applications for the proposed accident prediction models. 

These applications are outlined in the next section. 

1.3 Application of Accident Prediction Models 

The development of reliable accident prediction models for signalized intersections offers 

a useful tool in a number of respects. Some of the potential applications of such models 

include: 

• Identifying accident prone signalized intersections: the occurrence of a relatively high 

number of accidents at a particular location, though undesirable, does not always 
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mean that the location concerned is a blackspot or would benefit from remedial 

treatment. Also, due to the regression to the mean phenomenon (as will be explained), 

an abnormally high number of accidents may not reflect the long-term accident 

occurrence at the location, and could in fact be followed by a relatively low number 

of accidents over a similar succeeding period of time even i f no changes were 

introduced to the location. Therefore, in identifying accident prone locations, the true 

accident potential for each site should be estimated. This can be achieved by using 

accident prediction models. 

• Before and after studies: to estimate the effectiveness of a safety measure, the 

expected number of accidents had the measure not implemented need to be estimated. 

This can be achieved by using accident prediction models and the Empirical Bayes 

refinement as will be discussed later. 

• In safety planning through identifying the traffic and geometric variables which have 

the most impact on the safety performance of signalized intersections so that the road 

authorities can focus their attention and investment on targeting these variables. 

Furthermore, the change of safety associated with the change in any traffic or 

geometric design variables can be estimated (e.g. the change of safety associated with 

increased traffic volume, etc.) 



1.4 Thesis Structure 

Chapter One provides an overview of the thesis and its structure. A literature review of 

the various techniques for developing accident prediction models and the main concepts 

behind the Generalized Linear Regression Modeling technique is outlined in Chapter 

Two. Chapter Three describes the accident data and the accident prediction models 

developed. Chapter Four discuses three applications of accident prediction models. 

Chapter Five provides suggestions for follow up work and the summary and conclusion 

of the thesis. 
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2.0 L I T E R A T U R E R E V I E W 

The past decade has seen significant developments and advances in accident data analysis 

and modeling. Accident prediction models are no longer limited to the conventional linear 

regression assumptions, as more suitable and less restrictive nonlinear models can now be 

considered. The use of the Bayes' theory for developing accident prediction models has also 

been an important development in the data analysis literature. In this section, a brief outline 

of the major developments in accident prediction models will be presented. 

2.1 Conventional Linear Regression Models 

Conventional Linear Regression (CLR) models were initially used to describe the empirical 

relationships between accidents and traffic and road geometric design variables, such as 

traffic exposure (volume), horizontal curvature, vertical grade, lane width, and others 

(Zegeer et a l . , 1987, Miaou et al., 1991). The underlying assumption of these C L R models 

is that the number of accidents, 7/ at a site /, in a reference population of size n, varies 

linearly with a set of m traffic and road geometric variables, { x i l ; x^,...,^,,,} as follows: 

m 
(2.1) 

where a0, a], am are the model parameters to be estimated by the least squares or the 

maximum likelihood method. These estimates can be obtained by using any of the 



7 

numerous standard linear regression computer software available. The term e/ measures the 

error, i.e. the difference between the model estimate and the observed accident number at 

the site. It is assumed that the error terms ej, i=l,2,...n, at all sites of the reference 

population are independently and normally distributed random variables with zero mean 

and variance cr2>0 . As well be explained later, this assumption is restrictive and may not 

be suitable for the typically discrete and non-negative accident data. 

Lau and May (1988) investigated the use of conventional linear regression model to 

describe a simple relationship between the number of injury accidents per year and the 

average yearly traffic volume for a population of 2,488 intersections in California. It was 

demonstrated for this data set that traffic exposure was the most important single factor in 

predicting injury accidents, and the following model was found to provide the best fit: 

Injury accidents/year = a0 + a\. (millions of entering vehicles/year) (2.2) 

where a0 and al are the model parameters . The model was also used to predict the number 

of property damage only (PDO) and fatal accidents. 

Conventional linear regression models were also used in discriminate analysis to investigate 

whether a site is predicted to exhibit a potentially high number of certain types of accident. 

Al-Senan et al (1987) used the discriminate analysis technique to identify the significant 

predictors of head-on accident on highway sections. Although head-on crashes are relatively 

rare, this class of vehicular accidents accounted for 14.6% of highway fatalities in the 



8 

United States for the period 1982 to 1984 (Accident Facts, 1985). The authors proposed 

prediction models for head-on accidents sites to identify sites that are prone to head-on 

accidents based on traffic and road design variables. 

The following traffic and road features were found to be significant predictors of head-on 

accident proneness of a highway section: pavement width, shoulder width, pavement-

shoulder combination, horizontal alignment, vertical alignment, combined horizontal-

vertical alignment, roadside elements, traffic control features. The discriminate analysis 

was used to distinguish between two groups of sites, head-on crash sites and control sites 

(which have less potential for head-on crashes), based on the above geometric and traffic 

control features. The discriminate analysis uses the following conventional linear regression 

model to describe the empirical relationship between the discriminate function D and a set 

of traffic and road geometric design variables {V 1 ,V 2 , . . . ,V p} as follows: 

D = a0 + a,V, + a2V2 +...+ apVp (2.3) 

The section is then assigned to the head-on group if the resulting discriminate score, D is 

less than zero; otherwise it is assigned to the control group. Discriminate analysis was 

shown to be a logical and convenient way to differentiate between sites with different 

accident contributing factors. 
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2.2 Shortcomings of Conventional Linear Regression 

Conventional linear regression (CLR) models were initially widely used to develop accident 

prediction models, mainly because of their simplicity. However, their success has been 

generally limited. It has been demonstrated that C L R models lack the distributional 

property to adequately describe random, discrete, non-negative, and typically sporadic 

vehicle accident events on the road (Jovanis and Chang, 1986, Saccomanno and Buyco 

1988, Miaou and Lam 1993). 

Many difficulties were associated with the use of conventional linear regression to build 

accident prediction models for accident data (Persaud 1992). First, it is assumed, a priori, 

that accidents are proportional to traffic volume and the accident rate is used as the 

dependent variable. However, there has been much research to suggest that this assumption 

is not only inaccurate but it also leads to contradicting results (Mahalel, 1985). Secondly, 

most conventional regression modeling software assumes that the dependent variable has a 

normally distributed error structure. For accident counts, which are discrete and 

nonnegative, this is clearly not the case; in fact a negative binomial or Poisson error 

structure has been shown to be more appropriate (Persaud, 1989). 

Another difficulty with the use of the conventional regression models lies in the 

unreliability of the estimates. Regression estimation suggests that two sites of the same 

reference population and which have similar independent variables (i.e. traffic and road 

geometric factors) values would have the same accident potential. However, in general, this 
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is not the case, since it is not possible to account for all the factors that cause differences in 

accident potential among similar sites. The need to overcome these difficulties was 

fundamental to developing a more reliable and accurate regression model describing the 

relationship between the unsafety and the traffic and geometric traits. 

The use of Generalized Linear Regression Modeling (GLIM) theory and software to' 

develop accident prediction models has been investigated (Hauer et al., 1988; Persaud, 

1989). The G L I M approach addresses and overcomes the error structure problems that are 

associated with the conventional linear regression theory and allows for the use of nonlinear 

relationships in the model. The use of the G L I M models for accident prediction is the topic 

of the following section. To distinguish between the safety estimates of similar sites, an 

Empirical Bayesian method that combines the regression model prediction with the 

observed short-term accident count at each location will also be discussed. 

2.3 Generalized Linear Regression Models with Empirical Bayes Refinement 

The need to overcome the statistical and practical shortcomings associated with the use of 

conventional regression models for accident prediction was fundamental to the development 

of realistic and more general empirical relationships between the accident potential, traffic 

and road design variables. To this end, use was made of a statistical generalized linear 

regression modeling package (GLIM) that allows for the flexibility of nonlinear accident-

traffic relationship and user specific error structure for the dependent variable. Use was also 

made of a complementary Empirical Bayesian procedure for improving the accuracy of the 
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regression model accident predictions. The theory of these developments will be briefly 

outlined next. 

2.3.1 Generalized Linear Regression Models 

The Generalized Linear Regression Method (GLIM) allows for non-linear empirical 

relationships between the dependent and the independent variables that can be linearized by 

taking its logarithmic function. G L I M is a recently developed statistical software package 

(Baker and Nelder, 1978) that is being widely used in accident data analysis. It also allows 

the specification of a negative binomial or a Poisson error structure for the dependent 

variable, which as noted earlier, is more appropriate for accident counts than the traditional 

normal distribution (Persaud, 1989). 

The G L I M approach utilized in this study is based on the work of Kulmala (1995) and 

Hauer et al. (1988). Assume that 7 is a random variable describing the number of 

accidents at an intersection in a specific time period, and y is the observation of this 

variable during a period of time. The mean of Y is A which is itself can be regarded as a 

random variable. Then for A - A , Y is Poisson distributed with parameter A : 

p(Y-y\A = JL) = -;E(Y\A = A) = A; Var(Y\A = A) = A (2.4) 
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Hauer et al. (1988) have shown that A follows a gamma distribution (with parameters K 

and K/U) , where K is the shape parameter and u. is the mean of the distribution: 

fW = h ) ; £ (A) = M ; Var(A) = ^ - (2.5) 
T(K) K 

Kulmala (1995) has also shown that the point probability function of Ybased on (2.4) and 

(2.5) is given by the negative binomial distribution: 

( 2 . 6 ) 

T(ic)y\ K + JU K + JU 

with an expected value and variance of: 

M2 

E(Y)=M; Var(Y) = //+— (2.7) 

As shown in equation (2.6), the variance of the expected number of accidents is generally 

larger than its expected value. The only exception is when K - * oo, where the distribution 

of is concentrated at a point and the negative binomial distribution is identical to the 

Poisson distribution (Kulmala, 1995). 

As described earlier, for the generalized linear regression modeling approach, the error 

structure is usually assumed to be Poisson or negative binomial. The main advantage of 
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the Poisson error structure is the simplicity of the calculations (the mean and the variance 

are equal). However, this advantage is also a limitation. It has been shown (Kulmala, 

1995) that most accident data will likely to be over dispersed (the variance is greater than 

the mean) which indicates that the negative binomial distribution is the more realistic 

assumption. However, the difference between the model parameters estimated using the 

Poisson and the negative binomial models was found to be very small (Kulmala, 1995). 

Therefore, the simpler Poisson error structure assumption will be used in this study. 

The first step in developing a G L I M model is to subgroup similar sites that share a set of 

traffic or geometric characteristics in a reference population. The empirical relationship 

between the unsafety potential, measured in terms of the number of accidents at the 

location, and the traffic and road geometric design variables {x, x^...,^} is then described 

in an equation form as follows: 

Accidents / year = function (traffic and road geometric design variables; x i , x 2 , . . . x m ) 

where the form of the function is appropriately chosen so that it can be linearized by taking 

the logarithm. The above regression estimate would not be useful i f no measure of its 

variability is known. It has been shown that, using the generalized linear regression, the 

variance of the regression estimate is directly proportional to the square of the model safety 

estimate in the following fashion (Persaud, 1989): 
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(regression estimate) 
variance(regression estimate) = (2.8) 

k 

where the value of k depends of the structural error assumptions of GLIM. The estimation 

of the variance from the G L I M regression estimates is difficult since both k and the variance 

in equation (2.4) are unknown. Hauer et al. (1988) suggested an iterative process to 

calculate k using the maximum likelihood method. Kulmala (1995) showed that the method 

of moments (assuming a Poisson model) can also be used to calculate k as follows: 

LZE\m,) 

k = 1 " r n *" I 1 ( 2 - 9 ) 

-U(x,-E(m,)) -E{m,) 
N 1=1 L J 

where E(m) is the regression estimate of the number of accidents at the location, and Xi is 

the location observed number of accidents. 

Kulmala (1995) found that the method of moments produced accurate enough estimates that 

deviated less than 5% from those produced by the maximum likelihood method. He also 

indicated that the iterative process suggested by Hauer et al. (1988) was time consuming 

and changed the value of k only to a minor extent. 

One of the main conceptual difficulties associated with the G L I M model involves the 

choice of the form of the function that describes the dependence of the unsafely potential of 
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the site on the traffic and road variables. Unlike conventional regression models, which 

restrict the function to be linear, The G L I M model allows nonlinear forms. Often, a scatter 

plot of the number of accidents as a function of the traffic and road geometric variables may 

provide some hints for choosing the function form. However, the choice of the form of the 

function is generally intuitive and lacks theoretical justifications. Since the choice of the 

function form is a matter of judgment, different analysts may make different choices, and 

therefore, arriving at discrepant estimates for the unsafely of the same entity. 

Another difficulty with the use of regression models to estimate the unsafety of a site is that 

the above equation suggests that two sites in the same reference population that have similar 

values for the independent variables, x\t X2t •••,xm are expected to have similar unsafety 

estimates. However, in general, this is not the case, since it is not possible to account for all 

the factors that cause differences in accident potentials among similar sites. The use of the 

Empirical Bayesian method, which combines the regression model safety estimate with the 

sites-specific accident count, to refine the G L I M estimates could alleviate these 

shortcomings. 

2.3.2 The Empirical Bayes Refinement 

There are two types of clues to the unsafety of an entity: its traffic and road geometric 

design characteristics, and its historical accident data (Hauer, 1992). The G L I M method 

provides an unsafety estimate of a site based on the first type of clues. The Empirical Bayes 

(EB) approach to unsafety estimation makes use of both kinds of clues. The EB method 
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combines the G L I M unsafety estimate with the site-specific accident history and yields 

better estimates of unsafety. 

To illustrate, suppose that an entity is located in a reference population characterized by a 

set of traits. Let pred, and var (pred), be the G L I M model estimates for the location's 

safety and its variance respectively, as described in the previous section. Suppose that the 

observed number of accidents at this site during the specified period of time is given by 

count. The Empirical Bayesian method combines the G L I M model estimates with the 

observed accident count to obtain a more refined, site-specific unsafety estimate, in the 

following fashion (Hauer, 1992): 

EB safety estimate = a.pred + (1 -a).count, where a = var(pred) 
(2.10) 

pred 

where a = — (2-11) 
+ var(prect) 

pred 

The form of the above equation is consistent with the following reasoning: if the reference 

population is homogeneous (i.e. its sites are very similar), then one would expect small 

variations among the G L I M model safety estimates (i.e. var (pred) 0), therefore 1, and 

the above equation yields an EB safety estimate that is close to the G L I M model estimate, 

pred, as it should be since the effects of the accident counts should not influence the 

estimate as differences in accident counts among sites may be attributed to chance 
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variations. On the other hand, if the reference population is heterogeneous (i.e. the sites are 

diverse), then one would expect a relatively high G L I M estimates variations, var(pred), and 

a»0. 

The above equation yields an EB estimate that is close to the observed accident count and 

what is known about the reference population exerts little influence on the estimation. This 

again is as x should be, since the locations are very diverse, then differences in accident 

counts should be attributed to the differences among sites and not to chance variations. In 

view of the absence of a theoretical justification for the above equation, it is important to 

know that the EB method combines the regression estimates with the site-specific accident 

counts in a practical manner (Hauer, 1992). 

In addition to combining the two types of safety clues and providing site-specific safety 

estimates, it has also been shown that the EB method significantly reduces the regression to 

the mean effects that are inherent in observed accidents count (Brude and Larsson, 1988). 

The regression to the mean is a statistical phenomenon by which a randomly large number 

of accidents for a certain entity during a before period is normally followed by a reduced 

number of accidents during a similar after period, even i f no measures have been 

implemented (while the opposite applies in the case of a randomly small number of 

accidents). As mentioned earlier, before and after studies are one of the main applications of 

the accident prediction models. For instance, in a before and after study of the effect of a 

particular action, one should not compare the after period accident counts to the before 
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period accident counts, this generally leads to misleading assessment of the safety 

improvement effect afforded by the undertaken measures. Instead, one should compare the 

after period accident counts to the prediction model safety estimates, had no measures been 

implemented. 

2.3.3 Applications 

The above two-step procedure, where the G L I M estimates are refined by using the 

Empirical Bayesian method has been used in the literature to estimate the unsafety of road 

sections and intersections. Next a brief review of some of these applications for developing 

the models for intersections will be presented. 

2.3.3.1 Accident Prediction Models for Intersections 

Although many studies have addressed the relationship between accidents and the traffic 

and geometric factors at road segments (Jovanis and Chang, 1986, Saccomanno and Buyco 

1988, Miaou and Lam 1993), only a few studies have addressed this relationship for 

signalized intersections (Poch and Mannering, 1996). This is surprising given that accidents 

at signalized intersections represent a significant proportion (more than half) of the total 

accident population, especially in urban areas. Thus, the development of accident 

prediction models for intersections is of great importance. These accidents usually involve 

multiple vehicles. Numerous models to estimate the safety potential of an intersection on 

the basis of its traffic flow, geometric design features and accident history have been 
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suggested over the years. Initially, it was suggested that the number of all accidents at an 

intersection is proportional to the sum of flows that enter the intersection. The merit of this 

approach is its simplicity. However, it has several shortcomings. Such models assume a 

uniform traffic flow through the intersection. However, this is usually not the case, since 

most intersections consist of a major road, with a higher average annual daily traffic volume 

(AADT) crossing a minor one with a lower (AADT). 

A commonly used G L I M accident prediction model for intersections that makes the 

distinction between the major and minor road traffic flow, relates the unsafety potential of 

the intersection as a function of the A A D T for the minor and the major roads as follows: 

Accidents / year — #0 X (AADTmajor road) X (AADT minor road) (2-12) 

Webb (1955) used data for rural signalized intersections in California developed the 

following model: 

Accident I Year = 0M7(AAMm^)°'\AADTllMf» (2.13) 

Lau et. al. (1989) developed separate models for fatal, injury, and property damage only 

(PDO) accidents as follows: 

PDO Accidents / year = 4.63 + 0,514 (the sum of entering vehicles in million) 
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Injury accidents / year = 0.62+0.169 (the sum of entering vehicles in million) 

Fatal Accidents /year = 0.018 (2.14) 

Bonneson et al. (1993) developed a similar model to that of Webb (1955) using data for 

non-urban signalized intersections: 

Accident I Year = QMnXAADT^^f^AADT^^?** (2.15) 

Bonneson and McCoy (1993) have found that this model provided a best fit for accident 

data from 125 rural unsignalized intersection in Minnesota for the three years 1985-1987. 

The same model was found to fit accident data from signalized urban intersections in 

Philadelphia (Persaud et al 1995), accident data from 149 unsignalized rural intersections in 

Quebec (Belanger, 1995), and accident data from signalized rural intersections in Virginia ( 

Hanna, 1976). 

Brude and Larsson (1988) investigated a different form of combining the minor road and 

major road traffic flows. They suggested the following G L I M prediction model for four-

legged signalized junctions: 

/ r.rr* i j r\Ti \ai / AADT minor road 1 z r \ 

ACCidents/year = a0^(AADTmajor road + AADTminor road) X f 4AT)T Vz-10,> 
AADL major road + AAL)1 mimrroaa-
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This model was found to provide a better fit for the accident data set under consideration 

than the previous model which relates the number of accidents to the traffic flow on the 

minor and the major road in a similar manner. 

Kulmala (1992) used the following G L I M model to estimate the expected number of 

accidents for highway junctions in a reference population as a function of the total number 

of vehicles entering the junction, the minor road's portion of entering traffic and a set of 

variables describing the geometry and the environment of the junction, {x l 5 Xj,...^}, as 

follows: 

Accidents/year/km = a0x (AADJ\0tai)a'*('AAD1\linorwad)"'!xe ' (2-17) 

In a similar fashion to the Empirical Bayes refinement discussed earlier, the above 

regression estimates are then combined with the accident history for each site to yield a site-

specific refined estimates. Kulmala (1992) has used this GLIM/EB accident prediction 

model to estimate the changes in the number of accidents due to road measures in a before 

and after study. Most notably, it was observed that the number of accidents at three-leg 

intersections was reduced by 44% and 48% by implementing stop signs and lighting 

respectively. 

Similarly, for four-leg intersections, the above countermeasures reduced the accidents by 

5% and 15% respectively. It is also worth noting that the implementation of a right turning 
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lane has resulted in a 17% increase in the number of accidents for three-leg junctions and a 

17% decrease for four-leg junctions. 

2.3.3.2 Accident Classification at Intersections 

Hauer et al (1988) produced disaggregate models for 145 four-legged, fixed time, signalized 

intersections in Metropolitan Toronto. He estimated separate models for the most common 

accident types, such as rear-end, angle accidents, etc. He used the following model forms: 

Rear-end: 

Accidents = a0 x (approach traffic) (2.18) 

Other accident types: 

Accidents - a0 x(Vx)a' x(V2) (2.19) 

where Vj and V2 are the pattern specific traffic volumes. 

Categorizing accident in this fashion has many advantages: better accident prediction 

models for specific types of accidents can be obtained; also from a remedy point of view, 

one could implement specific countermeasures to target specific types of accidents (such as 
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constructing a left-turn lane for intersections with high predicted frequency of left-turning 

and straight through accidents). 

2.3.3.3 Accident Prediction Models for Road Sections 

The traffic exposure for road sections is typically defined in terms of the average annual 

daily traffic in millions of vehicles per kilometer. The development of accident prediction 

models for road, especially freeway sections, is of great interest because of the severity 

and frequency of these, typically high speed, accidents. Persaud (1991) used the G L I M 

model with the two step EB refinement procedure described earlier to study the unsafety 

potential of three types of classes of Ontario road sections. The G L I M model suggested 

for the unsafety estimates as a function of the section length and the annual average daily 

traffic was given by: 

Accidents / day = a0 x (section length) x (AADT)"' (2.20) 

where a, b are the model parameters estimated by GLIM. The G L I M estimates are then 

refined using the EB method. 

It is worth mentioning that one would expect that the unsafety estimate of a road section 

would depend on many traffic and road geometric variables other than the section length 

and the average daily traffic. However, this model does indirectly account for many other 



24 

variables through using three highway classes. For instance, class 1 road sections consists 

of freeway sections that are multi- lane, divided, have the same high geometric 

standards, and are usually similar in other features such as speed limit. 

Therefore, it seems unlikely that a model which incorporates some of these road 

geometric variables would be significantly better than the above traffic volume, road 

section length model. This is because, these variables are kept practically constant within 

the class 1 reference group. Indeed, the author has shown that many attempts to add more 

geometric variables to the model did not result in significant difference in the estimates. 

This is an important observation, since one can deduce that simple G L I M accident 

prediction models can be developed if a reference population, in which some traffic and 

road geometric variables are kept constant, is appropriately chosen. 

Several researchers have developed multi-variate models which consider other variables 

in addition to traffic flow. For example, Zeeger et al (1986) suggested the following 

multi-variate G L I M model for two-lane rural roads: 

Accidents/(year - km) = aox AADTai xci2 xci3 
lane width average paved shoulder width 

average unpaved shoulder width median recovery distance edge of shoulder 
(2.21) 

a.4 x as 

Example for other multi-variate models can be found in Forkenbrock et al. (1994). 
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2.4 Summary 

Although many studies have addressed the relationship between accidents and the traffic 

and geometric factors at road segments, only a few studies have addressed this 

relationship for signalized intersections. This is surprising given that accidents at 

signalized intersections represent a significant proportion of the total accident population, 

especially in urban areas. Most of the existing research on accident prediction models for 

signalized intersections only consider the relationship between accidents and traffic flow. 

Several researchers have shown that conventional linear regression models lack the 

distributional property to adequately describe random, discrete, non-negative, and typically 

sporadic events which are all characteristics of traffic accidents. The generalized linear 

modeling (GLIM) approach addresses and overcomes the error structure problems that 

are associated with the conventional linear regression theory and allows for the use of 

nonlinear relationships in the model. In addition, the safety predictions obtained from 

G L I M models can be refined using the Empirical Bayes approach to provide, more 

accurate, site-specific safety estimates. The use of the complementary Empirical Bayes 

approach can significantly reduce the regression to the mean bias that is inherent in 

observed accident counts. 

There several applications of accident prediction models and the complementary 

Empirical Bayes refinement process including: the identification of accident prone 

locations, before, and after safety analysis and safety planning. 
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3.0 M O D E L D E V E L O P M E N T 

3.1 Background 

r 

The research made use of sample accident, traffic and intersection design data 

corresponding to signalized intersections located in the Greater Vancouver Region. The 

data set contained 67 urban intersections from the City of Richmond and 72 urban 

intersections from the City of Vancouver giving a total of 139 intersections. 

Before the analysis is considered, it is essential to provide a description of the data. The 

need to describe the data stems from various principles of accident data analysis and 

prediction model development which include: 

• Accident prediction models are often data dependent, in the sense that an empirical 

relationship that provides a best-fit for accident data for locations in the Greater 

Vancouver, may not be the best-fit model for accident data for sites in Metro Toronto, 

for instance. In the absence of a unique and conventional accident prediction model 

that fits accident data everywhere, the mathematical forms of these empirical 

relationships are often intuitive and data dependent, and are only meant to describe the 

original accident data under study. 

• The accuracy and reliability of these models also depend on the accuracy, the 

availability and the collection procedure of the accident data. The success of these 
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accident prediction models in reliably estimating the long term safety potential of the 

signalized intersections under study is directly proportional to the quality of accident 

data which are available. Consequently, the reliability of the applications of these 

models such as identification of accident prone locations and before and after studies 

is closely related to the accuracy and availability of the accident data. 

Therefore, in order to develop reliable accident prediction models for the signalized 

intersection under study, time and effort was devoted to checking and validating the 

accident data. In this section, a brief description of accident data, traffic exposure 

measure and intersections characteristics is provided. 

3.1.1 Accident Data 

Three years of accident data was available for analysis on each intersection (1993 - 1995). 

The source of the accident data is the MV104 accident reporting form, the British 

Columbia's accident police report. The MV104 police report is the principal tool used to 

collect information giving accidents in British Columbia. In this form, there are about one 

hundred pieces of information giving the accident circumstances, type and outcome as 

well as the characteristics of the driver(s), the vehicle involved and the locations of the 

accident. The data set included a total of 6255 accidents. 
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Table 1 provides a summary of the variables extracted from the MV104 forms for use in 

this study. These variables will be considered as the dependent variables in the multiple-

regression accident prediction models. The data is included in Appendix A . 

Variable Description 

T O T A L Total number of accidents 

PDO Number of Property Damage Only (PDO) accidents 

INJ Number of injury accidents 

P E A K ( A M ) Number of morning peak hour accidents 

PEAK(PM) Number of afternoon peak hour accidents 

NIGHT Number of night-time accidents 

D A Y Number of day-time accidents 

LEFT Number of left-turn accidents 

REAR-END Number of rear-end accidents 

Table 3.1. Accident Variables from the MV104 

3.1.2 Traffic Exposure Measures 

The most commonly used intersection accident exposure is the total number of vehicles 

entering the intersection (sum of traffic flows). However, recent studies (Hauer et al. 

(1988) and others) have indicated that the "product-of-traffic-flows-to-power" model is 
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more suitable to represent traffic exposure than the "sum of traffic flows". In these 

models accident frequency is a function of the product of traffic flows raised to a specific 

power (usually less than one). 

Hauer et al. (1988) considered only traffic flows related to the accident pattern. Others, 

related the accident frequency to the product of average daily traffic of the major and 

minor roads. This later approach will be used in this study because of the difficulty in 

obtaining accident patterns-related traffic flows. 

Table 3.2 provides a statistical summary of the ranges of traffic volume and accidents for 

the intersections used in this study. 

Variable Statistics Variable 

Minimum Maximum Mean Std. Dev. 

Major Road A D T 5700 67840 23790 9670 

Minor Road A D T 300 54060 9420 7250 

Accident/Year 2 42 15 9 

Table 3.2 Statistical Summary for the Accident Traffic Volume Data for the Study 

Intersections 
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3.1.3 Intersection Characteristics 

The objective of this research is to develop accident prediction models that link accident 

measures to not only traffic exposure but also to the intersection infrastructure and 

geometric design characteristics. The aim of accounting for these intersection attributes 

was to examine the road-related factors which appeared to underlie the occurrence of 

accidents. The intersection characteristics variables included in the model are summarized 

in Table 3.3. Some of the data was collected by direct observation of the intersections, 

and others are recorded from intersection layouts provided by the City of Vancouver and 

the City of Richmond. 

Variable Description 

M A N L Number of Major Road lanes 

MINL Number of Minor Road Lanes 

LT Number of Left Turn Lanes 

PRO 0, Unprotected; 1, Protected Left Turn 

Lane 

RT Number of Right Turn Lanes 

PC Existence of Pedestrian Crosswalk 

Table 3.3 Intersection characteristics variables used in the study 
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3.2 The Modeling Technique 

As described in Section 2.0, the use of Generalized Linear Regression (GLIM) models 

overcomes the statistical and practical shortcomings associated with the use of conventional 

regression models for accident prediction. The G L I M method allows for the flexibility of 

nonlinear accident-traffic relationship and the specification of a negative binomial or a 

Poisson error structure for the dependent variable which is more appropriate for accident 

counts than the traditional normal distribution. In the present study the Poisson distribution 

has been assumed for the error structure. 

3.2.1 Measures of Significance 

In conventional regression models, where a normal error structure is assumed, the 

coefficient of determination (R2) is usually used to indicate the model significance. 

However, the use of (R2 ) is not appropriate when the error structure is other than normal 

(Belanger, 1993). 

Significance tests for G L I M models are based on-a scaled deviance SD - a likelihood 

measure of discrepancy between two models. In G L I M , the SD is defined as the 

likelihood test ratios measuring the difference between the log likelihood of the studied 

model and the saturated model. Differences between scaled deviance for the two models, 

one of which is a submodel of the other, is attributed to the extra parameters included in 

the larger model. This provides a method of assessing the significance of each factor, 
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which is based on the decrease of the scaled deviance SD after the inclusion of a 

considered factor into the model. Thus the deviance fills the role of the residual sum of 

squares in the normal model, in providing a significance test for the importance of 

parameters omitted or added to the model. The difference in scaled deviance between two 

models is assumed to follow a Chi-Square ( %2) distribution, and the significance of such 

difference is assessed based on the degrees of freedom (n-p) and the value read from the 

X 2 table. 

Another measure of significance is the Pearson %2 statistic defined as: 

Miao et al. (1992), Bonneson and McCoy (1993), and Persaud and Dzbik (1993) 

evaluated their models using the Pearson %2 method which follows a %2 distribution. 

Both the scaled deviance SD and the Pearson %2 will be used for the indication of the 

goodness of fit in this research. 

In addition, a useful subjective, measure of the model goodness of fit is to plot the 

predicted accident frequency versus the observed accident frequency. A well-fitted model 

should have all points in the graph clustered symmetrically around the 45° line. 

(3.2) 
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3.2.2 Model Development 

The main task of this research is to develop multivariate models to estimate the number 

of accidents. In this project, modeling was undertaken in three stages: (1) developing 

models relating the total number of accidents to traffic volume; (2) developing models 

relating accidents of a specific type to traffic volume; and (3) developing models 

incorporating intersection layout variables. 

Because of the relatively small sample size, results for the development of separate 

models for the city of Vancouver and the city of Richmond is not reported. However, 

they are included in Appendix B. 

3.2.2.1. Models for the Total Number of Accidents 

As described earlier, there are different functional forms which can be used to relate the 

accident occurring at an intersection with the traffic volume. Two models where selected 

for use in this study: 

(1) The model used by Hauer et. al. (1988) and Bonneson and McCoy (1993): 

Accidents / year — QO x (AADTmaj0rraad) x (AADTmjnorroad) 2 (3-3) 

where A A D T is the Average Daily traffic in 1000 veh/day. 
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The model used by Brude and Larsson (1988) 

Accidents/year = OQ X (A.ADTmajor road + A A D T ^ r ^ r " t )ai (3-4) 
AAD1 major road + AAL) L MMORRAATL 

where A A D T is the Average Daily traffic in 1000 veh/day. 

The results of fitting the two models to the accident data are illustrated in Table 3.4. 

Model Model Form Coefficient SD k Pearson 
Estimates (df) 

x 2 

1 E(m) = a0 x V°> x V2"2 a0 
2.1813 355.2 9.0 128.40* 

a, 0.3286 (136) 

a2 0.4418 

2 K 1.9066 360.7 8.8 128.57* 
E(m) = a0 x(v + v2y> x ( — 2 — )° 2 

K 1 2 J vx + v2

J 

ai 0.7432 (136) 

02 0.3622 

» Denotes significance at a 95-percent confidence level (^2o.o5,i36 = 163.8). 

Table 3.4 Models for the Estimation of the Total Number of Accidents 

Table 3.4 shows that the two models present a relatively good-fit with the first model 

having a slightly higher goodness of fit (a smaller SD). Figures 3.1 and 3.2 show the 

relationships between the observed number of accidents/year versus the predicted number 

of accidents/year for the two models. The results are symmetrically clustered around the 

45° line to a reasonable extent; which is desirable. The dispersion of the results from the 

45° line is also within acceptable limits. 
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10 20 30 40 

Observed Accident (acc./yr) 

Figure 3.1 Model (1): Observed Versus Predicted Number of Accidents/yr 



Figure 3.2 Model (2): Observed Versus Predicted Number of Accidents/yr. 
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3.2.2.2 Models for Specific Accident Types 

The "product-of-flow-to-power" model suggested by Hauer et. al. (1988) and Bonneson 

and McCoy (1993) was used to model the relationships between specific accident types 

and traffic flow. Table 3.5 shows different accident type models and their goodness of 

fit. In the case of rear-end accidents the total traffic volume entering the intersection was 

used instead of the "product-of-flow-to-power" model. A l l models have a relatively good-

fit and the x2 values are significant at a 95-percent confidence level. 
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Accident Type Model Form Coefficient 

Estimates 

SD k Chi-square 

PDO Accidents E(jn) = a0x V"' x V2

2 ao 

a, 

a2 

1.3012 

0.3409 

0.4412 

253.7 10.8 128.25 

Injury Accidents E(m) = a0 x V"1 x V2

2 ao 

a, 

a2 

0.9049 

0.2836 

0.4490 

169.2 14.4 120.54 

Day time Accidents E(m) = aQx V"' x V2

2 a0 

ai 

a2 

1.5470 

0.3470 

0.4206 

259.6 11.2 126.97 

Night time Accidents E(m) = a0x V"> x V2

2 a» 

a, 

aj 

0.6714 

0.2547 

0.5007 

204.4 7.8 137.30 

Rear-end Accidents E(m) = a0x Vth ao 

a, 

0.0627 

1.2360 

159.3 19.5 120.74 

PM Rush hour 

Accidents 
E(m) = a0x V"' x V2

2 ao 

ai 

a2 

0.3256 

0.4266 

0.3944 

131.6 88.85 125.63 

Rush Hour Accidents E(m) = a0x V"> x V2"2 ao 

ai 

a2 

0.4439 

0.4466 

0.4025 

154.3 26.64 154.30 

Non-Rush Hour 

Accidents 
E(m) = a0x V"' x V2°2 a0 

ai 

a2 

1.7400 

0.2873 

0.4599 

269.6 10.36 128.45 

Left-Turn Accidents E(m) = a0x V* x V2

2 ao 

a, 

a. 

0.5572 

0.2999 

0.4950 

278.2 3.33 121.73 

Table 3.5 Models for Specific Accident Types 
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The relationship between the types of accidents and major traffic volume for various 

minor road volumes are shown in Figures 3.3-3.12. Figure 3.13 shows the relationship 

between different accident types and the major traffic flow. Figure 3.14 shows the 

relationship between time specific accidents and the major road traffic flow. The minor 

road flow is kept at its mean value in Figures 3.13 and 3.14. 
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Figure 3.3. Model of PDO accidents 
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Minor Road ADT (veh/day) 
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Major Street ADT(1000 veh/day) 

Figure 3.4. Model of injury accidents 
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Figure 3.5 Model of day time accidents 
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Figure 3.6 Model of night time accidents 
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Figure 3.7 Model of Rear-end accidents 
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Figure 3.8 Model of A M rush hour accidents 
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Figure 3.9 Model of P M rush hour accidents 
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Figure 3.10 Model of rush hour accidents 
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Figure 3.11 Model of Non rush hour accidents 
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Figure 3.12 Model of left turn accidents 
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Major Street ADT (1000 veh/day) 

Figure 3.13 Models of different types of Accidents 
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Figure 3.14 Models of time specific accidents 
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3.2.2.3 Evaluation of the Effect of Intersection Layout Variables 

Table 3.6 shows the parameter estimates for a model including intersection layout 

variables, as well as the significance of the layout variables as given by the t-ratio. The t-

ratio is the ratio between the parameter value and its standard error. The critical t-ratio at 

the 5% significance level is about 1.96. The following layout variables were included in 

the model: 

M A N L = Average number of lanes on the major road, both approaches 

MINL = Average number of lanes on the minor road, both approaches 

L T L = Number of left turn lanes, all approaches 

RTL = Number of right turn lanes, all approaches 

PC = Number of pedestrian crosswalks 

T A B L E 3.6 - Parameter Estimates for the Model Incorporating Layout Variables 

Model Form t-ratio K Pearson 

x2 

MANL 0.50 14.42 134.13* 

Accidents/year = 1.3708 x[ ^ J x[ ^ J x • 
MINL 

LTL 

RTL 

3.20 

-1.43 

-1.09 

Xft xs = 0.0386MANL + 0.2086 MINL - 0.0264LTL-0.0403RTL-0.0123PC 
PC -0.38 

• Denotes significance at a 95-percent confidence level (%20.05,130 = 157.6) 
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The variables PC, MANL, RTL, and LTL were not significant (t-ratio is less than critical 

value). A stepwise elimination procedure was used to remove insignificant variables from 

the model. The procedure involves removing one insignificant variable at a time starting 

with the one having the least t-ratio. The resulting model is shown in Table 3.7. 

T A B L E 3.7 Parameter Estimates for the Model Incorporating Layout Variables 

Model Form t-ratio K Pearson 

x2 

Cedents/year = 1.3470 x[ ^ J ,[ ^ J x ^ ' " 

MINL 

LTL 

4.11 

-2.04 

14.16 125.21* 

YuPi = 0.2381 MINL - 0.03525 LTL 

* Denotes significance at a 95-percent confidence level (x2o.o5,i33 = 160.9) 

Figure 3.15 shows the observed versus predicted number of accidents for the model. The 

dispersion around the 45° line is much less than total accidents model (Figure 3.1) which 

indicates the significance of including these layout variables. 
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4.0 APPLICATIONS 

4.1 Empirical Bayes Refinements to the Models 

As described in section 2.0, the Empirical Bayes (EB) approach can be used to refine the 

estimate of the expected number of accidents at a location by combining the observed 

number of accidents at the location with the predicted number of accidents obtained from 

the G L I M model. The EB estimated number of accidents for any intersection can be 

calculated using (Hauer et al. ,1988): 

EB safety estimate = a.pred + (1 -a).count, (4.1) 

1 
(4.2) a — var(pred) 

1 + 
pred 

where 

count = observed number of accidents at the location 

pred = predicted number of accidents as estimated from the G L I M model 

var(pred) = the variance of the G L I M estimates. 

Since var(pred) = 
(pred)2 

as described earlier, equation 4.1 and 4.2 can be rearranged to 
k 

yield: 
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EB safety estimate = ( 
k 

) pred + ( 
pred 

-) count (4.3) 
k + pred k + pred 

In addition, the variance of the EB estimate can be calculated using: 

var (EB safety estimate) = 2 + ( 
pred 

-)2 count (4.4) 
(& + pred) k + pred 

As can be noted from Equation (4.3), the EB safety estimate lies between the observed 

number of accidents and the predicted number of accidents, taking into account the 

individual accident history of the location and the G L I M model prediction which 

combine data for similar locations. As noted in Section 2, the EB estimate is important 

since it provides correction for the regression to the mean phenomenon. Figure 4.1 

illustrates the EB refinement estimation versus the value predicted from the G L I M model. 

The following is an example illustrating the use of Equation (4.3): 

Assume that an intersection has the following data: 

• Major road A D T = 40,000 veh/day 

• Minor road A D T = 10,000 veh/day 

• Observed accidents/year = 29 acc/yr 
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Using the first model from Table 3.3, the predicted number of accidents for this 

intersection is: 

pred = 2.181 x (40) 0 3 2 9 x (10) 0 4 4 2 = 20.27 acclyr 

Using equation 4.3 and 4.4, the empirical safety estimate and its variance can be 

calculated as: 

9 20.27 
EB safety estimate = (-———-) x 20.27 + f x 29 = 26.31 acc I yr 

J 7 v 9 + 20.27 9 + 20.27 

9x20.27 2 20.27 , 
var (EB safety estimate) = — — „ „ , ^ 2 + ( r — r ^ r r ) x 29 = 18.22 (acc I yr)1 

v J y J (9 + 20.27)2 v 9 + 20.27y 

In this example the expected number of accidents is reduced from 29 to 26.31 which 

corresponds to about 9.2 percent regression to the mean correction. 

In the following section, two applications for using the G L I M models and the Empirical 

Bayes' estimates will be discussed. 
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10 20 30 40 50 

Observed Accidents (acc./yr) 

Figure 4.1 Predicted vs. EB Refined number of accidents 
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4.2 Identification of Accident Prone Location 

Accident Prone Locations (APLs) are usually defined as locations which exhibit a 

significant number of accidents compared to a specific norm. Because of the randomness 

inherent in accident occurrence, statistical techniques that account for this randomness 

should be employed when identifying APLs. The EB refinement process discussed in the 

previous section can be used to identify accident prone locations as follows (Belanger, 

1994): 

1. Estimate the predicted number of accidents and its variance for the intersection 

using the appropriate G L I M model and plot the probability density function of the 

distribution (gamma distribution) 

2. Determine the appropriate point of comparison based on the mean and variance 

values obtained in step (1). (usually the 50 th percentile, P50 is used as a point of 

comparison) 

3. Calculate the EB safety estimate and its variance from equations 4.3 and 4.4 and 

plot the distribution. 

4. Identify the location as accident prone i f there is a significant probability that the 

intersection's safety estimate exceeds the P50 value. 
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To continue with the previous example, the predicted number of accidents and its 

variance using model (1) can be calculated as 20.27 acc/yr and 45.65 (acc/yr)2 

respectively. The P5Q value can be estimated from plotting the probability density 

function of the gamma distribution. From Figure 4.2, P50 = 19.53 acc/yr. The EB safety 

estimate and its variance were calculated as 26.31 acc/yr and 18.22 (acc/ yr) 2 

respectively. The updated distribution is also shown in Figure 4.2. From the figure, it can 

be shown that the probability of having accidents less thanP5 0 is only 4.5 percent (the 

shaded area in the figure). This means that there is a significant probability (95.5%) of 

exceeding the P50 value and the intersection can be considered accident prone. 



0.1 

0 10 20 30 40 50 

Accidents/yr 

Figure 4.2 Identification of Accident Prone Locations 
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To facilitate the process of identifying accident prone locations, critical accident 

frequency curves for different significance levels can be developed. A n example of these 

curves is shown in Figure 4.3 using the /rvalue for the model relating the total number of 

accidents to traffic flows (K = 9.0). To illustrate, using the same example as before, for a 

predicted accident value of 30 accidents/ year, the observed number of accidents at the 

intersection must exceed 43 accidents/ year to be identified as accident prone at the 99 % 

level, 39 accidents/ year at the 95% level, and 36 accidents/ year at the 90% level of 

confidence. 



Figure 4.3. Accident Prone Locations for Total Model 
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4.3 Before and After Safety Evaluation 

The effect of a safety measure is often studied by comparing the number of accidents 

observed after the implementation of the measure to the expected number of accidents 

had the measure not been implemented. In simple before and after studies, the observed 

number of accidents in the period before the implementation is used to estimate the latter 

value. However, because of the random variations in accident occurrence (e.g. the 

regression to the mean effect), the observed number of accidents before the 

implementation may not be a good estimate of what would have happened had no 

measure been implemented. A n alternative and more accurate approach is to use the EB 

refinement process discussed in Section 4.1. 

Considering the same example as before, assume that a specific safety measure to reduce 

the number of accidents at the intersection was implemented. The observed number of 

accident in one year after the implementation is 20 accidents. The effectiveness of the 

measure can then be calculated as: 

20 
Measure of Effectiveness = 1 - = 0.24 

which indicates a 24 percent reduction in total accidents because of the treatment. If the 

data on specific accidents types is available, then the measure of effectiveness in reducing 

specific accident types can be estimated by applying the appropriate G L I M model from 

Table 3.4. 
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4.4 Safety Planning 

Accident prediction models can be used in safety planning by identifying the traffic and 

geometric variables that have the most impact on the safety performance of signalized 

intersections. These variables should be the focus of road authorities attention and 

investment. As well, the models can be used to estimate the incremental safety benefit 

associated with the change in any traffic or geometric design variable. 

For example, a sensitivity analysis was carried out for the variables included in the model 

shown in Table 3.6. Figure 4.4 shows the analysis in a non-dimensional form. For the 

variables examined, accident occurrence is found to be the most sensitive to the number 

of lanes of minor road followed by the total and minor road traffic volumes and the 

number of left turn lanes, respectively. An increase in the first three variables will 

increase the expected number of accidents while an increase in the number of left turn 

lanes would cause a decrease in the expected number of accidents. 
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Figure 4.4 Sensitivity Chart 
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5.0 CONCLUSION 

This thesis has documented the results of a study to develop accident prediction models 

for signalized intersections in the Greater Vancouver Regional District (GVRD). To 

avoid the shortcomings associated with the conventional linear regression approach, the 

models were developed using the Generalized Linear Regression Models (GLIM) 

approach. The G L I M approach addresses the error structure problems that are associated 

with the conventional linear regression theory and allows for the use of nonlinear 

relationships in the model. 

Three types of models were developed: models for the total number of accidents, models 

for specific accident types, and models which account for variables other than traffic 

volumes. The models provided adequate goodness of fit for the accident data used. A n 

Empirical Bayes procedure was used to refine the estimates of the G L I M models to 

provide more accurate site-specific safety estimates. Application of the Empirical Bayes 

procedure included the identification of accident prone locations and performing before 

and after safety analysis. 

There are several improvements which can enhance the models developed in this thesis. 

First, the sample size used in this study is relatively small (139 intersections). Therefore, 

expanding the sample size to include more intersections and re-calibrating the models is 

recommended. 



Secondly, in developing the models for predicting specific accident types, the average 

daily traffic volumes on the major and minor roads were used. Hauer (1989) and others 

recommended the use of traffic flows related to the specific accident type. However, 

detailed traffic volume data were not available for this research. Therefore, collecting 

detailed traffic volume data and developing models relating accident types to the traffic 

flows generating these accidents may be of interest. 

Thirdly, all signalized intersections included in this research are in the urban 

environment. The collection of data for other environments (e.g. rural, suburban) and the 

development of corresponding models are also suggested. 
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Appendix B M O D E L S FOR V A N C O U V E R AND RICHMOND 

INTERSECTIONS 

Total of 67 intersections in Vancouver were obtained for analysis. 

Model Model Form Coefficient 
Estimates 

SD k Chi-
square 

1. Bonneson and 
McCoy 

E(m) = a0x V* x V2

2 ao 
a, 
a2 

0.9 
0.6894 
0.2738 

101.8 14.65 59.74 

2.Brude and 
Larsson 

a 0 

ai 
a2 

0.9 
0.9630 
0.2738 

101.8 14.56 59.74 

3. Kulmala 
E(m) = aQxVai xV2"2 xe^'x' ao 

a, 
a2 

P, 

P 2 

P 3 

P4 
P 5 

P6 
PT 

Ps 

P 9 

P. 

0.7 
0.5617 
0.1779 
0.1532 
0.07 
0.04 
0.1638 
0.08 
0.18 
0.14 
-0.06 
-0.08 
-0.08 

62 11298 53.98 

4. PDO 
Accidents 

E(m) = a0x V"> x V"1 a 0 

a. 
0.7 
0.6117 
0.4117 

59.7 16.43 

5. Injury 
Accidents 

E(m) = a0x V* x V2

2 3o 

ai 
a2 

0.6 
0.4958 
0.408 

72.1 54.41 

6. Day time 
Accidents 

E(m) = a0x V* x V2

2 ao 
a. 
a2 

0.7 
0.6681 
0.377 

69.7 12.34 69.3 

7. Night time 
Accidents 

E{m) = a0x V* x V2

2 ao 
a, 
a. 

0.7 
0.3302 
0.5007 

73 66.43 

8. Rear-end 
Accidents 

E{m) = a0x V' ao 

ai 

0.1 
1.296 

67.3 16.66 123.17 

9. Angle 
Accidents 

E(m) = a0x V* x V2"2 ao 

a> 
a2 

1.3 
0.04 
0.3697 

44.6 65.52 

10 A M Rush 
hour accidents 

E(m) = a0x V* x V2"2 ao 
a, 
a. 

0.1 
0.9178 
0.3373 

24.1 
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Model Model Form Coefficient 
Estimates 

SD k Chi-
square 

11 PM Rush 
hour accidents 

E(m) = a0x V"' x V2

ai a0 

a2 

0.1 
0.8566 
0.3318 

41.3 

12 Rush Hour 
Accidents 

E(m) = a0x V"1 x V2"2 

a2 

0.33 
0.4995 
0.4461 

41.3 

13 Non Rush 
Hour Accidents 

E(m) = a0x V"' x V2

2 ao 

a2 

1.2 
0.4605 
0.4399 

82.1 23.6 57.34 

14 Left turn 
accidents 

E(m) = a0 x V"' x V"1 

a. 
a2 

0.1 
1.048 
0.496 

71.9 4.08 46.07 

* means the indicated value is a minus figure which shows a not proper form for the 

corresponding model. 
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Total of 72 intersections in Richmond city were obtained for analysis. 

Model Model Form Coefficient 
Estimates 

SD k Chi-
square 

1.Bonneson and 
McCoy 

E(m) = a0 x V* x V2

2 

a, 
a2 

2.0 
0.1537 
0.6826 

127.8 14.65 64.06 

2. Brude and 
Larsson Eim)-a0x(Vl+V2Tx(v^vr 

a0 

a, 
1.7 
0.8412 
0.6336 

127.6 14.56 64.06 

3. Kulmala 

E(m) = a0x Va> x V2"2 x e^"'*' 
a0 

a, 
a2 

P. 
P2 

P 3 

P4 

P 5 

P6 

P 7 

Ps 

P 9 

PlO 

0.3 
0.4033 
0.2915 
0.1536 
0.018 
0.093 
0.1696 
0.062 
-0.156 
0.1233 
-0.017 
-0.1 
-0.026 

73.6 11298 70.94 

4. PDO 
Accidents 

E(m) = a0x V"1 x V2

2 ao 
a, 
32 

1.0 
0.3869 
0.5141 

100.7 16.43 65.15 

5. Injury 
Accidents 

E(m) = a0 x Vf x V2

2 3o 

3, 

3 2 

0.7 
0.3341 
0.5148 

54.48 

6. Day time 
Accidents 

E(m) = aQ x V* x V2

2 a0 

3i 

32 

1.2 
0.3898 
0.4771 

115.6 12.34 62.37 

7. Night time 
Accidents 

E(m) = a0 x V"' x V2

ai a0 

a, 
a2 

0.5 
0.2985 
0.5743 

50.24 

8. Rear-end 
Accidents 

E(m) = a0x V1 3o 

3i 

0.03 
1.358 

74.9 16.66 52.05 

9. Angle 
Accidents 

E(m) = a0x V* x V2

ai 3o 

3l 

a2 

2.0 
-0.235 
0.5018 

65.87 65.52 123.81 

10. A M Rush 
hour accidents 

E(m) = a0x V? x V2"2 3o 

a, 
a2 

0.1 
0.4843 
0.4664 

43.42 
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Model Model Form Coefficient 
Estimates 

SD k Chi-
square 

11 PM Rush 
hour accidents 

E(m) = a0x V"' x V2

2 a0 

ai 
a2 

0.2 
0.5095 
0.4272 

43.42 

12 Rush Hour 
Accidents 

E(m) = a0x V{

a> x V2

2 a0 

a. 
0.3 
0.4995 
0.4461 

60 

13 Non Rush 
Hour Accidents 

E(m) = a0x V* x V2

2 ao 
a, 
a2 

1.3 
0.3368 
0.5256 

91.55 23.6 61.02 

14 Left turn 
accidents 

E(m) = a0x V* x V2

2 ao 
a, 
32 

0.3 
0.4518 
0.577 

112.2 4.08 4.08 


