OPTICAL AND INFRARED SPECTRA OF SOME UNSTABLE MOLECULES

by
JUDITH ANNE BARRY
B.S. (Hon.), San Francisco State University, 1981
M.S., San Francisco State University, 1983
\title{ A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY }

in

THE FACULTY OF GRADUATE STUDIES
 Department of Chemistry

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
9 November 1987
© Judith Anne Barry, 1987

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, 1 agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of CHEMISTRY

The University of British Columbia 1956 Main Mall Vancouver, Canada VET 1Y3

Date \qquad

ABSTRACT

Some unstable gaseous molecules, cobalt oxide (CoO), niobium nitride (NbN) and aminoborane $\left(\mathrm{NH}_{2} \mathrm{BH}_{2}\right)$, were studied by high resolution optical spectroscopy. A portion of the "red" system of CoO , from $7000 \AA$ to $5800 \AA$, was measured using laser induced fluorescence techniques. Three bands of the system, with origins at $6338 \AA, 6411 \AA$ and $6436 \AA$, were rotationally analyzed. The lower levels of these parallel bands are the $\Omega=7 / 2$ and $5 / 2$ spin-orbit components of a ${ }^{4} \Delta_{i}$ electronic state. Available evidence indicates that this is the ground state of the molecule; its bond length is $1.631 \AA$. This work completes the determination of the ground state symmetries for the entire series of first row diatomic transition metal oxides. The hyperfine structure in the ground state is very small, supporting a $\sigma^{2} \delta^{3} \pi^{2}$ electron configuration. The upper state, assigned as $\sigma \delta^{3} \pi^{2} \sigma^{*}$, has large positive hyperfine splittings that follow a case (a_{β}) pattern; it is heavily perturbed, both rotationally and vibrationally.

The sub-Doppler spectrum of the ${ }^{3} \Phi{ }^{-3} \Delta$ system of NbN was measured by intermodulated fluorescence techniques, and the hyperfine structure analyzed. Second order spin-orbit interactions have shifted the ${ }^{3} \Phi_{3}{ }^{-3} \Delta_{2}$ subband $40 \mathrm{~cm}^{-1}$ to the blue of its central first order position. The perturbations to the spin-orbit components were so extensive that five hyperfine constants, rather than three, were required to fit the data to the case (a) Hamiltonian. The ${ }^{3} \Delta{ }^{3} \Phi$ system of NbN is the first instance where this has been observed. The magnetic hyperfine constants indicate that all components of
the ${ }^{3} \Delta$ and ${ }^{3} \Phi$ spin orbit manifolds may be affected, though the ${ }^{3} \Delta$ state interacts most strongly, presumably by the coupling of the ${ }^{3} \Delta_{2}$ component with the ${ }^{1} \Delta$ state having the same configuration. The Fermi contact interactions in the ${ }^{3} \Delta$ substates are large and positive, consistent with a $\sigma^{1} \delta^{1}$ configuration. In the ${ }^{3} \Phi$ state the $(b$ $+c)$ hyperfine constants are negative, as expected from a $\pi^{1} \delta^{1}$ configuration. The ${ }^{3} \Delta$ and ${ }^{3} \Phi$ bond lengths are $1.6618 \AA$ and 1.6712 \AA, respectively, which are intermediate between those of ZrN and MoN.

The Fourier transform infrared spectrum of the $v_{7} \mathrm{BH}_{2}$ wagging fundamental of $\mathrm{NH}_{2} \mathrm{BH} \mathrm{H}_{2}$ was rotationally analyzed. A set of effective rotational and centrifugal distortion constants was determined, but the band shows extensive perturbations by Coriolis interactions with the nearby v_{5} and v_{11} fundamentals. A complete analysis could not be made without an analysis of the $v_{5}-v_{7}-v_{11}$ Coriolis interactions, which is currently not possible because the very small dipole derivative of the v_{5} vibration has prevented its analysis.

TABLE OF CONTENTS

ABSTRACT. ii
TABLE OF CONTENTS iv
LIST OF TABLES. vii
LIST OF FIGURES. viii
CHAPTER I. ELECTRONIC TRANSITIONS IN HETERONUCLEAR DIATOMICS. 1
I.A. Some Properties of Angular Momenta. 1
I.B. Spherical Harmonics and Spherical Tensor Operators. 4
I.C. Selection Rules and Hund's Coupling Cases. 11
I.D. The Hamiltonian 21
I.D.1. Nuclear rotational Hamiltonian. 21
I.D.2. Spin Hamiltonian. 22
I.D.3. Magnetic hyperfine interactions 25
I.D.3.a. The sign of nuclear coupling constants in transition metal complexes 27
I.D.3.a.i. The sign of the Fermi contact interaction. 27
I.D.3.a.ii. The sign of the dipolar nuclear hyperfine interaction. 30
I.D.4. The nuclear electric quadrupole interaction. 31
I.D.5. Λ-Doubling 37
CHAPTER II. THE COMPUTERIZED LASER-INDUCED FLUORESCENCE EXPERIMENTS. 40
II.A. Experimental Details. 40
II.B. Intermodulated Fluorescence. 43
II.C. Computerization. 49
CHAPTER III. ROTATIONAL ANALYSIS OF THE RED SYSTEM OF COBALT
OXIDE 52
III.A. Introduction 52
III.B. Experimental. 56
III.B.1. Synthesis of gaseous cobalt oxide 56
III.B.2. The spectrum. 57
III.C. Analysis. 60
III.C.1. Rotational analysis of the $6338 \AA$ subband 60
III.C.1.a. Rotational constants and hyperfine structure 60
III.C.1.b. Perturbations 67
III.C.2. Rotational analysis of the $6436 \AA$ subband. 70
III.C.3. Rotational analysis of the $6411 \AA$ subband. 72
III.D. Discussion. 78
CHAPTERIV. HYPERFINE ANALYSIS OF NIOBIUM NITRIDE. 84
IV.A. Introduction 84
IV.B. Experimental 86
IV.B.1. Synthesis. 86
IV.B.2. Description of the ${ }^{3} \Phi-{ }^{3} \Delta$ spectrum 86
IV.C. Non-Linear Least Squares Fitting of Spectroscopic Data 97
IV.D. Results and Discussion. 102
CHAPTER V. ROTATIONAL ANALYSIS OF THE v_{7} BAND OF
AMINOBORANE 113
V.A. Background 113
V.B. The Michelson Interferometer and Fourier Transform Spectroscopy 117
V.C. Experimental 126
V.D. The Asymmetric Rotor. 127
V.E. The Rotational Hamiltonian 134
V.E.1. The Hamiltonian without vibration interaction 134
V.E.2. Coriolis interaction. 137
V.F. Band Analysis and Discussion 138
Appendix I. NbN ${ }^{3} \Phi$ - ${ }^{3} \Delta$ Correlation Matrix 145
Appendix II. Transitions of the ${ }^{3} \Phi-3 \Delta$ System of NbN 147
Appendix II.A. ${ }^{3} \Phi_{2}{ }^{-3} \Delta_{1}$ 147
Appendix II.B. ${ }^{3} \Phi_{3}-{ }^{-3} \Delta_{2}$ 152
Appendix II.C. ${ }^{3} \Phi_{4}{ }^{-3} \Delta_{3}$ 155
Appendix III. Transitions of the v_{7} band of $\mathrm{NH}_{2}{ }^{11} \mathrm{BH}_{2}$. 160
REFERENCES 170

LIST OF TABLES

3.1. The most prominent bandheads in the 7000 to $5800 \AA$ broadband emission spectrum of gaseous CoO 58
3.II. Assigned lines for the $6338 \AA$ band of $\operatorname{CoO}\left({ }^{4} \Delta_{7 / 2}{ }^{-4} \Delta_{7 / 2}\right)$ with the lower state combination differences, $\Delta_{2} \mathrm{~F}^{\prime \prime}$, in cm^{-1} 63
3.III. Rotational constants for the analyzed bands of the red system of CoO 66
3.IV. Assigned lines from the $6436 \AA\left({ }^{4} \Delta 7 / 2^{-4} \Delta_{7 / 2}\right)$ band of CoO 73
3.V. Assigned lines from the $6411 \AA\left({ }^{4} \Delta_{5 / 2}{ }^{-4} \Delta_{5 / 2}\right)$ band of CoO 74
3.VI. Ground states and configurations of the first row diatomic transition metal oxides, with the fundamental frequency $\Delta G_{1 / 2}, B$ and r for the $v "=0$ state, and the spin-orbit interval $\mathrm{A} \Lambda$ for the orbitally degenerate electronic states 83
4.I. Molecular constants for the ${ }^{3} \Phi{ }^{3} \Delta$ system of NbN 105
4.II. Rotational constants obtained for the ${ }^{3} \Phi-3 \Delta$ system of NbN with the A_{D} and γ parameters fixed to zero 110
5.I. Vibrational fundamentals of gaseous $\mathrm{NH}_{2}{ }^{11} \mathrm{BH}_{2}$ 116
5.II. Character table for the $\mathrm{C}_{2 v}$ point group. 128
5.III. Character sets for an asymmetric top rotational wavefunction in the $\mathrm{C}_{2 v}$ point group 132
5.IV. Molecular constants of the v_{7} band of $\mathrm{NH}_{2}{ }^{11} \mathrm{BH}_{2}$ 143

LIST OF FIGURES

1.1. Polar and Cartesian coordinates 5
1.2. Vector diagram for Hund's coupling case (a) 13
1.3. Vector diagram for Hund's coupling case (b) 15
1.4. Vector diagram for Hund's coupling case (c) 18
2.1. Gaussian inhomogeneously Doppler-broadened velocity population profile. 44
2.2. Schematic diagram of the intermodulated fluorescence experiment 46
2.3. a. The formation of crossover resonances. b. Stick diagram of a spectrum with four of the forbidden transitions that can accompany a $\Delta \mathrm{F}=\Delta \mathrm{J}=0 \mathrm{Q}$ transition 48
2.4. Schematic diagram of the laser-induced fluorescence experiment interfaced to the PDP-11/23 microcomputer. 51
3.1. Energy level diagram of a diatomic 3d transition metal oxide. 54
3.2. Broadband laser excitation spectrum of the three bands of gaseous CoO analyzed in this work 59
3.3. Bandhead of the $\Omega^{\prime}=\Omega^{\prime \prime}=7 / 2$ transition at $6338 \AA$. 62
3.4. Upper state energy levels of the ${ }^{4} \Delta_{7 / 2}-4 \Delta_{7 / 2} 6338 \AA$ band. 68
3.5. A section of the spectrum of the $6338 \AA$ band containing Λ - doubling, two avoided crossings, and extra lines 69
3.6. Upper state energy levels of the ${ }^{4} \Delta_{7 / 2}-4 \Delta_{7 / 2} 6436 \AA$ band. 71
3.7. Bandhead of the $\Omega^{\prime}=\Omega^{\prime \prime}=5 / 2$ transition at $6411 \AA$. 75
3.8. Upper state energy levels of the ${ }^{4} \Delta_{5 / 2}-{ }^{4} \Delta_{5 / 2} 6411 \AA$ band. 76
4.1. Broadband spectrum of the ${ }^{3} \Phi-3 \Delta$ system of NbN 87

LIST OF FIGURES (cont.)

4.2. The Q-head regions of the a) ${ }^{3} \Phi_{2}{ }^{-3} \Delta_{1}$, b) ${ }^{3} \Phi_{3}{ }^{-3} \Delta_{2}$, and c) ${ }^{3} \Phi_{4^{-}}$ ${ }^{3} \Delta_{3}$ subbands of NbN 88
4.3. The beginning of the Q head of the ${ }^{3} \Phi_{2}{ }^{-3} \Delta_{1}$ subband 90
4.4. The higher J portion of the ${ }^{3} \Phi_{2}{ }^{-3} \Delta_{1} Q$ head, and the first resolved Q lines 91
4.5. a) $R(1)$, b) $R(2)$, and c) $R(3)$ of the ${ }^{3} \Phi_{2}{ }^{3} \Delta_{1}$ subband, illustrating the "forbidden" $\Delta F \neq \Delta J$ transitions and the crossover resonances.between the rR and qR lines. 92
4.6. a) R2, b) R3 and c) $R 4$ lines of the ${ }^{3} \Phi_{3}-{ }^{3} \Delta_{2}$ subband of $N b N$, showing the rR, qR and pR transitions, and the crossover resonances associated with the rR and $q R$ lines 93
4.6. d) R5 and e) R6 lines of the ${ }^{3} \Phi_{3}-{ }^{3} \Delta_{2}$ subband of NbN 94
4.7. The reversal of hyperfine structure at high J in the ${ }^{3} \Phi_{4}-{ }^{3} \Delta_{3} Q$ branch 95
4.8. Partial energy level diagram for NbN 103
5.1. A polychroomatic sugnal in the frequency domain (above) Fourier transformed into the time domain (below) 122
5.2. A boxcar function $D(x)$. The Fourier transform of a boxcar truncated interferogram is a spectrum with the line shape function $\mathrm{F}\{\mathrm{D}(\mathrm{x})\}=2 \mathrm{~L} \sin (2 \pi \mathrm{~L}) / 2 \pi \mathrm{~V}$ 124
5.3. The triangular apodization function $\mathrm{D}(\mathrm{x})$ (above) produces a spectrum with the line shape function $\mathrm{F}\{\mathrm{D}(\mathrm{x})\}=$ $2 \mathrm{~L} \sin (2 \pi v \mathrm{~L}) /(2 \pi v \mathrm{~L})^{2}$ (below) 125
5.4. Schematic drawing of the $\mathrm{C}_{2 v} \mathrm{NH}_{2} \mathrm{BH}_{2}$ molecule in the x, y, z principal axis system and the a, b, c inertial axis system, showing the $C_{2} \sigma_{v}$ reflection planes 130

LIST OF FIGURES (cont.)

5.5. $\mathrm{NH}_{2} \mathrm{BH}_{2}$ spectrum of the v_{7} band, and the v_{5} and v_{11} bands with which it undergoes Coriolis interactions 140

5.5. Center of the v_{7} band of $\mathrm{NH}_{2}{ }^{11} \mathrm{BH}_{2}$. 141

CHAPTER I ELECTRONIC TRANSITIONS IN HETERONUCLEAR DIATOMIC MOLECULES

I.A. Some Properties of Angular Momenta.

In a non-rotating molecule, the angular momentum operators J , S and L have the following diagonal matrix elements: ${ }^{1}$

$$
\begin{align*}
& <J \Omega\left|\hat{J}_{z}\right| J \Omega>=\hbar \Omega \tag{1.1}\\
& <S \Sigma\left|\hat{S}_{z}\right| S \Sigma>=\hbar \Sigma \tag{1.2}\\
& <L \Lambda\left|\hat{L}_{z}\right| L \Lambda>=\hbar \Lambda \tag{1.3}\\
& <J \Omega\left|\hat{J}^{2}\right| J \Omega>=\hbar^{2} J(J+1) \tag{1.4}\\
& <S \Sigma\left|\hat{S}^{2}\right| S \Sigma>=\hbar^{2} S(S+1) \tag{1.5}\\
& <L \Lambda\left|\hat{L}^{2}\right| L \Lambda>=\hbar^{2} L(L+1) \tag{1.6}
\end{align*}
$$

J, S and L are the total, spin and orbital angular momenta, respectively; J, S and L are their respective quantum numbers, and Ω, Σ and Λ are the projection quantum numbers in diatomic molecules (i.e., along the molecular z axis).

The ladder operator $\hat{L}_{ \pm}$of a general angular momentum \hat{L} has the Cartesian form ${ }^{2}$

$$
\begin{equation*}
\hat{L}_{ \pm}=\hat{L}_{x} \pm \hat{i} \hat{L}_{y} \tag{1.8}
\end{equation*}
$$

It has the property of transforming state $\mid L, m>$ into state $|L, m \pm 1\rangle$, where m is the quantum number of L. For \hat{J} and $\hat{\mathbf{S}}$ the laddering operations are written: ${ }^{1}$

$$
\begin{align*}
& <J, \Omega \pm 1\left|\hat{J}_{\mp}\right| J \Omega>=\hbar[J(J+1)-\Omega(\Omega \pm 1)]^{1 / 2} \tag{1.9}\\
& <S, \Sigma \pm 1\left|\hat{S}_{ \pm}\right| S \Sigma>=\hbar[S(S+1)-\Sigma(\Sigma \pm 1)]^{1 / 2} \tag{1.10}
\end{align*}
$$

J_{\mp} in equation (1.9) is not expressed as $J_{ \pm}$because the commutation relations are different in the space-fixed and molecule-fixed axis systems: ${ }^{3}$

$$
\begin{array}{lc}
J_{X} J_{Y}-J_{y} J_{X}=i J_{z} & \text { SPACE } \\
J_{x} J_{y}-J_{y} J_{x}=-i J_{z} & \text { MOLECULE } \tag{1.12}
\end{array}
$$

This leads to a sign reversal upon transformation from the spacefixed to molecule-fixed systems (the anomalous sign of i):

$$
\begin{align*}
& J_{ \pm}\left|J M>=\hbar[J(J+1)-M(M+1)]^{1 / 2}\right| J, M \pm 1>\quad \text { SPACE } \tag{1.13}\\
& J_{\mp}\left|J K>=\hbar[J(J+1)-K(K+1)]^{1 / 2}\right| J, K \pm 1>\quad \text { MOLECULE } \tag{1.14}
\end{align*}
$$

Although the motion of the electrons about the axis defines a good quantum number Λ, L itself is not a good quantum number because a diatomic molecule is not a spherical system. Thus \hat{L}_{x} and \hat{L}_{y} do not obey the usual operator equations, and $\hat{L}_{ \pm}$is left in the form $<\hat{L}_{+} \hat{L}_{.}+$ $\left.\hat{L} \hat{L}_{+}\right\rangle / 2$, or $\left\langle\hat{L}_{\perp}\right\rangle$, with the quantity $\left.B<L_{\perp}\right\rangle$ appearing on the diagonal of the rotational Hamiltonian matrix as a minor, constant electronic isotope shift incorporated into the effective vibrational energy. ${ }^{1}$

The dot product of two general angular momentum operators $\hat{\mathbf{A}}$ and \hat{B} is:

$$
\begin{equation*}
\hat{\mathbf{A}} \cdot \hat{\mathbf{B}}=\mathrm{A}_{\mathbf{z}} \mathrm{B}_{\mathrm{z}}+\left(\mathrm{A}_{+} \mathrm{B}_{-}+\mathrm{A} \cdot \mathrm{~B}_{+}\right) / 2 \tag{1.15}
\end{equation*}
$$

The addition of angular momenta j_{1} and j_{2} to form j results in the coupled eigenfunction $\mid \mathrm{jm}>$:

$$
\left|j m>=\sum_{m_{1} m_{2}}(-1)^{j_{1-j}-j+m} \sqrt{2 j+1}\left(\begin{array}{ccc}
j_{1} & j_{2} & j \tag{1.16}\\
m_{1} & m_{2} & -m
\end{array}\right)\right| j_{1} m_{1}>\left|j 2 m_{2}\right\rangle
$$

where $\mid j_{1} m_{1}>$ and $\left.j_{2} m_{2}\right\rangle$ are the uncoupled eigenfunctions, the first term is a phase factor, and $\sqrt{2 \mathrm{j}+1}$ is a normalization factor. The term in brackets is a coefficient called a Wigner 3 -j symbol. Its definition is given by equation (1.16) rearranged as: 4

$$
\left.\left(\begin{array}{ccc}
j_{1} & j_{2} & j \\
m_{1} & m_{2} & -m
\end{array}\right)=\frac{(-1)^{j 1-j 2+m}}{\sqrt{2 j+1}}<j_{1} j_{2} m_{1} m_{2} \right\rvert\, j m>\text { (1.17) }
$$

According to the angular momentum commutation relations for $\mathrm{j}_{1}, \mathrm{j}_{2}$ and $\mathrm{j}, 5$ the algebraic form for the 3 - j symbol is determined by the requirement that $m_{1}+m_{2}=m$ and $\left|j_{1}-j_{2}\right| \leq j \leq\left(j_{1}+j_{2}\right)$ (the triangle, or vector addition, rule $)^{4}$. If these conditions are not satisfied, the vector coupling coefficient $\left\langle j_{1} j_{2} m_{1} m_{2}\right| j m>$ is 0 .

I.B. Spherical Harmonics and Spherical Tensor Operators.

Spherical harmonics, $\mathrm{Y}_{\mathrm{Im}}(\theta, \varphi)$, are orbital angular momentum eigenfunctions normalized to unity on a unit sphere. To be exact they are the eigenfunctions of the differential operators L^{2} and L_{z}, corresponding to the eigenvalues $1(1+1)$ and $m: 6,7$

$$
\begin{gather*}
\hat{\mathrm{L}}^{2} \mathrm{Y}_{\operatorname{Im}}(\theta, \varphi)=\mathrm{I}(I+1) \mathrm{Y}_{\operatorname{Im}}(\theta, \varphi) \tag{1.17}\\
\hat{\mathrm{L}}_{\mathbf{z}} \mathrm{Y} \operatorname{Im}(\theta, \varphi)=\operatorname{mY} \operatorname{Im}(\theta, \varphi) \tag{1.18}
\end{gather*}
$$

The angles θ and φ are the usual polar coordinates as illustrated in Figure 1.1. The differential operators \hat{L}^{2} and $\hat{L}_{\mathbf{z}}$, defined in units where $\hbar=1$, are ${ }^{6}$

$$
\begin{gather*}
\hat{L}_{z}=\partial / \partial \varphi \varphi \tag{1.19}\\
\hat{L}^{2}=-\left[(\sin \theta)^{-1}(\partial / \partial \theta)(\sin \theta \partial / \partial \theta)+\left(\sin ^{2} \theta\right)^{-1} \partial^{2} / \partial \theta^{2}\right] \tag{1.20}
\end{gather*}
$$

Expressed in terms of the orbital angular momentum functions of θ and φ on the unit sphere, a spherical harmonic is: 8

$$
\begin{align*}
\mathrm{Y}_{\mathrm{Im}}(\theta, \varphi)= & \mathrm{c}_{\mathrm{l}}(-1)^{1+\mathrm{m}}[(1-\mathrm{m})!/(1+\mathrm{m})!]^{1 / 2}(\sin \theta)^{\mathrm{m}}[\partial / \partial(\cos \theta)]^{1+m} \\
& x(\sin \theta)^{2 l} \mathrm{e}^{\operatorname{im} \varphi} \tag{1.21}
\end{align*}
$$

where c_{1} is a normalization factor:

$$
\begin{equation*}
\left|c_{\|}\right|=[(2 \mid+1)!]^{1 / 2 /(4 \pi)^{1 / 2}} 2^{\prime!!} \tag{1.22}
\end{equation*}
$$

Associated Legendre polynomials, $\mathrm{P}_{\mathrm{l}}^{\mathrm{m}}(\cos \theta)$, are commonly exploited in quantum mechanics because of their connection to spherical harmonics: 6

$$
\begin{equation*}
Y_{I m}(\theta, \varphi)=(-)^{m}[(2 \mid+1)(1-m)!/ 4 \pi(I+m)!]^{1 / 2} P_{I}^{m}(\cos \theta) e^{i m \varphi} \tag{1.23}
\end{equation*}
$$

where ${ }^{6}$

$$
\begin{equation*}
P_{1} m(x)=\left(1-x^{2}\right)^{m / 2} / 2^{\prime}!!\left[d^{l+m / d x} x^{1+m}\right]\left(x^{2}-1\right)^{1} \tag{1.24}
\end{equation*}
$$

When the component $m=0$, the spherical harmonic and Legendre polynomial differ only by a constant ${ }^{9}$

$$
\begin{equation*}
Y_{10}(\theta, \varphi)=[(2 \mid+1) / 4 \pi]^{1 / 2} P_{1}(\cos \theta) \tag{1.25}
\end{equation*}
$$

Fig. 1.1. Polar and Cartesian coordinates, in which $x=r \sin \theta \cos \varphi, y=$ $r \sin \theta \sin \varphi, z=r \cos \theta .8$

The derivation of expressions describing the coupling of angular momenta, particularly those for the magnetic hyperfine and quadrupolar hyperfine interactions, is often best approached using irreducible spherical tensors. A brief explanation of spherical tensor operators, and the expressions required for their manipulation, follows. Spherical tensor methods are then applied where necessary in subsequent sections to derive the forms employed in the Hamiltonian representing the diatomic molecules in the present work.

The spherical components of a vector, or first rank tensor, operator acting on an angular momentum \mathbf{A} are related to their Cartesian counterparts by:2,4

$$
\begin{gather*}
T^{1} \circ(A)=A_{z} \tag{1.26}\\
T^{1} \pm 1(A)=\mp\left(A_{x} \pm i A_{y}\right) / \sqrt{2} \tag{1.27}
\end{gather*}
$$

A spherical tensor \mathbf{T} of rank k is defined as a set of $2 k+1$ quantities ("components") which transform into one another upon rotation from one coordinate system to another (for example, between moleculeand space-fixed axis systems): 10,11

$$
\begin{equation*}
T k_{q}=\sum_{p} T k_{p} D_{p q}(k)(\alpha \beta \gamma) \tag{1.28}
\end{equation*}
$$

where q and p are the components of the tensor in the molecule- and space-fixed axis systems, respectively, and $D_{\mathrm{pq}}{ }^{\mathrm{k}}(\alpha \beta \gamma)$ is the Wigner rotation matrix. The angles α, β and γ are the Euler angles corresponding to the three successive axis rotations required to transform between two coordinate systems. In spectroscopy, a beam of photons (in the space-fixed axis system) induces a change in the molecule in the molecule-fixed system. Wigner rotation
matrices function to project from one axis system to another in order to put the photon beam and the molecules being altered by the photons into the same frame of reference. In the reverse direction, from space- to molecule-fixed coordinates, the relation is:

$$
\begin{equation*}
T_{p}{ }^{k}=\sum_{q} D_{p q} k^{*}(\alpha \beta \gamma) T_{q} \tag{1.29}
\end{equation*}
$$

where the complex conjugation of a rotation matrix is given by

$$
\begin{equation*}
D_{M K^{k^{*}}}(\alpha \beta \gamma)=(-1)^{M-K} D_{-M},-K^{k}(\alpha \beta \gamma) \tag{1.30}
\end{equation*}
$$

The complex conjugation is required to account for the anomalous sign of i.

A Wigner rotation matrix is a matrix describing how the eigenfunctions of $\hat{\jmath}^{2}$ and $\hat{\jmath}_{z}$, i.e., a spherical harmonic |jm>, transform on coordinate rotation into other functions $\mid \mathrm{jm}>: 12$

$$
\begin{equation*}
D(\alpha \beta \gamma)|j \mathrm{~m}>=\Sigma| j m^{\prime}>D_{\mathrm{m}} \mathrm{~m}^{(\mathrm{j})}(\alpha \beta \gamma) \tag{1.31}
\end{equation*}
$$

Premultiplying equation (1.31) by $\mid j m^{\prime}>{ }^{*}$ (i.e., <jm'|) and integrating reduces the right hand side to $D_{m} m^{(j)}$ due to the orthogonality of spherical harmonic functions: ${ }^{12}$

$$
\begin{equation*}
D_{m^{\prime} m^{(j)}}(\alpha \beta \gamma)=<j m^{\prime}|\mathrm{D}(\alpha \beta \gamma)| j m> \tag{1.32}
\end{equation*}
$$

A D matrix element with one of its projections equal to zero collapses to a spherical harmonic, which depends on only two angles: ${ }^{12}$

$$
\begin{array}{lc}
D_{\mathrm{po}}(\alpha \beta \gamma)=(-1) \mathrm{P}[4 \pi /(2 \mid+1)]^{1 / 2} \mathrm{Y}_{\mathrm{lp}}(\beta, \alpha) & \text { SPACE } \\
D_{\mathrm{oq}}(\alpha \beta \gamma)=[4 \pi /(2 \mid+1)]^{1 / 2} \mathrm{Y}_{\mathrm{lq}}(\beta, \gamma) & \text { MOLECULE } \tag{1.33}
\end{array}
$$

If both projections are zero, the Wigner rotation matrix collapses to a Legendre polynomial: 9,12

$$
\begin{equation*}
D I_{00}(\alpha \beta \gamma)=P_{l}(\cos \beta)=[4 \pi /(21+1)]^{1 / 2} Y_{10}(\beta, 0) \tag{1.34}
\end{equation*}
$$

The Legendre polynomial $P_{l}(\cos \theta)$ is also related to the spherical harmonics by the spherical harmonic addition theorem:

$$
\begin{equation*}
P_{l}(\cos \theta)=(4 \pi / 2 \mid+1) \sum_{m} Y^{*}{ }_{m}\left(\theta_{1}, \varphi_{1}\right) Y_{I m}\left(\theta_{2}, \varphi_{2}\right) \tag{1.35}
\end{equation*}
$$

where $Y^{*}{ }_{I m}(\theta, \varphi)=(-)^{m} Y_{1,-m}(\theta, \varphi) .6,9,13,14$ The angles $\theta_{1}, \theta_{2}, \varphi_{1}$ and φ_{2} are as defined by Fig. 1.1 for vectors r_{1} and r_{2}, and θ is the angle between directions (θ_{1}, φ_{1}) and (θ_{2}, φ_{2}). Using Racah's modified spherical harmonics to eliminate the factor of $[4 \pi /(21+1)]^{1 / 2: 16}$

$$
\begin{equation*}
\mathrm{C}_{\operatorname{Im}}(\theta, \varphi)=[4 \pi /(2 \mid+1)]^{1 / 2} \mathrm{Y}_{\operatorname{Im}}(\theta, \varphi) \tag{1.36}
\end{equation*}
$$

the spherical harmonic addition theorem becomes ${ }^{13,15}$

$$
\begin{equation*}
P_{I}(\cos \theta)=\sum_{m} C^{*}{ }_{I m}\left(\theta_{1}, \varphi_{1}\right) C_{I m}\left(\theta_{2}, \varphi_{2}\right) \tag{1.37}
\end{equation*}
$$

or ${ }^{14}$

$$
\begin{equation*}
P_{l}(\cos \theta)=C_{l}\left(\theta_{1}, \varphi_{1}\right) \cdot C_{l}\left(\theta_{2}, \varphi_{2}\right) \tag{1.38}
\end{equation*}
$$

The coupling of two tensor operators to form a compound tensor is similar to the addition of two angular momenta given in equation (1.16):10

$$
\begin{gather*}
{\left[T^{k 1}(1) \otimes T^{k 2}(2)\right]_{q^{k}}=\Sigma(-1)^{k_{1}-k_{2}+q \sqrt{2 k+1}\left(\begin{array}{lll}
k_{1} & k_{2} & k \\
q_{1} & q_{2} & -q
\end{array}\right)} \begin{array}{c}
x\left[T^{k 1} q_{1}(1), T^{k 2} q_{2}(2)\right]
\end{array},}
\end{gather*}
$$

Here the tensor $T^{k 1}$ of rank k_{1}, operating on system (1), is coupled to tensor Tk2 [which operates on system (2)]. Shorter, alternative ways of denoting a compound tensor are [$\mathrm{T}^{\mathrm{k} 1}(1), \mathrm{T}^{\mathrm{k}}(2)$] or, for a tensor of rank k_{1} coupled to itself, $\left[\mathbf{T}^{\mathrm{k}}(1,1)\right]$, where $\mathrm{k}=2 \mathrm{k}_{1}$. If two tensors of the same rank k are coupled to give a scalar, i.e., a quantity invariant to a coordinate rotation, the compound tensor of equation (1.39) is also a scalar, or of rank zero. The resulting expression
becomes much simpler and lacks the orientation-dependent 3-j symbol:10

$$
\begin{equation*}
\left[T^{k}(1) \otimes T^{k}(2)\right]_{0^{\circ}}=(-1)^{k}(2 k+1)^{-1 / 2} T^{k}(1) \cdot T^{k}(2) \tag{1.40}
\end{equation*}
$$

where the conventional scalar product $T^{k}(1) \cdot T^{k}(2)$ is given as: ${ }^{10,11}$

$$
\begin{equation*}
T^{k}(1) \cdot T^{k}(2)=\sum_{q}(-1) q T_{q}(1) T_{-q}(2) \tag{1.41}
\end{equation*}
$$

After a compound tensor equation is written which appropriately represents a particular physical interaction and breaks it into its constituent tensors, the Wigner-Eckart theorem is applied to evaluate the matrix elements Tk_{q} of the constituent tensors. According to the theorem the matrix elements of a tensor operator are factored into: 1) a 3 -j symbol, which contains information on the geometry or orientation of the angular momentum; 2) a reduced matrix element (denoted by double vertical bars), related to the magnitude of the angular momentum but independent of its direction; and 3) a phase factor. Expressed in terms of the eigenfunctions $\mid \gamma j m>$, where j is the quantum number acted upon by T^{k}, m is the projection of j , and γ contains any remaining quantum numbers not of interest in this particular basis, the Wigner-Eckart theorem is: ${ }^{16}$

$$
\left.<\gamma^{\prime} j^{\prime} m^{\prime}\left|T_{q}^{k_{q} \mid \gamma j m>=(-1) i^{\prime}-m^{\prime}}\left(\begin{array}{cc}
j^{\prime} & k \tag{1.42}\\
-m^{\prime} & j \\
m
\end{array}\right)<\gamma^{\prime} j^{\prime}\right| \right\rvert\, T^{k} \| \gamma j>
$$

Note that the reduced matrix element is independent of m.
A reduced matrix element is usually worked out by evaluating the simplest type of matrix element and then substituting into the Wigner-Eckart theorem. For example to obtain <J\| T1 $(\mathrm{J}) \| J\rangle$, where J refers to a general angular momentum, we calculate the simplest type of matrix element of $T^{1}(\mathrm{~J})$, namely its $q=0$ (or z) component: ${ }^{17}$

$$
\begin{equation*}
<J^{\prime} M^{\prime}\left|T^{1}{ }_{\circ}(\mathrm{J})\right| \mathrm{JM}>=\delta_{M M} \cdot \delta_{J} J^{\prime} M \tag{1.43}
\end{equation*}
$$

This element is non-vanishing only if $\mathrm{J}^{\prime} \mathrm{M}^{\prime}=\mathrm{JM}$. From the WignerEckart theorem (equation 1.42),

$$
M=(-1)^{J-M}\left(\begin{array}{ccc}
J & 1 & J \tag{1.44}\\
-M & 0 & M
\end{array}\right)<J\left\|T^{1}(J)\right\| J>
$$

Substitution for the $3-j$ symboll ${ }^{11}$ produces

$$
\begin{equation*}
M=(-1)^{J-M}(-1)^{J-M} M[J(J+1)(2 J+1)]^{-1 / 2}\left\langle J\left\|T^{1}(J)\right\| J\right\rangle \tag{1.45}
\end{equation*}
$$

Since J and M both have integral or half-integral values, $(-1)^{2(J-M)}$ is 1 , which reduces equation (1.45) to:

$$
\begin{equation*}
\left\langle J\left\|T^{1}(J)\right\| J\right\rangle=[J(J+1)(2 J+1)]^{1 / 2} \tag{1.46}
\end{equation*}
$$

An important reduced matrix element is that of the rotation matrix element $D_{q^{(}}{ }^{(k)}(\alpha \beta \gamma)$ (cf. equations 1.29 and 1.30):

$$
<J^{\prime} K^{\prime}\left\|D \cdot q^{k^{*}}(\alpha \beta \gamma)\right\| J K>=(-1)^{J^{\prime}-K^{\prime}\left[(2 J+1)\left(2 J^{\prime}+1\right)\right]^{1 / 2}\left(\begin{array}{ccc}
J^{\prime} & k & J \tag{1.47}\\
-K^{\prime} & q & K
\end{array}\right), ~(2)}
$$

in which the dot replacing the p indicates that no reduction has been performed with respect to space-fixed axes, so there is no dependence on the M quantum number. Another useful formula gives the matrix elements of the scalar product of two commuting tensor operators (that is, ones which act on different parts of the system) in a coupled basis: ${ }^{18}$

$$
<\gamma^{\prime} j_{1} \mathrm{j}_{2} \mathrm{~J}^{\prime} \mathrm{M}^{\prime}\left|T^{k}(1) \cdot U^{k}(2)\right| \gamma j_{1} j_{2} J M>=
$$

in which T^{k} acts on j_{1} and U^{k} on j_{2}. The term in curly brackets is a Wigner 6-j symbol, a coefficient which arises in the coupling of three angular momenta, as compared to two in the 3 -j symbol. 19

I.C. Selection Rules and Hund's Coupling Cases.

An electronic transition can occur in a molecule only if there are non-zero matrix elements of the electric dipole moment operator M which allow interaction with electromagnetic radiation. 20 The probability of such a transition occurring between electronic states n and m is proportional to the square of the transition moment, \mathbf{R}^{nm} :

$$
\begin{equation*}
\mathbf{R}^{\mathrm{nm}}=\int \Psi_{n}{ }^{*} M \Psi_{m} \mathrm{~d} \tau \tag{1.49}
\end{equation*}
$$

where Ψ_{n} and Ψ_{m} are the eigenfunctions of states n and $m .20$ The electric dipole moment M for a total of N particles (electrons and nuclei) is ${ }^{21}$

$$
\begin{equation*}
M=\sum_{i=1}^{N} e_{i} r_{i} \tag{1.50}
\end{equation*}
$$

where \mathbf{e}_{i} is the charge on particle \mathbf{i} which has coordinates $\mathbf{r}_{\mathbf{i}}$. In the general case the transition moment integral vanishes unless the change in total angular momentum, J , is zero or unity, or ${ }^{22}$

$$
\begin{equation*}
\Delta \mathrm{J}=0, \pm 1 \tag{1.51}
\end{equation*}
$$

Changes in J of $-1,0$ and +1 are denoted by the letters P, Q and R, respectively.

The specific selection rules vary depending on the manner in which the spin, orbital and rotational angular momenta are coupled to one another and to the internuclear axis. The angular momentum coupling schemes in diatomic molecules are distinguished by sets of molecule-fixed basis functions called the Hund's coupling cases. The main property differentiating the four coupling cases described below is the number of angular momenta which have well-defined components (quantum numbers) along the internuclear axis. The
appropriate coupling case is the one which produces the smallest off-diagonal matrix elements for the rotational Hamiltonian, or diagonal elements which most closely reproduce the observed spectral pattern. The most common cases by far in molecules with no very heavy atoms are cases (a) and (b).

Hund's case (a) coupling has the maximum number of well-defined quantum numbers, such that the relations given in equations (1.1), (1.2) and (1.3) for a non-rotating molecule remain valid. ${ }^{1,23}$ The basis function for a case (a) coupling scheme is therefore $|(L) \Lambda>|S \Sigma>| J \Omega>$, or $| \eta \Lambda ; S \Sigma ; J \Omega M>$, where Λ, Σ and Ω are the eigenvalues of the z components of \hat{L}, \hat{S} and \hat{J}, with M being the space-fixed analog of Ω, and $\Omega=\Lambda+\Sigma .{ }^{1}$ The semicolon separators indicate products of component wavefunctions. L is incorporated into the label η for the vibronic state, as it is not a good quantum number (cf. Section I.A). The case (a) representation is a good working approximation when there are no strong interactions in the Hamiltonian which uncouple these angular momenta from the axis. Case (a) occurs where there is a non-zero orbital angular momentum and fairly small spin-orbit coupling, where the coupling of L and S to each other is less important than the coupling of L to the axis. ${ }^{24}$ The vector diagram for case (a) coupling is given in Fig. 1.2.

In case (b) coupling, \mathbf{S} is coupled only weakly to the axis, but \mathbf{L} remains strongly coupled. Given a large enough value of J, any case (a) state uncouples toward case (b) because as J increases the rotational and spin magnetic moments must ultimately be coupled more strongly to one another than \mathbf{L} and \mathbf{S} are. Formally it can be said that the rotation (\mathbf{R}) has increased to the point where it couples

Fig. 1.2. Vector diagram of Hund's coupling case (a). 24
to the orbital angular momentum to form a resultant \mathbf{N}, causing \mathbf{S} to uncouple from L, and therefore from the molecular axis. The effects of rotation become important when BJ becomes large compared to the separations between the spin-orbit components. 1 The transformation of a case (a) situation to case (b) occurs by way of the spin-uncoupling operator, $-\mathrm{B}\left(\hat{J}_{+} \hat{\mathrm{S}}_{-}+\hat{J}_{-} \hat{\mathrm{S}}_{+}\right)$. With its selection rules ΔS and $\Delta \Lambda=0$, and $\Delta \Omega=\Delta \Sigma= \pm 1$, this operator most commonly mixes spin-orbit components of a given $2 S+1 \Lambda$ state, which is consistent with the physical case (b) phenomenon of uncoupling \mathbf{L} from S. ${ }^{23}$ The case (b) representation also arises for Σ states in which there is no orbital angular momentum to couple the spin to the axis. The total angular momentum \mathbf{J} in case (b) is thus obtained as:24

$$
\begin{equation*}
R+L=N ; N+S=J \tag{1.52}
\end{equation*}
$$

instead of the case (a) situation

$$
\begin{equation*}
R+L+S=J \tag{1.53}
\end{equation*}
$$

The case (b) basis function, $\mid \eta ; N \Lambda S J>$, is the more physically realistic representation in those cases where the rotational angular momentum \mathbf{N} is quantized about the axis, with electron spin providing only minor corrections to the total energy. Its vector diagram appears in Fig. 1.3.

When nuclear spin is included in the basis set describing angular momentum coupling in diatomic molecules, the Hund's coupling cases (a) and (b) must be further subdivided. In the majority of diatomic molecules, including those considered in the current work, I is coupled so loosely to the internuclear axis or to \mathbf{S} that the dominant coupling is to the rotational angular momentum \mathbf{J}, or

Fig. 1.3. Vector diagram of Hund's coupling case (b). ${ }^{24}$

$$
\begin{equation*}
\mathbf{J}+\mathbf{I}=\mathbf{F} \tag{1.54}
\end{equation*}
$$

By analogy with Hund's case (b), those coupling schemes following equation (1.54) are denoted by β subscripts. The extended Hund's coupling cases are called $a \beta$ and $b_{\beta J}$, corresponding to basis functions $\mid \Lambda S \Sigma J \Omega$ IF> and $|N \Lambda S J I F\rangle$, respectively. 25,26

Coupling schemes in which I is not coupled to J are $a_{\alpha}, b_{\beta N}$ and b_{β}. In the a_{α} case, nuclear spin is coupled to the molecular axis with the projection quantum number $\mathrm{I}_{\mathbf{z}}$, though molecules exhibiting case $\left(\mathrm{a}_{\alpha}\right)$ coupling have never been observed. 27 This is expected since nuclear magnetic moments are on the order of a thousand times smaller than that of the electron, making it unlikely that the dominant nuclear spin coupling will be to the internuclear axis by a magnetic interaction with the electronic and orbital angular momenta. In the $b_{\beta N}$ and $b_{\beta} S$ cases I is coupled to \mathbf{N} and S, respectively, rather than to J as in case $\left(b_{\beta} J\right)$. Case ($b \beta N$) coupling is not expected to be observed, as the magnetic moment of \mathbf{N} (composed of $\mathbf{R}+\mathbf{L}$) is normally considerably less than that of either \mathbf{J} or \mathbf{S}, as \mathbf{S} has a large magnetic moment and \mathbf{J} is the sum of \mathbf{S} and L. 27 In Hund's case ($\mathrm{b}_{\beta} \mathrm{S}$), I couples to \mathbf{S} to form a vector \mathbf{G}, which couples to N to form the total angular momentum F :

$$
\begin{aligned}
& I+S=\mathbf{G} \\
& \mathbf{G}+\mathbf{N}=\mathbf{F}
\end{aligned}
$$

In a nonrotating molecule, where any rotationally induced angular momenta are absent, case ($b \beta S$) will be the dominant case (b) coupling scheme. In a rotating case (b) molecule, however, the coupling case that occurs depends on the relative sizes of the coupling of \mathbf{S} to \mathbf{I} and \mathbf{N} : if the I.S coupling dominates, the (b_{β} s)
case occurs. The best condition for a case ($\mathrm{b} \beta \mathrm{s}$) molecule is a Σ state which originates nearly completely from an atomic s orbital. Case ($b \beta s$) coupling is therefore rather rare, though it has been extensively described in the ground ${ }^{2} \Sigma$ state of scandium oxide, ScO. $28,29,30$ This molecule is ideal because the transition metal ion and closed shell oxygen have widely differing ionization potentials. This leaves the Sc^{2+} uncontaminated by contributions from O^{2-}, and the ${ }^{2} \Sigma$ state far removed from the closed state of nonspherical symmetry with which it could mix. ${ }^{27}$ Other molecules that have been observed to conform to case (b_{β}) coupling are the $\mathrm{b}^{3} \Sigma$ and $\mathrm{c}^{3} \Sigma$ states of AlF^{31}, and the ground ${ }^{2} \Sigma^{+}$state of LaO^{32}. Note that both of these molecules also adhere to the conditions required for the $b_{\beta S}$ coupling case.

Case (c) coupling occurs in molecules containing an atom sufficiently heavy that the spin-orbit interaction which results is so large that electron motion can no longer be defined in either the L or \mathbf{S} representations; one of the consequences is that spin multiplicity is no longer defined. This phenomenon is expressed as an axial $\mathbf{J}\left(\mathbf{J}_{a}\right)$ equal to the sum of \mathbf{L} and \mathbf{S}, which is then coupled to \mathbf{R} to form the resultant \mathbf{J}, as illustrated in Fig. 1.4.24 The basis function for case (c) is therefore $\mid \eta J_{a} ; J \Omega M>$, where the only welldefined axial component is $\Omega .1$ Case(c) molecules observed so far are ${ }^{209} \mathrm{BiO}\left(X^{2} \Pi_{1 / 2} \text { state) }\right)^{33,34}$ and $\operatorname{InH}\left({ }^{3} \Pi_{1} \text { state }\right)^{35}$.

Case (d) coupling is normally only found in molecules where an electron has been promoted to a Rydberg orbital with higher principal quantum number n. The effect of the long distance between

Fig. 1.4. Vector diagram for Hund's case (c). ${ }^{24}$
the electron and the nuclei is that the electron orbital motion is coupled only weakly to the internuclear axis, but can instead couple more strongly to the rotational angular momentum, R. 21,24 Case (d) is equivalent to case (b) but with the difference that L is uncoupled from the axis rather than S; the transition from case (a) is made by the L-uncoupling operator, $-B\left(\hat{J}_{+} \hat{L}_{-}+\hat{J}_{-} \hat{L}_{+}\right)$rather than via the S-uncoupling operator. ${ }^{23}$

While still in the case (a) or (b) limits, the L-uncoupling operator may induce Λ-doubling, which lifts the degeneracy of the $\pm \Lambda$ states. The selection rules for interactions by this operator are $\Delta \Omega=\Delta \Lambda=$ ± 1 and $\Delta S=0.23$ The phenomenon of Λ-doubling is discussed in more detail in the last section of this chapter. Case (d) becomes the appropriate representation when -2BJ. $\hat{\mathbf{L}}$ makes a contribution to the energy levels that is large with respect to the separation of states with differing Λ.

The Hund's coupling cases corresponding to the niobium nitride (NbN) and cobalt oxide (CoO) molecules in this work are most appropriately described by the case (a) and, with higher rotation, case (b) coupling schemes. As Λ and S are defined in both of these cases, the following selection rules can be stated for cases (a) and (b):24

$$
\begin{align*}
\Delta \Lambda & =0, \pm 1 \tag{1.55}\\
\Delta S & =0 \tag{1.56}
\end{align*}
$$

For case (a), with Σ and Ω as good quantum numbers, there are the more specific rules:

$$
\begin{gather*}
\Delta \Omega=0, \pm 1 \tag{1.57}\\
\Delta \Sigma=0 \tag{1.58}
\end{gather*}
$$

where equation (1.57) follows from equations (1.55) and (1.56). ${ }^{24}$ The $\Delta S=0$ and $\Delta \Sigma=0$ rules become less strict as the spin-orbit interaction increases, because the selection rules for the spin-orbit interaction are $\Delta \Omega=0$ with either $\Delta \Lambda=\Delta \Sigma=0$ or $\Delta \Lambda=-\Delta \Sigma= \pm 1.24,36$ In case (b) neither Σ nor Ω are well-defined, so the 'rotational' selection rule becomes

$$
\begin{equation*}
\Delta N=0, \pm 1 \tag{1.59}
\end{equation*}
$$

I.D. The Hamiltonian.

I.D.1. Nuclear rotational Hamiltonian.

From equation (1.53) it follows that the nuclear rotational Hamiltonian $B \hat{\mathbf{R}}^{2}-\mathrm{D} \hat{\mathbf{R}}^{4}$ should be written in the form appropriate for case (a) as:

$$
\begin{equation*}
\hat{H}_{\text {rot }}=B(\hat{\mathbf{J}}-\hat{\mathbf{L}}-\hat{\mathbf{S}})^{2}-D(\hat{\mathbf{J}}-\hat{\mathbf{L}}-\hat{\mathbf{S}})^{4} \tag{1.60}
\end{equation*}
$$

where B is the rotational constant, and D is the centrifugal distortion constant representing the influence of centrifugal force due to rotation on bond length. Expansion of the B term of equation (1.60) gives

$$
\begin{equation*}
\hat{H}=B\left(\hat{\mathbf{J}}^{2}+\hat{\mathbf{L}}^{2}+\hat{\mathbf{S}}^{2}-2 \hat{\mathbf{J}} \cdot \hat{\mathbf{L}}-2 \hat{\mathbf{J}} \cdot \hat{\mathbf{S}}+2 \hat{\mathbf{L}} \cdot \hat{\mathbf{S}}\right) \tag{1.61}
\end{equation*}
$$

Because the x and y components of \hat{L} are not defined in a nonspherical system, their effects are omitted in subsequent calculations ${ }^{1}$. Equation (1.61) therefore simplifies to:

$$
\begin{equation*}
\hat{H}=B\left[\hat{J}^{2}+\hat{L}^{2}+\hat{\mathbf{S}}^{2}-2 \hat{J}_{z} \hat{L}_{z}-2 \hat{J}_{z} \hat{S}_{z}-\left(\hat{J}_{+} \hat{S}_{-}+\hat{J} \hat{S}_{+}\right)+2 \hat{L}_{z} \hat{S}_{z}\right] \tag{1.62}
\end{equation*}
$$

The off-diagonal term, $-\left(\hat{J}_{+} \hat{S}_{-}+\hat{J}_{-} \hat{S}_{+}\right)$, is the spin-uncoupling operator discussed in Section 1.C.

The diagonal and off-diagonal rotational matrix elements are calculated by applying equations (1.1) through (1.10) and equation (1.15) to equation (1.61):

$$
\begin{equation*}
<J \Omega L \Lambda S \Sigma|\hat{H}| J \Omega L \Lambda S \Sigma>=B\left[J(J+1)-\Omega^{2}+S(S+1)-\Sigma(\Sigma+1)\right]^{1 / 2} \tag{1.63}
\end{equation*}
$$

and

$$
\begin{align*}
<J S, \Omega \pm 1, \Sigma \pm 1|\hat{\mathrm{H}}| \mathrm{JS} \Omega \Sigma>= & -\mathrm{B}\{[(\mathrm{~J}(\mathrm{~J}+1)-\Omega(\Omega \pm 1)] \\
& x[\mathrm{~S}(\mathrm{~S}+1)-\Sigma(\Sigma \pm 1)]\}^{1 / 2} \tag{1.64}
\end{align*}
$$

The D terms are obtained by squaring the matrix of the coefficients of the B terms.

I.D.2. Spin Hamiltonian.

Spin-orbit coupling can be expressed as the scalar product of the many-electron electronic spin and orbital angular momentum operators, $\hat{\mathbf{S}}$ and $\hat{\mathbf{L}}$, which (using equations 1.8 and 1.15) is represented in Cartesian form as:

$$
\begin{align*}
\hat{H}_{L \cdot S} & =A\left[\left(\hat{L}_{x}+i \hat{L}_{y}\right)\left(\hat{S}_{x}-i \hat{S}_{y}\right) / 2+\hat{L}_{z} \hat{S}_{z}+\left(\hat{L}_{x}-\hat{L}_{y}\right)\left(\hat{S}_{x}+i \hat{S}_{y}\right) / 2\right] \\
& =A \hat{L}_{z} \hat{S}_{z}+A\left(\hat{L}_{+} \hat{S}_{-}+\hat{L} . \hat{S}_{+}\right) / 2 \tag{1.65}
\end{align*}
$$

where A is the spin-orbit coupling constant. Neglecting the terms off-diagonal in L, equation (1.65) can be shortened to:31

$$
\begin{equation*}
\hat{H}_{L \cdot S}=A \hat{L}_{z} \hat{S}_{z} \tag{1.66}
\end{equation*}
$$

which has the selection rule $\Delta S=0$, and produces diagonal matrix elements of $\mathrm{A} \Lambda \Sigma$.

The dipolar spin-spin interaction can be represented by the classical Hamiltonian for two bar magnets, or dipoles, $\mu: 37$

$$
\begin{equation*}
\hat{\mathrm{H}}=\left(\mu_{1} \cdot \mu_{2}\right) /\left(r_{12}\right)^{3}-3\left(\mu_{1} \cdot \mathbf{r}_{12}\right)\left(\mu_{2} \cdot \mathbf{r}_{12}\right) /\left(\mathbf{r}_{12}\right)^{5} \tag{1.67}
\end{equation*}
$$

in which \mathbf{r}_{12} is the vector between dipoles μ_{1} and μ_{2}, or $\mathbf{r}_{1}-\mathbf{r}_{2}$. The magnetic dipole of spin \mathbf{S} is

$$
\begin{equation*}
\mu=-g \mu_{\mathrm{B}} S \tag{1.68}
\end{equation*}
$$

where g is the dimensionless electronic g factor and μ_{B} is the Bohr magneton (the unit on an electronic magnetic moment, equal to $e \hbar / 2 m$ where e and m are the charge and mass of the electron, respectively). ${ }^{38}$ The dipolar interaction in terms of two electron spin vectors separated by vector \mathbf{r} is therefore:

$$
\begin{equation*}
\hat{\mathrm{H}}_{\mathrm{s}-\mathrm{s}}=\left(\mathrm{g}^{2} \beta^{2} / \mathrm{r}^{3}\right)\left\{\hat{\mathbf{s}}_{1} \cdot \hat{\mathbf{s}}_{2}-3\left(\hat{\mathbf{s}}_{1} \cdot \mathbf{r}\right)\left(\hat{\mathbf{s}}_{2} \cdot \mathbf{r}\right) / \mathrm{r}^{2}\right\} \tag{1.69}
\end{equation*}
$$

Considering only the $\mathrm{q}=0$ terms (i.e., neglecting the components $\mathrm{q}=$ ± 1 and ± 2), the interaction reduces to:37

$$
\hat{H}_{s-s}=\left(g^{2} \beta^{2} / r^{3}\right)\left\{\hat{S}_{z}(1) \hat{S}_{z}^{(2)}\left(3 \cos ^{2} \theta_{12}-1\right)\right.
$$

$$
\begin{equation*}
\left.-\left(\hat{S}_{-}(1) \hat{S}_{+}(2)+\hat{S}_{+}(1) \hat{S}_{-}(2)\right)\left(3 \cos ^{2} \theta_{12}-1\right) / 4\right\} \tag{1.70}
\end{equation*}
$$

Averaging over all orientations of \mathbf{r}_{1} and \mathbf{r}_{2} and expressed in terms of a total spin S, equation (1.70) becomes:

$$
\begin{align*}
\hat{H}_{S-S} & =\left(g^{2} \mu_{B}^{2} / r^{3}\right)\left[3 \hat{S}_{z}^{2}-\hat{S}_{z}^{2}-\left(\hat{S}_{S} \hat{S}_{+}+\hat{S}_{+} \hat{S}_{-}\right) / 2\right] \\
& =\left(g^{2} \mu_{B}^{2} / r^{3}\right)\left[2 \hat{S}_{z}-\left(\hat{S}_{x}+i \hat{S}_{y}\right)\left(\hat{S}_{x}-i \hat{S}_{y}\right)\right] \\
& =\left(g^{2} \mu_{B}^{2 / r}\right)\left(3 \hat{S}_{z}-\hat{S}^{2}\right) \tag{1.71}
\end{align*}
$$

or in terms of the spin-spin coupling constant λ (or zero-field splitting parameter $2 \lambda^{38}$),

$$
\begin{equation*}
\hat{\mathrm{H}}_{\mathrm{s}-\mathrm{s}}=2 \lambda\left(3 \hat{\mathrm{~S}}_{\mathrm{z}}-\hat{\mathrm{S}}^{2}\right) / 3 \tag{1.72}
\end{equation*}
$$

The spin-spin interaction originates from two mechanisms: the primary contribution to λ is from the dipolar interaction of two unpaired spins, but there is also an effect due to second order spinorbit coupling, which may in fact be considerably larger:39

$$
\begin{equation*}
\lambda=\lambda s s+\lambda s o \tag{1.73}
\end{equation*}
$$

Second order perturbation theory applied to the spin-orbit interaction produces a spin-spin interaction as follows. The second order contribution of the spin-orbit interaction in single particle terms is:

$$
\begin{align*}
& E_{s o}(2)=\sum_{\eta^{\prime} \Lambda^{\prime} S^{\prime}}\left[E_{\eta \Lambda s^{-}} E_{\left.\eta^{\prime} \Lambda^{\prime} s^{\prime}\right]^{-1}} \sum_{i}<\eta \Lambda\left|a_{i} \hat{l}_{i}\right| \eta^{\prime} \Lambda^{\prime}>\sum_{j}\left\langle\eta^{\prime} \Lambda^{\prime}\right| a_{j} \hat{j}|\eta \Lambda\rangle\right. \\
&\left.\times \sum_{\Sigma^{\prime}}<S \Sigma\left|\hat{\mathbf{s}}_{i}\right| S^{\prime} \Sigma^{\prime}><S^{\prime} \Sigma^{\prime}\left|\hat{\mathbf{s}}_{j}\right| S \Sigma\right\rangle \tag{1.74}
\end{align*}
$$

The term summing over Σ^{\prime} produces the dipolar spin-spin term $<S \Sigma\left|\hat{\mathbf{s}}_{i} \cdot \hat{\mathbf{s}}_{j}\right| S \Sigma>$, as well as other matrix elements not of interest here because they are off-diagonal in Λ.

The dipolar spin-spin interaction matrix elements are obtained by applying equations (1.2) through (1.5) to equation (1.72):

$$
\begin{equation*}
<J \Omega L \Lambda S \Sigma\left|\hat{\mathrm{H}}_{\mathrm{S}-\mathrm{S}}\right| \mathrm{J} \Omega \mathrm{~L} \Lambda S \Sigma>=2 \lambda\left[\Sigma^{2}-\mathrm{S}(\mathrm{~S}+1) / 3\right] \tag{1.75}
\end{equation*}
$$

The states they mix have $\Delta \Sigma(=\Delta \Lambda)$ and $\Delta S=0, \pm 1, \pm 2.40$
Centrifugal distortion corrections to the spin-orbit and spin-spin interactions-- A_{D} and λ_{D}, respectively--must also be considered. Terms containing the parameters A_{D} and λ_{D} are therefore added to the rotational Hamiltonian (equation 1.60) as follows:41

$$
\begin{equation*}
\hat{H}_{\text {rot }}=B \hat{R}^{2}-D \hat{R}^{4}+A_{D} \hat{R}^{2} \hat{L}_{z} \hat{S}_{z}+2 \lambda_{D} \hat{R}^{2}\left(3 \hat{S}_{z}-\hat{\mathbf{S}}^{2}\right) / 3 \tag{1.76}
\end{equation*}
$$

Since the products of the operators in the A_{D} and λ_{D} terms are not Hermitian, a Hermitian average must be taken by symmetrizing the products with the anticommutator. The diagonal matrix elements for the A_{D} and λ_{D} parameters therefore follow the rotational constant B, but are multiplied by the elements for the spin-orbit and spin-spin interactions, respectively. The off-diagonal elements do likewise, except that since there are no off-diagonal terms in A or λ, the factor for these interactions becomes the average of the two diagonal elements. As before, the operator $\hat{\mathbf{R}}^{2}$ is simplified by omission of the x and y components of $-2 \hat{J} \cdot \hat{L}+2 \hat{L} \cdot \hat{S}+\hat{\mathbf{L}} 2$.

The spin-rotation operator, the dot product of the spin and rotational angular momenta, is written in Cartesian form as:31

$$
\begin{equation*}
\hat{H}_{S-R}=\gamma(\hat{\mathbf{J}}-\hat{\mathbf{L}}-\hat{\mathbf{S}}) \cdot \hat{\mathbf{S}} \tag{1.77}
\end{equation*}
$$

Neglecting $L_{ \pm}$terms, equation (1.77) produces the expanded Hamiltonian:

$$
\begin{equation*}
\hat{H}_{S-R}=\gamma\left[\hat{J}_{z} \hat{S}_{z}-\hat{L}_{z} \hat{S}_{z}-\hat{S}_{z}^{2}+\left(\hat{J}_{+} \hat{S}_{-}+\hat{J}_{-} \hat{S}_{+}\right) / 2\right] \tag{1.78}
\end{equation*}
$$

with diagonal elements:

$$
\begin{equation*}
<J \Omega L \Lambda S \Sigma\left|\hat{H}_{S-S}\right| J \Omega L \Lambda S \Sigma>=\gamma\left[\Sigma^{2}-S(S+1)\right] \tag{1.79}
\end{equation*}
$$

and off-diagonal elements equal to those given in equation (1.64), but replacing B with $-\gamma / 2$.

I.D.3. Magnetic hyperfine interactions.

The magnetic hyperfine interactions include all interactions of the nuclear spin, \mathbf{I}, with the other angular momenta in the basis set, which for the case(a) basis are J, L and S. Nuclear magnetic moments interact weakly with the rotational magnetic moment giving rise to a scalar interaction term written: 25

$$
\begin{equation*}
\hat{H}_{l \cdot J}=c_{l} \hat{l} \cdot \hat{\jmath} \tag{1.80}
\end{equation*}
$$

where c_{l} denotes the interaction constant. From equation (1.54),

$$
\begin{equation*}
F^{2}=J^{2}+2 l \cdot J+I^{2} \tag{1.81}
\end{equation*}
$$

so that the I.J interaction can be expressed in terms of \mathbf{F} as:

$$
\begin{equation*}
\hat{H}_{I \cdot J}=c_{l}\left(\hat{F}^{2}-\hat{\jmath}^{2}-\hat{l}^{2}\right) / 2 \tag{1.82}
\end{equation*}
$$

The matrix elements can be obtained directly from equation (1.4) as:

$$
\begin{equation*}
\left.<\Lambda S \Sigma J \Omega|F| \hat{H}_{I \cdot J}|\Lambda S \Sigma J \Omega| F\right\rangle=c_{I}[F(F+1)-J(J+1)-I(I+1)] / 2 \tag{1.83}
\end{equation*}
$$

The interactions of electronic and nuclear spins are represented by the Hamiltonian:26

$$
\begin{equation*}
\hat{H}_{I} \cdot \mathrm{~S}=\mathrm{bl} \cdot \hat{\mathrm{~S}}+\hat{c}_{\mathrm{Z}} \hat{\mathrm{~S}}_{\mathrm{Z}} \tag{1.84}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{b}=\mathrm{a}_{\mathrm{F}}-\mathrm{c} / 3 \tag{1.85}
\end{equation*}
$$

where a_{F} and c are the isotropic (Fermi-contact) and dipolar hyperfine constants, respectively. The former interaction is directly proportional to the quantity of electron density at the spinning nucleus, while the dipolar, or bar magnet, interaction between I_{z} and S_{z} is the same as given in equation (1.67). The interaction of nuclear spin with the electronic orbital magnetic moment is a scalar product of I and L which is treated in the same manner as the L.S interaction described by equations (1.65) and (1.66). The resulting Hamiltonian is therefore:26,31

$$
\begin{equation*}
\hat{H}_{I \cdot L}=\hat{a}_{z} \hat{\mathrm{~L}}_{z} \tag{1.86}
\end{equation*}
$$

in which a is the interaction constant.
The b term of equation (1.84) is expressed in spherical tensor form as:

$$
\begin{equation*}
\hat{H}_{\mathrm{I} \cdot \mathrm{~S}}=\mathrm{b} T^{1}(\mathrm{I}) \cdot T^{1}(\mathrm{~S}) \tag{1.87}
\end{equation*}
$$

To derive the matrix elements of the interaction, \mathbf{I} is first uncoupled from J by application of equation (1.48):

$$
\langle\eta \Lambda S \Sigma J \Omega| F\left|T^{1}(I) \cdot T^{1}(S)\right| \eta^{\prime} \Lambda S^{\prime} \Sigma^{\prime} J^{\prime} \Omega^{\prime}|F\rangle=
$$

$$
(-1)^{\left\lvert\,+J^{\prime}+F\left\{\begin{array}{ll}
F & J \\
1 & 1 \\
1 & I
\end{array}\right\}\left[(1(1+1)(2 \mid+1)]^{1 / 2}<\eta \Lambda S \Sigma J \Omega\left\|T^{1}(S)\right\| \eta^{\prime} \Lambda S^{\prime} \Sigma^{\prime} J^{\prime} \Omega^{\prime}>\right.\right.}
$$

where the $\left[(1(1+1)(21+1)]^{1 / 2}\right.$ term is the reduced matrix element of $T^{1}(\mathrm{I})$ according to equation (1.46). By projecting the reduced matrix element in equation (1.87) from the space-fixed axis system to the molecule-fixed system, using Wigner rotation matrices as in equation (1.47), the general matrix element can be expressed as:31 $<\eta \Lambda S \Sigma J \Omega|F| \hat{H}_{I} S \mid \eta^{\prime} \Lambda S^{\prime} \Sigma^{\prime} J^{\prime} \Omega^{\prime} I F>=$
$(-1)^{I+J^{\prime}+F}\left\{\begin{array}{lll}F & J & 1 \\ 1 & 1 & J^{\prime}\end{array}\right\}\left[I(1+1)(2 l+1)(2 J+1)\left(2 J^{\prime}+1\right)\right]^{1 / 2} \sum_{q}(-1)^{J-\Omega}\left(\begin{array}{ccc}J & 1 & J^{\prime} \\ -\Omega & q & \Omega^{\prime}\end{array}\right)$

$$
x(-1)^{S-\Sigma}\left(\begin{array}{ccc}
S & 1 & S^{\prime} \tag{1.89}\\
-\Sigma & q & \Sigma
\end{array}\right) \sum_{i}\left\langle S\left\|T^{1}(S)\right\| S^{\prime}><\eta \Lambda S\right| b_{i}\left|\eta^{\prime} \Lambda S^{\prime}\right\rangle
$$

The $\mathrm{cl}_{\mathbf{z}} \mathrm{S}_{\mathbf{z}}$ and $\mathrm{al}_{\mathbf{z}} \mathrm{L}_{\mathbf{z}}$ Hamiltonians are treated by the same method.
Evaluation of the $3-j$ and $6-j$ symbols with the appropriate formulae 5,42 , yields the matrix elements for $b \hat{\mathrm{I}} \cdot \hat{\mathbf{S}}, \hat{c}_{z} \hat{S}_{z}$ and $a \hat{\mathrm{I}}_{z} \hat{L}_{z}$, except that the only matrix elements written for the a and c constants are those diagonal in Λ and Σ, respectively. The resulting matrix elements employed in the hyperfine analysis of NbN are as follows:

$$
\begin{align*}
& <J I F \Omega \sum M\left|\hat{H}_{h f}\right| J I F \Omega \Sigma M>=\Omega h R(J) /[2 J(J+1)] \tag{1.90}\\
& <J I F \Omega \sum M\left|\hat{H}_{h f}\right| J-1, I F \Omega \sum M>= \\
& -h\left(\mathrm{~J}^{2}-\Omega^{2}\right)^{1 / 2} P(J) Q(J) /\left[2 \mathrm{~J}\left(4 \mathrm{~J}^{2}-1\right)^{1 / 2}\right] \tag{1.91}
\end{align*}
$$

$<J I F \Omega \Sigma M\left|\hat{H}_{h f}\right| J \mid F \Omega \pm 1, \Sigma \pm 1, M>=$

$$
\begin{equation*}
\mathrm{b}[(\mathrm{~J}+\Omega)(\mathrm{J} \pm \Omega+1)]^{1 / 2} R(\mathrm{~J}) V(\mathrm{~S}) /[4 \mathrm{~J}(\mathrm{~J}+1)] \tag{1.92}
\end{equation*}
$$

$<J I F \Omega \Sigma M\left|\hat{H}_{h f}\right| J-1, I F \Omega \pm 1, \Sigma \pm 1, M>=$

$$
\begin{equation*}
\mp b[(J \mp \Omega)(J \mp \Omega+1)]^{1 / 2} P(J) Q(J) V(S) /\left[4 J\left(4 \mathrm{~J}^{2}-1\right)^{1 / 2}\right] \tag{1.93}
\end{equation*}
$$

where the following abbreviations have been used:

$$
\begin{align*}
& R(J)=F(F+1)-J(J+1)-I(I+1) \tag{1.94}\\
& P(J)=[(F-I+J)(F+J+I+1)]^{1 / 2} \tag{1.95}\\
& Q(J)=[(J+I-F)(F-J+I+1)]^{1 / 2} \tag{1.96}\\
& V(S)=[S(S+1)-\Sigma(\Sigma \pm 1)]^{1 / 2} \tag{1.97}
\end{align*}
$$

The constant b is that given in equation (1.84), while h is used in the diagonal elements in order to incorporate the a, b and c constants into one:

$$
\begin{equation*}
h=a \Lambda+(b+c) \Sigma \tag{1.98}
\end{equation*}
$$

I.D.3.a. The sign of nuclear hyperfine coupling constants in transition metal complexes.

I.D.3.a.i. The sign of the Fermi contact interaction.

For an isotropic (Fermi contact) interaction involving only pure s electrons, the isotropic hyperfine constant a_{F} is positive because the magnetic field generated at the nucleus by the interaction is in the same direction as the electronic spin. However, negative contributions to the isotropic hyperfine interaction occur when there are open shell d or p electrons which polarize s electrons in inner (filled) orbitals via an exchange interaction which promotes an
electron from an inner s orbital to an outer empty one. 43 For example, a ground electronic configuration with a single unpaired 3d electron,

$$
\Psi_{0}=\left(3 s^{+}\right)\left(3 s^{-}\right)\left(3 d^{+}\right)
$$

can mix with excited states resulting from the promotion of an electron from a 3 s to 4 s orbital to produce the three functions: 43

$$
\begin{aligned}
& \Psi_{1}=\left(4 s^{+}\right)\left(3 s^{-}\right)\left(3 d^{+}\right) \\
& \Psi_{2}=\left(3 s^{+}\right)\left(4 s^{-}\right)\left(3 d^{+}\right) \\
& \Psi_{3}=\left(3 s^{+}\right)\left(4 s^{+}\right)\left(3 d^{+}\right)
\end{aligned}
$$

This is known as a configuration interaction, in which the ground and excited states possess different spin distributions yet form the basis for the same irreducible representation, in keeping with the requirement that the energy of the system remains constant. 44 First order perturbation theory is applied to describe the mixing, yielding an expression for the hyperfine contribution due to configuration interaction that is a function of the product of the ns and ms orbitals evaluated at the nucleus $[\mathrm{ns}(0) \mathrm{ms}(0)$], times an exchange integral $J(\mathrm{~ms}, 3 \mathrm{~d}, 3 \mathrm{~d}, \mathrm{~ns})$, divided by the energy separation between the ms and ns orbitals:

$$
\begin{equation*}
\chi=8 \pi \sum_{n-1}^{3} \sum_{m=4}^{\infty}[n s(0) m s(0) \times J(m s, 3 d, 3 d, n s)] /\left(E_{m}-E_{n}\right) \tag{1.99}
\end{equation*}
$$

The quantity χ is independent of charge ${ }^{43}$ and is related to the isotropic Fermi contact coupling constant, af, by: 44

$$
\begin{equation*}
a_{F}=(2 / 3) g_{\mathrm{e}} \mu_{\mathrm{B}} g_{\mathrm{n}} \mu_{\mathrm{n}} \chi \tag{1.100}
\end{equation*}
$$

where g_{e} and g_{n} are the electronic and nuclear g factors and μ_{B} and μ_{n} are the Bohr and nuclear magnetons. The quantity $[\mathrm{ns}(0) 4 \mathrm{~s}(0)] /\left(\mathrm{E}_{4}-\right.$
E_{n}) for the $\mathrm{n}=1,2,3 \mathrm{~s}$ orbitals of the neutral atoms of the first row transition metals from V to Cu was found to increase by about 20% across the series. The exchange integrals varied in the opposite sense, though more gradually, decreasing by an overall 14% from V to Cu .43

An alternative approach to the configuration interaction (CI) is core (or spin) polarization, a treatment which may be easier to conceptualize but is not as theoretically sound. 44 This theory differs from Cl in that the orbitals involved belong to a single configuration which originates from spin-dependent one-electron orbitals. The resulting hyperfine interaction is therefore a function of the amount of spin density of each sign. Cl requires two spinindependent configurations to represent the wavefunction. The wavefunction for the core polarization model is a spin-polarized unrestricted Hartree-Fock function (UHF) where UHF differs from the conventional, or restricted, Hartree-Fock function in that the trial one-electron wavefunctions are not required to be independent of the orientation of the spin. 44 The radial functions whose spins are being polarized, corresponding to spin up and spin down, differ from one another because they couple differently with the unpaired d or p electrons. The resulting hyperfine interaction is negative because the polarized spin has the opposite sense to the unpaired electron which induces the polarization. 44

I.D.3.a.ii. The sign of the dipolar nuclear hyperfine interaction.

The sign and magnitude of the dipolar hyperfine interaction depends on the number and type of open shell d and p electrons. The interaction constant for such an electron in orbital η is 45

$$
\begin{equation*}
c_{i}=3 g_{e} \mu_{B} g_{n} \mu_{n}<\eta\left|r^{-3}\left(3 \cos ^{2} \theta-1\right) / 2\right| \eta> \tag{1.101}
\end{equation*}
$$

where θ is the angle between the nucleus and the ith unpaired electron at a distance r; closed shell electrons do not contribute to $\left.<3 \cos ^{2} \theta-1\right\rangle$. Using for sake of illustration the ground electronic ${ }^{4} \Sigma$ - state of VO, with the configuration ($\sigma^{2} \pi^{4} \sigma_{n}{ }^{1} \delta^{2}$), there are three non-bonding $\sigma_{n}{ }^{1} \delta^{2}$ open shell electrons contributing to the I.S interaction. If the assumption is made that the interacting electrons are metal centered, the hyperfine constants are:46

$$
\begin{align*}
& \left.\left(A_{\text {iso }}\right)\right)_{V O} \approx(1 / 3)\left(A_{\text {iso }}\right)_{4 \mathrm{~s} \sigma} \tag{1.102}\\
& \left.\left(A_{\text {dip }}\right)\right)_{V O} \approx(2 / 3)\left(A_{\text {dip }}\right)_{3 \mathrm{~d} \delta} \tag{1.103}
\end{align*}
$$

where these A parameters are related to a_{F}, b and c by:

$$
\begin{gather*}
A_{\text {iso }}=A_{\perp}+A_{\text {dip }}=a_{F} \tag{1.104}\\
A_{\perp}=b=a_{F}-c / 3 \tag{1.105}\\
A_{\text {dip }}=c / 3 \tag{1.106}\\
A_{\|}=b+c \tag{1.107}
\end{gather*}
$$

Combining equations (1.101), (1.103) and (1.106), the expression for c becomes:

$$
\begin{equation*}
\mathrm{c}=3 \mathrm{~g}_{\mathrm{e}} \mu_{\mathrm{B}} \mathrm{~g}_{\mathrm{n}} \mu_{\mathrm{n}}(2 / 3)<3 \mathrm{~d} \delta\left|\mathrm{r}^{-3} \cdot\left(3 \cos ^{2} \theta-1\right) / 2\right| 3 \mathrm{~d} \delta> \tag{1.108}
\end{equation*}
$$

Using the algebreic expression for the spherical harmonic Y_{20} (see Section I.B) ${ }^{47}$, the matrix element portion of equation (1.108) can be written in terms of the n, l and m quantum numbers as:

$$
<n|m| r^{-3} \cdot\left(3 \cos ^{2} \theta-1\right) / 2|n| m>=(1 / 2)<1 m\left|3 \cos ^{2} \theta-1\right||m><n||r-3| n \mid>
$$

$$
\begin{equation*}
\left.=\frac{3 m^{2}-1(1+1)}{(2 \mid-1)(2 l+3)}<r^{-3}>n \right\rvert\, \tag{1.109}
\end{equation*}
$$

For a δ orbital, equation (1.109) reduces to $\left.(2 / 7)<r^{-3}\right\rangle_{n l}$, producing a value for c ($\mathrm{in} \mathrm{cm}^{-1}$) of 46

$$
\begin{equation*}
c=-(4 / 7) g_{e} \mu_{B} g_{n} \mu_{n}<r-3>3 d / h c \tag{1.110}
\end{equation*}
$$

When an electron is promoted from the $4 s \sigma$ to $4 p \sigma$ orbital to produce the $C^{4} \Sigma$-excited state, all three electrons contribute to the dipolar term and c becomes (in cm^{-1}):

$$
\begin{gather*}
c=3 g_{e} \mu_{\mathrm{B}} g_{\mathrm{n}} \mu_{\mathrm{n}}\left[(2 / 3)<r^{-3} \cdot\left(3 \cos ^{2} \theta-1\right) / 2>3 \mathrm{~d} \delta\right. \\
\left.+(1 / 3)<r^{-3}\left(3 \cos ^{2} \theta-1\right) / 2>4 \mathrm{p} \sigma\right] / \mathrm{hc} \\
c=g_{e} \mu_{\mathrm{B}} g_{n} \mu_{\mathrm{n}}\left[-(4 / 7)<r^{-3}>3 \mathrm{~d} \delta+(2 / 5)<r^{-3}>4 \mathrm{p} \sigma\right] / h c \tag{1.111}
\end{gather*}
$$

Using this method the different values for corresponding to the various possible electron configurations of an electronic state can be estimated, which assists in the assignment of an electronic state.

I.D.4. The nuclear electric quadrupole interaction.

The nuclear electric quadrupole interaction involves two second rank tensors, representing the electric field gradient and the nuclear quadrupole moment. A simple method by which to derive the quadrupolar Hamiltonian is with the use of spherical harmonics and Legendre polynomials.

To obtain the Hamiltonian for the electrostatic interaction of the nuclear quadrupole moment with the electric field gradient at the nucleus, a multipole expansion is made for the scalar coupling of the charges of the nucleons with those of the electrons. A multipole
expansion is a spherical harmonic expansion (or Legendre polynomial expansion) where the values of 1 in the spherical harmonic Y_{Im} are referred to as monopole, dipole, quadrupole and octopole for $1=0,1$, 2 and 3.48 By Coulomb's law ${ }^{49}$, the electrostatic Hamiltonian is

$$
\begin{equation*}
\hat{H}=\sum_{n} e q_{n} / R_{n} \tag{1.112}
\end{equation*}
$$

which describes the interaction between n nucleons with charge q_{n} and an electron with charge e, with an electron-nucleon separation of R_{n}. The electrostatic potential at the electron is

$$
\begin{equation*}
V=\sum q_{n} / R_{n} \tag{1.113}
\end{equation*}
$$

The distance R_{n} is the resultant of the two vectors originating from the nuclear center to the nth nucleon (r_{n}) and to the electron (R), with the angle between vectors r_{n} and R denoted by θ_{n}. The law of cosines ${ }^{50}$ gives the relation between R_{n}, r_{n}, R and θ_{n} :

$$
\begin{align*}
R_{n} & =\left(R^{2}+r_{n}^{2}-2 R r_{n} \cos \theta_{n}\right)^{1 / 2} \\
& =R\left[1+\left(r_{n} / R\right)^{2}-2\left(r_{n} / R\right) \cos \theta_{n}\right]^{1 / 2} \tag{1.114}
\end{align*}
$$

By the generating function for Legendre polynomials ${ }^{51}$,

$$
\begin{equation*}
\left[1-2\left(r_{n} / R\right) \cos \theta_{n}+\left(r_{n} / R\right)^{2}\right]^{1 / 2}=\sum P_{l}\left(\cos \theta_{n}\right)\left(r_{n} / R\right)^{1} \tag{1.115}
\end{equation*}
$$

equation (1.113) can be written in terms of a Legendre polynomial as: 52

$$
\begin{equation*}
V=\sum_{l=0} \sum_{n} P_{l} \cos \left(\theta_{n}\right) q_{n} r_{n} / / R^{l+1} \tag{1.116}
\end{equation*}
$$

Each Legendre polynomial represents the scalar product of electronic and nuclear tensor operators (from the spherical harmonic addition theorem), producing from equations (1.112) and (1.116) the multipole expansion: 48,52

$$
\begin{align*}
& \hat{H}_{\text {multipole }}=e V \\
& \quad=\sum_{k=0} \sum_{m}(-1)^{m}\left[\sum_{e}\left(e / R^{l+1}\right) C_{l m}\left(\theta_{e}, \varphi_{e}\right) \times \sum_{n} q_{n} r_{n}^{\prime} C_{l,-m}\left(\theta_{n}, \varphi_{n}\right)\right] \tag{1.117}
\end{align*}
$$

where the summations over e electrons and n nucleons represent terms in electronic (θ_{e}, φ_{e}) and nuclear (θ_{n}, φ_{n}) angular coordinates, respectively.

The first term in this expansion which is non-vanishing describes the quadrupolar interaction. The $1=0$ term can be represented by $Z_{e} V_{0}$, or the Coulombic interaction between the nuclear charge and the electrons, and is included in the electronic Hamiltonian. 53 The dipole term, $\mathrm{I}=1$, is the product of the electric dipole moment of the nucleus, which is zero, and the electrostatic field of the electrons, which is invariant over the nuclear volume and therefore produces no interaction. 53 The $1=2$ quadrupole term, however, is the interaction of the nuclear electric quadrupole moment, $\hat{\mathbf{Q}}$, with the electric field gradient ($\hat{\boldsymbol{\nabla}}$) experienced by the nucleus due to the charge distribution of the electrons. For those nuclei possessing a quadrupole moment, then, the quadrupolar Hamiltonian is the scalar product of these two tensor quantities: 54

$$
\begin{equation*}
\hat{H}_{Q}=-T^{2}(\hat{\nabla} E) \cdot T^{2}(\hat{Q}) \tag{1.118}
\end{equation*}
$$

where the minus sign is present due to the negative charge of the electron.

The quadrupole moment is a measure of how spherical the nucleus is, as indicated by the value of the nuclear spin, I. The deviation of nuclear charge distribution from spherical symmetry is given by: $3 z^{2}$ ave $-\left(x^{2}+y^{2}+z^{2}\right)$ ave or $3 \cos ^{2} \theta_{n}-1$ (where θ_{n} is the nuclear angular coordinate). 55 This value is non-zero if 1 is greater than
$1 / 2$, which is dictated by the number of odd nucleons (i.e, differences in the number of neutrons with respect to protons). The mechanism giving rise to specific values of 1 is imperfectly understood, though it seems to approximate the same shell model that applies to electrons. Thus, zero spin results from spin-pairing if the number of protons (Z) equals the number of neutrons (N), and predictions for I can usually be made for nuclei possessing odd N or Z based on the number of particles occupying open shells. 55

By convention, the nuclear electric quadrupole moment is defined classically as ${ }^{11}$

$$
\begin{equation*}
\hat{\mathbf{Q}}=e \int\left(3 z^{2}-r^{2}\right) \rho(\mathbf{r}) d \tau \tag{1.119}
\end{equation*}
$$

where $\rho(r)$ is the nuclear charge density, and $d \tau$ denotes integration over the nuclear volume. Quantum mechanically the definition becomes:52

$$
\begin{equation*}
\hat{\mathbf{Q}}=e^{-1} \sum_{n} q_{n} r_{n}^{2}\left(3 \cos ^{2} \theta_{n}-1\right) \tag{1.120}
\end{equation*}
$$

The quantum mechanical observable corresponding to equation (1.120) is the nuclear quadrupole moment, Q, defined by convention as ${ }^{54}$

$$
\begin{equation*}
\left.Q=<l, m_{l}=1|\hat{Q}| l, m_{l}=l\right\rangle \tag{1.121}
\end{equation*}
$$

The definition of $\hat{\mathbf{Q}}$ was made prior to the invention of spherical tensors and therefore lacks the factor of $1 / 2$ needed for the expressions $P_{2}(\cos \theta)=T^{2}{ }_{0}(X)=\left(3 \cos ^{2} \theta-1\right) / 2 ; \hat{\mathbf{Q}}$ was also defined without the electron charge e. The spherical tensor definition is therefore

$$
\begin{equation*}
T^{2} o(\hat{Q})=e \hat{Q} / 2 \tag{1.122}
\end{equation*}
$$

with the corresponding scalar quantity

$$
\begin{equation*}
e Q / 2=\left\langle 1, m_{l}=\left\|T^{2}{ }_{0}(\hat{Q})\right\|, m_{l}=\mid\right\rangle \tag{1.123}
\end{equation*}
$$

The quadrupole tensor, from equation (1.117), is of the form

$$
\begin{equation*}
T^{2}(\hat{\mathbf{Q}})=\sum_{n} q_{n} r^{2}{ }_{n} C^{2}\left(\theta_{n}, \varphi_{n}\right) \tag{1.124}
\end{equation*}
$$

The electric field gradient (EFG) evaluated at the nucleus, $\left(\partial^{2} \mathrm{~V} / \partial z^{2}\right)_{0}$, has the spherical tensor form (from equation 1.117) of:

$$
\begin{equation*}
-T^{2}(\hat{\nabla} E)=\sum_{e} e R^{-3} C^{2}\left(\theta_{e}, \varphi_{e}\right) \tag{1.125}
\end{equation*}
$$

with the corresponding field gradient coupling constant defined as

$$
\begin{equation*}
\mathrm{q}=\left\langle\mathrm{J}, \mathrm{~m}_{\mathrm{J}}=\mathrm{J}\right|\left(\partial^{2} \mathrm{~V} / \partial \mathrm{z}^{2}\right)_{\circ}\left|\mathrm{J}, \mathrm{~m}_{\mathrm{J}}=\mathrm{J}\right\rangle \tag{1.126}
\end{equation*}
$$

where $\left(\partial^{2} V / \partial z^{2}\right)_{0}=e R^{-3}\left(3 \cos \theta_{e}-1\right)$. Thus, with the factor of $1 / 2$ required by the spherical harmonic definition of the quadrupole moment, the EFG tensor can be expressed as:

$$
\begin{equation*}
-T^{2} \circ(\hat{\nabla} E)=q / 2 \tag{1.127}
\end{equation*}
$$

To derive the matrix elements for the quadrupolar interaction (equation 1.116), equation (1.48) is applied to evaluate the scalar coupling of two commuting tensor operators in a coupled basis (I must be unravelled from J):
$<\eta^{\prime} \Lambda^{\prime} ; S^{\prime} \Sigma^{\prime} ; J^{\prime} \Omega^{\prime}|\mathrm{IF}| \hat{H}_{Q} \mid \eta \Lambda ; S \Sigma ; J \Omega$ IF \rangle
$=(-1)^{J+l+F} \delta_{F F}\left\{\begin{array}{lll}F & 1 & J^{\prime} \\ 2 & J & 1\end{array}\right\}<\eta^{\prime} \Lambda^{\prime} ; J^{\prime} \Omega^{\prime}\left\|-T^{2}(\hat{\nabla} E)\right\| \eta \Lambda ; J \Omega><1\left\|T^{2}(\hat{\mathbf{Q}})\right\| I>$ (1.128)
Then project $T^{2}(\hat{\nabla} E)$ from space- to molecule-fixed axes with equation (1.29):
$\left.\left\langle\eta^{\prime} \Lambda^{\prime} ; J^{\prime} \Omega^{\prime}\left\|-T^{2}(\hat{\nabla} E)\right\| \eta \Lambda ; J \Omega\right\rangle=\sum_{q}<J^{\prime} \Omega^{\prime}\left\|D^{2} \cdot q^{*}(\alpha \beta \gamma)\right\| J \Omega><\eta^{\prime} \Lambda^{\prime}\left\|-T^{2}{ }_{q}(\hat{\nabla} E)\right\| \eta \Lambda\right\rangle$

$$
=\sum_{q}(-1)^{J^{\prime}-\Omega^{\prime}\left[(2 J+1)\left(2 J^{\prime}+1\right)\right]^{1 / 2}\left(\begin{array}{ccc}
J^{\prime} & 2 & J \tag{1.129}\\
-\Omega^{\prime} & q & \Omega
\end{array}\right)<\eta^{\prime} \Lambda^{\prime}\left\|-T^{2} q(V E)\right\| \eta \Lambda>}
$$

The last term of equation (1.128) is evaluated with the WignerEckart theorem, in conjunction with equation (1.123):

$$
<1, \left.m_{1}=\left\|T^{2}{ }_{0}(\hat{\mathbf{Q}})\right\|\left|, m_{1}=1>=e Q / 2=(-1)^{1-1}\left(\begin{array}{ccc}
1 & 2 & 1 \tag{1.130}\\
-1 & 0 & 1
\end{array}\right)<1 \| T^{2}(\hat{\mathbf{Q}})\right| \right\rvert\, 1>
$$

Substituting for the $3-j$ symbol 57 and solving for the reduced matrix element gives

$$
\begin{align*}
<\| \| T^{2}(\hat{\mathbf{Q}}) \| \mid>= & e Q / 2\left(\begin{array}{ccc}
1 & 2 & 1 \\
-1 & 0 & 1
\end{array}\right)^{-1} \\
& =e Q / 2[(21+1)(21+2)(21+3) / 2 \mid(2 \mid-1)]^{1 / 2} \tag{1.131}
\end{align*}
$$

In terms of the molecule-fixed $T^{2}(\hat{\boldsymbol{\nabla}} E)$ tensor in equation (1.129), the coupling constant q is defined by the diagonal reduced element of $\mathrm{T}^{2}(\hat{\nabla} E)$:

$$
\begin{equation*}
\left\langle\Lambda\left\|-T^{2}{ }_{o}(\hat{\nabla} E)\right\| \Lambda>=q / 2\right. \tag{1.132}
\end{equation*}
$$

A first order approximation was made in the current study to neglect the ± 1 and ± 2 components of $T^{2}(V E)$, that is, to exclude quadrupole matrix elements off-diagonal in Ω. Appropriate combination of equations (1.128), (1.129), (1.131) and (1.132) therefore yields the matrix elements

$$
\begin{align*}
& \left.<\eta^{\prime} \Lambda^{\prime} ; S^{\prime} \Sigma^{\prime} ; J^{\prime} \Omega^{\prime}|F|-T^{2}(\hat{\nabla} E) \cdot T^{2}(\hat{\mathbf{Q}})\left|\eta \Lambda ; S \sum ; J \Omega\right| F\right\rangle \\
& \quad=(1 / 4) e q Q(-1)^{J+1+F}\left(\begin{array}{ccc}
F & 1 & J^{\prime} \\
2 & J & 1
\end{array}\right)[(21+1)(21+2)(21+3) / 2 \mid(2 \mid-1)]^{1 / 2} \\
& \quad \times \sum_{q}(-1)^{J^{\prime}-\Omega^{\prime}\left[(2 J+1)\left(2 J^{\prime}+1\right)\right]^{1 / 2}\left(\begin{array}{ccc}
J^{\prime} & 2 & J \\
-\Omega^{\prime} & q & \Omega
\end{array}\right)} \tag{1.133}
\end{align*}
$$

From the triangle condition for a $3-j$ symbol, which states that the third J value must not lie outside the sum and difference of the first two J values ${ }^{18}$, the $3-j$ symbol in equation (1.133) requires ΔJ to be $0, \pm 1$ or ± 2. From equation (1.133) and these selection rules, the specific matrix elements employed in this work are as follows:
$<J I F \Omega \Sigma M\left|\hat{H}_{Q}\right| J I F \Omega \Sigma M>=$

$$
\begin{equation*}
\frac{e \mathrm{Qq}\left[3 \Omega^{2}-\mathrm{J}(\mathrm{~J}+1)\right]\{3 R(\mathrm{~J})[\mathrm{R}(\mathrm{~J})+1]-4 \mathrm{~J}(\mathrm{~J}+1)!(\mathrm{I}+1)\}}{81(21-1) \mathrm{J}(\mathrm{~J}+1)(2 \mathrm{~J}-1)(2 \mathrm{~J}+3)} \tag{1.134}
\end{equation*}
$$

<JIF $\Omega \Sigma M|\hat{H} Q| J-1, I F \Omega \Sigma M>=$

$$
\begin{equation*}
\frac{-e Q q 3 \Omega[R(J)+J+1]\left(J^{2}-\Omega^{2}\right)^{1 / 2} P(J) Q(J)}{2 J(2 J-2)(2 J+2)(2 l-1)\left(4 \mathrm{~J}^{2}-1\right)^{1 / 2}} \tag{1.135}
\end{equation*}
$$

<JIF $\Omega \Sigma \mathrm{M}\left|\hat{H}_{Q}\right| \mathrm{J}-2, \mathrm{IF} \Omega \sum \mathrm{M}>$

$$
\begin{equation*}
=\frac{e \mathrm{Qq} 3\left[(\mathrm{~J}-1)^{2}-\Omega^{2}\right]^{1 / 2}\left(\mathrm{~J}^{2}-\Omega^{2}\right)^{1 / 2} \mathrm{P}(\mathrm{~J}) Q(\mathrm{~J}) P(\mathrm{~J}-1) Q(\mathrm{~J}-1)}{4 \mathrm{I}(2 \mathrm{I}-1) 4 \mathrm{~J}(\mathrm{~J}-1)(2 \mathrm{~J}-1)[(2 \mathrm{~J}-3)(2 \mathrm{~J}+1)]^{1 / 2}} \tag{1.136}
\end{equation*}
$$

The terms $R(J), P(J), Q(J), P(J-1)$ and $Q(J-1)$ are as in equations (1.93), (1.94) and (1.95).

I.D.5. Λ-Doubling.

The phenomenon of Λ-doubling results from the breakdown of the Born-Oppenheimer approximation, which allows the separation of electronic and nuclear motion. 26 It is the lifting of $\pm \Lambda$ degeneracy which occurs when molecular rotation interferes with the welldefined quantization of the z component of electronic orbital angular momentum about the molecular axis. The operators in the spin and rotational Hamiltonian responsible for Λ-doubling are the x and y components of the electronic orbital angular momentum operators which produce matrix elements off-diagonal in Λ. In the rotational Hamiltonian, this is the L-uncoupling operator, -2B $\hat{J} \cdot \hat{L}$. Among the spin-interaction terms of the Hamiltonian, the spin-orbit operator is used, yielding the complete Λ-doubling Hamiltonian: 57

$$
\begin{equation*}
V=-2 B \hat{\mathbf{J}} \cdot \hat{\mathbf{L}}+\sum_{i} a \hat{i}_{i} \hat{l}_{i} \hat{\mathbf{s}}_{i} \tag{1.137}
\end{equation*}
$$

The Λ-doubling interaction is treated by degenerate perturbation theory ${ }^{58}$, which for Δ states must be taken to fourth order in order
to connect $\mid \Lambda=2>$ to $\mid \Lambda=-2>$ via states with $\Lambda=1$ and 0 (i.e., Π and Σ states). For this reason the interaction is smaller than that in Π states, since the mixing of $\mid \Lambda=1>$ and $\mid \Lambda=-1>$ states requires only second order perturbation theory. 57 The unperturbed Hamiltonian contains those terms adhering to the Born-Oppenheimer approximation which are diagonal in Λ and independent of the orbital degeneracy. The perturbation can be treated through the use of a fourth-order effective Hamiltonian, which is obtained by subtracting out the unperturbed energy from the complete Hamiltonian expression to leave an effective Hamiltonian which operates only on the vibronic state of interest, $H_{0} k>57,59$

$$
\begin{align*}
\hat{H}_{e f f}^{(4)}= & P_{0} V\left(Q_{0} / a\right) V\left(Q_{0} / a\right) V\left(Q_{0} / a\right) V P_{0}-P_{0} V\left(Q_{0} / a^{2}\right) V P_{0} V\left(Q_{0} / a\right) V P_{0} \\
& -P_{0} V\left(Q_{0} / a^{2}\right) V\left(Q_{0} / a\right) V P_{0} V P_{0}-P_{0} V\left(Q_{0} / a\right) V\left(Q_{0} / a^{2}\right) V P_{0} V P_{0} \\
& +P_{0} V\left(Q_{0} / a^{3}\right) V P_{0} V P_{0} V P_{0} \tag{1.138}
\end{align*}
$$

The operator P_{0}, extending over the k-fold degeneracy of I_{0}, is defined as

$$
\begin{equation*}
P_{0}=\sum_{k}| |_{0} k><l_{0} k \mid \tag{1.139}
\end{equation*}
$$

while

$$
\begin{equation*}
\left(Q_{0} / a^{n}\right)=\sum_{l=1} \sum_{k}| | k><|k| /\left(E_{0}-E_{n}\right)^{n} \tag{1.140}
\end{equation*}
$$

where I denotes any vibronic state with energy E_{1}, E_{0} is the energy of state <lok|, and k labels all rotational, spin and electronic quantum numbers in a vibronic state l_{0} or I.

The Hamiltonian in equation (1.137) has $2 \Lambda+1$ terms of the form $\left(\hat{\mathrm{H}}_{\text {rot }}\right)^{2 \Lambda-n}\left(\hat{\mathrm{H}}_{\text {s.o. }}\right)^{n}$, where n ranges from zero to 2Λ. In the case (a) form it is written:57

$$
\begin{align*}
& \hat{\mathrm{H}}_{\mathrm{L} . \mathrm{D} ., \Delta}=\tilde{\mathrm{m}}_{\Delta}\left(\hat{\mathrm{S}}_{+}{ }^{4}+\hat{\mathrm{S}}_{.}{ }^{4}\right) / 2-\tilde{\mathrm{n}}_{\Delta}\left(\hat{\mathrm{S}}_{+} 3 \hat{\mathrm{~J}}_{+}+\hat{\mathrm{S}}_{-} 3 \hat{\mathrm{~J}}_{-}\right) / 2 \\
& +\tilde{o}_{\Delta}\left(\hat{S}_{+}{ }^{2} \hat{\jmath}_{+}{ }^{2}+\hat{S}_{-}{ }^{2} \hat{\jmath}_{-}{ }^{2}\right) / 2-\tilde{p}_{\Delta}\left(\hat{S}_{+} \hat{J}_{+}{ }^{3}+\hat{S}_{-} \hat{J}_{-}{ }^{3}\right) / 2 \\
& +\tilde{q}_{\Delta}\left(\hat{\jmath}_{+}{ }^{4}+\hat{\jmath}_{-}^{4}\right) \tag{1.141}
\end{align*}
$$

where the factors of $1 / 2$ are included to be consistent with the notation of Mulliken and Christy 60 for Π states. Thus the \tilde{q}_{Δ} parameter accompanies $\left(\hat{\mathrm{H}}_{\text {rot }}\right)^{2 \Lambda}, \tilde{\mathrm{p}}_{\Delta}$ is with $\left(\hat{\mathrm{H}}_{\mathrm{rot}}\right)^{2 \Lambda-1}\left(\hat{\mathrm{H}}_{\mathrm{s} .0}\right.$. $)$ and so on to \tilde{m}_{Δ} with $\left(\hat{H}_{\text {s.o. }}\right)^{2 \Lambda}$. The number of those parameters that can be determined equals the spin multiplicity up to a maximum of 5 . In a ${ }^{4} \Delta$ state, for example, only four of the five parameters are included in the Λ-doubling matrix elements, with \widetilde{m}_{Δ} excluded because the spin-orbit interaction need not be extended to fourth order. In a ${ }^{4} \Delta$ state where there are four Ω substates, the terms appear in the 4 x 4 matrix as \pm terms which split a given level into two levels of different parity, labelled e and f. By convention, the e levels have parity $+(-1)^{i-k}$ and f levels have parity $-(-1)^{j-k}$, where k is $1 / 2$ and 0 for half-integer and integer values of spin, respectively. 61,62 The magnitude of the Λ-doubling observed in this work in the ${ }^{4} \Delta_{7 / 2-}$ ${ }^{4} \Delta_{7 / 2}$ transition of CoO ranged from 0.2 to $1.2 \mathrm{~cm}^{-1}$, while that in the ${ }^{3} \Pi_{\circ}$ state of NbN is on the order of six wavenumbers.

CHAPTER II

THE COMPUTERIZED LASER-INDUCED FLUORESCENCE EXPERIMENTS

II.A. Experimental Details.

The laser excitation experiments were performed using a Coherent Radiation model CR-599-21 scanning single frequency (standing wave) dye laser, pumped by a Coherent Radiation model Innova-18 argon ion laser operated at a wavelength of 514 nm and a power of 2.0 to 3.5 W . Output power from the dye laser was normally 100 to 150 mW . The tunability of the laser comes from selecting portions of the broad fluorescence band of an organic dye. 63 Two dyes were employed for both the cobalt oxide (COO) and niobium nitride (NbN) studies. For maximum output at 590 nm (ranging from 570 to 620 nm or 17540 to $16130 \mathrm{~cm}^{-1}$), the dye used was rhodamine 6G (Exciton Chemical Co.), with the structure ${ }^{63}$

made to a concentration of $2 \times 10^{-3} \mathrm{M}$ in ethylene glycol. To reach the lower energy regions, the dye DCM (4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran, from Exciton Chemical Co.) was dissolved in 3:7 benzyl alcohol to ethylene glycol to form nearly saturated $2.5 \times 10^{-3} \mathrm{M}$ solutions. At a pump wavelength of 514 nm , DCM's maximum output power occurs at 640 nm , and
broadband laser operation occurs over the range 600 to 695 nm (16670 to $14390 \mathrm{~cm}^{-1}$). The benzyl alcohol required to dissolve the DCM leads to bubble formation, so the solution was cooled to minimize bubbling by running the dye tubing through a $-30^{\circ} \mathrm{C}$ slush of dry ice mixed with a $1: 3$ solution of water to CaCl_{2}. All chemicals were used as obtained.

A small fraction of the output beam was diverted to an iodine absorption or emission cell for absolute frequency calibration. Another fraction was sent to a Tropel fixed-length semiconfocal Fabry-Perot interferometer with a 299 MHz free-spectral range, providing a common ladder of frequency markers against which the sample and iodine spectra could be referenced. The beam containing the majority of the output power was passed down the longitudinal axis of the stream of sample molecules, with the laser-induced fluorescence (LIF) detected at right angles to the beam with a photomultiplier tube equipped with a high transmittance low pass optical filter to reduce scattered light, and powered by 300 to 500 V from a high voltage power supply. Phase-sensitive detection was acheived with a Princeton Applied Research (PAR) model 128A lockin amplifier receiving chopped sample and reference signals, with the reference beam supplied by a Spectra-Physics model 132 Lablite HeNe gas laser.

The resolved fluorescence experiments were performed with a 0.7 m Spex Industries model 1702 spectrometer which dispersed the spectrum onto the detector elements of a microchannel-plate intensified array detector (PAR model 1461), mounted at the output
end of the spectrometer. The spectral window of the array detector was calibrated with a Burleigh model WA-20VIS wavemeter.

II.B. Intermodulated Fluorescence.

A laser-induced fluorescence transition has a Gaussian velocity population profile forming an inhomogeneously broadened line, because of the Doppler effect, the freqeuncy absorbed by molecules moving away from the light source appears to be lower than that absorbed by molecules moving toward it. At the center of the profile (zero velocity) the transition frequency Ω is not Dopplershifted; that is, the molecules have zero velocity with respect to the light wave with which the molecules interact.65,66 In Dopplerfree (or "sub-Doppler") spectroscopy, two travelling waves (laser beams) with frequency ω propagate in opposite directions through the sample gas molecules. Molecules moving with velocity v along the axis of the laser beams absorbs radiation from one beam at a frequency $\Omega=\omega(1+\mathrm{v} / \mathrm{c})$, and from the other beam at $\Omega=\omega(1-\mathrm{v} / \mathrm{c})$. These opposite Doppler shifts cause each beam to depopulate a portion of the lower state velocity profile symmetrically about the profile center at $v=c(\Omega \pm \omega) / \Omega$ (see Fig. 2.1). This depletion is termed "burning a Bennet hole", creating a homogeneous profile in the lower state. 66 As the laser is scanned, and the laser frequency approaches the non-Doppler-shifted resonance frequency, the two Bennet holes converge until they meet at the center, or zero velocity (see Fig. 2.1). The resulting lower state population depletion causes a corresponding depletion in the intensity profile of the fluorescence, called a "Lamb dip".

Intermodulated fluorescence (IMF) is a technique which enables relatively small Lamb dips to be detected against the large Dopplerbroadened profile so that they are directly measured as spectral

Fig. 2.1. Gaussian inhomogeneously Doppler-broadened velocity (v_{z}) population (n) profile, showing two Bennet holes (solid lines) which converge at zero velocity (dotted line) to form a Lamb dip in the profile of intensity versus laser tuning frequency. 66
peaks. The two laser beams are modulated (i.e., chopped to produce certain phase trains) with frequencies f_{1} and f_{2}. The lock-in amplifier, with the phase sensitive detector referenced to a frequency of $f_{1}+f_{2}$, passes only ($f_{1}+f_{2}$)-modulated input signals, such as those occurring when two Bennet holes meet 66 A schematic diagram of the IMF experiment used to obtain the niobium nitride sub-Doppler spectra is illustrated in Fig. 2.2. In practice, the two counterpropagating laser beams must be slightly misaligned from one another to avoid feedback into the laser.

A LIF signal normally arises from Bennet holes caused by allowed $\Delta \mathrm{F}=\Delta \mathrm{J}$ transitions meeting at the velocity profile center. However, Lamb dips also originate from holes burned by "forbidden" $\Delta F \neq \Delta J$ transitions meeting at the center. Since the selection rules ${ }^{24}$ on F and J are $\Delta \mathrm{F}=0, \pm 1$ and $\Delta \mathrm{J}=0, \pm 1$, transitions with $\Delta \mathrm{F}=\Delta \mathrm{J} \pm 1$ and ± 2 are also possible. For a Q transition, with $\Delta J=0$, the F selection rule requiring that $\Delta F=0, \pm 1$ allows the transitions $r Q(\Delta F=\Delta J+1)$, qQ $(\Delta F=\Delta J)$ and $p Q(\Delta F=\Delta J-1)$. If $\Delta J=+1, \Delta F=+1,0$ and -1 corresponds to the transitions rR, qR and pR (or $\Delta \mathrm{F}=\Delta \mathrm{J}, \Delta \mathrm{J}-1$ and $\Delta J-2)$. The same occurs for P branches where $\Delta F=\Delta J, \Delta J+1$ and $\Delta J+2$ lines ($p P, q P$ and $r P$) occur. These satellite branches are observed only at low values of J because the intensity of the transitions is proportional to the angle between the vectors \mathbf{J} and F. 67 When \mathbf{J} and \mathbf{F} are large with respect to I this angle approaches zero, and only $\Delta F=\Delta J$ transitions are observed. The large value of $9 / 2$ for the nuclear spin of $N b$ allows $\Delta F \neq \Delta J$ transitions to be seen at higher values of J than is normally possible.

Accompanying a pair of $\Delta \mathrm{F}=\Delta \mathrm{J}$ and $\Delta \mathrm{F}=\Delta \mathrm{J} \pm 1$ transitions, or a

Fig. 2.2. Schematic drawing of the intermodulated fluorescence experiment used in this laboratory. The discharge cube where the sample and laser light are combined is shown in the top left corner.
$\Delta \mathrm{F}=\Delta \mathrm{J} \pm 1$ and $\Delta \mathrm{F}=\Delta \mathrm{J} \pm 2$ pair, may be a "crossover resonance" occurring exactly mid-way between the two. Such a phenomenon requires that the two transitions sharing a common level lie within the same Doppler profile. Crossover resonances occur in the IMF spectra of the nearly coincident transitions of closely spaced hyperfine components. The means by which crossover resonances are generated is depicted in Fig. 2.3, with a schematic stick drawing of the resulting spectrum.

b)

$$
\mid \Delta F=\Delta J=0
$$

Fig. 2.3. a) The formation of crossover resonances ($F_{1}+A_{2}$ and $F_{2}+A_{1}$) as the result of allowed $\Delta J=\Delta F$ transitions (A_{1} and A_{2}) occurring within the same Doppler-broadened velocity profile as forbidden $\Delta J \neq \Delta F$ transitions (F_{1} and F_{2}). The diagram shows the laser scanning toward the non-Doppler-shifted $\Delta F=\Delta J$ transition (occurring at $A_{1}+A_{2}$) and beyond toward higher frequency to the $\Delta F=\Delta J+1$ transition $\left(F_{1}+F_{2}\right)$. If the $F^{\prime} s$ and A's are exchanged, the first central Lamb dip is the $\Delta F=\Delta J-1$ transition. b) Stick diagram of the spectrum of the four forbidden transitions that can accompany a $\Delta F=\Delta J=0 Q$ transition (X denotes a crossover). With an R line, the $\Delta F=0$ and $\Delta F=-1$ transitions and the associated crossovers occur to the red of the $\Delta F=\Delta J+1$ transition, while with a P line the forbidden transitions lie to the blue to the $\Delta F=\Delta J-1$ transition.

II.C. Computerization.

Part of the work for this thesis involved computerizing all stages of the Doppler-limited and intermodulated fluorescence (subDoppler) LIF experiments on a PDP-11/23 microcomputer with an RSX-11M operating system. These stages included: 1) laser scanning, and data acquisition and storage; 2) peak finding; and 3) frequency calibration. Each stage comprises a separate program. All of the software was written with FORTRAN-77 except for the laser scanning and data acquisition, programmed in MACRO. The PDP-11 computer is structured such that space for executable code is quite limited. This constraint required that the three programs be overlaid. Overlaying is a method of memory management which allows the sum of the individual subroutines to far exceed the memory limitations of the computer. When an overlaid program is executed, only a portion of the subroutines are sent into memory, while the remainder resides in the relatively limitless disk space. A set of overlay directives is written which describes the program in terms of a calling "root" segment and any number of subprogram "branch" segments; the branches may themselves call "subbranches". The computer uses these directives to build the task file such that during program execution the memory space at any given time is occupied only by the root segment and the branch being called at that time. Since the main responsibility of the root is to call subroutines in the branches, the root is made as short as possible to allow most of the software to remain disk-resident throughout program execution.

The heart of the first program is the MACRO routine which orchestrates laser scanning and data acquisition via its control of the following hardware peripheral devices:

- The 16-bit digital-to-analog converter (D/A), which sends a voltage ramp to the laser so that it scans a range of up to $1.4 \mathrm{~cm}^{-1}$.
- The 4-channel, 12-bit analog-to-digital converter (A/D), containing two registers to process incoming data. The control status register (CSR) receives the voltages (data points) from the sample, iodine and interferometer detectors. The buffer preset register receives the point from the CSR, stores it temporarily, then delivers it both to the 12 -bit output D/A and to the appropriate storage buffer for transfer to disk. The sample spectrum is signal averaged over four points prior to transfer to the buffer.
- Three 12-bit D/A's, which send the three data points to the chart recorder for a hardcopy of the spectra.
- The real-time (crystal-oscillator) clock, by which the above peripheral devices are interrupt-driven to operate at a user-chosen rate producing a resolution compatible with the lock-in time constant and the frequency range scanned by the laser. The use of interrupts ensures that the task will be serviced by the computer's central processing unit exactly as dictated by the clock.
The interfacing of computer and experiment is illustrated schematically in Fig. 2.4. Upon return from the MACRO routine after scanning is complete, the three spectral vectors are stored in unformatted files with the first record of the sample file serving as a housekeeping record containing spectral identification and experimental parameters.

Fig. 2.4. Schematic diagram of the laser-induced fluorescence experiment and how it is interfaced to the PDP-11/23 microcomputer.

CHAPTER III

ROTATIONAL ANALYSIS OF THE RED SYSTEM OF COBALT OXIDE

III.A. Introduction.

In German-occupied Belgium during World War II, Malet and Rosen observed a number of electronic bands of gaseous cobalt oxide (CoO) between 5000 and $10000 \AA$ using the exploding wire technique. 69 The lower state vibrational frequency (i.e., the separation of the $v^{\prime \prime}=0$ and $v^{\prime \prime}=1$ vibrational states) was found to be $840 \mathrm{~cm}^{-1}$, and this state was assumed to be the ground electronic state. The next spectroscopic experiments on CoO came years later, in 1979. The first was a low resolution infrared spectrum of CoO (with $\pm 0.2 \mathrm{~cm}^{-1}$ line precision) obtained with a microwave discharge source, giving a vibrational frequency of $842.2 \mathrm{~cm}^{-1}$, an equilibrium rotational constant (B_{e}) of 0.522, and an equilibrium bond length (r_{e}) of 1.60 $\AA .70$ The absence of a Q branch in the spectrum led to the tentative assignment of a Σ ground state ${ }^{24}$, though the possibility was not ruled out that the spectrum was that of a low-lying excited state. 70 A matrix isolation infrared study followed shortly afterwards ${ }^{71}$, in which cobalt from a cobalt cathode sputtering source and oxygen were codeposited at low temperature (14 K) into a solid matrix of argon. The ground state vibrational frequency was measured in this work to be $846.4 \mathrm{~cm}^{-1}$. In the next year, matrix isolation electron spin resonance (ESR) studies of a large group of transition metalcontaining molecules with high spin multiplicities were reported, including CoO. 72 In spite of high concentrations of CoO within the matrices and the expertise of the laboratory in conducting
experiments of this type, no CoO ESR signal was observed. CoO was therefore concluded to possess an orbitally degenerate ground state, because orbital degeneracy in linear molecules (in matrices of low enough temperature that only the ground state is populated) causes a g tensor anisotropy so large that the spectrum is spread out over such a large magnetic field that it cannot be observed. The ESR spectrum of a paramagnetic Σ state, on the other hand, will possess little or no g anisotropy and will exhibit only a small deviation from the free electron value, $g_{e}=2.0023$, due to the spherical symmetry of the overall orbital angular momentum. ${ }^{72,73}$ The value of g is deduced from the relation $h \nu=g \mu_{B} H$, where v is the resonance frequency, μ_{B} the Bohr magneton, H the applied magnetic field, and h Planck's constant; the g anisotropy is taken as $g_{\perp}-g_{I I}$. No further work has been published on CoO since this ESR study, leaving the ground state of the molecule to be the only one of the first row transition metal oxides yet to be established.

Field-free atomic orbitals of a diatomic transition metal molecule are split by the axial field of the other atom, as shown in Fig. 3.1. From the electron configurations of manganese, iron and nickel monoxides,

MnO	$(4 \mathrm{~s} \sigma)^{1}(3 \mathrm{~d} \delta)^{2}(3 \mathrm{~d} \pi)^{2}$
FeO	$(4 \mathrm{~s} \sigma)^{1}(3 \mathrm{~d} \delta)^{3}(3 \mathrm{~d} \pi)^{2}$
NiO	$(4 \mathrm{~s} \sigma)^{2}(3 \mathrm{~d} \delta)^{4}(3 \mathrm{~d} \pi)^{2}$,

it can be seen that there are two possible candidates for the ground electronic state of CoO. If the seventh valence electron occupies the $4 \mathrm{~s} \sigma$ orbital, the spin multiplicity and direct products given by the resulting $\sigma^{2} \delta^{3} \pi^{2}$ configuration produce a ${ }^{4} \Delta_{i}$ electronic state ${ }^{74}$; if

Fig. 3.1. Relative orbital energies of a diatomic 3d transition metal oxide. 92 The ordering of the $3 \mathrm{~d} \delta$ and $4 \mathrm{~s} \sigma$ molecular orbitals is variable.
instead it fills up the δ orbital; a ${ }^{4} \Sigma$ - state results. However, the uncertain ordering of the $4 s \sigma$ orbital with respect to the $3 d \delta$ orbital ${ }^{75}$ left the problem in the hands of the theoreticians. Multiconfiguration self-consistent-field complete active space (CAS MCSCF) calculations on FeO were extrapolated to CoO to predict a ${ }^{4} \Sigma^{-}$ground state. 76 Weltner, however, first predicted a state of Δ symmetry based on trends in the other TM oxides ${ }^{77}$, then later predicted a ${ }^{4} \Phi$ ground state based on ESR experiments ${ }^{72}$. It was from this stage of development that the current study proceeded.

III.B. Experimental

III.B.1. Synthesis of gaseous cobalt oxide.

Cobalt oxide was made in a Broida-type oven assembly ${ }^{74}$ as follows: an alumina crucible containing cobalt metal powder (Fisher Scientific Co.; $0.14 \% \mathrm{Ni}, 0.11 \% \mathrm{Fe}$) was heated resistively in a tungsten basket. The basket was enclosed in a radiation shield comprising an inner ceramic sleeve enveloped by an outer copper sleeve and fitted lid, with zirconia felt packed very tightly around the basket. To produce cobalt oxide (CoO) in quantities sufficient for measurable fluorescence, temperatures approaching the melting point of the alumina crucible ($1920{ }^{\circ} \mathrm{C}$) were required, well in excess of cobalt's melting point of $1495{ }^{\circ} \mathrm{C}$. CoO was formed in the gaseous stream of vaporized cobalt atoms, argon carrier gas and molecular oxygen at a pressure of roughly 1 Torr, with a ratio of approximately $150(\pm 15): 1$ argon to oxygen. Fluorescence, however, occurs only in the presence of laser excitation, which is as with NiO in which only the ground state is populated by the reaction of metal and $\mathrm{O}_{2} .78$ Unlike the production of CuO^{79}, which is more efficient with $\mathrm{N}_{2} \mathrm{O}$ than O_{2}, no CoO fluorescence was observed using $\mathrm{N}_{2} \mathrm{O}$ as the oxidant. The requirement of high temperature drastically hampered the efficiency of CoO synthesis in two ways. First, there was extensive formation of Thénard's Blue ${ }^{80}$ (cobalt aluminate) deposits on the crucible and on the surface of the liquid cobalt; this phenomenon was also reported in 1966 by Grimely and coworkers who heated solid CoO in an alumina cell to high temperatures ${ }^{81}$. Second, the reaction of cobalt vapor with the tungsten basket produces an alloy that renders the basket very susceptible to
cracking, with breakage occurring after at most three heatings of a basket assembly.

III.B.2. The spectrum.

The laser excitation spectrum of gaseous CoO was investigated over the range of 7000 to $5800 \AA$ at Doppler-limited resolution, as described in Section II.A. It is evident that the system extends further to both higher and lower energies. The bands observed by Malet and Rosen with the exploding wire technique ${ }^{69}$ correspond in frequency to those we have measured, though the intensities sometimes varied dramatically between the two techniques. With the superior sensitivity provided by the LIF method, a number of additional bands were observed. The most prominent ones, as measured from a broadband laser spectrum (i.e., one obtained without the intracavity assembly), are listed in Table 3.I. The portion of the spectrum rotationally analyzed thus far covers the range from 15450 to $15790 \mathrm{~cm}^{-1}$ (6470 to $6335 \AA$), which includes three red-degraded bands whose heads lie at $15778 \mathrm{~cm}^{-1}(6338 \AA)$, $15598 \mathrm{~cm}^{-1}(6411 \AA)$ and $15538 \mathrm{~cm}^{-1}(6436 \AA$). The broadband spectrum of this region is shown in Fig. 3.2.

Table 3.1. The most prominent bandheads in the 7000 to $5800 \AA$ broadband emission spectrum of gaseous CoO . Values are accurate to roughly $\pm 3 \mathrm{~cm}^{-1}$, with band strength denoted by: $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak.

| Wavelength
 group | $5920 \AA$ | $6120 \AA$ | $6320 \AA$ | $6650 \AA$ | $6900 \AA$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Wavenumber | 16916 m | 16366 w | 15832 w | 15296 vw | 14704 w |
| and intensity | 16846 s | 16322 s | 15778 s | 15228 w | 14477 m |
| | | 16256 m | 15597 w | 15036 m | 14469 s |
| | | 16088 w | 15538 m | 15004 s | |
| | | | | | |

Fig. 3.2. Broadband laser excitation spectrum of the three bands of gaseous CoO analyzed in this work (linewidths are on the order of 1 cm^{-1}).

III.C. Analysis.

III.C.1. Rotational analysis of the $6338 \AA$ subband.

III.C.1.a. Rotational constants and hyperfine structure.

The strongest band, at $6338 \AA$, was the only band of the three for which a complete analysis was possible, given the available data. The line assignments, listed in Table 3.II, were made using lower state combination differences. For added assurance, some wavelength-resolved fluorescence experiments were performed to verify that certain lines possessed common upper levels. For example, if a pair of lines with a common upper level, such as $Q\left(J{ }^{\prime \prime}\right)$ and $R(J "-1)$, are excited, the fluorescence pattern produced as a result of the R line excitation will be identical to that obtained from the Q line, barring changes in the scattered laser light at the excitation wavelength.

Lower state combination differences measure differences between lines with a common upper state that differ in their J" value, thereby providing information on the lower state energy structure: 1

$$
\begin{gather*}
\Delta_{1} F^{\prime \prime}(J)=R(J)-Q(J+1)=Q(J)-P(J+1) \tag{3.1}\\
\Delta_{2} F^{\prime \prime}(J)=R(J-1)-P(J+1) \tag{3.2}
\end{gather*}
$$

From the definitions of R, Q and P, and from the energy level expressions, it can be shown that ${ }^{83}$

$$
\begin{gather*}
\Delta_{1} F^{\prime \prime}(J)=2 B^{\prime \prime}(J+1)-4 D^{\prime \prime}(J+1)^{3} \tag{3.6}\\
\Delta_{2} F^{\prime \prime}(J)=\left(4 B^{\prime \prime}-6 D^{\prime \prime}\right)(J+1 / 2)-8 D^{\prime \prime}(J+1 / 2)^{3} \tag{3.7}
\end{gather*}
$$

The lowest Q line of this band was assigned as $J^{\prime}=J^{\prime \prime}=7 / 2$, using the average of the $\Delta_{1} F^{\prime \prime}$ combination differences from the first R and P lines, and a rough estimate of $0.5 \mathrm{~cm}^{-1}$ for the value of B . The
possible electronic states corresponding to a value of Ω of $7 / 2$ are ${ }^{4} \Delta$ and ${ }^{2} \Phi$, but only the ${ }^{4} \Delta$ state has an electronic configuration that can reasonably be expected to belong to the ground state. The three subbands analyzed in the current work demonstrate that the most intense CoO transitions are those with $\Omega^{\prime \prime}=7 / 2$. Presumably these must come from the lowest spin-orbit component of the ground state. Since the spin-orbit manifold must be inverted for its lowest energy component to be $7 / 2$, the electronic state is assigned as ${ }^{4} \Delta_{i}$. The relatively low intensity of the Q lines ${ }^{1}$ (see Fig. 3.3), identifies the transition as parallel, or $\Omega^{\prime}=\Omega^{\prime \prime}=7 / 2$. The lower state vibrational level can definitely be assigned as $v^{\prime \prime}=0$, based on resolved fluorescence experiments where the $Q(3.5)$ line was excited: strong fluorescence was observed $851.7 \mathrm{~cm}^{-1}$ to the red of the $Q(3.5)$ transition, but nothing to the blue. In the absence of isotopic labelling studies, such as with $\mathrm{Co}^{18} \mathrm{O}$, no information is available on the upper state quantum number. 83 Extensive structure to the red of the $6338 \AA$ band indicates that there are lower lying vibrational levels; on this basis, the upper state vibrational quantum number is suggested to be at least two.

The lower state rotational constants B and D were calculated by least squares from the $\Delta_{2} F^{\prime \prime}$ combination difference formula in equation (3.7). The $\Delta_{2} F^{\prime \prime}(J)$ combination differences are given in Table 3.II along with the assigned lines of the $6338 \AA$ band. Using these $B^{\prime \prime}$ and $D^{\prime \prime}$ values to calculate the lower state energy levels, the upper state energy levels were calculated; then a least squares fit to the expression

$$
\begin{equation*}
E(J)=T_{0}+B J(J+1)-D J^{2}(J+1)^{2} \tag{3.8}
\end{equation*}
$$

Fig. 3.3. Bandhead of the $\Omega^{\prime}=\Omega^{\prime \prime}=7 / 2$ transition at $6338 \AA$, exhibiting the broadening due to hyperfine interactions and the weak Q branch signifying a parallel transition. The weak background is reproducible.

Table 3.II. Assigned lines from the $6338 \AA$ band (${ }^{4} \Delta_{7 / 2}{ }^{-4} \Delta_{7 / 2}$) of CoO with the lower state combination differences, $\Delta_{2} \mathrm{~F}^{\mathrm{n}}$, in cm^{-1}. An asterisk denotes a blended line.

Table 3.II. continued.

J"	R	P		$\Delta_{2} F^{\prime \prime}$	$\begin{aligned} & 10^{3} \\ & \mathrm{O}-\mathrm{C} \end{aligned}$
29.5	15713.13015713 .500	15664.491	15664.654	59.929	0
30.5	15709.13115708 .185	15657.951	15658.178	61.908	
	15707.960				
31.5	15703.04715703 .110	15651.226	15651.589	63.903	0
32.5	15697.70515697 .888	15645.226	15644.282	65.890	1
		15644.057			
33.5	15692.17115692 .441	15637.158	15637.220	67.870	-4
34.5	15686.42415686 .786	15629.837	15630.015	69.861	3
35.5	15680.48715680 .945	15622.311	15622.580	71.836	-5
36.5	15674.25115674 .893	15614.591	15614.950	73.820	-2
37.5	15667.93315668 .678	15606.670	15607.122	75.787	-15^{8}
38.5	15661.34715662 .251	15598.464	15599.106	77.783	1
39.5	15654.54715665 .638	15590.150	15590.896	79.752	-8
40.5	15647.49815648 .844	15581.594	15582.500	81.738	2
41.5	$15640.453 * 15641.831$	15572.810	15573.900	83.713	1
42.5	15634.643	15563.785	15565.131	85.684	
43.5	15627.272	15554.769	15556.159	87.641 -	-180
44.5	15619.712		15547.002	89.615	-158
45.5	15611.954		15537.657	91.591	-98
46.5	15604.010		15528.121		
47.5			15518.405*		

aNot included in the least squares fit.
was used to obtain B^{\prime} and D^{\prime} from the unperturbed levels with $\mathrm{J}^{\prime}=5.5$ to 19.5 . The results appear in Table 3.III. Note that since the upper state B value is only 81% of the lower state, by the relation $r^{\prime \prime} / r^{\prime}=\left(B^{\prime} / B^{\prime \prime}\right)^{1 / 2}$ the CoO bond length increases by a full 10% upon electronic excitation.

The hyperfine structure in CoO arising from the ${ }^{59} \mathrm{Co}$ nuclear spin of $7 / 2$ follows the case ($a \beta$) pattern where the hyperfine widths decrease with increasing rotation, described to a first approximation by equation (1.90):85

$$
\begin{equation*}
E_{h f s} \approx \Omega[a \Lambda+(b+c) \Sigma](1 / J)\{[F(F+1)-J(J+1)-I(I+1)] / 2(J+1)\} \tag{3.9}
\end{equation*}
$$

(In case ($\mathrm{b} \beta \mathrm{J}$) coupling the hyperfine widths are independent of N for each of the spin components.) The hyperfine splitting in the P lines is found to be wider than that in R lines of the same $\mathrm{J}^{\prime \prime}$, while P and R lines possessing the same upper state J are of comparable widths. Since a comparison of P and R lines of the same $J "$ demonstrate upper state properties, while those with equal J' represent the lower state, it can be seen that the hyperfine interactions produce larger splittings in the upper state than in the lower state. From equation (3.9) it can also be seen that the eight hyperfine components of a rotational line will be more widely spaced at higher values of F. Partially resolved hyperfine splittings in some low J lines, for instance $P(5.5)$, show that the highest F value component is on the high frequency side. This ordering of the hyperfine components shows that the change in the Fermi contact parameter, b^{\prime} - $b^{\prime \prime}$, is positive. ${ }^{84}$

Table 3.III. Rotational constants for the analyzed bands of the red system of CoO.a

	To	B	$10^{7} \mathrm{D}$	σ
Upper Levels:				
6338 A, $\Omega=7 / 2$	15772.513 ± 3	0.40531 ± 9	6.4 ± 19	0.0038
$6411 \AA, \Omega=5 / 2$	$a+15594.974 \pm 2$	0.42503 ± 24	27 ± 7	0.0049
$6436 \AA, \Omega=7 / 2$	15535.77	$0.4224{ }^{\text {b }}$
Lower Levels (${ }^{4} \Delta_{i}$):				
$\Omega=5 / 2$	a	$0.5026{ }_{6} \pm 9$	3.6 ± 14	0.0024
$\Omega=7 / 2$	0	0.50058 ± 4	6.50 ± 15	0.0031

[^0]
III.C.1.b. Perturbations.

A plot of the upper state energy levels as a function of $J(J+1)$ illustrates the perturbations in the upper states. The lower state appears to be free of Λ-doubling (cf. Section 1.B.6) and other perturbations, since the lower state combination differences are entirely regular: the two $\Delta_{2} F^{\prime \prime}(J)$ values, given by the two Λ-doubling components, are equal to within experimental error. Figure 3.4 shows that upper state Λ-doublings begin at $J^{\prime}=21.5$, and that in some places extra transitions occur; the section of spectrum in Fig. 3.5 illustrates these perturbations. The extra lines could be securely identified because they give exactly the same $\Delta_{2} F^{\prime \prime}(J)$ combination differences as the main lines and their relative intensities are in the same ratio.

Two avoided crossings can be seen in Fig. 3.4: a strong one, where both of the Λ components are perturbed, at $J^{\prime}=30.5-31.5$, and a weaker one where the lower Λ component is mildly perturbed at $J^{\prime}=37.5$. Since the avoided crossings affect the Λ-components differently, the perturbing state is orbitally non-degenerate, or alternatively has a very large Λ-doubling of its own. The state perturbing the $J^{\prime}=22.5$ level appears to have a relatively small Λ or Ω-doubling. (Λ-doubling exhibited by a Σ state is referred to here as Ω-doubling ${ }^{85}$.)

The state responsible for all of the above perturbations could conceivably be a single case (a) 4Σ state. The small Ω-doubling occurring near $\mathrm{J}^{\prime}=22.5$ could arise from the ${ }^{4} \Sigma_{3 / 2}$ component, while the considerably larger Ω-type splitting associated with the ${ }^{4} \sum_{1 / 2}$ component 85 is capable of affecting upper state levels that are

Fig. 3.4. Upper state energy levels of the ${ }^{4} \Delta_{7 / 2}-{ }^{4} \Delta_{7 / 2} 6338 \AA$ band, scaled by subtracting the quantity $0.405 \mathrm{~J}(\mathrm{~J}+1)-6.4 \times 10^{-7} \mathrm{~J}^{2}(\mathrm{~J}+1)^{2}$, plotted against $J(J+1)$.

Fig. 3.5. A section of the spectrum of the $6338 \AA$ band containing Λ doubling, two avoided crossings, and extra lines. The extra $\mathrm{R}(30.5)$ line to the blue of the Λ-doubled $R(30.5)$ lines corresponds to the anomalous point in Fig. 3.4 near $\mathrm{J}(\mathrm{J}+1)=1000$. All lines, down to the weakest, are reproducible, though relative intensities between lines at either end of the spectrum may not be accurate since the spectrum is compiled from several laser scans.
widely spaced in J, analogous to the situation observed in Fig. 3.4.

III.C.2. Rotational analysis of the $6436 \AA$ subband.

The fairly intense $6436 \AA$ band is another $\Omega^{\prime}=\Omega^{\prime \prime}=7 / 2$ parallel transition whose lower state is the same as that of the $6338 \AA$ band, as the lower state combination differences of the two bands are equal to within experimental error. Because the upper level lies only $237 \mathrm{~cm}^{-1}$ below that of the $6338 \AA$ upper state, and the frequency separating the strong groups of subbands (cf. Table 3.I) is on the order of $600 \mathrm{~cm}^{-1}$, it cannot belong to the same upper electronic state as the $6338 \AA$ band. Also, the hyperfine structure is considerably wider than in the $6338 \AA$ subband, which also points to a different upper electronic state. There is not enough information available to say what this other electronic state is. Although its high intensity suggests that it is another ${ }^{4} \Delta_{7 / 2}-{ }^{4} \Delta_{7 / 2}$ transition, there are other channels through which intensity can be derived. In the very dense, perturbed "orange" system of FeO , for example, transitions to the high vibrational levels of various lower electronic states acquire considerable intensity by interacting with the upper state of the system. 86

The upper state energy levels are plotted as a function of $J(J+1)$ in Fig. 3.6, up to the limit of our analysis thus far at $J^{\prime}=26.5$. Λ doubling is first observed at $J^{\prime}=20.5$, very much like the $6338 \AA$ band upper levels which are first seen to split at $J^{\prime}=21.5$. Perturbations in the upper state have scattered the levels to such a degree that a good least squares fit to the upper state constants was not possible, though a value of B^{\prime} could be estimated (see Table

Fig. 3.6. Upper state energy levels of the ${ }^{4} \Delta_{7 / 2}-{ }^{4} \Delta_{7 / 2} 6436 \AA$ band, scaled by subtracting the quantity $0.42 \mathrm{~J}(\mathrm{~J}+1)$, plotted against $J(J+1)$.
3.III). The lines assigned in the $6436 \AA$ band are compiled in Table 3.IV.

III.C.3. Rotational analysis of the $6411 \AA$ subband.

The $\Omega^{\prime}=\Omega^{\prime \prime}=5 / 2$ subband whose head lies at $6411 \AA$ is much weaker than the other two subbands, and is also badly perturbed, which has precluded analysis beyond $J^{\prime}=20.5$. All the lines assigned so far are listed in Table 3.V. The transition was assigned as $\Omega^{\prime}=\Omega^{\prime \prime}$ $=5 / 2$ by the methods used previously for the $6338 \AA$ subband, and it appears that the lower state is the $\Omega=5 / 2$ spin-orbit component of the ground electronic state. The crowded head region of the band is shown in Fig. 3.7.

The perturbations in the $\Omega^{\prime}=5 / 2$ upper state are illustrated by the plot of the scaled upper state energy levels as a function of $J(J+$ 1) in Fig. 3.8. The Λ-doubling is much larger than in the upper levels of the $\Omega=7 / 2$ bands, with the splitting first discernible at Dopplerlimited resolution at $J^{\prime}=10.5$. At $J^{\prime}=16.5$ one of the Λ-components is drastically pushed to lower energy, and no further J' levels could be assigned. The other component also disappears abruptly at $\mathrm{J}^{\prime}=$ 20.5. The suddenness with which the branches break off is surprising, because there is no appreciable loss of intensity before the rotational structure ceases. This fragmentary behavior has been observed before, for example in the $5866 \AA$ band of FeO where the structure disappears suddenly at $J^{\prime}=15$, and then reappears $12 \mathrm{~cm}^{-}$ 1 to the blue. ${ }^{86}$ The $6411 \AA$ upper level in CoO has obviously suffered a massive perturbation near $J^{\prime}=20.5$. To find where the branches resume will require extensive wavelength resolved

Table 3.IV. Assigned lines from the $6436 \AA\left({ }^{4} \Delta 7 / 2{ }^{-4} \Delta 7 / 2\right)$ band of CoO , in cm^{-1}.

$\mathrm{J} "$	R	P
7.5	15537.998	15524.45
8.5	15537.505	15522.347
9.5	15536.866	15519.996
10.5	15536.061	15517.490
11.5	15535.096	15514.839
12.5	15533.976	15512.039
13.5	15532.692	15509.082
14.5	15531.241	15505.950
15.5	15529.644	15502.682
16.5	15527.897	15499.226
17.5	15525.955	15495.625
18.5	15523.820	15491.877
19.5	15521.589	15521.967
20.5	15519.589	15519.536

Table 3.V. Assigned lines from the $6411 \AA$ band (${ }^{4} \Delta_{5 / 2}{ }^{-4} \Delta_{5 / 2}$) of CoO , in cm^{-1}. An asterisk denotes a blended line.

J"	R		Q	P	
2.5	15597.270*		15594.293		
3.5	15597.577*		15593.751		
4.5	15597.730*		15593.067	15589.2*	
5.5	15597.730*		15592.23*	15587.557	
6.5	15597.577*.		15591.183	15585.670	
7.5	15597.270*		15590.039*	* 15583.654	
8.5	15596.194		15588.739	15581.492	
9.5	15596.194	15596.240			15579.076
10.5	15595.432	15595.512		15576.718	
11.5	15594.523	15594.647		15574.076*	15574.125
12.5	15593.461	15593.618		15571.307	15571.389
13.5	15592.254	15592.708		15568.389	15568.512
14.5	15590.896	15591.441		15565.323	15565.493
15.5	15589.390	15588.739		15562.106	15562.559
16.5	15587.729			15582.734	15559.270
17.5	15585.958			15555.222	15554.561
18.5	15583.958			15551.558	
19.5	15581.845			15547.736	
20.5				- 15543.770	
21.5				15539.646	

Fig. 3.7. Bandhead of the $\Omega^{\prime}=\Omega^{\prime \prime}=5 / 2$ transition at $6411 \AA$. The band is extensively overlapped by other bands, as evidenced by the dense collection of unassigned lines.

Fig. 3.8. Upper state energy levels of the ${ }^{4} \Delta_{5 / 2}-{ }^{4} \Delta_{5 / 2} 6411 \AA$ band, scaled by subtracting the quantity $0.42 \mathrm{~J}(\mathrm{~J}+1)$, plotted against $J(J+1)$.
fluorescence measurements in the surrounding region. Such studies must be postponed until we develop a less cumbersome method by which to synthesize gaseous CoO .

The upper and lower state B and D rotational constants, calculated in the same manner as for the $6338 \AA$ band, are given in Table 3.III. Kratzer's relationship83,

$$
\begin{equation*}
D_{e}=4 B_{e}{ }^{3 / \omega_{e}}{ }^{2} \tag{3.10}
\end{equation*}
$$

for the equilibrium values of the rotational constants and the vibrational frequency (ω_{e}) can be approximated for the $\mathrm{v}=0$ level by

$$
\begin{equation*}
D_{0}=4 B_{0} 3 / \Delta G_{1 / 2^{2}}^{2} \tag{3.11}
\end{equation*}
$$

Using equation (3.11) to calculate an approximate value for $\mathrm{D}^{\prime \prime}$, it is found to be about 60% larger than the observed value.

III.D. Discussion.

Of the two possible ground electronic state configurations for $\mathrm{CoO},{ }^{4} \Sigma^{-}\left(\sigma \pi^{2} \delta^{4}\right)$ or ${ }^{4} \Delta\left(\sigma^{2} \pi^{2} \delta^{3}\right)$, evidence has been presented in the rotational analysis of the excitation spectrum of gaseous CoO which strongly supports that the ground state is 4_{i}. The fundamental vibrational frequency of $846.4 \mathrm{~cm}^{-1}$ measured by infrared spectroscopy in low-temperature (14 K) matrix isolation 71 closely matches the value of $851.7 \mathrm{~cm}^{-1}$ obtained from this laser induced fluorescence work. Since the ground electronic state should be the only one populated at 14 K , and a $5.3 \mathrm{~cm}^{-1}$ shift from the solid to gas phase is not unreasonable, this suggests that the lower electronic state of the three bands studied here is the ground state. The matrix isolation electron spin resonance study ${ }^{72}$ which could not produce a signal from CoO eliminates the possibility for ${ }^{4} \Sigma$ - as the ground state, taking this absence of a result as valid. The only condition under which an orbitally non-degenerate electronic state with case (a) coupling can produce no ESR signal when isolated in a low-temperature matrix is if it possesses an odd spin multiplicity with the $\Omega=0$ level the only one populated. The band intensities support an inverted order for the spin-orbit manifold since the $\Omega^{\prime}=$ $\Omega^{\prime \prime}=7 / 2$ bands are strongest, followed by $\Omega^{\prime}=\Omega^{\prime \prime}=5 / 2$.

The rotational analysis of two Ω spin-orbit components of the same electronic state provides the information required to determine the true B value and an estimate for the spin-orbit interval, A . For molecules in which spin uncoupling is small because the spin-orbit interaction is very large, the effective B value for a given spin-orbit component differs from the true B value
by an amount that depends on the spin-uncoupling operator, $-2 B \hat{\mathbf{J}} \cdot \hat{\mathbf{S}}$. A second order perturbation treatment of two Ω substates separated by $\mathrm{A} \Lambda$ and connected by this operator produces the relation: 24

$$
\begin{equation*}
\mathrm{B}_{\mathrm{eff}, \Omega}=\mathrm{B}(1+2 \mathrm{~B} \Sigma / \mathrm{A} \Lambda) \tag{3.12}
\end{equation*}
$$

Solving equation (3.12) simultaneously for both $A \Lambda$ and the true B value for the $v^{\prime \prime}=0$ level, using the effective $B_{\Omega=7 / 2}$ and $B_{\Omega=5 / 2}$ values in Table 3.III, gives

$$
\begin{equation*}
B=0.5037 ; \quad A \Lambda \approx-244 \mathrm{~cm}^{-1} \tag{3.13}
\end{equation*}
$$

The spin-orbit coupling interval $\mathbf{A \Lambda}$ is not expected to be accurate to better than 10%, as equation (3.12) does not take into account the centrifugal distortion corrections to A and λ, called A_{D} and λ_{D} (cf. Section I.B.3). For example, the initial estimate of $|A \Lambda|$ made for FeO^{75} was $180 \mathrm{~cm}^{-1}$, based on the approximation in equation (3.12), yet the value was later found 87 to be $190 \mathrm{~cm}^{-1}$. The definition of B , as a function of the mean value of the bond length r during the vibration, is ${ }^{83}$

$$
\begin{equation*}
\left.B=\left(h / 8 \pi^{2} c \mu\right)<r^{-2}\right\rangle \tag{3.14}
\end{equation*}
$$

where μ is the reduced mass of the molecule. With the B value in equation (3.13), the bond length in the zero point vibrational level is calculated from equation (3.14) to be:

$$
\begin{equation*}
r_{0}\left(X^{4} \Delta_{\mathrm{i}}\right)=1.631(\pm 0.001) \AA \tag{3.15}
\end{equation*}
$$

The 10% increase in bond length to $1.80 \AA$ upon electronic excitation to the upper ${ }^{4} \Delta_{i}$ state is quite large compared to transitions in the other first row diatomic transition metal oxides. The $A^{4} \Pi \leftarrow X^{4} \Sigma$ transition of VO produces a 7% increase ${ }^{45} ; A^{5} \Sigma \leftarrow X^{5} \Pi_{r}$ and $B^{5} \Pi_{r} \leftarrow$ $X^{5} \Pi_{r}$ in CrO give 2-1/2 and $5-1 / 2 \%$ increases 90 ; the ${ }^{6} \Sigma^{+} \leftarrow{ }^{6} \Sigma^{+}$ parallel transition of MnO at $6500 \AA$ shows a 4% increase 91; but
various subbands of the orange system of FeO do show bond length increases of up to as much as $11 \% 87$, and a state perturbing the MnO $A^{6} \Sigma^{+}$state has a bond 10% longer than that of the ground state ${ }^{91}$.

The magnetic hyperfine structure and spin-orbit coupling constant can be used to give information about the excited states as well as the ground state. The insignificant hyperfine structure in the ground state is consistent with the lack of unpaired s electron density in the ${ }^{4} \Delta \sigma^{2} \pi^{2} \delta^{3}$ configuration. The upper state configuration can be assigned as $\sigma \pi^{2} \delta^{3} \sigma^{*}$ for three reasons:

1) the large, positive hyperfine splittings in the upper state indicate a strong Fermi contact interaction due to open shell s electrons (cf. Section I.B.3). When an unpaired s electron is present in a diatomic transition metal oxide it usually shows up clearly in the Fermi contact parameter. Most states with unpaired s electrons have positive values for a_{F} : a_{F} for $\mathrm{ScO}^{73} \sigma^{2} \Sigma^{+}=+0.0667 \mathrm{~cm}{ }^{-1}$; a_{F} for VO45 $\sigma \delta^{2}{ }^{4} \Sigma^{-}=+0.02593 \mathrm{~cm}^{-1}$; a_{F} for $\mathrm{MnO}^{90} \sigma \delta^{2} \pi^{2}{ }^{6} \Sigma^{+}=+0.0151$ cm^{-1}. An exception is the ground state of CuO , which has a large, negative Fermi contact parameter in spite of the presence of open shell so electrons. 79 Three configurations are believed to make significant contributions to the ${ }^{2} \Pi_{i}$ ground state:

$$
\begin{aligned}
& C u^{+}\left(3 d^{10}\right) O-\left(2 p^{5}\right), \\
& C u\left(3 d^{10} 4 s\right) O\left(2 p^{4}\right), \text { and } \\
& \mathrm{Cu}\left(3 d^{9} 4 s 4 p\right) O\left(2 p^{4}\right)
\end{aligned}
$$

Only the last one has open shell metal-centered orbitals which will participate significantly in the hyperfine interactions. In terms of molecular orbitals, this configuration is proposed to be: ${ }^{79}$

$$
3 \mathrm{~d} \sigma^{1} \delta^{4} \pi^{4}(\mathrm{Cu}), 4 \mathrm{~s} \sigma(\mathrm{Cu})+2 \mathrm{p} \sigma(\mathrm{O}), \mathrm{p} \pi(\mathrm{Cu})+2 \mathrm{p} \pi(\mathrm{O})
$$

The wavefunction can therefore be expressed as a linear combination of Slater determinants (showing only the unpaired electrons for clarity):

$$
\begin{align*}
\psi\left(2 \Pi_{i}\right)= & (1 / \sqrt{ } 6)\{2|\mathrm{~d} \sigma(\alpha) p \sigma(\alpha) p \pi(\beta)|-|d \sigma(\alpha) p \sigma(\beta) p \pi(\alpha)| \\
& -|d \sigma(\beta) p \sigma(\alpha) p \pi(\alpha)|\} \tag{3.16}
\end{align*}
$$

The authors propose that the negative terms in the wavefunction are responsible for the negative value for a_{F} of $-0.0139 \mathrm{~cm}^{-1}$. The $C^{4} \Sigma-$ state of VO, with a $3 \mathrm{~d} \delta^{2} \sigma^{*}$ configuration, is an example where the promotion of an electron from s σ to a non-s type σ orbital produces a negative value for the I.S interaction constant of $-0.00881 \mathrm{~cm}^{-1}$, as a result of spin polarization. ${ }^{45}$ The σ^{*} orbital is believed to be a linear combination of $3 \mathrm{~d} \sigma, 4 \mathrm{~s} \sigma$ and $\mathrm{O}(2 p \sigma)$.
2) the fact that the $\Omega=7 / 2$ and $\Omega=5 / 2$ subbands lie very close in the spectrum shows that the spin-orbit intervals $A \Lambda^{\prime \prime}$ and $A \Lambda^{\prime}$ are nearly equal. The ${ }^{4} \Delta$ states of the configurations $\sigma^{2} \pi^{2} \delta^{3}$ and $\sigma \pi^{2} \delta^{3} \sigma^{*}$ will have orbital angular momentum coming only from the ' δ ' hole, so that they should have roughly the same spin-orbit couplings.
3) Following from 2), the negative sign of A also suggests a δ hole, or δ^{3} configuration.

The $\sigma \pi^{2} \delta^{3} \sigma^{*}$ configuration can give rise to 19 electronic states from the different arrangements of the electrons within the orbitals. 74 The result will be a dense collection of states ranging up to $S=5 / 2$ and $\Lambda=4$, among which are, for example, a ${ }^{4} \Gamma$ state with the configuration $\sigma(\uparrow) \pi(\uparrow \downarrow) \delta(\uparrow \downarrow \uparrow) \sigma{ }^{*}(\uparrow)$, and a $\sigma(\uparrow) \pi(\uparrow \uparrow) \delta(\uparrow \downarrow \uparrow) \sigma^{*}(\uparrow)^{6} \Delta$ state. As the states comprising such a melange are expected to interact strongly with one another, this
could explain the extensive perturbations experienced by the upper states of CoO investigated here. As discussed in Section III.C.1.c, the only perturbing state for which we have clear evidence appears to be a ${ }^{4} \Sigma$ state, arising possibly from a $\sigma \pi^{2} \delta^{3} \sigma^{*}$ configuration, or ${ }^{2} \Sigma \times{ }^{1} \Delta \times{ }^{2} \Delta \times{ }^{2} \Sigma={ }^{4} \Sigma$.

Now that the ground state configuration of CoO has been determined in this work, the entire series of first row diatomic transition metal oxide ground states is now established. The ground states and some major molecular constants of the 3d transition metal monoxides appear in Table 3.V. Although many more excited states of cobalt oxide remain to be discovered, the most interesting results for the immediate future would be the direct measurements of the spin-orbit coupling intervals, and sub-Doppler measurements of the hyperfine structure. However, the experiments would require a more efficient means of generating CoO than has been used so far.

Table 3.VI. Ground states and configurations of the first row diatomic transition metal oxides, with the fundamental vibrational frequency $\Delta G_{1 / 2}, B$ and r for the $v^{\prime \prime}=0$ state, and the spin-orbit interval $A \Lambda$ for the orbitally degenerate electronic states. The $A \Lambda$ value for CoO has not been established with certainty.

Ground	Electron	$\Delta \mathrm{G}_{1 / 2}$	$\mathrm{~B}_{0}$	r_{0}		
state	configuration	$\left(\mathrm{cm}^{-1}\right)$	$\left(\mathrm{cm}^{-1}\right)$	(\AA)	$\mathrm{A} \Lambda$	Ref

ScO	${ }^{2} \Sigma^{+}$	σ	964.65	0.51343	1.668	-	29,30
TiO	${ }^{3} \Delta_{\mathrm{r}}$	$\sigma \delta$	1000.02	0.53384	1.623	101.30	89
VO	${ }^{4} \Sigma^{-}$	$\sigma \delta^{2}$	1001.81	0.54638	1.592	-	45,88
CrO	${ }^{5} \Pi_{r}$	$\sigma \delta^{2} \pi$	884.98	0.52443	1.621	63.22	90
MnO	${ }^{6} \Sigma^{+}$	$\sigma \delta^{2} \pi^{2}$	832.41	0.50122	1.648	-	91
FeO	${ }^{5} \Delta_{i}$	$\sigma \delta^{3} \pi^{2}$	871.15	0.51681	1.619	-189.89	87
CoO	${ }^{4} \Delta_{\mathrm{i}}$	$\sigma^{2} \delta^{3} \pi^{2}$	851.7	0.50370	1.631	(-240)	this work
NiO	${ }^{3} \Sigma^{-}$	$\sigma^{2} \delta^{4} \pi^{2}$	825.4	0.5058	1.631	-	78
CuO	${ }^{2} \Pi_{\mathrm{i}}$	$\sigma^{2} \delta^{4} \pi^{3}$	629.39	0.44208	1.729	-277.04	92,93

CHAPTER IV
 HYPERFINE ANALYSIS OF NIOBIUM NITRIDE

IV.A. Introduction.

Niobium nitride (NbN) is an exemplary molecule in which to study hyperfine interactions in diatomic molecules, because the nuclear magnetic moment (μ_{N}) of ${ }^{93} \mathrm{Nb}$ exceeds that of any other nonradioactive atom. The magnetic hyperfine structure which results is proportionately large and well-resolved, allowing precise, informative analysis. Following the initial observation of NbN in 1969 by Dunn and Rao ${ }^{94}$, the first low resolution hyperfine analysis of the ${ }^{3} \Phi-{ }^{3} \Delta$ system was performed in 1975 by Féménias et al ${ }^{95}$ with a grating spectrograph. The study produced values for the magnetic hyperfine constants a, b and c which suggested that the excited ${ }^{3} \Phi$ state makes a non-negligible contribution to the hyperfine structure. The spectra also exhibited line broadening at very high J values, indicating either Λ-doubling in the ${ }^{3} \Delta$ state or a transition from case $\left(a_{\beta}\right)$ to ($b_{\beta J}$) coupling with increasing rotation. In the meantime, the fundamental frequencies of the ground states of $\mathrm{Nb}^{14} \mathrm{~N}$ and $\mathrm{Nb}^{15} \mathrm{~N}$ were measured to be $1002.5 \mathrm{~cm}^{-1}$ and $974 \mathrm{~cm}^{-1}$ by IR spectroscopy in a 14 K argon matrix. ${ }^{96}$ A Russian group published a number of papers on the ${ }^{3} \Phi{ }^{3} \Delta$ system ${ }^{97,98,99}$, culminating in the 1986 publication by Pazyuk et al ${ }^{100}$, in which they proposed a set of rotational, centrifugal distortion and spinorbit coupling constants (B, D and A), and an energy level scheme for the system. However, the spin-orbit splittings for both states were drastically miscalculated, and the ordering of the spin-orbit
manifolds was inverted, due to their interpretation of bands they observed near $5600 \AA$ as ${ }^{3} \Phi_{3}-{ }^{3} \Delta_{3}$ and ${ }^{3} \Phi_{2}{ }^{-3} \Delta_{2}$ spin-orbit satellites, rather than as parts of the $\Pi-\Delta$ system to which they actually belong. In 1979, an optical emission study measured eight subbands belonging to five systems, including ${ }^{3} \Phi-3 \Delta$, and determined the upper and lower state B values for each. 101 Most recent was a grating spectrograph analysis of the ${ }^{3} \Phi-3 \Delta$ system performed by the same investigators involved in the preliminary 1975 study, but at a higher resolution $\left(\pm 0.01 \mathrm{~cm}^{-1}\right.$ line position), and up to $\mathrm{J"}=88.102$ Their work produced the following set of molecular constants for the $(0,0)$ band, in units of cm^{-1} with the uncertainty in the last digit given in parentheses:

	T_{0}	A	δ	B	$10^{7} D \quad 10^{5} A_{D}$	
$X^{3} \Delta$	fixed to 0	$183.0(2)$	$-33.1(2)$	$0.50144(4)$	$4.56(6)$	≈-4
$A^{3} \Phi$	$16504.938(3)$	$241.6(1)$	$7.39(2)$	$0.49578(4)$	$4.88(6)$	≈-4

The central shift parameter δ accounts for the shift in the ${ }^{3} \Phi_{3}-$ ${ }^{3} \Delta$ subband because of second order spin-orbit effects. The investigations described in the current work mark the first high resolution laser spectroscopy performed on NbN .

IV.B. Experimental.

IV.B.1. Synthesis of gaseous niobium nitride.

Niobium nitride was formed in a flow system by reacting the vapor from a sample of warmed niobium (V) chloride ($\approx 80^{\circ} \mathrm{C}$) with nitrogen. The nitrogen was entrained with argon in a ratio of approximately $1: 18(\mathrm{v} / \mathrm{v})$ at 1 Torr pressure. A few centimeters upstream from the fluorescnce cell, the vapor was passed through a 2450 MHz microwave discharge (powered by a Microtron model 200 microwave generator). To obtain intermodulated fluorescence spectra, two nearly coincident laser beams were passed in opposite directions across the lavender-colored flame of the discharge, with the fluorescence detected at right angles to the beams through a deep red low pass filter to the photomultiplier tube, as described in Section II.A.

IV.B.2. Description of the ${ }^{3} \Phi-{ }^{3} \Delta$ spectrum.

Broadband spectra of the three subbands of the ${ }^{3} \Phi{ }^{3}{ }^{3} \Delta$ system of NbN are illustrated in Fig. 4.1. The middle spin-orbit component, ${ }^{3} \Phi_{3}-{ }^{3} \Delta_{2}$, is shifted to higher energy rather than being equidistant between the outer subbands, and is also considerably weaker, presumably due to intensity stealing by an unseen state. The vibrational sequences are plainly visible, up to ($v^{\prime}, v^{\prime \prime}$) $=(5,5)$ in the ${ }^{3} \Phi_{4}{ }^{-3} \Delta_{3}$ subband.

At sub-Doppler resolution, the variation in hyperfine structure between the three subbands is apparent from the Q head regions shown in Fig. 4.2. The hyperfine interaction in the ${ }^{3} \Phi_{3}{ }^{-3} \Delta_{2}$ subband is much less pronounced than that in the other two because

Fig. 4.1. Broadband spectrum of the ${ }^{3} \Phi-3^{3} \Delta$ system of $N b N$, obtained with the intracavity assembly removed, using the dye rhodamine 6 G . Note that the vibrational sequence of the ${ }^{3} \Phi_{4}{ }^{-3} \Delta_{3}$ subband is visible up to $\left(v^{\prime}, v^{\prime \prime}\right)=(5,5)$.

b)

$$
0.1 \mathrm{~cm}^{-1}
$$

Fig. 4.2. The Q heads of the a) ${ }^{3} \Phi_{2}-{ }^{3} \Delta_{1}$, b) ${ }^{3} \Phi_{3}{ }^{-3} \Delta_{2}$, and c) ${ }^{3} \Phi_{4}-{ }^{3} \Delta_{3}$ subbands of NbN .
the value of Σ in both states is zero. In the ${ }^{3} \Phi_{4}-{ }^{3} \Delta_{3}$ subband the hyperfine splitting is considerably larger than that in ${ }^{3} \Phi_{2}{ }^{-3} \Delta_{1}$, since Ω is three times as large in the former subband (cf. equations 1.90 and 1.98). The assignment of the densely overlapped ${ }^{3} \Phi_{2}-{ }^{3} \Delta_{1} Q$ head is shown in Figs. 4.3 and Fig. 4.4. The low-J R branches of the ${ }^{3} \Phi_{2}{ }^{3} \Delta_{1}$ subband, illustrated in Fig. 4.5, are exemplary for their completely resolved $\Delta F \neq \Delta J$ transitions and crossover resonances (cf. Section II.B for a discussion of these transitions). The hyperfine pattern is quite different in the central subband: at $\mathrm{J} "=2$ the high F component is on the low frequency side, but at $\mathrm{J} "=3$ the hyperfine structure reverses order and continues on at higher J values with the highest F component at high frequency. The development of this ${ }^{3} \Phi_{3}{ }^{-3} \Delta_{2} R$ branch hyperfine structure is shown in Fig. 4.6.

As the rotation of the molecule increases, spin-uncoupling is observed in the Q branches of the outer two subbands as a reversal in the hyperfine structure: the hyperfine splitting narrows with increasing J until the components collapse into a spike; then they reverse their order and widen with increasing rotation (see Fig. 4.7). Therefore hyperfine structure which begins with its components increasing in F toward increasing frequency reverse to an order in which the F values decrease with frequency. The reversal in the Q branches occurs at $\mathrm{J}=27$ and $\mathrm{J}=38$ in the ${ }^{3} \Phi_{2}{ }^{-3} \Delta_{1}$ and ${ }^{3} \Phi_{4}{ }^{-3} \Delta_{3}$ subbands, respectively. The hyperfine structure in the ${ }^{3} \Phi_{3}{ }^{-3} \Delta_{2}$ transition is less sensitive to the effects of rotation, since its diagonal matrix elements are independent b and c. The Q branch of

Fig. 4.3. The beginning of the Q head of the ${ }^{3} \Phi_{2}-{ }^{3} \Delta_{1}$ subband. Each $\Delta F=0$ line is connected to the $\Delta F= \pm 1$ lines with the same $F^{\prime \prime}$ value by a thick horizontal line. Components of the $Q(7)$ and $Q(8)$ lines are also present in this region, but are not labelled.

Fig. 4.4. The higher J portion of the ${ }^{3} \Phi_{2}-{ }^{3} \Delta_{1} Q$ head, and the first resolved Q lines. The crossover resonances are not labelled.

Fig. 4.5. a) $R 1$, b) $R 2$, and c) $R 3$ lines of the ${ }^{3} \Phi_{2}{ }^{-3} \Delta_{1}$ subband, illustrating the "forbidden" $\Delta F \neq \Delta J$ transitions (* for $q R$, * for $p R$) and the crossover resonances (c) between the rR and $q R$ lines. Each $\Delta F=\Delta J$ transition (\cdot) is labelled with the lower state F value, with the corresponding satellite transitions following it to the red (right) in the order: c (if seen), , , * (if seen). The scale shown in (b) is the same for all spectra.

Fig. 4.6. a) R2, b) R3 and c) R4 lines of the ${ }^{3} \Phi_{3}{ }^{-3} \Delta_{2}$ subband of $N b N$, showing the rR, qR and pR transitions and the crossover resonances associated with the rR and qR lines (denoted by c.o.).

Fig. 4.6. d) R5 and e) R6 lines of the ${ }^{3} \Phi_{3}-{ }^{3} \Delta_{2}$ subband of NbN ; the labelling follows that of Fig. $4.6 \mathrm{a}, \mathrm{b}$ and c .

Fig. 4.7. The reversal of hyperfine structure at high J in the ${ }^{3} \Phi_{4}{ }^{3} \Delta_{3}$ Q branch, caused by the effects of spin-uncoupling. Actual reversal occurs in the line of maximum intensity, $Q(38)$.
this subband therefore narrows up to about $\mathrm{J}=12$, and then remains nearly constant in width up to the limit of our data at $\mathrm{J}=27$.

IV. C. Non-Linear Least Squares Fitting of Spectroscopic Data.

In order to acquire the best set of molecular constants in a Hamiltonian, one must iteratively improve an estimated set of constants until a satisfactory fit of the observed data is obtained. In approaching the non-linear type of Hamiltonian typically describing a spectroscopic problem, the Hamiltonian is divided into its two constituents: the coefficients containing the quantum number dependence, and the molecular constants, or ${ }^{103}$

$$
\begin{equation*}
\hat{H}=\sum_{m=1}^{p} X_{m} H_{m} \tag{4.1}
\end{equation*}
$$

X_{m} is the mth parameter (or molecular constant) out of a total of p parameters, and H_{m} is the "skeleton matrix" containing the quantum number dependence of the mth parameter. For example, a simple ${ }^{2} \Pi$ Hamiltonian may be expressed as:103

$$
\hat{H}=T_{0} \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+A \cdot\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right]+B \cdot\left[\begin{array}{cc}
(J+1 / 2)^{2}-2 & -\left[(J+1 / 2)^{2}-1\right]^{1 / 2} \\
-\left[(J+1 / 2)^{2}-1\right]^{1 / 2} & (J+1 / 2)^{2}
\end{array}\right]
$$

The matrix of eigenvalues (or energy levels) \mathbf{E} of the Hamiltonian is obtained by diagonalization with the eigenvectors \mathbf{U} :

$$
\begin{equation*}
\mathbf{U t} \hat{\mathrm{H}} \mathrm{U}=\mathrm{E} \tag{4.2}
\end{equation*}
$$

\mathbf{U} is a unitary matrix such that the adjoint of $\mathbf{U}\left(\mathbf{U}^{\dagger}\right.$, or the conjugate of the transpose $\mathbf{U T}^{\top}$) equals the inverse of $\mathbf{U}\left(\mathbf{U}^{-1}\right)$.

The combination of equations (4.1) and (4.2) allows the HellmannFeynman theorem to be employed, which states:104

$$
\begin{equation*}
\partial E_{m} / \partial X=\int \Psi_{m}^{*}(\partial H / \partial X) \Psi_{m} d \tau \tag{4.3}
\end{equation*}
$$

For a single matrix element ii of parameter m, the HellmannFeynman theorem becomes:103

$$
\begin{equation*}
\left[U^{\top}\left(\partial \hat{H} / \partial X_{m}\right) U\right]_{i i}=\partial E_{i} / \partial X_{m}=B_{i} \tag{4.4}
\end{equation*}
$$

Using equation (4.1), equation (4.4) can also be written as:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{im}}=\left[\mathrm{U}^{\top} \hat{\mathrm{H}}_{\mathrm{m}} \mathbf{U}\right]_{\mathrm{ii}} \tag{4.5}
\end{equation*}
$$

The Hellmann-Feynman derivatives B_{im} form the derivatives matrix, B, which give the dependence of the energy on variations in the parameters.

To apply this relation to an iterative solution of unknown molecular parameters, equation (4.2) is expressed in terms of a single energy level, $\mathrm{E}_{\mathrm{i}}{ }^{\text {calc }}$:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{i}} \mathrm{calc}=(\mathbf{U} \dagger \hat{\mathrm{H}} \mathbf{U})_{\mathrm{ii}} \tag{4.6}
\end{equation*}
$$

Substituting equation (4.1) into equation (4.6) gives

$$
\begin{equation*}
\mathrm{E}_{\mathrm{i}}^{\text {calc }}=\sum_{\mathrm{m}=1}^{\mathrm{p}} \mathrm{X}_{\mathrm{m}}\left(\mathrm{U}+\hat{H}_{\mathrm{m}} \mathbf{U}\right)_{\mathrm{ii}} \tag{4.7}
\end{equation*}
$$

With the relations in equations (4.4) and (4.5), the energy can be written:

$$
\begin{equation*}
E_{i} \text { calc }=\sum_{m=1}^{p} X_{m} B_{i m} \tag{4.8}
\end{equation*}
$$

To express equation (4.8) in terms of transitions rather than energy levels, the upper and lower state eigenvalue vectors (E^{\prime} and $\mathbf{E}^{\prime \prime}$) are subtracted to give \mathbf{y}, and \mathbf{B}^{\prime} and $-\mathbf{B}^{\prime \prime}$ are combined into one derivatives matrix B. Equation (4.8) therefore transforms to:105

$$
\begin{equation*}
y=B X \tag{4.9}
\end{equation*}
$$

where \mathbf{y} is the vector of calculated transitions, \mathbf{B} is the matrix of known derivatives, and X is the vector of estimated parameters. If
there are N transitions and p parameters to be determined, y has length N, B is a matrix of size N by p, and \mathbf{X} has length p. To obtain X, both sides of equation (4.9) are multiplied by $\left(B^{\top} B\right)^{-1} B^{\top}$:

$$
\begin{align*}
\left(B^{\top} B\right)^{-1}\left(B^{\top} B\right) X & =\left(B^{\top} B\right)^{-1} B^{\top} y \\
X & =\left(B^{\top} B\right)^{-1} B^{\top} y \tag{4.10}
\end{align*}
$$

In a problem where the estimated parameters \mathbf{X} are iteratively improved, we calculate parameter changes $\Delta \mathbf{X}$, rather than \mathbf{X} itself. Equation (4.10) is therefore expressed as:106

$$
\begin{equation*}
\Delta X=\left(B^{\top} B\right)^{-1} B^{\top} \Delta y \tag{4.11}
\end{equation*}
$$

where $\Delta \mathbf{y}$ is the vector of residuals (i.e., the observed transitions minus the calculated). The fitting process begins with a set of estimates for the molecular constants, which are used to generate calculated transitions ($y^{c a l c}$) and their residuals (Δy). The set of corrections to the constants, given by equation (4.11), is added to the initial estimates to provide improved constants for the next iteration. The process is repeated, iteratively producing improved sets of calculated transitions, residuals and constants until the magnitude of the residuals is reduced to a satisfactory level, for example, to the vicinity of the experimental precision.

The least squares program for the ${ }^{3} \Phi-{ }^{3} \Delta$ system of NbN was written in FORTRAN 77 by the author, except for UBC Amdahl library routines for diagonalizing and inverting matrices, and calculating parameter changes from the Hellman-Feynman derivatives. The Hamiltonian matrices for the ${ }^{3} \Phi$ and ${ }^{3} \Delta$ states have a maximum dimension of $(21+1)(2 S+1)$, or 30 . The 30×30 matrices (one for each F) were diagonalized in two steps. In the first step, only the rotational part of the Hamiltonian was diagonalized, in ten separate

J submatrices. In the second step, the entire matrix (rotational and hyperfine) was diagonalized. Two steps were employed because the ordering of eigenvalues from step one was used in the second diagonalization to preserve the matching of eigenvalues with the original basis functions. This is possible because the separation of the spin-orbit components is large compared to the perturbation made by the hyperfine interactions.

Analogous to the common formula for the standard deviation,

$$
\begin{equation*}
s=\left[\Sigma\left(x^{\text {obs }}-x^{\text {calc }}\right)^{2 / n}\right]^{1 / 2} \tag{4.12}
\end{equation*}
$$

the weighted least squares standard deviation is obtained from:105

$$
\begin{equation*}
\sigma=\left[\sum_{i=1}^{n}\left(y_{i} \mathrm{obs}-y_{i}^{\mathrm{calc}}\right)^{2} \mathrm{~W}_{\mathrm{ii}} /(n-m)\right]^{1 / 2} \tag{4.13}
\end{equation*}
$$

where n is the number of independent measurements, m the number of unknowns to be estimated, n - m the degrees of freedom, and $W_{i i}$ the diagonal element of the weight matrix for point i. 105 To determine estimates of the precision of the estimated constants, a variancecovariance matrix Θ is calculated by: 105

$$
\begin{equation*}
\Theta=\sigma^{2}\left(B^{\top} B\right)^{-1} \tag{4.14}
\end{equation*}
$$

A diagonal element Θ_{ii} is called the variance (not to be confused with the variance that is the square of the standard deviation, σ^{2}). The square root of $\Theta_{i i}$ gives the standard error, or precision, of estimated molecular constant i. The off-diagonal elements $\Theta_{i j}$ are covariances. Both the variances and covariances are only estimated values, because they depend on the precision of the measurements, σ^{2}. The goodness of the structure of the model lies in $\left(B^{\top} B\right)^{-1}$.

Normalization of the variance-covariance matrix gives the correlation matrix, \mathbf{C}, with elements

$$
\begin{equation*}
c_{i j}=\Theta_{i j} /\left(\Theta_{i j} \Theta_{j j}\right)^{1 / 2} \tag{4.15}
\end{equation*}
$$

where $\mathrm{c}_{\mathrm{ij}}=1$ for $\mathrm{i}=\mathrm{j}$, and $\left(-1<\mathrm{c}_{\mathrm{ij}}<+1\right)$ for $\mathrm{i} \neq \mathrm{j}$. C is independent of the precision of the measurements since σ^{2} has been cancelled out. Therefore the off-diagonal elements represent the interdependence of the molecular constants on one another, for a given data set. A value for c_{ij} that closely approaches unity indicates that constants i and j cannot be determined independently.

IV.D. Results and Discussion.

Initial line assignments were facilitated by the unpublished grating spectrograph work of Dunn et al ${ }^{102}$, who listed the positions of the P, Q and R rotational lines. Initial attempts to obtain a least squares fit to the hyperfine constants in a case (a) basis (i.e., as they were presented in Sections I.D. 3 and I.D.4) did not succeed, because the hyperfine constants required to fit the three subbands are not consistent with one another. In the light of this observation, and the unequal first order spin-orbit spacings, it was concluded that the various substates are perturbed differently by second order spin-orbit interactions. According to the $\Delta \Omega=0$ selection rule for
 include ${ }^{3} \Gamma_{3,4},{ }^{1} \Gamma_{4},{ }^{1} \Phi_{3},{ }^{3} \Delta_{2,3}$ and ${ }^{1} \Delta_{2}$. The ${ }^{3} \Delta$ substates can interact with ${ }^{3} \Phi_{2,3},{ }^{1} \Phi_{3},{ }^{1} \Delta_{2},{ }^{3} \Pi_{1,2}$ and ${ }^{1} \Pi_{1}$. The ${ }^{1} \Phi$ and ${ }^{1} \Delta$ states isoconfigurational with ${ }^{3} \Phi$ and ${ }^{3} \Delta$ are expected to be the closest of these states to ${ }^{3} \Phi$ and ${ }^{3} \Delta$, and therefore the ones most responsible for the perturbations (see Fig. 4.8). The effect would be to shift the central spin-orbit components, ${ }^{3} \Phi_{3}$ and ${ }^{3} \Delta_{2}$, to lower energy. However, the hyperfine constants suggest that there could also be second order spin-orbit interactions occurring with the other members of the manifolds, though we can say nothing about their relative sizes. The ${ }^{3} \Phi{ }^{3}{ }^{3} \Delta$ system of NbN is the first observed instance of a molecule represented by Hund's case (a) which requires modifications to the Hamiltonian because of extensive second order spin-orbit interactions. This phenomenon can be considered a slight tendency toward the case (c) coupling scheme. 109

The molecular constants obtained for the ${ }^{3} \Phi-{ }^{3} \Delta$ system of NbN

Fig. 4.8. Partial energy level diagram for NbN . The figure is not to scale, but illustrates the relative ordering of states, except in the case of the low-lying configurations σ^{2} and $\sigma \delta$ where the ordering is uncertain.
are given in Table 4.I. The unequal perturbations in the ${ }^{3} \Phi$ and ${ }^{3} \Delta$ spin-orbit manifolds means that, in the magnetic hyperfine structure, only the h constants in the matrix elements diagonal in Ω and Σ can be determined, rather than individual a, b and c constants (cf. equations 1.90 and 1.98). The h constants, subscripted by their Σ values, are as follows:

$$
\begin{align*}
h_{-1}=a \Lambda-b-c & =a \Lambda-(b+c)_{-1} \tag{4.16}\\
h_{0} & =a \Lambda \tag{4.17}\\
h_{+1}=a \Lambda+b+c & =a \Lambda+(b+c)_{+1} \tag{4.18}
\end{align*}
$$

In an unperturbed system, the average of h_{-1} and h_{+1} equals h_{0}; that is, $(b+c)-1$ and $(b+c)_{+1}$ in equations (4.16) and (4.18) are equal. This is far from the case in the ${ }^{3} \Phi{ }^{\mathbf{3}} \Delta$ system of NbN , where $(b+$ c) ${ }_{+1}$ is 39% smaller than $(b+c)_{-1}$ in the ${ }^{3} \Delta$ state, and 10% larger in ${ }^{3} \boldsymbol{\Phi}$. It was also found, in the ${ }^{3} \Delta$ state, that two distinct b constants are required in the $\langle\Sigma=-1| \Sigma=0>$ and $\langle\Sigma=0| \Sigma=+1>$ matrix elements (referred to here as $\mathrm{b}_{-1 / 0}$ and $\mathrm{b}_{0 /+1}$, respectively). Therefore, a total of five magnetic hyperfine constants are required to fit the data, rather than the usual three: $h_{-1}, h_{0}, h_{+1}, b_{-1 / 0}$ and $\mathrm{b}_{0 /+1}$ replace a, b and c .

It is clear that the perturbations in the ${ }^{3} \Delta$ state are much more pronounced than those in ${ }^{3} \Phi$. The ${ }^{3} \Delta b_{+1 / 0}$ value is 34% smaller than $b_{0 /-1}$, comparable to the 39% difference between the ${ }^{3} \Delta(b+c)-1$ and $(b+c)_{+1}$ constants. In the upper state, however, two distinct b values off-diagonal in Σ are not necessary: attempts to distinguish two ${ }^{3} \Phi \mathrm{~b}$ constants produced values that were very highly correlated (-0.998) and with standard errors so high that the constants were indeterminable. It is evident, then, that the ${ }^{1} \Delta$ state lies closer to

Table 4.I. Molecular constants for the ${ }^{3} \Phi-{ }^{3} \Delta$ system of NbN.a

a Values are in cm^{-1}. The numbers in parentheses are three times the standard errors of the constants, in units of the last significant figure. The standard deviation of the transition measurements is given by σ. The magnetic hyperfine constants, $h,(b+c)$ and b, are explained in the text.
the ${ }^{3} \Delta$ state than ${ }^{1} \Phi$ does to ${ }^{3} \Phi$. Note from Fig. 4.8 that the ordering of states in the $\delta \pi$ manifold is contrary to that dictated by Hund's rule ${ }^{110}$, which would place the higher multiplicity ${ }^{1} \Phi$ state below ${ }^{1} \Pi$ (and therefore closer to the ${ }^{3} \Phi$ state). The dipolar hyperfine constant c cannot be extracted since separate b constants are required for the three substates.

The $(b+c)$ and b constants clearly support the $5 s \sigma^{14} d \delta^{1}$ and $4 \mathrm{~d} \pi^{1} \delta^{1}$ configurations for the ${ }^{3} \Delta$ and ${ }^{3} \Phi$ states, respectively. The ${ }^{3} \Delta(b+c)$ and b values are large and positive, indicating that the dominant mechanism for the coupling of electronic and nuclear spins is the Fermi contact interaction. This is consistent with the presence of an unpaired so electron, as in the $\operatorname{s} \sigma^{1} \mathrm{~d} \delta^{1}$ configuration of ${ }^{3} \Delta$. The ${ }^{3} \Phi(b+c)$ and b constants are negative, and small compared to those in ${ }^{3} \Delta$. This is characteristic of a hyperfine interaction which occurs because of spin polarization by electrons in orbitals having nodes at the nucleus, such as $\pi^{1} \delta^{1}$. The difference between the Fermi contact and spin polarization hyperfine constants in NbN is similar to that found in the VO states ${ }^{45} 4 s \sigma^{1} 3 d \delta^{2} X^{4} \Sigma^{-}$and $4 p \sigma^{1} 3 d \delta^{2} C^{4} \Sigma^{-}$. The ratio of ${ }^{3} \Delta(b+c) a v e{ }^{3} \Phi(b+c)$ ave $=-3.7$, while $b\left(X^{4} \Sigma^{-}\right) / b\left(C^{4} \Sigma^{-}\right)=-3.1$.

The quadrupole coupling constant for the lower state is $-3.9(\pm .8)$ $\times 10^{-3} \mathrm{~cm}^{-1}$, while that of the upper state was fixed to zero after it was found to be too small to be determined. The sign of the ${ }^{3} \Phi$ state $\mathrm{e}^{2} \mathrm{Qq}_{0}$ is consistent with the quadrupole moment for ${ }^{93} \mathrm{Nb}$ of $-2 \times 10^{-}$ 24 e.cm². The upper and lower state constants for the interaction of nuclear spin and rotation (c_{I}) were fixed to zero, as they were found to be on the order of -10^{-5} to $-10^{-6} \mathrm{~cm}^{-1}$, almost completely
correlated (.999), and with standard errors as large as the values themselves. It is the usual case for diatomics containing a transition metal for cl to be too small to be determined (see for example references $31,45,79$ and 91).

In the rotational part of the Hamiltonian, the A, B and D constants are very well determined in spite of the high correlations between A^{\prime} and $A^{\prime \prime}(.9985)$ and B^{\prime} and $B^{\prime \prime}(.995)$. The high rotational lines carrying information about the spin-uncoupling operator, -2BJ.S, allow B and D to be determined individually, rather than simply determining their differences, B^{\prime} - $\mathrm{B}^{\prime \prime}$ and D^{\prime} - $\mathrm{D}^{\prime \prime}$. Since all three subbands were fitted simultaneously, and B was extracted with good precision, A could also be determined. This is possible since A, B and the effective B values for each subband are related by:24

$$
\begin{equation*}
\mathrm{B}_{\mathrm{eff}, \Omega}=\mathrm{B}(1+2 \mathrm{~B} \Sigma / \mathrm{A} \Lambda) \tag{4.19}
\end{equation*}
$$

From the B values, the bond lengths are calculated to be:

$$
\begin{aligned}
& r_{0}\left({ }^{3} \Delta\right)=1.6618 \AA \\
& r_{0}\left({ }^{3} \Phi\right)=16712 \AA
\end{aligned}
$$

There have been very few rotational studies of transition metal mononitrides. Aside from the current work, the known bond lengths (r_{0}, in \AA) are:

TiN111	$\chi^{2} \Sigma$	1.583
	$\mathrm{A}^{2} \Pi_{\mathrm{r}}$	1.597
	$\mathrm{B}^{2} \Sigma$	1.646
$\mathrm{ZrN112}$	$\mathrm{X}^{2} \Sigma$	1.696
	$\mathrm{B}^{2} \Sigma$	1.740
	$\mathrm{A}^{2} \Pi$	1.702
MoN113	${ }^{1}{ }^{4} \Sigma$	1.634

$A^{4} \Pi \quad 1.654$

The 3d transition metal monoxide series isovalent with ZrN (and TiN), $\mathrm{NbN}, \mathrm{MoN}$ is $\mathrm{ScO}, \mathrm{TiO}, \mathrm{VO}$, whose ground state bond lengths go as $1.668 \AA^{30}, 1.623 \AA^{89}$ and $1.592 \AA^{45}$. Here the bond length decreases with each additon of a bonding δ electron. The ${ }^{3} \Delta$ and ${ }^{3} \Phi$ NbN bond lengths show that the nitrides are consistent with this trend, with values intermediate between those of ZrN and MoN .

The very large spin-spin interaction constants λ (equations 1.72 and 1.73) are caused by contributions from the second order spinorbit interactions which induce the substantial shift of the ${ }^{3} \Phi_{3}-{ }^{3} \Delta_{2}$ subband. The centrifugal distortion correction to λ, however, is considerably larger than its expected value of $\lambda_{D} \approx \lambda\left(A_{D} / A\right)$. The reason for this probably lies in the fact that we have not yet made direct measurements of the spin-orbit intervals. In this context, then, the centrifugal distortion correction constants A_{D} and λ_{D} are essentially fudge factors which enable the least squares fit to converge to a minimum lying within a broad minimum which contains the true molecular constants. So although this set of constants is an internally consistent one which fits the data, once the derived A values are replaced by direct measurements the constants may change slightly to enable the fit to converge to the true, nearby minimum. With the data we now possess, however, the A_{D} and λ_{D} values given in Table 4.1 are necessary to obtain a fit.

To demonstrate this fact, a fit of the rotational constants was made in which λ_{D} and γ were fixed to zero, and all hyperfine constants were fixed at the values determined in this work. The initial values for the floated constants were taken from the grating
spectrograph work of Dunn et al ${ }^{102}$ (see p. 85), with the exception of A_{D} which was given an initial value of zero; the parameter δ in their work is equal to -2λ. The fit converged to a standard deviation of $0.00138 \mathrm{~cm}^{-1}$, which is about 2.5 times higher than the fit which incorporates λ_{D} and γ. As expected, the final set of constants (Table 4.II) is very similar to those determined by the grating spectrograph analysis, with the exception of T_{0}, which was found from LIF data to be $13.5 \mathrm{~cm}^{-1}$ higher than that from the grating work. The residuals contain systematic errors in the positions of the rotational lines, as compared to the random residuals generated by the full set of constants. The systematic errors and higher standard deviation reflect the inability of the model to fit the data without λ_{D}, A_{D} and γ. However, as stated above, the resulting rotational constants, other than B and D, are only effective ones. Another important feature of this fit is that the first order spin-orbit coupling constants A^{\prime} and $A^{\prime \prime}$ are 100% correlated, as are the second order spin-orbit parameters λ^{\prime} and $\lambda^{\prime \prime}$ (see the correlation matrix in Table 4.1I). This is a direct reflection of the fact that the spin-orbit coupling constants are derived rather than measured. As a result, only the difference $\Delta \lambda$ can be determined, rather than separate λ^{\prime} and $\lambda^{\prime \prime}$ values. For these reasons, a fit excluding λ_{D} and γ may produce a set of rotational constants that more accurately represents the real situation, though the addition of λ_{D} and γ creates a model which is able to fit the data. It is worth noting that in a purely case (a) basis, γ, A_{D} and λ_{D} are correlated such that only two of the three can be determined. 41 In the ${ }^{3} \Phi-3 \Delta$ system of NbN this correlation is broken

Table 4.II. Rotational constants obtained for the ${ }^{3} \Phi{ }^{\boldsymbol{3}}{ }^{3} \Delta$ system of NbN with the λ_{D} and γ parameters fixed to zero, and the hyperfine constants fixed to the values in Table 4.I.a The correlation matrix follows the constants.

	Φ	Δ
T_{0}	$16518.4653(2)$	0
A	$242.59(8)$	0
B	$0.495796(8)$	$0.501447(8)$
D	$0.5005(7) \times 10^{-6}$	$0.4685(4) \times 10^{-6}$
λ	$-3.70(8)$	$16.53(8)$
A_{D}	$-0.484(5) \times 10^{-4}$	0.00138
σ		$0.793(8) \times 10^{-4}$

aThe format of the table follows that of Table 4.I.
Correlation Matrix

	T_{0}	$\mathrm{~A}^{\prime}$	B^{\prime}	D^{\prime}	λ	A_{D}
T_{0}	1.0000	0.0996	0.0820	-0.4333	0.3401	0.1538
$\mathrm{~A}^{\prime}$		1.0000	-0.0473	0.1235	0.5124	-0.0645
$\mathrm{~B}^{\prime}$			1.0000	-0.0973	0.0934	-0.3204
D^{\prime}				1.0000	0.0366	-0.4503
λ^{\prime}					1.0000	-0.0664
$\mathrm{~A}^{\prime}$						1.0000

	A"	B"	D"	$\lambda "$	$A_{D}{ }^{\prime \prime}$
T0	0.0995	0.1580	-0.2227	0.3408	0.1715
A'	1.0000	-0.0335	0.3977	0.5115	0.3233
B^{\prime}	-0.0474	0.9936	-0.0789	0.0928	-0.3322
D^{\prime}	0.1233	-0.1874	0.4224	0.0360	-0.2099
λ^{\prime}	0.5124	0.1025	-0.2270	1.0000	0.0874
$A^{\prime}{ }^{\prime}$	-0.0643	-0.2737	-0.0883	-0.0659	0.8660
$A^{\prime \prime}$	1.0000	-0.0336	0.3976	0.5116	0.3233
B"		1.0000	-0.0839	0.1020	-0.2929
D"			1.0000	-0.2275	0.0982
$\lambda^{\prime \prime}$				1.0000	0.0875
$A_{D}{ }^{\prime \prime}$					1.0000

to some extent by the high J data where there as a distinct tendency towards case (b) (see the correlation matrices in Appendix I and Table 4.II).

For the future, a direct measurement of the spin-orbit intervals must be made. The most likely method for doing this is to locate forbidden "spin-orbit satellite" transitions which disobey the case (a) selection rule $\Delta \Sigma=0$ (equation 1.57). Since these transitions are very weak, resolved fluorescence experiments can be performed to enhance the signal. To record the spectrum of a ${ }^{3} \Phi_{2}-{ }^{3} \Delta_{2}$ line, for example, an allowed ${ }^{3} \Phi_{2}{ }^{-3} \Delta_{1}$ transition is excited. The resulting emission spectrum of the satellite transition is recorded over a long exposure time using the microchannel-plate intensified array detector. The lines which hold the most promise for producing spinorbit satellites are high J lines affected by spin-uncoupling, since the $\Delta \Sigma=0$ selection rule weakens with increasing rotation. However, it is also important that the excited line be strong, so a compromise must be made between high J and line strength when choosing lines for excitation.

Other important tasks are to locate the singlet states which interact with the ${ }^{3} \Delta_{2}$ and ${ }^{3} \Phi_{3}$ spin-orbit components, and to search for the expected $\sigma^{2}{ }^{1} \Sigma^{+}$state to determine if the ground state is ${ }^{3} \Delta$ or ${ }^{1} \Sigma^{+}$. The ordering of the $\sigma \delta$ states $\left({ }^{3} \Delta\right.$ and $\left.{ }^{1} \Delta\right)$ and the σ^{2} state $\left({ }^{1} \Sigma^{+}\right)$depends on the relative ordering of the $4 \mathrm{~s} \sigma$ and $3 \mathrm{~d} \delta$ metalcentered molecular orbitals (see Fig. 3.1). Diatomic transition metal oxides and fluorides isoelectronic with NbN demonstrate that these orbitals lie very close to one another. Therefore one cannot readily predict in NbN whether the ${ }^{3} \Delta_{\mathrm{r}}$ or ${ }^{1} \Sigma^{+}$state will be lower in energy.

For example, the d^{2}-transition metal monoxide series, consisting of titanium oxide (TiO), zirconium oxide (ZrO) and hafnium oxide (HfO), is variable in this respect. TiO has a ${ }^{3} \Delta_{r}$ ground state ${ }^{114}$, with the ${ }^{1} \Delta$ state lying $3500 \mathrm{~cm}^{-1}$ above that ${ }^{115}$. However, ZrO has a ${ }^{1} \Sigma^{+}$ ground state ${ }^{113}$ which lies $1650 \mathrm{~cm}^{-1}$ below the ${ }^{3} \Delta_{\mathrm{r}}$ state ${ }^{116}$. HfO is believed to have a ${ }^{1} \Sigma^{+}$ground state also, but with the $\sigma \delta$ states further removed from the ground state than those in ZrO due to the greater ligand field splitting between the σ and δ orbitals in HfO. 114 In the d^{1}-transition metal monofluoride series, comprising scandium fluoride (ScF), yttrium fluoride (YF) and lanthanum fluoride (LaF), ScF115 and YF have ${ }^{1} \Sigma^{+}$ground states, while the ordering of ${ }^{1} \Sigma^{+}$and ${ }^{3} \Delta_{r}$ in LaF is not known ${ }^{118}$. Tantalum nitride (TaN), the $5 d$ counterpart of NbN , is predicted from matrix isolation studies to have a ${ }^{1} \Sigma$ ground state, though the possibility of ${ }^{3} \Delta$ has not been entirely ruled out. 119 To identify the ground state of NbN securely, then, the relative position of the ${ }^{1} \Sigma+$ and ${ }^{3} \Delta_{r}$ states must be determined experimentally.

CHAPTER V
 ROTATIONAL ANALYSIS OF THE v_{7}-FUNDAMENTAL OF AMINOBORANE, $\mathrm{NH}_{2} \mathbf{B H} \mathbf{H}_{2}$

V.A. Background.

This work examines the BH_{2} out-of-plane wagging fundamental of aminoborane ($\mathrm{NH}_{2} \mathrm{BH}_{2}$), the simplest alkene in the $\mathrm{B}=\mathrm{N}$ homologues of the hydrocarbons. Long before $\mathrm{NH}_{2} \mathrm{BH}_{2}$ was studied experimentally, its small size and the interest in B-N compounds led to extensive theoretical studies of it. In particular, the donoracceptor nature of the B-N bond atttracted attention, as Hückel theory calculations ${ }^{120}$ done in 1964 predicted that the bond moment was in the direction B to N rather than the reverse, as required by formal valence theory. These preliminary calculations, covering charge distributions, electronic structures and geometries for a number of B-N compounds, were followed by CNDO (complete neglect of differential overlap) ${ }^{121}$ and $a b$ initio ${ }^{122,123,124}$ calculations predicting these and other properties such as the dipole moment, force constants, barriers to rotation and stabilities. Aminoborane's extreme instability at room temperature, however, imposed practical difficulties for experimentalists to verify or refute the theoreticians' predictions. It's first synthesis was in 1966 from the symmetrical cleavage of vacuum sublimed cycloborazine pyrolyzed at $135^{\circ} \mathrm{C}$, where $\mathrm{NH}_{2} \mathrm{BH}_{2}$ and other decomposition products could be trapped in a liquid nitrogen cold trap, and then identified by mass spectroscopy ${ }^{125}$. The aminoborane was found to have decomposed spontaneously after warming to room temperature. In

1968, gaseous aminoborane and diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ were observed by molecular beam mass spectroscopy as products of the spontaneous decomposition of solid ammonia borane $\left(\mathrm{NH}_{3} \mathrm{BH} \mathrm{H}_{3}\right)$ at room temperature. 126 When Kwon and McGee performed both pyrolysis and radiofrequency discharge experiments on borazine (the BN analog of benzene), $\mathrm{NH}_{2} \mathrm{BH}_{2}$ and $\mathrm{B}_{2} \mathrm{H}_{6}$ were again the products. ${ }^{127}$ They were recovered in a $-168^{\circ} \mathrm{C}$ trap, then separated by vacuum distillation of diborane from aminoborane at $-155{ }^{\circ} \mathrm{C}$. At this temperature, small amounts of both evaporation and polymerization of $\mathrm{NH}_{2} \mathrm{BH}_{2}$ were observed. Polymerization becomes the dominant process at temperatures above this, and is fairly significant at $-130{ }^{\circ} \mathrm{C} .1^{127}$ The pronounced instability of monomeric aminoborane led Pusatcioglu et al ${ }^{128}$ in 1977 to investigate the possibility of using $\mathrm{NH}_{2} \mathrm{BH}_{2}$ to build thermally stable inorganic polymers. They pyrolyzed gaseous ammonia borane, condensed the monomeric $\mathrm{NH}_{2} \mathrm{BH}_{2}$ product at 77 K , then allowed it to polymerize as it warmed. In 1979 a microwave spectrum of $\mathrm{NH}_{2} \mathrm{BH}_{2}$ was obtained, using a sample formed from the reaction of 5-10 mTorr each of ammonia and diborane at $500{ }^{\circ} \mathrm{C} .129$ Molecular constants calculated by a least-squares fit were consistent with a planar configuration, thereby establishing the symmetrical structure $\mathrm{NH}_{2}=\mathrm{BH}_{2}$ for aminoborane, rather than the asymmetrical $\mathrm{NH}_{3} \mathrm{BH}$. Perhaps the most important outcome of this work was the determination of the dipole moment to be 1.844 D in the direction from N to B , as opposed to the theoretical predictions of B to $N .120,121$ The assumption of an $N \rightarrow B$ direction for the dipole moment was based on the observation that the dipole moment of $\mathrm{NH}_{2} \mathrm{BH}_{2}$ is 0.751 D smaller than that in $\mathrm{BH}_{2} \mathrm{BF}_{2}$.

The same group recently reported microwave spectra of five isotopic species of $\mathrm{NH}_{2} \mathrm{BH}_{2}$, improving the constants and geometric parameters obtained in the previous study. ${ }^{130}$

Recently, at the University of British Columbia, the first gas phase Fourier transform infrared spectrum of aminoborane was measured. 131 The synthesis combined the solid-state and vaporphase ammonia borane pyrolysis techniques. Solid $\mathrm{NH}_{3} \mathrm{BH}_{3}$ was heated to about $70^{\circ} \mathrm{C}$ in a flow system maintained at approximately 200 microns, and the vapors produced were passed through a furnace at about $400^{\circ} \mathrm{C}$, to pyrolyze unreacted sublimed sample. Nine of aminoborane's eleven infrared (IR) active fundamental vibrations were recorded at medium resolution ($0.05 \mathrm{~cm}^{-1}$), with the v_{4} A-type band at $1337 \mathrm{~cm}^{-1}$ being also recorded at very high resolution (0.004 $c \mathrm{~m}^{-1}$). Since that time the bands of all of the IR active fundamentals have been recorded at UBC at $0.004 \mathrm{~cm}^{-1}$ resolution (see Table 5.1), though v_{5} is vanishingly weak because its dipole derivative appears to be very small. Some analysis has been completed ${ }^{132,133,134}$, with the remainder currently underway. The present work is a contribution to the high resolution Fourier transform IR study of aminoborane, being the rotational analysis of the C-type v_{7} fundamental whose origin is at $1004.7 \mathrm{~cm}^{-1}$.

Table 5.I. Vibrational fundamentals of gaseous $\mathrm{NH}_{2}{ }^{11} \mathrm{BH}_{2}$.

Symmetry		cm^{-1}	Type of motion
A_{1}	v_{1}	3451	NH symmetric stretch
	v_{2}	2495	BH symmetric stretch
	v_{3}	1617	NH_{2} symmetric bend
	v_{4}	1337.4741	BN stretch
	v5	1145	BH_{2} symmetric bend
A_{2}	V6	837	Torsion (twist)
B_{1}	v_{7}	1004.6842	BH_{2} wag
	v8	612.1987^{2}	NH_{2} wag
B_{2}	V9	3533.8	NH asymmetric stretch
	V10	25643	BH asymmetric stretch
	V_{11}	1122.2	NH_{2} rock
	v_{12}	742	BH_{2} rock

${ }^{1}$ Reference (131)
${ }^{2}$ Reference (133): $v_{8}(1,0)$ band; reference (132): $v_{8}(2,0)$ band ${ }^{3}$ Reference (134)

V.B. The Michelson Interferometer and Fourier Transform Spectroscopy.

The infrared interferogram was recorded and Fourier transformed with a BOMEM DA3.002 Michelson interferometer and associated software (version 3.1). Three sources of infrared light are available depending on the wavelength region desired: a quartzhalogen lamp for the near IR and visible regions, a globar for the mid-IR, and a mercury-xenon lamp for the far IR. After first being filtered and focused at an aperature, the infrared light passes to a collimating mirror and is reflected as a parallel beam to a beamsplitter, where it is divided in two. One beam continues through to a fixed mirror, while the other is reflected onto a mirror moving at constant velocity. As one of the beams has a fixed path length and the other a constantly varying one, the recombination of the beams at the beamsplitter produces a resultant of sinusoidal waves that are out of phase. ${ }^{135}$ The portion of the resultant not absorbed by the sample is measured at the detector as the interferogram. The point along the moving mirror's travel at which the fixed and moving mirrors are exactly equidistant--called the zero path difference (ZPD)--should in principle bring all the sinusoidal waves into phase, with constructive interference producing a maximum in the amplitude. ${ }^{135}$

Because the interference patterns producing the infrared interferogram result from the optical path difference between the two light beams, it is essential that signal sampling occur at constant intervals of mirror displacement. This is achieved in the BOMEM DA3 spectrophotometer by a He-Ne laser. Operating at 632.8
nm , or $15796 \mathrm{~cm}^{-1}$, the laser provides an extremely precise time base of 31,592 cycles per cm of mirror travel. ${ }^{136}$ The cycles, called fringes, trigger spectral sampling at a frequency normally equal to one sample/laser fringe, though the rate can be increased to up to eight times the laser fringe frequency. The phase coherence provided by this laser is excellent: its single-mode operation prevents destructive interference by two other closely lying transition frequencies, and its thermal stabilization removes temperature dependent fluctuations in the laser optics. The resulting uncertainty in the mirror's position is 0.0025 fringes per cm of mirror travel, which even at the maximum translation of 125 cm amounts to a variation of only 0.3 fringes over the length of the mirror's scan. 136

The interferogram not only requires that its points be sampled at precise intervals, but also that one of these points occurs at an origin that is exactly reproducible from scan to scan. The BOMEM DA3 spectrophotometer acheives this by triggering the commencement of each scan at the ZPD of an interferogram of white light. The beams from the white light source follow the same optical path as that of the radiation of interest, with the incoherent nature of the white light producing an interferogram characterized by an intense pulse at ZPD (the WLZPD), and low intensity amplitudes at non-zero mirror translations. The occurrence of the pulse is precise to well within one laser fringe, so the actual WLZPD trigger is marked as the laser fringe immediately following the pulse. The result is a synchronization signal which references the points in the

IR interferogram to a constant position along the scanning mirror's path. 136,137

A Fourier transform infrared experiment is therefore the process of obtaining the infrared interferogram in conjunction with the white light reference interferogram and the time base generated by the $\mathrm{He}-\mathrm{Ne}$ laser. These data are processed by Fourier transformation from the IR interferogram time domain to an IR spectrum in the frequency domain. The integrals of the Fourier transformation can be understood in terms of the phase differences between the IR beams split by the beamsplitter. When a wave with angular frequency ω reflects off a mirror moving with velocity v, the frequency is Doppler shifted by an amount ${ }^{138}$

$$
\begin{equation*}
\Delta \omega=4 \pi v / \lambda \tag{5.1}
\end{equation*}
$$

Expressed as a function of the speed of light and the incident frequency, using the relation $\lambda=2 \pi \mathrm{c} / \omega$, the phase shift becomes ${ }^{138}$

$$
\begin{equation*}
\Delta \omega=(\mathrm{v} / \mathrm{c}) 2 \omega \tag{5.2}
\end{equation*}
$$

The magnitude of $\Delta \omega$ is on the order of 1 kHz to 100 kHz , a frequency that can be processed easily as compared to the 10^{13} to $10^{15} \mathrm{~Hz}$ frequencies of IR radiation itself.

The time-averaged beat intensity, I, produced by the combination of two waves out of phase by $\Delta \omega$ is ${ }^{138}$

$$
\begin{equation*}
I=I_{0}(1+\cos \Delta \omega t) \cos ^{2}\left[\left(\omega+\omega^{\prime}\right) t / 2\right]=\left(I_{0} / 2\right)(1+\cos \Delta \omega t) \tag{5.3}
\end{equation*}
$$

where I_{0} is the signal intensity when $\Delta \omega=0$. Represented in terms of amplitude or electric field strength $\left[\mathrm{E}_{0}(\omega)\right.$], phase difference $[\delta(\omega)$ $=\Delta \omega t]$, and the reflectivity (R) and transmittance (T) of the beamsplitter, equation (5.3) becomes ${ }^{138}$:

$$
\begin{equation*}
I(\omega, \delta)=c_{0} R T\left|E_{o}(\omega)^{2}\right|[1+\cos \delta(\omega)] \tag{5.4}
\end{equation*}
$$

where c is the speed of light and ε_{0} is the vacuum permittivity ${ }^{139}$, equal to $8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$. Integrating over all frequencies of the spectral components,

$$
\begin{equation*}
I(\delta)=\int I(\omega, \delta) d \omega=c \varepsilon_{0} R T\left[\int\left|E_{0}(\omega)\right|^{2} d \omega+\int\left|E_{0}(\omega)\right|^{2} \cos \delta d \omega\right] \tag{5.5}
\end{equation*}
$$

At zero path difference, or $\delta=0$, the two terms in brackets in equation (5.5) are equal, so the ZPD intensity is given by:

$$
\begin{equation*}
\mathrm{I}_{0}=2 c \varepsilon_{0} R T \int\left|\mathrm{E}_{0}(\omega)\right|^{2} \mathrm{~d} \omega \tag{5.6}
\end{equation*}
$$

The time-averaged signal intensity as a function of phase difference, $I(\delta)$, is the quantity measured at the detector. The interferogram points themselves are taken to be the oscillations of these intensities about $I_{0} / 2: 138$

$$
\begin{equation*}
\left|I(\delta)-I_{0} / 2\right|=c \varepsilon_{0} R T \int\left|E_{0}(\omega)\right|^{2} \cos \delta d \omega \tag{5.7}
\end{equation*}
$$

The cosine Fourier transform of an interferogram of the form of equation (5.7) yields a spectral intensity distribution function $I(\omega)$ in which intensity is a function of discrete frequencies:

$$
\begin{equation*}
I(\omega)=(1 / \pi R T) \int\left[I(\delta)-I_{0} / 2\right] \cos \delta d \delta \tag{5.8}
\end{equation*}
$$

However, since imperfections in manufacture do not produce equivalent reflectivities in the fixed and moving mirrors, sine components as well as cosine are introduced into the interferogram. The actual Fourier transform therefore employs the complex form of the expression ${ }^{138,140,141}$

$$
\begin{equation*}
I(v)=C \int\left[1(\delta)-I_{0} / 2\right] e^{-i 2 \pi v \delta d \delta} \tag{5.9}
\end{equation*}
$$

In general form, the Fourier transform of function $f(x)$ is ${ }^{142}$

$$
\begin{equation*}
\mathfrak{I}\{f(x)\}=F(\alpha)=\int f(x) e^{-i \alpha x} d x \tag{5.10}
\end{equation*}
$$

The inverse Fourier transform of $F(\alpha)$ is therefore

$$
\begin{equation*}
\left.\mathfrak{S}^{-1}\{F \alpha)\right\}=f(x)=(1 / 2 \pi) \int F(\alpha) e^{i \alpha x} d \alpha \tag{5.11}
\end{equation*}
$$

Likewise, the spectrum expressed in equation (5.9) is one member of a Fourier pair, which consists of two non-periodic functions related by the Fourier integral transforms ${ }^{141}$:

$$
\begin{align*}
& g(v)=\int f(\delta) e^{i 2 \pi v \delta d \delta} \tag{5.12}\\
& f(\delta)=\int g(v) e^{-i 2 \pi v \delta d v} \tag{5.13}
\end{align*}
$$

A Fourier pair is illustrated graphically in Fig. 5.1.
Fourier transform spectroscopy is able to exploit the Fourier pair relationship between the time domain (phase, δ) and the frequency domain (ω or v), because frequency can be obtained with greater accuracy, resolution and speed by measuring and transforming phase differences rather than by directly measuring relative frequency. With the Michelson interferometer the integration cannot be performed over all space ($-\infty$ to $+\infty$) but is limited to the range $0-L$ where L is the total mirror displacement. As the distance travelled by the mirror increases, the number of terms included in the integration increases, extending the amount of information available for extraction into the spectrum $I(v) .141$ The theoretical maximum spectral resolution of an interferometer is therefore inversely proportional to the maximum optical path difference between the fixed and moving mirrors. 142 Defining resolution as the full width at half height, the maximum unapodized resolution is: 144

$$
\begin{equation*}
\Delta v_{1 / 2}=1 /(2 \mathrm{~L}) \tag{5.14}
\end{equation*}
$$

Imposing the 0 to L limits on an interferogram is known as a "boxcar" truncation (see Fig. 5.2). 144 When a boxcar-truncated interferogram is Fourier transformed, the spectral line shape contains the sinc function $[\operatorname{sinc} z=(\sin z) / z]: 146,147$

Fig. 5.1. A polychromatic signal in the frequency domain (above) Fourier transformed into the time domain (below). ${ }^{141}$

$$
\begin{equation*}
F\{D(x)\}=2 L(\operatorname{sinc} z) \tag{5.15}
\end{equation*}
$$

where $z=2 \pi\left(\sigma-\sigma_{0}\right) L$. The half-width of the center spike of this form is very narrow: $\Delta \sigma=1.207 / 2 \mathrm{~L}$, or about 20% wider than the theoretical resolution of $1 / 2 \mathrm{~L}$. However, the sidelobes next to the central peak have about 21% of its intensity, and the amplitudes of subsequent lobes are slow to die away. 145 In order to approximate more closely the true frequency domain spectrum, an apodization function is often included in the data processing. This process dampens the effects caused by truncating the interferogram at a definite mirror displacement of L. Though there are many forms of apodization functions, the effect is to give decreasing weight to the data points recorded at large mirror displacements.145,146 One of the simplest is the triangular function in Fig. 5.3, in which all sidelobes are positive and the largest is only about 4.5% that of the center spike; the linewidth is increased by almost 50% over the boxcar case. ${ }^{146,147}$ The apodization applied to the aminoborane experiment in this work was a cosine function referred to as "Hamming" or "Happ-Genzel". It produces spectral lines with negative sidelobes of only 0.0071 the height of the maximum peak, and lines about 2% broader than those from the triangular apodization. 145

Fig. 5.2. A boxcar function $D(x)$ (above). The Fourier transform of a boxcar truncated interferogram is a spectrum with the line shape function $\mathrm{F}\{\mathrm{D}(\mathrm{x})\}=2 \mathrm{~L} \sin (2 \pi v \mathrm{~L}) / 2 \pi v \mathrm{~L}$ (where L denotes the maximum mirror displacement.) The full width at half-height $\left(\Delta v_{1 / 2}\right)$ is $1.207 / 2 \mathrm{~L}$, and the strongest sidelobe has 21% the intensity of the maximum. 145

Fig. 5.3. The triangular apodization function $D(x)$ (above) produces a spectrum with the line shape function $F\{D(x)\}=2 L \sin (2 \pi v L) /(2 \pi v L)^{2}$ (below). The full width at half-height $\left(\Delta v_{1 / 2}\right)$ is $1.772 / 2 \mathrm{~L}$, with the strongest sidelobe only 4.5% of the maximum intensity. 145

V.C. Experimental.

The aminoborane was prepared by pyrolysis of borane ammonia ($\mathrm{BH}_{3} \mathrm{NH}_{3}$, Alfa Products) according to the procedure of Gerry and coworkers ${ }^{131}$, except that in the present work the temperature of the solid $\mathrm{NH}_{3} \mathrm{BH}_{3}$ was raised to only $67{ }^{\circ} \mathrm{C}-68{ }^{\circ} \mathrm{C}$ for the first several hours, then lowered to $63{ }^{\circ} \mathrm{C}-65^{\circ} \mathrm{C}$ for the remainder of the experiment. The $70^{\circ} \mathrm{C}$ pyrolysis temperature employed in reference 131 was found to be unnecessarily close to the temperature of uncontrolled thermal decomposition, which initiates violently at approximately $71^{\circ} \mathrm{C}$. At the time the interferogram was measured, the temperature of the solid ammonia borane was $63.5(\pm 0.5)^{\circ} \mathrm{C}$. The sample absorption cell, set to an optical path of 9.75 m , was maintained at a pressure of 100μ during data acquisition. The BOMEM DA3.002 interferometer was fitted with a potassium chloride beam splitter and a liquid nitrogen-cooled HgCdTe detector.

V.D. The Asymmetric Rotor.

A vibrational fundamental is infrared active if the dipole moment μ changes as a result of motion along the normal coordinate Q_{k}, or in other words if the derivative $\left(\partial \mu / \partial Q_{k}\right) 0$ in the Taylor series expansion of the dipole moment

$$
\begin{equation*}
\mu=\mu^{0}+\sum\left(\partial \mu / \partial Q_{k}\right)_{0} Q_{k} \tag{5.16}
\end{equation*}
$$

is non-zero. 148 The linear character of the dipole operator means that its components transform as translations along the principal axes, and therefore so do the various ($\left.\partial \mu / \partial Q_{k}\right)_{o} Q_{k}$'s.

Aminoborane is a prolate asymmetric top molecule belonging to the point group $\mathrm{C}_{2 \mathrm{v}}$, whose character table is given in Table 5.II. The irreducible representations of the normal vibrations are: $5 A_{1}+A_{2}+$ $2 B_{1}+2 B_{2}$, for a total of twelve fundamental vibrations. The $B H_{2}$ out-of-plane wagging vibration is antisymmetric with respect to reflection in the $y z$ plane, and therefore transforms as the B_{1} representation (see Fig. 5.4). Thus the v_{7} vibration represents translation along the c inertial axis and generates a C-type infrared band.

Accompanying any molecular vibration are the rotational transitions involving changes in the total angular momentum, J. In order to understand the rotational selection rules for an asymmetric top molecule, one must write down asymmetric top rotational wave functions which are eigenfunctions of the symmetry operations of the molecular point group, in this case $\mathrm{C}_{2 \mathrm{v}}$. We begin by examining the effects of the $C_{2 v}$ symmetry operations on the symmetric top wave functions, $\mathrm{Y}_{\mathrm{JK}}(\theta, \phi)$. From equation (1.23) we know that:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{JK}}(\theta, \phi)=\operatorname{NPJ} \mathrm{K}^{(\cos \theta)} \mathrm{e}^{\mathrm{iK} \phi} \tag{5.17}
\end{equation*}
$$

Table 5.II. Character table for the $\mathrm{C}_{2 v}$ point group, and the correlation of the axes of translation to infrared band type. The molecule-fixed axes x, y, z given here are related to the inertial axes a, b, c by the $I r$ representation.

$\mathrm{C}_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v^{\prime}(y z)}$	Rotation (R) and Translation (T) axes
A_{1}	1	1	1	1	$\mathrm{~T}_{\mathrm{a}}$
A_{2}	1	1	-1	-1	$R_{a}\left(R_{z}\right)$
B_{1}	1	-1	1	-1	$T_{c}, R_{b}\left(R_{y}\right)$
B_{2}	1	-1	-1	1	$T_{b}, R_{c}\left(R_{x}\right)$

where N is a normalization factor, $P_{J} K(\cos \theta)$ is an associated Legendre polynomial, and the spherical polar angles θ and ϕ are shown in Fig. 5.4.
$\mathrm{A} \mathrm{C}_{2}$ rotation about the a inertial axis ($\mathrm{C}_{2}{ }^{(\mathrm{a})}$) adds an amount π to ϕ, but does not change the θ coordinate:

$$
\begin{align*}
C_{2}(\mathrm{a}) \mathrm{Y}_{J K}(\theta, \phi) & =N P_{J} K(\cos \theta) \mathrm{e}^{i K(\phi+\pi)} \tag{5.18a}\\
& =N P_{J} K(\cos \theta) \mathrm{e}^{i K \phi e^{i K \pi}} \tag{5.18b}\\
& =\mathrm{e}^{\mathrm{i} K \pi Y_{J K}(\theta, \phi)} \tag{5.18c}
\end{align*}
$$

where

$$
e^{i K \pi}\left\{\begin{array}{l}
=1 \text { for even } K \tag{5.19}\\
=-1 \text { for odd } K
\end{array}\right.
$$

Note that the operation of C_{2} on $\mathrm{Y}_{\mathrm{JK}}(\theta, \phi)$ gives a multiple of the original spherical harmonic, $\mathrm{Y}_{\mathrm{JK}}(\theta, \phi) . \mathrm{C}_{2}$ rotations about the b and c inertial axes are not symmetry operations of the $\mathrm{C}_{2 v}$ point group.

Unlike $C_{2}{ }^{(a)}$, the $\sigma_{v}{ }^{a c}$ and $\sigma_{v}{ }^{a b}$ operators reverse the directions of the angles θ and ϕ. Both reflections change θ into $-\theta$, causing the associated Legendre polynomial to become $\mathrm{PJ}^{\mathrm{K}}(-\cos \theta)$. By the Rodrigues formula ${ }^{149}$

$$
\begin{equation*}
P J^{K}(-\cos \theta)=(-1)^{J+K} P_{J}^{K}(\cos \theta) \tag{5.20}
\end{equation*}
$$

The operation of $\sigma_{v}{ }^{a c}$ changes ϕ to $-\phi . \sigma_{v}{ }^{a b}$ projects the c axis in the opoosite direction and changes ϕ to $\pi-\phi$. The overall effects of the reflections are therefore:

$$
\begin{equation*}
\sigma_{v}{ }^{\mathrm{ac}} \mathrm{Y}_{\mathrm{JK}}(\theta, \phi)=(-1)^{J+K} N P_{J} K^{K}(\cos \theta) \mathrm{e}^{-\mathrm{iK} \phi} \tag{5.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{V}^{a b} Y J K(\theta, \phi)=(-1)^{J+K} N P_{J}{ }^{K}(\cos \theta) e^{i K} \pi_{e}-i K \phi \tag{5.22}
\end{equation*}
$$

Clearly the spherical harmonics themselves are not eigenfunctions of the reflection operators, though the linear combinations obtained

Fig. 5.4. Schematic drawing of the $\mathrm{C}_{2 v} \mathrm{NH}_{2} \mathrm{BH}_{2}$ molecule in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ principal axis system and the a, b, c inertial axis system, showing the $C_{2} \sigma_{v}$ reflection planes.
by taking Wang sum and difference functions ${ }^{150}$ are eigenfunctions of these operators:

$$
\begin{equation*}
\Psi_{J K \pm}=(1 / \sqrt{2})\left(Y_{J K} \pm Y_{J,-K}\right) \tag{5.23}
\end{equation*}
$$

In equation (5.23) the sums and differences (JK_{+}and JK ., respectively) correspond to the upper and lower asymmetry components of a JK level.

The effects of the $\mathrm{C}_{2 \mathrm{v}}$ symmetry operations, performed on asymmetric top rotational wavefunctions, follow from equations (5.18c), (5.19), (5.21), (5.22) and (5.23):

$$
\begin{align*}
\mathrm{C}_{2}(\mathrm{a}) \Psi_{\mathrm{JK} \pm} & =(-1)^{\mathrm{K}} \Psi_{\mathrm{JK} \pm} \tag{5.24}\\
\sigma_{\mathrm{V}} \mathrm{ac} \Psi_{\mathrm{JK} \pm} & =(1 / \sqrt{2})(-1)^{\mathrm{J}-\mathrm{K}} Y_{J,-K} \pm(1 / \sqrt{2})(-1)^{\mathrm{J}+\mathrm{K}} Y_{J K} \\
& = \pm(-1)^{\mathrm{J}+\mathrm{K}}(1 / \sqrt{2})\left(Y_{J K} \pm Y_{J,-K}\right) \\
& = \pm(-1)^{\mathrm{J}+\mathrm{K}} \Psi_{\mathrm{JK} \pm} \tag{5.25}\\
\sigma_{\mathrm{V}} \mathrm{ab} \Psi_{J K \pm} & =(-1)^{\mathrm{K}}(-1)^{\mathrm{J}+K} \Psi_{J K \pm} \\
& = \pm(-1)^{\mathrm{J}} \Psi_{\mathrm{JK} \pm} \tag{5.26}
\end{align*}
$$

For even and odd values of K, and the + and - asymmetry components, the result of each operation can be tabulated using (5.24) through (5.26), as given in the first two sections of Table 5.III. The irreducible representations in the third section of Table 5 .III are obtained by substituting even and odd values for J into section 2. The quantum numbers K_{a} and K_{c} in section 3 denote the projections of the angular momentum components J_{a} and J_{c} along the axes of lowest and highest inertia. The values of K_{a} and K_{c} corresponding to each irreducible representation are derived from the rule that $K_{c}=J$ $-\mathrm{K}_{\mathrm{a}}$ and $\mathrm{K}_{\mathrm{c}}=\mathrm{J}-\mathrm{K}_{\mathrm{a}}+1$, for the + and - asymmetry components, respectively. For example, for even J , even K_{a} and the - asymmetry component, K_{c} must be odd, giving $\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{c}}=$ eo. The eo notation

Table 5.III. Character sets for an asymmetric top rotational wavefunction in the $C_{2 v}$ point group.

$\begin{array}{lll} & & \\ & & \\ & & \\ J & K_{a} & f \end{array}$	ng sum \& ference actions	E		C_{2}	$\sigma_{v}{ }^{\text {ac }}$	$\sigma_{v}{ }^{\text {ab }}$	Irred. tations Jeven	presen- $\left.\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{c}}\right)$ Jodd	$\mathrm{E} \pm / \mathrm{O} \pm$ notation
J Keven				1	$(-1)^{J}$	$(-1)^{J}$	A_{1} (ee)	$\mathrm{A}_{2}(\mathrm{eo})$	E+
J Keven					$-(-1)^{J}$	$-(-1)^{J}$	$\mathrm{A}_{2}(\mathrm{eo})$	A_{1} (ee)	E^{-}
J Kodd	+		1	-1	$-(-1)^{J}$	$(-1)^{\mathrm{J}}$	$B_{2}(\mathrm{oe})$	$\mathrm{B}_{1}(00)$	O^{+}
J Kodd					$(-1)^{\text {J }}$	$-(-1)^{J}$	$\mathrm{B}_{1}(00)$	$\mathrm{B}_{2}(\mathrm{oe})$	O^{-}

indicates that the rotational wavefunction is symmetric with respect to rotation about the a inertial axis and antisymmetric with respect to rotation about the c inertial axis. ${ }^{151}$ The $E^{ \pm} / O^{ \pm}$notation given in the last column of Table 5.III is explained in Section V.E. From Table 5.III, the selection rules for a C-type band are:

$$
\begin{equation*}
A_{1} \Leftrightarrow B_{2} \text { and } A_{2} \Leftrightarrow B_{1} \tag{5.27}
\end{equation*}
$$

or in $\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{c}}$ notation:

$$
\begin{equation*}
\mathrm{ee} \Leftrightarrow \mathrm{oe} \text { and } \mathrm{eo} \Leftrightarrow 00 \tag{5.28}
\end{equation*}
$$

The restrictions on changes in K_{a} and K_{c} are therefore:

$$
\begin{equation*}
\Delta \mathrm{K}_{\mathrm{a}}= \pm 1, \pm 3, \pm 5, \ldots \text { and } \Delta \mathrm{K}_{\mathrm{c}}=0, \pm 2, \pm 4, \ldots \tag{5.29}
\end{equation*}
$$

so that C-type bands consist of the following branches, in $\Delta K a \Delta J$ notation:

Branch	$\underline{\Delta J}$	$\underline{\Delta K_{a}}$	$\underline{\Delta K_{c}}$	Intensity
rR	+1	+1	0,0	strong
PP	-1	-1	0,0	strong
rQ	0	+1	$0,-2$	intermediate
PQ	0	-1	$0,+2$	intermediate
rP	-1	+1	$-2,-2$	weak
PR	+1	-1	$+2,+2$	weak

V.E. The Rotational Hamiltonian.

V.E.1. The Hamiltonian without vibration interaction.

The rotational Hamiltonian representing the purely kinetic energy, T , of a freely rotating rigid asymmetric top molecule is:

$$
\begin{align*}
\hat{\mathrm{H}}^{\text {rigid }}= & \left(\mathrm{B}_{\mathrm{x}}+\mathrm{B}_{y}\right) \hat{\jmath} 2 / 2+\left[B_{z}-\left(B_{x}+B_{y}\right) / 2\right] \hat{\jmath}_{z}{ }^{2 / 2}+ \\
& \left(B_{x}-B_{y}\right)\left(\hat{\jmath}_{+}{ }^{2}+\hat{\jmath}^{2}{ }^{2}\right) / 4 \tag{5.20}
\end{align*}
$$

where $\hat{J}_{+}{ }^{2}+\hat{J}_{-}{ }^{2}=\left(\hat{J}_{x}+i \hat{J}_{y}\right)^{2}+\left(\hat{J}_{x}-i \hat{J}_{y}\right)^{2}$, and the quantities $B_{\alpha}=$ $h / 8 \pi^{2} \mathrm{cl}_{\alpha}$ (in cm^{-1}) are the rotational constants. $152 \mathrm{~B}_{\mathrm{x}}, \mathrm{B}_{\mathrm{y}}$ and B_{z} are to be identified with the rigid-rotor rotational constants B, C and A, respectively, for the 1 r representation which is appropriate for a near-prolate asymmetric top molecule.

The third term of equation (5.20) (which vanishes in a symmetric top) produces a matrix representation for \hat{H} rigid that contains offdiagonal matrix elements with $\Delta K \pm 2$:

$$
\begin{align*}
<J, K \pm 2\left|\hat{J}_{ \pm}^{2}\right| J K>= & \left(\hbar^{2 / 4}\right)[J(J+1)-K(K \pm 1)]^{1 / 2} \\
& x[J(J+1)-(K \pm 1)(K \pm 2)]^{1 / 2} \tag{5.21}
\end{align*}
$$

The matrix of $\hat{\mathrm{H}}^{\text {rigid }}$ can be factorized at once into blocks containing only odd or even values of K in the basis set (because no matrix elements of the type $\Delta K= \pm 1$ arise from (5.20). These submatrices can be further factorized by taking sums and differences of the original symmetric top basis functions by means of a Wang similarity transformation ${ }^{150}$:

$$
\begin{align*}
& \left|J, 0^{+}\right\rangle=|J, 0\rangle \\
& \mid J, K^{ \pm}>=(1 / \sqrt{ } 2)\{|J, K> \pm| J,-K>\},(K>0) \tag{5.22}
\end{align*}
$$

The four submatrices constructed from the basis functions $\mid J, K^{ \pm}>$are designated $\mathrm{E}^{ \pm}$and $\mathrm{O}^{ \pm}$for even and odd K , respectively.

To obtain a more accurate description of the rotational structure of an asymmetric top, centrifugal distortion must be considered. Centrifugal forces cause expansion (or stretching) and distortion in a rotating molecule, which lead to deviations from the rigid rotor Hamiltonian that increase with increasing angular momentum. The distortion Hamiltonian, H_{d}, is therefore treated as a power series which adds higher degree angular momentum terms to the rigid rotor Hamiltonian:

$$
\begin{equation*}
\hat{H}^{\prime}{ }_{d}=(\hbar 4 / 4) \sum_{\alpha \beta \gamma \delta} \tau_{\alpha \beta \gamma \delta} J_{\alpha} J_{\beta} J_{\gamma} J_{\delta} \tag{5.23}
\end{equation*}
$$

where $\tau_{\alpha \beta \gamma \delta}$ is the centrifugal distortion constant and α, β, γ and $\delta=x$, y or z. ${ }^{153}$ The number of terms in the general power series of equation (5.23) is 81 . However, symmetry constraints reduce the number to 6 for an orthorhombic molecule (i.e., one which possesses at least two perpendicular planes of symmetry), since all terms vanish which are antisymmetric with respect to one or more of the symmetry operations. All of the remaining terms have only even powers of J, since those with odd powers change sign under the operation of Hermitian conjugation and time reversal.152,154 Further reduction of the orthorhombic Hamiltonian follows one of two routes: the "asymmetric top reduction" for the general asymmetric top, or the "symmetric top reduction" for asymmetric tops that are nearly symmetric. In the A-reduction the $J_{+}{ }^{4}+J_{-}{ }^{4}$ term is eliminated, leaving only terms of the type $\Delta K=0, \pm 2$, whereas the " S " reduced Hamiltonian retains $\Delta K= \pm 4, \pm 6, \ldots$ terms. Aminoborane was treated using Watson's "A" reduced

Hamiltonian. 152 Written out completely up to terms in J^{8}, this is: 154

$$
\begin{align*}
& \hat{H}_{\text {rot }}{ }^{(A)}=B_{x}(A) \hat{\jmath}_{x}{ }^{2}+B_{y}(A) \hat{\jmath}_{y}{ }^{2}+B_{z}(A) \hat{\jmath}_{z}^{2}-\Delta J \hat{\jmath}^{4}-\Delta J K \hat{\jmath}^{2} \hat{\jmath}_{z}{ }^{2}-\Delta K \hat{\jmath}_{z}{ }^{4} \\
& -2 \delta_{J} \hat{\jmath}^{2}\left(\hat{\jmath}_{x}{ }^{2}-\hat{\jmath}_{y}{ }^{2}\right)-\delta_{K}\left[\hat{\jmath}_{z}{ }^{2}\left(\hat{\jmath}_{x}{ }^{2}-\hat{\jmath}_{y}{ }^{2}\right)+\left(\hat{\jmath}_{x}{ }^{2}-\hat{J}_{y}{ }^{2}\right) \hat{\jmath}_{z}{ }^{2}\right]+\Phi{ }_{J} \hat{\jmath} 6 \\
& +\Phi_{J K} \hat{\jmath}^{4} \hat{\jmath}_{z}{ }^{2}+\Phi_{K J} \hat{J}^{2} \hat{\jmath}_{z}{ }^{4}+\Phi_{K} \hat{J}_{z}{ }^{6}+2 \phi J \hat{\jmath}^{4}\left(\hat{J}_{x}{ }^{2}-\hat{\jmath}_{y}{ }^{2}\right) \\
& +\phi_{J K} \hat{\jmath} 2\left[\hat{\jmath}_{z}{ }^{2}\left(\hat{\jmath}_{x}{ }^{2}-\hat{\jmath}_{y}{ }^{2}\right)+\left(\hat{J}_{x}{ }^{2}-\hat{\jmath}_{y}{ }^{2}\right) \hat{\jmath}_{z}{ }^{2}\right]+\phi_{K}\left[\hat{\jmath}_{z}{ }^{4}\left(\hat{\jmath}_{x}{ }^{2}-\hat{\jmath}_{y}{ }^{2}\right)\right. \\
& \left.+\left(\hat{J}_{x}{ }^{2}-\hat{J}_{y}{ }^{2}\right) \hat{\jmath}_{z}{ }^{4}\right]+L J \hat{J}^{8}+L_{J J K} \hat{\jmath}^{6} \hat{\jmath}_{z}{ }^{2}+L_{J K} \hat{J}^{4} \hat{\jmath}_{z}{ }^{4}+L_{K K J} \hat{J}^{2} \hat{\jmath}_{z}{ }^{6} \\
& +L_{K} \hat{J}_{z}{ }^{8}+2 \mid J{ }^{6} 6\left(\hat{J}_{x}{ }^{2}-\hat{J}_{y}{ }^{2}\right)+I_{J K} \hat{J}^{4}\left[\hat{J}_{z}{ }^{2}\left(\hat{J}_{x}{ }^{2}-\hat{J}_{y}{ }^{2}\right)+\left(\hat{J}_{x}{ }^{2}-\hat{J}_{y}{ }^{2}\right) \hat{J}_{z}{ }^{2}\right] \\
& +I_{K} \hat{\jmath}^{2}\left[\hat{\jmath}_{z}{ }^{4}\left(\hat{J}_{x}{ }^{2}-\hat{\jmath}_{y}{ }^{2}\right)+\left(\hat{J}_{x}{ }^{2}-\hat{\jmath}_{y}{ }^{2}\right) \hat{\jmath}_{z}{ }^{4}\right]+I_{K}\left[\hat{\jmath}_{z}{ }^{6}\left(\hat{\jmath}_{x}{ }^{2}-\hat{\jmath}_{y}{ }^{2}\right)\right. \\
& \left.+\left(\hat{J}_{x}{ }^{2}-\hat{\jmath}_{y}{ }^{2}\right) \hat{\jmath}_{z}{ }^{6}\right] \tag{5.24}
\end{align*}
$$

The fitting program employed in this work to analyze the aminoborane v_{7} band included all matrix elements through to the off-diagonal sextic terms $\left(J^{6}\right)$, plus the diagonal elements from the octic terms:

$$
\begin{aligned}
E_{K, K}= & <J, K\left|\hat{H}_{r o t}(A)\right| J, K> \\
= & {\left[B_{x}(A)+B_{y}(A)\right] J(J+1) / 2+\left\{B_{z}(A)+\left[B_{x}(A)+B_{y}(A)\right] / 2\right\} K^{2} } \\
& -\Delta_{J} J^{2}(J+1)^{2}-\Delta J K J(J+1) K^{2}-\Delta_{K} K^{4}+\Phi_{J} J^{3}(J+1)^{3} \\
& +\Phi_{J K} J^{2}(J+1)^{2} K^{2}+\Phi_{K J J}(J+1) K^{4}+\Phi_{K} K^{6}+L_{J} J^{4}(J+1)^{4} \\
& +L_{J J K} J^{3}(J+1)^{3} K^{2}+L_{J K} J^{2}(J+1)^{2} K^{4}+L_{K K J J}(J+1) K^{6}+L_{K} K^{8}
\end{aligned}
$$

$$
\begin{align*}
& E_{K \pm 2, K}=<J, K \pm 2\left|\hat{H}_{r o t}(A)\right| J, K> \tag{5.25}\\
&=\left\{\left[B_{x}(A)-B_{y}(A)\right] / 4-\delta J J(J+1)-\delta K\left[(K \pm 2)^{2}+K^{2}\right] / 2+\right. \\
&\left.+\phi_{J J} J^{2}(J+1)^{2}+\phi_{J K J} J(J+1)\left[(K \pm 2)^{2}+K^{2}\right] / 2+\phi_{K}\left[(K \pm 2)^{4}+K^{4}\right] / 2\right\} \\
&\{[J(J+1-K(K \pm 1)][J(J+1)-(K \pm 1)(K \pm 2)]\}^{1 / 2} \tag{5.26}
\end{align*}
$$

V.E.2. Coriolis interaction.

The only perturbation present in the v_{7} fundamental, up to the limit of this analysis at $\mathrm{K}^{\prime}{ }^{\prime}=11$, is a Coriolis interaction globally affecting all levels to an extent which increases quadratically with the rotational quantum number K. A Coriolis interaction is the coupling of two vibrations by the rotation of the molecule. Put simply, certain combinations of vibrations generate an internal angular momentum which is part of the total angular momentum of the molecule. ${ }^{155}$ In other words, rotational and vibrational motion are not separable. This internal, or vibrational, angular momentum is a vector, written Π, whose components are Π_{x}, Π_{y} and Π_{z}. To obtain the rotational Hamiltonian, the vibrational angular momentum must be subtracted from the total angular momentum, P , to give the rotational angular momentum. Instead of the simple form

$$
\begin{equation*}
\hat{\mathrm{H}}=\hbar^{2}\left(\hat{J}_{x}^{2} / I_{x}+\hat{J}_{y}^{2} / I_{y}+\hat{J}_{z}^{2} / I_{z}\right) / 2+\hat{\mathrm{H}}_{v i b} \tag{5.27}
\end{equation*}
$$

the rotation-vibration Hamiltonian (in joules) becomes ${ }^{155,156,157}$:
$\hat{H}=\hbar^{2}\left\{\left[\left(\hat{P}_{x}-\hat{\Pi}_{x}\right)\right]^{2} / I_{x}+\left[\left(\hat{P}_{y}-\hat{\Pi}_{y}\right)\right]^{2} / l_{y}+\left[\left(\hat{P}_{z}-\hat{\Pi}_{z}\right)\right]^{2 /} I_{z}\right\} / 2+\hat{H}_{v i b}$

$$
\begin{align*}
\hat{H}= & \hbar^{2}\left(\hat{P}_{x}^{2} / I_{x}+\hat{P}_{y}^{2} / l_{y}+\hat{P}_{z}^{2} / I_{z}\right) / 2-\hbar^{2}\left(\hat{\Pi}_{x} \hat{P}_{x} / I_{x}+\hat{\Pi}_{y} \hat{P}_{y} / l_{y}+\hat{\Pi}_{z} \hat{P}_{z} / I_{z}\right) \tag{5.28}\\
& +\hbar^{2}\left(\hat{\Pi}_{x}^{2} / l_{y}+\hat{\Pi}_{y}^{2} / I_{y}+\hat{\Pi}_{z}^{2} / I_{z}\right)+\hat{H}_{v i b} \tag{5.29}
\end{align*}
$$

The first term in equation (5.29), independent of the vibrational angular momentum, is the rigid rotor Hamiltonian, while the third term, independent of rotational angular momentum, affects only the vibrational energy. The second term, a function of both the vibrational and the total angular momenta, represents Coriolis coupling. The Coriolis interaction can therefore be considered as the scalar product of the rotational and vibrational angular momenta,
the magnitude of which increases the faster the molecule rotates and the nearer the vibrations approach degeneracy. According to Jahn's rule two normal coordinates Q_{k} and Q_{l} are coupled via an α axis Coriolis interaction only if the product of their irreducible representations is of the same symmetry as $P_{\alpha} .{ }^{157}$ Thus the $v_{7}\left(B_{1}\right)$ fundamental at $1005 \mathrm{~cm}^{-1}$ undergoes an a-axis Coriolis interaction with the nearby $v_{11}\left(B_{2}\right)$ fundamental at $1122 \mathrm{~cm}^{-1}$, since $B_{1} \times B_{2}$ gives the A_{2} symmetry species (corresponding to rotation around the a-axis). The v_{11} vibration in turn interacts with $v_{5}\left(A_{1}\right)$ at 1145 cm^{-1} (the BH_{2} symmetric bending vibration) by a c -axis Coriolis interaction, while the direct product of the v_{7} and v_{5} symmetries produces B_{1} symmetry for a b-axis Coriolis interaction. Each of these three vibrations is therefore affected by the other two.

The vibrational angular momentum, in units of \hbar, is defined as ${ }^{155}$:

$$
\begin{equation*}
\Pi_{\alpha}=\sum_{k, 1} \zeta_{k l}(\alpha) q_{k} P_{I}\left(\omega / \omega_{k}\right)^{1 / 2} \tag{5.30}
\end{equation*}
$$

where the normal coordinate Q and its momentum conjugate, $\mathrm{P}=$ -ih $\partial / \partial Q$, are expressed in the dimensionless forms, q and p :

$$
\begin{align*}
& \mathrm{q}_{\mathrm{k}}=\gamma_{\mathrm{k}} 1 / 2 \mathrm{Q}_{\mathrm{k}} \tag{5.31}\\
& \mathrm{P}_{\mathrm{k}}=\mathrm{P}_{\mathrm{k}} / \gamma_{\mathrm{k}}{ }^{1 / 2 \mathrm{~h}} \tag{5.32}\\
& \gamma_{\mathrm{k}}=2 \pi \mathrm{c} \omega_{\mathrm{k}} / \mathrm{h} \tag{5.33}
\end{align*}
$$

The Coriolis coupling constant, $\zeta_{k l}(\alpha)$, is a measure of the angular momentum about the α-axis induced by the interaction of two normal vibrational modes, Q_{k} and Q_{l}, having frequencies (in cm^{-1}) of ω_{k} and ω.

V.F. Band Analysis and Discussion.

Aminoborane's BH_{2}-wag forms a C-type band whose appearance is characterized by a central spike, due to the asymmetry of the molecule causing low-K Q branches to pile up about the band origin (see Fig. 5.5). ${ }^{158}$ At high resolution (Fig. 5.6), it can be seen that the spike is composed largely of the two lowest Q branches, PQ_{1} and ${ }^{r} \mathrm{Q}_{0}$ (using the notation $\Delta K a \Delta J_{K a n}$). The lines of the ${ }^{11} \mathrm{~B}$ form of $\mathrm{NH}_{2} \mathrm{BH}_{2}$ were assigned by a process of successive refinement of the upper state constants. The ground state constants were held fixed at the best values available so far, ${ }^{133}$ and the structure of the band was calculated using a prediction program. As the upper state constants were improved the prediction became more accurate so that more lines could be assigned. The assignments were limited to a maximum upper state value of K_{a} equal to 11 , as a result of the Boltzmann distribution at room temperature. Lines of ammonia, present as an impurity in the spectrum, were used as an internal standard for absolute frequency calibration. The NH_{3} frequencies were taken from the diode laser study by Job et al. 159

A complete set of molecular constants cannot be given at this time because the v_{5} fundamental has not yet been observed directly since its dipole derivative is very small. Without lines from v_{5}, it is extremely difficult to analyze the $v_{5}-v_{7}-v_{11}$ Coriolis interactions. However, it is hoped that a sufficient portion of the v_{5} band can be assigned in the near future to allow a fit to be made. The data were fitted to the matrix elements in equation (5.25) and (5.26) by means of a least-squares program written by Dr. Wyn Lewis-Bevan. In this program the Hellmann-Feynman theorem is used to calculate the

Fig. 5.5. $\mathrm{NH}_{2} \mathrm{BH}_{2}$ spectrum of the v_{7} band and the v_{5} and v_{11} bands with which it undergoes Coriolis interactions.

Fig. 5.6. Center of the v_{7} band of $\mathrm{NH}_{2}{ }^{11} \mathrm{BH}_{2}$.
derivatives of the energy levels with respect to the parameters (see Section IV.C). The computations were performed on the University of British Columbia Computing Centre Amdahl 470 V/8 mainframe computer.

Two sets of molecular constants appear in Table 5.IV. Both were obtained by ignoring the Coriolis perturbation, but one was produced from a reduced data set of 606 transitions with a maximum Ka^{\prime} of 6 . In the excited state, all constants were floated except the offdiagonal sextics, namely $\phi_{J}, \phi_{J K}$, and ϕ_{K}. Eliminating all K_{a} values above six reduces the standard deviation in the line positions from $0.001 \mathrm{~cm}^{-1}$ to $0.0003 \mathrm{~cm}^{-1}$. This is expected from the K dependence of the Coriolis coupling. The standard errors of most constants improved when the data set was reduced, except for very small ones ($\approx 10^{-8} \mathrm{~cm}^{-1}$) and with matrix elements dependent on K . Note in particular that $\Phi_{K J}, L_{K K J}$ and L_{K}, which accompany the variables K^{6}, $J(J+1) K^{6}$ and K^{8}, are very poorly determined in the reduced data set. This reflects the importance of a wide range of K values in determining terms containing high powers of K .

Without including Coriolis terms in the Hamiltonian, the constants in Table 5.IV are not true values. Rather, they comprise internally consistent sets which have incorporated the effects of the Coriolis interactions in order to fit the data. This is particularly evident in that the Δ_{K} and δ_{K} constants are negative, rather than positive as they should be. Since Δ_{K} and δ_{K} accompany the variables $-K^{4}$ and $-\left[(K \pm 2)^{2}+K^{2}\right]$, these terms are the most sensitive to Coriolis interactions. An estimate of -0.406 was made for the $v_{7}-v_{11}$ a-axis Coriolis coupling constant $\left(\zeta_{7,11}\right)$ from the v_{7}

Table 5.IV. Molecular constants of the v_{7} band of $\mathrm{NH}_{2}{ }^{11} \mathrm{BH}_{2}$ (in cm^{-} ${ }^{1}$), for both the full and reduced ($\mathrm{Ka}^{\prime} \leq 6$) data sets. The numbers in parentheses denote one standard deviation in units of the last significant figures. Where a ground state constant is blank, it was fixed to zero.

EXCITED STATE

GROUND STATE
Reduced Full

T_{0}	$1004.68420(5)$	$1004.6831(2)$	
A	$4.51446(2)$	$4.51512(3)$	$4.610569(8)$
B	$0.9060531(8)$	$0.90605(2)$	$0.916897(2)$
C	$0.7646658(7)$	$0.76467(2)$	$0.763137(2)$
Δ_{J}	$1.173(1) \times 10^{-6}$	$1.161(3) \times 10^{-6}$	$1.542(2) \times 10^{-6}$
Δ_{JK}	$1.04(1) \times 10^{-5}$	$1.15(2) \times 10^{-5}$	$9.87(3) \times 10^{-6}$
Δ_{K}	$-1.17(3) \times 10^{-4}$	$-0.68(1) \times 10^{-4}$	$8.692(8) \times 10^{-5}$
δ_{J}	$1.116(6) \times 10^{-7}$	$1.06(2) \times 10^{-7}$	$2.86(3) \times 10^{-7}$
δ_{K}	$-1.197(6) \times 10^{-5}$	$-1.89(2) \times 10^{-5}$	$1.016(2) \times 10^{-5}$
$\Phi J K$	$6.7(2.2) \times 10^{-10}$	$-3.3(2) \times 10^{-10}$	
$\Phi_{K J}$	$-4.3(7) \times 10^{-8}$	$5.7(4) \times 10^{-8}$	$7.0(32) \times 10^{-11}$
Φ_{K}	$-6.7(1.6) \times 10^{-7}$	$3.7(2) \times 10^{-7}$	$5.94(30) \times 10^{-9}$
$L_{J K}$	$-2.5(7) \times 10^{-11}$	$6.4(3) \times 10^{-11}$	
$L_{K K J}$	$4.6(1.3) \times 10^{-10}$		
L_{K}	$3.8(2.3) \times 10^{-9}$		
σ	0.0003	0.001	

and v_{11} data. 160 This is in good agreement with a force field estimate of -0.40 .161

Appendix I. NbN ${ }^{\mathbf{3}} \mathbf{\Phi}^{\mathbf{3}}{ }^{\Delta}$ Correlation Matrix

	B^{\prime}	$A_{D}{ }^{\prime}$	$\lambda \mathrm{D}^{\prime}$	A^{\prime}	λ^{\prime}	γ^{\prime}	D'	$h_{-1}{ }^{\text {' }}$	$\mathrm{h}_{0}{ }^{\text {' }}$	$h_{+1}{ }^{\prime}$	b^{\prime}	$\mathrm{e}^{2} \mathrm{qQ}^{\prime}$
B^{\prime}	1	-0.462	0.105	0.028	-0.107	0.034	0.055	-0.002	0.039	0.022	0.025	0.013
$A_{D}{ }^{\prime}$		1	-0.159	-0.258	-0.158	0.333	0.157	-0.032	0.022	0.047	-0.319	-0.004
$\lambda^{\prime}{ }^{\prime}$			1	0.248	-0.273	0.004	0.049	-0.072	0.242	-0.143	0.133	-0.005
A^{\prime}				1	0.241	-0.515	-0.235	0.012	-0.073	-0.004	0.671	0.049
λ^{\prime}					1	-0.573	-0.187	0.124	-0.391	0.151	0.392	0.011
γ^{\prime}						1	0.517	-0.117	0.121	-0.011	-0.706	-0.013
D'							1	0.002	0.066	0.151	-0.119	-0.016
$h_{-1}{ }^{1}$								1	-0.027	-0.004	-0.002	-0.068
$\mathrm{h}_{0}{ }^{\prime}$									1	-0.027	-0.075	-0.002
$h_{+1}{ }^{\prime}$										1	0.101	-0.018
b^{\prime}											1	0.041
$e^{2} q Q^{\prime}$												1

$\begin{array}{lllllllllll}T_{0} & B^{\prime \prime} & A_{D} " & \lambda_{D} " & A^{\prime \prime} & \lambda^{\prime \prime} & \gamma^{\prime \prime} & D^{\prime \prime} & h_{-1 "} & h_{0 "} & h_{+1}{ }^{\prime \prime} \\ b_{-1 / 0 " ~}^{\prime \prime} & b_{0 /+1 "}\end{array}$ $B^{\prime} \quad-0.038 \quad 0.995-0.462-0.017 \quad 0.026-0.1130 .011-0.131-0.0250 .0320 .0210 .0270 .023$
$A_{D}{ }^{\prime}-0.278-0.464 \quad 0.974-0.181-0.275-0.100 \quad 0.272 \quad 0.232 \quad 0.0130 .030 \quad 0.027-0.318-0.318$
$\lambda_{D^{\prime}}-0.108 \quad 0.091-0.206 \quad 0.884 \quad 0.250-0.255-0.168-0.257-0.068 \quad 0.195-0.1060 .1270 .146$
$\begin{array}{lllllllllllllllllll}A^{\prime} & 0.152 & 0.026 & -0.355 & 0.396 & 0.999 & 0.235 & -0.882 & -0.455 & -0.026 & -0.078 & 0.041 & 0.670 & 0.672\end{array}$
$\lambda^{\prime} \quad 0.592-0.091-0.060-0.114 \quad 0.242 \quad 0.965-0.268-0.067 \quad 0.084-0.345 \quad 0.150 \quad 0.398 \quad 0.377$
$\gamma^{\prime} \quad-0.902-0.0040 .227-0.267-0.520-0.3820 .680 \quad 0.284-0.0630 .123-0.050-0.701-0.701$
D' $-0.512-0.0220 .089-0.145-0.247-0.0530 .246 \quad 0.518 \quad 0.017 \quad 0.077 \quad 0.134-0.116-0.012$
$h_{\text {h } 1} 1^{\prime} \quad 0.11110 .008-0.017-0.031 \quad 0.021 \quad 0.106-0.060 \quad 0.152 \quad 0.848-0.0160 .00300100 .002$
$h_{0}{ }^{\prime}-0.116 \quad 0.0360 .005 \quad 0.221-0.073-0.4150 .0720 .105-0.011 \quad 0.910-0.012-0.082-0.062$
$\begin{array}{lllllllllllllll}h_{+1} & 0.034 & 0.034 & 0.073 & -0.110 & -0.020 & 0.151 & 0.056 & 0.356 & 0.000 & -0.006 & 0.933 & 0.096 & 0.081\end{array}$
b' $^{\prime} \quad 0.408 \quad 0.025-0.3500 .312 \quad 0.670 \quad 0.330-0.877-0.191-0.050-0.078 \quad 0.153 \quad 0.996 \quad 0.994$
$e^{2} q Q '-0.016 \quad 0.015-0.017-0.003 \quad 0.0470 .018-0.058-0.008-0.0470 .001-0.0120 .0430 .036$
$\begin{array}{lllllllllllllllllll}T_{0} & 1 & 0.007 & -0.097 & 0.147 & 0.159 & 0.368 & -0.301 & -0.110 & 0.074-0.112 & 0.050 & 0.401 & 0.400\end{array}$
$\begin{array}{llllllllllllllllllllllllll}\text { B" } & 1 & -0.453 & -0.024 & 0.025 & -0.108 & 0.012 & -0.130 & -0.017 & 0.028 & 0.031 & 0.027 & 0.022\end{array}$
$\begin{array}{lllllllllllll}A_{D} " & 1 & -0.197 & -0.364 & -0.045 & 0.346 & 0.269 & 0.028 & 0.014 & 0.045 & -0.350 & -0.352\end{array}$

$1 \quad 0.234-0.883-0.460-0.021-0.0780 .0280 .6690 .671$
$\begin{array}{llllllll}1 & -0.221 & -0.048 & 0.069 & -0.365 & 0.148 & 0.339 & 0.316\end{array}$
$\gamma^{\prime \prime} \quad 1 \quad 0.442-0.0050 .078-0.008-0.877-0.880$
D"
h. ${ }^{\prime \prime}$
$h_{0}{ }^{\prime \prime}$
$h_{+1}{ }^{\prime \prime}$
b-1/0"
$1 \quad 0.149 \quad 0.121 \quad 0.318-0.186-0.200$
$1-0.010-0.004-0.051-0.051$
$1-0.011-0.079-0.078$
10.1530 .150
$b_{0 /+1 "}{ }^{\prime \prime}$

APPENDIX II. Transitions of the ${ }^{3} \Phi-3 \Delta$ System of NbN.a

Appendix II.A. ${ }^{3} \Phi_{2}{ }^{\mathbf{3}} \boldsymbol{\Delta}_{1}$.

Appendix II.A, continued. ${ }^{3} \Phi_{2}{ }^{-3} \Delta_{1}$.
J" $\mathrm{F}^{\text { }}$
J" F^{n}

Q

F^{n}

	5		,
	6.5	qR	16149.5134
	6.5	co	16149.5292
4	6.5	rR	16149.5446
4	7.5	qR	16149.5678
	7.5	rR	16149.6026
	8.5	qR	16149.6298
	8.5	rR	16149.668
	1.5	co	16150.3267
	1.5	rR	16150.3306
	2.	qR	16150.3348
	2.5	co	16150.3401
	2.5	rR	16150.3454
	3.5	QR	16150.3513
	3.5	co	16150.3581
	3.5	rR	16150.3649
	4.5	qR	16150.3726
	4.5	co	16150.3808
	4.5	rR	16150.3891
	5.5	qR	16150.3989
	5.5	co	16150.4086
	5.5	rR	16150.4184
	6.5	qR	16150.4302
	6.5	co	16150.4414
	6	r	16150.4528
	5	qR	16150.4669
	7	co	161
	7.5	rR	16150.4921
	8.5	qR	16150.5088
	8.5	co	16150.5228
	8	rR	O. 5364
	9	rR	16150.5862
	1	rR	16151.2772
	2	co	16151.2838
	2	rR	16151.2878
	3.5	qR	16151.2917
	3.5	co	16151.2968
	3	rR	16151.3019
	4.5	qR	16151.3071
	4.5	co	16151.3133
	4.5	rR	16151.3195
	5.5	qR	16151.3260
	5.5	co	16151.3332
	5.5	-R	16151.3407
	6.5	qR	16151.3485
	6.5	co	16151.3569
	6.5	rR	16151.3652
	7.5	QR	16151.3748
	7.5	co	16151.3843
	7.5	rR	16151.3937
	8.5	qR	16151.4046
	8.5	co	16151.4153
	8.5	rR	16151.4256
	9.5	qR	16151.4385
	9.5	co	16151.4501
	9.5	rR	16151.4613
	10.5	rR	16151.5009
	2.5	rR	16152.2180
	3.5	CO	16152.2246
	3.5	rR	16152.2287
	4.5	co	16152.2370
	4.5	r	16152.2419
	5.5	qR	16152.2461
	5.5	co	16152.2521
	5.5	rR	16

J"	$F^{\prime \prime}$		
9	13.5	co	16144.2947*
9	13.5	90	16144.3047*
10	5.5	Q0	16144.0616*
10	6.5	q0	16144.0707*
10	6.5	co	16144.0749*
10	7.5	qQ	16144.0815*
10	8.5	co	16144.0888*
10	8.5	90	16144.0937
10	8.5	co	16144.0989*
10	9.5	co	16144.1018*
10	9.5	q0	16144.1075
10	9.5	co	16144. $1132 *$
10	10.5	co	16144.1167*
10	10.5	q0	16144. 1226
10	10.5	co	16144.1289*
10	11.5	co	16144.1328*
10	11.5	qQ	16144.1393
10	12.5	co	16144.1507*
10	12.5	qQ	16144.1575
10	13.5	qQ	16144.1775
10	14.5	Q0	16144.1989
11	7.5	co	16143.9767
11	8.5	co	16143.9783
11	8.5	90	16143.9824
11	8.5	CO	16143.9869
11	9.5	co	16143.9889
11	9.5	qQ	16143.9933
11	9.5	co	16143.9982
11	10.5	co	16144.0004
11	10.5	90	16144.0053
11	10.5	co	16144.0106
11	11.5	co	16144.0134
11	11.5	90	16144.0188
11	11.5	co	16144.0246
11	12.5	co	16144.0278
11	12.5	q0	16144.0334
11	12.5	co	16144.0396
11	13.5	co	16144.0431
11	13.5	q0	16144.0494*
11	14.5	q0	16144.0666*
11	15.5	qQ	16144.0852
12	7.5	co	16143.8591
12	8.5	co	16143.8609
12	8.5	co	16143.8671
12	9.5	co	16143.8684
12	9.5	90	16143.8722
12	9.5	co	16143.8763
12	10.5	co	16143.8778
12	10.5	90	16143.8819
12	10.5	co	16143.8864
12	11.5	co	16143.8882
12	11.5	90	16143.8928
12	11.5	co	16143.8977
12	12.5	co	16143.8997
12	12.5	90	16143.9046
12	12.5	co	16143.9097
12	13.5	co	16143.9121
12	13.5	q0	16143.9175
12	13.5	co	16143.9230
12	14.5	co	16143.9257
12	14.5	q0	16143.9315
12	14.5	CO	16143.9374
12	15.5	co	16143.9405
12	15.5	q0	16143.9464
12	15.5	co	16143.9525

Appendix II.A, continued. ${ }^{3} \Phi_{2}{ }^{-3} \Delta_{1}$.

R			
J"	F"		
7	6.5	qR	16152.2632
7	6.5	co	16152.2697
7	6.5	rR	16152.2762
7	7.5	qR	16152.2827
7	7.5	co	16152.2900
7	7.5	rR	16152.2972
7	8.5	qR	16152.3047
7	8.5	co	16152.3130
7	8.5	rR	16152.3210
7	9.5	QR	16152.3298
7	9.5	co	16152.3388
7	9.5	rR	16152.3477
7	10.5	qR	16152.3578
7	10.5	co	16152.3676
7	10.5	rR	16152.3772
7	11.5	CO	16152.3995
7	11.5	r R	16152.4096
8	3.5	rR	16153.1443
8	4.5	co	16153.1507
8	4.5	rR	16153. 1546
8	5.5	co	16153.1621
8	5.5	rR	16153.1668
8	6.5	co	16153.1758
8	6.5	rR	16153.1810
8	7.5	co	16153.1914
8	7.5	rR	16153.1973
8	8.5	co	16153.2091
8	8.5	rR	16153.2157
8	9.5	co	16153.2290
8	9.5	rR	16153.2362
8	10.5	qR	16153.2432
8	10.5	co	16153.2511
8	10.5	rR	16153.2589
8	11.5	co	16153.2754

Q			
J"	F"		
12	16.5	co	16143.9559
12	16.5	qQ	16143.9626*
13	9.5	qQ	16143.7435
13	10.5	q0	16143.7524
13	10.5	co	16143.7553
13	11.5	co	16143.7562
13	11.5	q0	16143.7602
13	12.5	90	16143.7698
13	12.5	co	16143.7744
13	13.5	co	16143.7756
13	13.5	90	16143.7801
13	13.5	co	16143.7851
13	14.5	co	16143.7870
13	14.5	q0	16143.7916
13	14.5	co	16143.7966
13	15.5	co	16143.7986
13	15.5	QQ	16143.8036
13	15.5	co	16143.8099
13	16.5	co	16143.8113
13	16.5	90	16143.8168
13	17.5	qQ	16143.8307
14	10.5	QQ	16143.6131
14	11.5	q0	16143.6199
14	12.5	q0	16143.6279
14	13.5	q0	16143.6365
14	14.5	90	16143.6459
14	15.5	Q 0	16143.6557
14	16.5	Q 0	16143.6662
14	17.5	90	16143.6778
14	18.5	90	16143.6901
15	10.5	90	16143.4662*
15	11.5	q0	16143.472 ${ }^{\text {* }}$
15	12.5	q0	16143.4787
15	13.5	q0	16143.4854
15	14.5	90	16143.4931
15	15.5	90	16143.5011
15	16.5	qQ	16143.5100
15	17.5	9Q	16143.5193
15	18.5	90	16143.5293
15	19.5	qQ	16143.5401
16	12.5	qQ	16143.3211*
16	13.5	q0	16143.3267
16	14.5	q0	16143.3331
16	15.5	qQ	16143.3393
16	16.5	q0	16143.3465
16	17.5	Q 0	16143.3544
16	18.5	QQ	16143.3625
16	19.5	q0	16143.3713
16	20.5	90	16143.3805
17	12.5	QQ	16143. 1555
17	13.5	QQ	16143.1602
17	14.5	Q 0	16143.1650
17	15.5	Q 0	16143.1706
17	16.5	qQ	16143.1763
17	17.5	q0	16143.1824
17	18.5	q0	16143.1890
17	19.5	90	16143. 1963
17	20.5	90	16143.2037
17	21.5	qQ	16143.2118
18	13.5	QQ	16142.9849
18	14.5	q0	16142.9887
18	15.5	qQ	16142.9932
18	16.5	Q 0	16142.9978
18	17.5	q0	16143.0028
18	18.5	q0	16143.0081

Appendix II.A, continued. ${ }^{3} \Phi_{2}{ }^{-3} \Delta_{1}$.

R

Q

U"	F"		
18	19.5	q0	16143.0140
18	20.5	q0	16143.0200
18	21.5	QQ	16143.0266
18	22.5	q0	16143.0336
19	15.5	90	16142.8074
19	22.5	90	16142.8404
19	23.5	Q 0	16142.8462
20	15.5	qQ	16142.6139
20	16.5	q0	16142.6166
20	17.5	q0	16142.6194
20	18.5	qQ	16142.6230
20	19.5	qQ	16142.6262
20	20.5	q0	16142.6301
20	21.5	q0	16142.6341
20	22.5	qQ	16142.6387
20	23.5	qQ	16142.6433
20	24.5	qQ	16142.6486
21	16.5	q0	16142.4132
21	17.5	q0	16142.4152
21	18.5	QQ	16142.4182
21	19.5	QQ	16142.4207
21	20.5	qQ	16142.4233
21	21.5	90	16142.4261
21	22.5	qQ	16142.4299
21	23.5	qQ	16142.4337
21	24.5	90	16142.4378
21	25.5	q0	16142.4417
31	27.5	qQ	16139.8508*
31	28.5	q0	16139.8488*
31	29.5	qQ	16139.8467*
31	30.5	q0	16139.8423*
31	31.5	qQ	16139.8408*
31	32.5	qQ	16139.8382*
31	33.5	qQ	16139.8366*
32	28.5	qQ	16139.5394*
32	29.5	qQ	16139.5368*
32	31.5	qQ	16139.5321*
32	32.5	qQ	16139.5293*
32	33.5	qQ	16139.5268*
32	34.5	qQ	16139.5242*
32	35.5	90	16139.5217*
33	28.5	90	16139.2199
33	29.5	qQ	16139.2171
33	30.5	qQ	16139.2143
33	34.5	9Q	16139.2113
33	32.5	qQ	16139.2083
33	33.5	q0	16139.2053
33	34.5	q0	16139.2023
33	35.5	q0	16139.1994
33	36.5	90	16139.1966
33	37.5	90	16139.1938
34	29.5	qQ	16138.8863
34	30.5	qQ	16138.8832
34	31.5	90	16138.8798
34	32.5	qQ	16138.8764
34	33.5	qQ	16138.8730
34	34.5	Q0	16138.8696
34	35.5	Q 0	16138.8662
34	36.5	qQ	16138.8628
34	37.5	qQ	16138.8596
34	38.5	QQ	16138.8562
35	32.5	QQ	16138.5376*
35	34.5	90	16138.5299
35	35.5	QQ	16138.5261
35	36.5	qQ	16138.522

Appendix II.A, continued. ${ }^{3} \Phi_{2} \mathbf{2}^{\mathbf{3}} \Delta_{1}$.

R

Q
Ј" F" 35 37.5 QQ 16138.5184 $35 \quad 38.5$ QQ 16138.5147 3539.5 QQ 16138.5110 3631.5 qQ 16138.1934 3632.5 QQ 16138.1893 $\begin{array}{llll}36 & 33.5 & \text { qQ } & 16138.1853\end{array}$ 3634.5 qQ 16138.1812 $\begin{array}{llll}36 & 35.5 & q Q & 16138.1773\end{array}$ $36 \quad 36.5$ QQ 16138.1729 $\begin{array}{llll}36 & 37.5 & \text { QQ } & 16138.1686\end{array}$ 3638.5 qQ 16138.1642 $\begin{array}{llll}36 & 39.5 & \text { qQ } & 16138.1601\end{array}$ 3640.5 QQ 16138.1559 $\begin{array}{llll}37 & 32.5 & Q Q & 16137.8315\end{array}$ 3733.5 q0 16137.8270 3734.5 QQ 16137.8226 3735.5 QQ 16137.8181 $37 \quad 36.5$ qQ 16137.8136 $\begin{array}{llll}37 & 37.5 & \text { qQ } & 16137.8087\end{array}$ $37 \quad 38.5$ QQ 16137.8044 $37 \quad 39.5$ qQ 16137.7995 3740.5 QO 16137.7950 3741.5 qQ 16137.7904 3833.5 QQ 16137.4595 38 34.5 qQ 16137.4548* $38 \quad 35.5$ q0 $\begin{array}{lll}38 & 36.5 \quad 90\end{array}$ $38 \quad 37.5$ q $38 \quad 38.5 \quad \mathrm{q}$ $38 \quad 39.5$ Q 3840.5 qQ 3841.5 q $\begin{array}{lll}38 & 42.5 \\ 39 & 34 & 5\end{array}$ $3935.5 \quad 90$ 3936.5 q0 $\begin{array}{lll}39 & 37.5 & 90 \\ 39 & 38.5 & 90\end{array}$ 3939.5 व 3940.5 q 0 $3941.5 \mathrm{q0}$ 3942.5 qQ 3943.5 q0 $40 \quad 35.5 \quad 90$ 4036.5 q0 4037.5 4038. 4039. 4040. 4041. $4042.5 \quad 90$ 4043.5 90 4044.5 q 4136.5 q0 4137.5 q0 4138.5 9 4139. 4140.5 Q 4141.5 4142.5 q0 4143.5 QQ $\begin{array}{llll}4144.5 & \text { QQ } & 16136.2324\end{array}$ 4145.5 QQ 16136.2261 4237.5 QQ 16135.8672

Appendix II.A, continued. ${ }^{3} \Phi_{\mathbf{2}} \mathbf{- 3}^{\mathbf{3}} \boldsymbol{A}_{\mathbf{1}}$.
R

$U^{\prime \prime}$	$F \prime \prime$	
42	38.5	$q Q$
42	39.5	$q Q$
42	40.5	$q Q$
42	41.5	$q Q$
42	42.5	$q Q$
42	43.5	$q Q$
42	44.5	$q Q$
42	45.5	$q Q$
42	46.5	$q Q$
43	38.5	$q Q$
43	39.5	$q Q$
43	40.5	$q Q$
43	41.5	$q Q$
43	42.5	$q Q$
43	43.5	$q Q$
43	44.5	$q Q$
43	45.5	$q Q$
43	46.5	$q Q$
43	47.5	$q Q$
44	39.5	$q Q$
44	40.5	$q Q$
44	41.5	$q Q$
44	42.5	$q Q$
44	43.5	$Q Q$
44	44.5	$Q Q$
44	45.5	$q Q$
44	46.5	$q Q$
44	47.5	$q Q$
44	48.5	$q Q$

16135.8612
16135.8549 16135.8485 16135.8421 16135.8356 16135.8293 16135.8227 16135.8158 16135.8091 16135.4427 16135.4362 16135.4298 16135.4230 16135.4164 16135.4093 16135.4024 16135.3961 16135.3889 16135.3816 16135.0081 16135.0014 16134.9947 16134.9875 16134.9804 16134.9733 16134.9664 16134.9588 16134.9515 16134.9442

Appendix II.B. ${ }^{3} \Phi_{3} \mathbf{3}^{3} \Delta_{2}$.

$J^{\prime \prime}$	F ${ }^{\prime \prime}$			$j^{\prime \prime}$	$F^{\prime \prime}$		
2	2. 5	$r R$	16545.9680*	3	5.5	qQ	16542.8992*
2	3.5	$p R$	16545.8810	3	5.5	$r Q$	16542.9654*
2	3.5	$r R$	16545.9621	3	6.5	qQ	16542.9180^{*}
2	4.5	$p R$	16545.8495	3	6.5	ro	16542.9944*
2	4.5	$q R$	16545.8954	3	7.5	qQ	16542.9403^{*}
2	4.5	$r R$	16545.9511*	4	1.5	qQ	16542.8182*
2	5.5	qR	16545.8684	4	3.5	qQ	16542.8289*
2	5.5	$r R$	16545.9350*	4	4.5	90	16542.8379*
2	6.5	$r R$	16545.9133*	4	5.5	QQ	16542.8465*
3	2.5	QR	16546.8608	4	6.5	qQ	16542.8574*
3	3.5	QR	16546.8555	4	6.5	ro	16542.9034
3	4.5	$p R$	16546.8233*	4	7.5	qQ	16542.87 .07 *
3	4.5	$Q R$	16546.8492*	4	7.5	$r Q$	16542.9224
3	5.5	$p R$	16546.8087*	4	8.5	qQ	16542.8858*
3	5.5	qR	16546.8422*	5	1.5	co	16542.7690*
3	6.5	$q R$	16546.8339	5	2.5	co	16542.7723*
3	6.5	$r R$	16546.8792*	6	2.5	q0	16542.6976*
3	7.5	qR	16546.8246^{*}	6	2.5	co	16542.7028*
3	7.5	$r R$	16546.8763*	6	3.5	qQ	16542.7009*
4	2.5	$q R$	16547.7981*	6	4.5	90	16542.7054*
4	2.5	$r R$	16547.8109*	6	5.5	90	16542.7107*
4	3.5	$q R$	16547.7965*	6	6.5	90	16542.7165*
4	3.5	$r R$	16547.8139*	6	7.5	qQ	16542.7227*
4	4.5	$q R$	16547.7948*	6	8.5	qQ	16542.7298*
4	4.5	$r R$	16547.8158*	6	9.5	q0	16542.7382*
4	5.5	$q R$	16547.7934*	6	10.5	q0	16542.7473*
4	5.5	$r R$	16547.8178*	7	4.5	90	16542.6228*
4	6.5	$Q R$	16547.7910*	7	5.5	90	16542.6265*
4	6.5	$r R$	16547.8197*	7	6.5	q0	16542.6312*
4	7.5	$q R$	16547.7888*	7	7.5	90	16542.6354*
4	7.5	$r R$	16547.8209*	7	8.5	qQ	16542.6408*

Appendix II.B, continued. ${ }^{\mathbf{3}} \Phi_{3^{-3}} \boldsymbol{\Delta}_{\mathbf{2}}$.

P

Appendix II.B, continued. ${ }^{3} \Phi_{3}{ }^{-3} \Delta_{2}$.

	R		
J"	F"		
21	19.5	rR	16562.0228
21	20.5	rR	16562.0256
21	21.5	rR	16562.0287
21	22.5	rR	16562.0321
21	23.5	$r \mathrm{R}$	16562.0355
21	24.5	r r	16562.0389
21	25.5	r r	16562.0425
22	17.5	rR	16562.7433
22	18.5	rR	16562.7456
22	19.5	rR	16562.7483
22	20.5	R	16562.7506
22	21.5	$r \mathrm{R}$	16562.7536
22	22.5	$r \mathrm{R}$	16562.7569
22	23.5	r r	16562.7599
22	24.5	r R	16562.7633
22	25.5	r r	16562.7669
22	26.5	r R	16562.7706
23	18.5	r r	16563.4585
23	19.5	rR	16563.4608
23	20.5	r r	16563.4635
23	21.5	r r	16563.4660
23	22.5	r r	16563.4689
23	23.5	r r	16563.4722
23	24.5	rR	16563.4748
23	25.5	rR	16563.4785
23	26.5	rR	16563.4821
23	27.5	rR	16563.4864
24	19.5	r r	16564. 1609
24	20.5	$r R$	16564. 1637
24	21.5	rR	16564. 1668
24	22.5	rR	16564. 1690
24	23.5	rR	16564. 1724
24	24.5	rR	16564. 1752
24	25.5	rR	16564. 1785
24	26.5	rR	16564.1818
24	27.5	rR	16564. 1857
24	28.5	rR	16564.1897
25	20.5	r r	16564.8514
25	21.5	rR	16564.8543
25	22.5	r r	16564.8568
25	23.5	r r	16564.8597
25	24.5	rR	16564.8627
25	25.5	rR	16564.8660
25	26.5	rR	16564.8687
25	27.5	rR	16564.8729
25	28.5	r r	16564.8765
25	29.5	r r	16564.8803
26	21.5	rR	16565.5304
26	22.5	rR	16565.5326
26	23.5	rR	16565.5349
26	24.5	r R	16565.5381
26	25.5	r r	16565.5411
26	26.5	rR	16565.5441
26	27.5	rR	16565.5474
26	28.5	rR	16565.5510
26	29.5	rR	16565.5547
26	30.5	rR	16565.5590
27	22.5	r r	16566. 1951
27	23.5	r r	16566.1975
27	24.5	r r	16566.2006
27	25.5	r r	16566.2034
27	26.5	rR	16566.2068
27	27.5	rR	16566.2103
27	28.5	rR	16566.2138
27	29.5	rR	16566.2171

	F"		
15	18.5	q0	16541.5616*
15	19.5	q0	16541.5662*
16	13.5	QQ	16541.3521*
16	14.5	qQ	16541.3547*
16	15.5	qQ	16541.3577*
16	16.5	qQ	16541.3608*
16	17.5	qQ	16541.3644*
16	18.5	90	16541.3683*
16	19.5	qQ	16541.3725*
16	20.5	qQ	16544.3767*
17	14.5	q0	16541.1503*
17	15.5	q0	16541.1529*
17	16.5	q0	16541.1558*
17	17.5	90	16541.1591*
17	18.5	qQ	16541.1628*
17	19.5	q0	16541.1664*
17	20.5	q0	16541.1707*
17	21.5	q0	16541.1748*
18	14.5	90	16540.9346*
18	15.5	QQ	16540.9370*
18	16.5	q0	16540.9397*
18	17.5	90	16540.9428*
18	18.5	90	16540.9460*
18	19.5	QQ	16540.9494*
18	20.5	Q 0	16540.9530*
18	21.	QQ	16540.9571*
18	22.5	qQ	16540.9611*
19	15.5	QQ	16540.7098
19	16.5	9Q	16540.7123
19	17.5	QQ	16540.7150
19	18.5	QQ	16540.7180
19	19.5	Q 0	16540.7214
19	20	QQ	16540.7247
19	21.5	qQ	16540.7283
19	22.5	QQ	16540.7322
19	23.5	q0	16540.7365
20	16.5	q0	16540.4728
20	17.5	q0	16540.4755
20	18.5	QQ	16540.4781
20	19.5	qQ	16540.4810
20	20.5	qQ	16540.4843
20	21.5	QQ	16540.4877
20	22.5	qQ	16540.4912
20	23.5	qQ	16540.4953
20	24.5	qQ	16540.4993
21	17.5	q0	16540.2245
21	18.5	qO	16540.2269
21	19.5	q0	16540.2297
21	20.5	90	16540.2327
21	21.5	QQ	16540.2357
21	22.5	QQ	16540.2391
21	23.5	q0	16540.2427
21	24.5	qQ	16540. 2466
21	25.5	qQ	16540.2507
22	18.5	QQ	16539.9633
22	19.5	90	16539.9660
22	20.5	QQ	16539.9688
22	21.5	QQ	16539.9717
22	22.5	90	16539.9751
22	23.5	qQ	16539.9784
22	24.5	qQ	16539.9822
22	25.5	qQ	16539.9858
22	26.5	90	16539:9901
23	19.5	q0	16539.6903
23	20.5	q0	16539.6928*

Appendix II.B, continued. ${ }^{3} \Phi_{3} \mathbf{- 3}^{3} \Delta_{2}$.

Appendix II.C. ${ }^{3} \Phi_{4-3} \mathbf{A B}_{3}$.

U"	F "			U"	F^{*}			J"	F "		
3	3.5	PR	16864.5123	7	2.5	90	16860.1995*	6	7.5	pP	16854.1702
3	3.5	QR	16864.5240	7	3.5	q0	16860.1811*	6	8.5	pP	16854. 1221
3	3.5	CO	16864.5312	7	4.5	q0	16860.1613*	6	9.5	pP	16854.0689
3	3.5	rR	16864.5385	7	5.5	qQ	16860.1358*	6	10.5	PP	16854.0117
3	4.5	PR	16864.4016	7	6.5	90	16860.1061*	7	3.5	PP	16853.2286
3	4.5	qR	16864.4167	7	8.5	90	16860.0329*	7	4.5	pP	16853.2077
3	4.5	co	16864.4255	7	10.5	q0	16859.9436*	7	5.5	pP	16853.1823
3	4.5	r r	16864.4348	8	5.5	90	16860.0412*	7	6.5	pP	16853.1531
3	5.5	PR	16864. 2657	9	4.5	q0	16859.9476*	7	7.5	pP	16853. 1202
3	5.5	qR	16864.2841	9	6.5	q0	16859.9134*	7	8.5	$p \mathrm{P}$	16853.0836
3	5.5	co	16864.2950	9	8.5	90	16859.8685*	7	9.5	pP	16853.0431
3	5.5	r r	16864.3058	9	9.5	90	16859.8420*	7	10.5	$p \mathrm{P}$	16852.9993
3	6.5	PR	16864.1039	9	11.5	90	16859.7819*	7	11.5	$p \mathrm{P}$	16852.9518*
3	6.5	qR	16864. 1256	9	12.5	90	16859.7482*	8	3.5	PP	16852.1317
3	6.5	co	16864. 1383	10	6.5	90	16859.7938*	8	4.5	pP	16852.1151
3	6.5	$r R$	16864.1509	10	7.5	90	16859.7770*	8	5.5	PP	16852.0958
3	7.5	QR	16863.9396	10	8.5	q0	16859.7572	8	6.5	pP	16852.0726*

Appendix II.C, continued. ${ }^{3} \Phi_{4-3} \Delta_{3}$.

R				Q				P			
J"	F^{*}			U"	F'			ل"	F ${ }^{\prime \prime}$		
3	7.5	CO	16863.9543	10	9.5	qQ	16859.7360	8	8.5	pP	16852.0184
3	7.5	r r	16863.9686	10	10.5	90	16859.7124*	8	9.5	PP	16851.9865
4	0.5	$r R$	16865.5243*	10	11.5	qQ	16859.6872	8	10.5	pP	16851.9520
4	2.5	qR	16865.4658*	10	12.5	QQ	16859.6598	8	11.5	PP	16851.9147
4	2.5	co	16865.4690*	10	13.5	qQ	16859.6301	8	12.5	$p \mathrm{P}$	16851.8748
4	2.5	rR	16865.4729*	10	14.5	9Q	16859.5991	9	4.5	PP	16851.0102
4	3.5	pR	16865.4072	11	7.5	QQ	16859.6461	9	5.5	PP	16850.9946
4	3.5	qR	16865.4154	11	8.5	q0	16859.6301*	9	6.5	PP	16850.9764
4	3.5	co	16865.4201	11	9.5	QQ	16859.6124	9	7.5	$\mathrm{p} P$	16850.9558
4	3.5	r r	16865.4250*	11	10.5	q0	16859.5931	9	8.5	pP	16850.9325
4	4.5	pR	16865.3407	11	11.5	q0	16859.5719	9	9.5	PP	16850.9072
4	4.5	qR	16865.3509	11	12.5	QQ	16859.5494	9	10.5	PP	16850.8793
4	4.5	co	16865.3568	11	13.5	90	16859.5251	9	11.5	pP	16850.8494
4	4.5	r R	16865.3630	11	14.5	qQ	16859.4999	9	12.5	PP	16850.8171
4	5.5	pR	16865.2600	11	15.5	qQ	16859.4725*	9	13.5	PP	16850.7827
4	5.5	qR	16865.2726	12	8.5	q0	16859.4874	10	5.5	PP	16849.8802
4	5.5	co	16865.2796	12	9.5	QQ	46859.4725*	10	6.5	PP	16849.8656
4	5.5	rR	16865.2870	12	10.5	qQ	16859.4567	10	7.5	PP	16849.8488
4	6.5	pR	16865. 1656	12	11.5	QQ	46859.4389	10	8.5	pP	16849.8298
4	6.5	QR	16865.1802	12	12.5	q0	16859.4202	10	9.5	PP	16849.8089
4	6.5	co	16865.1886	12	13.5	QQ	16859.3998	10	10.5	$p P$	16849.7861
4	6.5	r R	16865.1970	12	14.5	QQ	16859.3781	10	11.5	PP	16849.7615
4	7.5	pR	16865.0577	12	15.5	QQ	16859.3552	10	12.5	pP	16849.7352
4	7.5	GR	16865.0743	12	16.5	Q0	16859.3310	10	13.5	PP	16849.7070
4	7.5	Co	16865.0841	13	8.5	90	16859.3310*	10	14.5	PP	16849.6771
4	7.5	$r \mathrm{R}$	16865.0936	13	9.5	qQ	16859.3183	11	6.5	PP	16848.7402
4	8.5	qR	16864.9557	13	10.5	qQ	16859.3046	11	7.5	PP	16848.7261
4	8.5	co	16864.9664	13	11.5	qQ	16859.2896	11	8.5	PP	16848.7106
4	8.5	r r	16864.9773	13	12.5	qQ	16859.2736	11	9.5	PP	16848.6934
5	3.5	QR	16866. 3218	13	13.5	q0	16859.2564	11	10.5	PP	16848.6745
5	3.5	co	16866.3247	13	14.5	90	16859.2383	11	11.5	PP	16848.6534
5	3.5	$r R$	16866.3283	13	15.5	a 0	16859.2187	11	12.5	pP	16848.6316
5	4.5	$p R$	16866. 2717	13	16.5	qQ	16859.1983	11	13.5	$p P$	16848.6086
5	4.5	qR	16866. 2792	13	17.5	q0	16859.1771	11	14.5	PP	16848.5835
5	4.5	co	16866. 2833	14	9.5	90	16859.1494	11	15.5	PP	16848.5575
5	4.5	rR	16866.2876	14	10.5	90	16859.1377				
5	5.5	PR	16866.2183	14	11.5	9Q	16859.1248				
5	5.5	QR	16866. 2274	14	12.5	90	16859.1112				
5	5.5	co	16866. 2326	14	13.5	90	16859.0964				
5	5.5	r r	16866.2378	14	14.5	QQ	16859.0808				
5	6.5	PR	16866.1563	14	15.5	qQ	16859.0642				
5	6.5	qR	16866. 1667	14	16.5	q0	16859.0468				
5	6.5	CO	16866.1726	14	17.5	90	16859.0283				
5	6.5	rR	16866.1785	14	18.5	90	16859.0092				
5	7.5	PR	16866.0852	15	10.5	q0	16858.9562				
5	7.5	qR	16866.0975	15	11.5	90	16858.9451				
5	7.5	co	16866. 1043	15	12.5	90	16858.9332				
5	7.5	r r	16866. 1109	15	13.5	q0	16858.9205				
5	8.5	GR	16866.0198	15	14.5	qQ	16858.9070				
5	8.5	co	16866.0273	15	15.5	qQ	16858.8928				
5	8.5	r r	16866.0350	15	16.5	q0	16858.8777				
5	9.5	QR	16865.9338	15	17.5	90	16858.8617				
5	9.5	r r	16865.9508	15	18.5	90	16858.8453				
6	1.5	$r R$	16867.2702	15	19.5	90	16858.8279				
6	2.5	r r	16867.2546	16	11.5	90	16858.7512				
6	4.5	qR	16867.1976	16	12.5	q0	16858.7407				
6	4.5	CO	16867.2007	16	13.5	90	16858.7298				
6	4.5	r R	16867.2037	16	14.5	90	16858.7182				
6	5.5	qR	16867.1611	16	15.5	q0	16858.7057				
6	5.5	co	16867.1647	16	16.5	90	16858.6926				
6	5.5	$r R$	16867.1687	16	17.5	90	16858.6787				
6	6.5	qR	16867.1182	16	18.5	q0	16858.6644				
6	6.5	co	16867. 1225	16	19.5	90	16858.6499				
6	6.5	rR	16867.1270	16	20.5	90	16858.6338				
6	7.5	GR	16867.0689	17	12.5	qQ	16858.5344				

Appendix II.C, continued. ${ }^{3} \Phi_{4} \mathbf{4}^{\mathbf{3}} \Delta_{3}$.

P

17	13.5	$q Q$	16858.5253
17	14.5	$q Q$	16858.5158
17	15.5	$q Q$	16858.5037
17	16.5	$q Q$	16858.4922
17	17.5	$q Q$	16858.4801
17	18.5	$q Q$	16858.4676
17	19.5	$q Q$	16858.4546
17	20.5	$q Q$	16858.4412
17	21.5	$q Q$	16858.4269
18	13.5	$q Q$	16858.3054
18	14.5	$q Q$	16858.2967
18	15.5	$q Q$	16858.2868
18	16.5	$q Q$	16858.2771
18	17.5	$q Q$	16858.2665
18	18.5	$q Q$	16858.2556
18	19.5	$q Q$	16858.2439
18	20.5	$q Q$	16858.2325
18	21.5	$q Q$	16858.2197
18	22.5	$q Q$	16858.2072
19	15.5	$q Q$	16858.0564
19	16.5	$q Q$	16858.0475
19	17.5	$q Q$	16858.0383
19	18.5	$q Q$	16858.0284
19	19.5	$q Q$	16858.0186
19	20.5	$q Q$	16858.0081
19	21.5	$Q Q$	16857.9973
19	22.5	$q Q$	16857.9862

Appendix II.C, continued. ${ }^{3} \Phi_{4} \mathbf{a}^{3} \Delta_{3}$.

R			
"	F'		
9	8.5	qR	16869.7877
9	8.5	co	16869.7907
9	8.5	rR	16869.7936
9	9.5	QR	16869.7600
9	9.5	co	16869.7635
9	9.5	rR	16869.7668
9	10.5	qR	16869.7299
9	10.5	co	16869.7335
9	10.5	rR	16869.7369
9	11.5	qR	16869.6975
9	11.5	co	16869.7013
9	11.5	rR	16869.7051
9	12.5	qR	16869.6621
9	12.5	co	16869.6663
9	12.5	rR	16869.6704
9	13.5	qR	16869.6246*
9	13.5	co	16869.6292
9	13.5	rR	16869.6334
22	17.5	rR	16880.0768
22	18.5	rR	16880.0699
22	19.5	rR	16880.0628
22	20.5	rR	16880.0557
22	21.5	rR	16880.0476
22	22.5	r r	16880.0398
22	23.5	r r	16880.0313
22	24.5	r R	16880.0228
22	25.5	r R	16880.0151
22	26.5	r R	16880.0063
24	19.5	rR	16881.4627
24	20.5	rR	16881.4569
24	21.5	r r	16881.4512
24	22.5	r r	16881.4450
24	23.5	rR	16881.4387
24	24.5	rR	16881.4320
24	25.5	r r	16881.4251
24	26.5	r r	16889.4181
24	27.5	rR	16881.4113
24	28.5	rR	16881.4043
25	20.5	r r	16882. 1360
25	21.5	r r	16882. 1305
25	22.5	rR	16882. 1254
25	23.5	rR	16882. 1193
25	24.5	r r	16882. 1138
25	25.5	rR	16882. 1085
25	26.5	r R	16882. 1020
25	27.5	r R	16882.0958
25	28.5	rR	16882. 0897
25	29.5	r R	16882.0832
26	21.5	rR	16882.7961
26	22.5	rR	16882.7919
26	23.5	rR	16882.7862
26	24.5	rR	16882.7815
26	25.5	r r	16882.7766
26	26.5	rR	16882.7712
26	27.5	rR	16882.7660
26	28.5	rR	16882.7603
26	29.5	r r	16882.7548
26	30.5	r R	16882.7491

Q			
	F"		
19	23.5	q0	16857.9745
20	15.5	90	16857.8116
20	16.5	q0	16857.8037
20	17.5	qQ	16857.7960
20	18.5	90	16857.7872
20	19.5	qQ	16857.7782
20	20.5	q0	16857.7689
20	21.5	QQ	16857.7593
20	22.5	q0	16857.7492
20	23.5	qQ	16857.7390
20	24.5	90	16857.7286
21	16.5	qQ	16857.5463
21	17.5	qQ	16857.5393
21	18.5	QQ	16857.5318
21	19.5	90	16857.5236
21	20.5	90	16857.5155
21	21.5	qQ	16857.5070
21	22.5	90	16857.4983
21	23.5	q0	16857.4894
21	24.5	Q0	16857.4800
21	25.5	QQ	16857.4706
22	17.5	Q 0	16857.2691
22	18.5	q0	16857. 2621
22	19.5	90	16857.2550
22	20.5	qQ	16857.2480
22	21.5	QQ	16857.2410
22	22.5	QQ	16857.2330
22	23.5	QQ	16857. 2250
22	24.5	90	16857.2167
22	25.5	qQ	16857. 2084
22	26.5	90	16857.1997
23	18.5	q0	16856.9789
23	19.5	q0	16856.9727
23	20.5	qQ	16856.9664
23	21.5	Q 0	16856.9598
23	22.5	QQ	16856.9528
23	23.5	q0	16856.9457
23	24.5	QQ	16856.9386
23	25.5	q0	16856.9309
23	26.5	qQ	16856.9233
23	27.5	qQ	16856.9157
24	19.5	qQ	16856.6761
24	20.5	qQ	16856.6706
24	21.5	qQ	16856.6645
24	22.5	qQ	16856.6585
24	23.5	Q 0	16856.6522
24	24.5	Q 0	16856.6461
24	25.5	Q 0	16856.6391
24	26.5	q0	16856.6324
24	27.5	q0	16856.6256
24	28.5	q0	16856.6185
25	20.5	qQ	16856.3611
25	21.5	90	16856.3560
25	22.5	Q 0	16856.3509
25	23.5	90	16856.3454
25	24.5	QQ	16856.3396
25	25.5	Q 0	16856.3342
25	26.5	9Q	16856.3277
25	27.5	q0	16856.3217
25	28.5	qQ	16856.3154
25	29.5	q0	16856.3093
26	21.5	q0	16856.0330
26	22.5	q0	16856.0284
26	23.5	QQ	16856.0234
26	24.5	qQ	16856.0188

Appendix II.C, continued. ${ }^{3} \Phi_{4} \mathbf{- 3}^{3} \Delta_{3}$.
B
Q
P

$U "$	$F \prime \prime$		
26	25.5	$q Q$	16856.0135
26	26.5	$q Q$	16856.0079
26	27.5	$q Q$	16856.0028
26	28.5	$q Q$	16855.9973
26	29.5	$q Q$	16855.9916
26	30.5	$q Q$	16855.9862
27	22.5	$q Q$	16855.6942
27	24.5	$q Q$	16855.6846
27	25.5	$q Q$	16855.6800
27	26.5	$q Q$	16855.6754
27	27.5	$q Q$	16855.6705
27	28.5	$q Q$	16855.6663
27	29.5	$q Q$	16855.6610
27	30.5	$q Q$	16855.6560
27	31.5	$q Q$	16855.6509
28	23.5	$q Q$	$16855.3426 *$
28	24.5	$q Q$	16855.3366
28	25.5	$q Q$	16855.3329
28	26.5	$q Q$	16855.3288
28	27.5	$q Q$	16855.3251
28	28.5	$q Q$	16855.3199
28	30.5	$q Q$	16855.3117
28	31.5	$q Q$	16855.3064
28	32.5	$q Q$	16855.3030
29	24.5	$q Q$	16854.9763
29	25.5	$q Q$	16854.9724
29	26.5	$q Q$	16854.9690
29	27.5	$q Q$	16854.9656
29	28.5	$q Q$	16854.9620
29	29.5	$q Q$	16854.9575
29	30.5	$q Q$	16854.9542
29	31.5	$q Q$	16854.9505
29	32.5	$q Q$	16854.9466
29	33.5	$q Q$	16854.9423

aTransitions in units of cm^{-1}. Blended lines are denoted by an asterisk.

APPENDIX III. Transitions of the v_{7} Fundamental of $\mathrm{NH}_{2}{ }^{11} \mathrm{BH}_{2}{ }^{\mathbf{a}}$

Appendix III, continued.

Appendix III, continued.

	R		Q					P
Branch	Ј"		Branch	ل"		Branch	ل"	
rR3	9	1045.8996	ro3	18	1028.5612*	PP2	20	945.7720
	9	1045.8216		19	1023.4506*		21	948.5616
	10	1047.4676*		20	1022.2521		21	942.8300*
	10	1047.3248		20	1029.0362*		22	945.1839*
	11	1049.0294		21	1020.9383		22	939.8683
	11	1048.7838*		21	1029.4670		23	941.7475
	12	1050.5882*		22	1030.0639		23	936.8755*
	12	1050.1895		22	1019.5236		24	938.2798*
	13	1052.1491		23	1018.0056*		25	934.8032
	13	1051.5302	rQ4	5	1036.2669*	PP3	4	978.7082
	14	1053.7169		5	1036.2669*		4	978.6884
	14	1052.7941		6	1036.2034*		5	977.0116
	15	1055.2980		6	1036.2034*		5	976.9555*
	15	1053.9720*		7	1036.1289**		6	975.3303*
	16	1056.8992		7	1036.1289*		6	975.1961
	16	1055.0612		8	1036.0395*		7	973.6720
	17	1058.5274		8	1036.0395*		7	973.4099
	17	1056.0591		9	1035.9358*		8	972.0465*
	18	1060.1880*		9	1035.9358*		8	971.5892*
	18	1056.9737		10	1035.8159*		9	970.4631
	19	1061.8923*		10	1035.8159*		9	969.7282
	19	1057.8196		11	1035.6753*		10	968.9224
	20	1063.6434		11	1035.6843*		10	967.8217
	20	1058.6198*		12	1035.5144		11	967.4219*
	21	1065.4484		12	1035.5309*		11	965.8621
	21	1059.4005		13	1035.3291		12	965.9497
	22	1067.3136*		13	1035.3631		12	963.8465
	22	1060.1829*		14	1035.1149*		13	964.4893
	24	1061.9630*		14	1035.1769		13	961.7748*
	25	1062.9990*		15	1034.8680		14	963.0167
	26	1064.1769*		15	1034.9734		14	$959.6248 *$
rR4	4	1044.6741		16	1034.5800		15	961.5062
	4	1044.6741		16	1034.7537		15	957.4145*
	5	1046.2965		17	1034.5206		16	959.9296
	5	1046.2965		18	1033.8482*		16	955.1299
	6	1047.9076		18	1034.2783		17	958.2623
	6	1047.9076		19	1033.3823		17	952.7749
	7	1049.5070*		19	1034.0309*		18	956.4808
	7	1049.5070*		20	1032.8330		18	950.3476
	8	1051.0941 *		20	$1033.7838 *$		19	954.5650*
	8	1051.0941*		21	1032.1853*		19	947.8489
	9	1052.6676*		22	1031.4235		20	952.5032
	9	1052.6676*		23	1030.5349		20	945.2803
	10	1054.2260*		23	1033.1511		21	950.2831
	10	1054.2260*		24	1029.5080		21	942.6462*
	11	1055.7739*		24	1033.0169		22	947.8973
	11	1055.7658*		25	1028.3354*		22	939.9468
	12	1057.3044*		25	1032.9486		23	945.3408
	12	1057.2868*		26	1027.0079		23	937.1897*
	13	1058.8177*		26	1032.9670		24	942.6114
	13	1058.7858		27	1025.5505		24	934.3056*
	14	1060.3155		27	1033.0915*		25	939.7111*
	14	1060.2586*	r05	6	1042.8357*	pP4	4	970.7243*
	15	1061.7981*		6	1042.8357*		4	970.7243*
	15	1061.7008*		7	1042.7645		5	969.0060*
	16	1063.2645		7	1042.7645		5	969.0060*
	16	1063.1060		9	1042.5844		6	967.2789*
	17	1064.7190*		9	1042.5844		6	967.2789*
	17	1064.4676		10	1042.4754		7	965.5417*
	18	1066. 1620		10	1042.4754		7	965.5467*
	18	1065.7771		11	1042.3520*		8	963.8095
	19	1067.5976		11	1042.3520*		8	963.7943*
	19	1067.0244*		12	1042.2139		9	962.0712
	20	1069.0303*		12	1042.2139		9	962.0391
	20	1068.1959*		13	1042.0604		10	960.3347

Appendix III, continued.

		R			Q			P
Branch	U"		Branch	」"		Branch	J"	
rR4	21	1070.4622*	rQ5	13	1042.0604	pP4	10	960.2718
	21	1069.2947*		14	$1041.8900 *$		11	958.6069
	22	1071.9036		14	$1044.8900 *$		11	958.4922*
	22	1070.3068*		15	1041.7013*		12	956.8920
	23	1073.3239*		15	1041.7013*		12	956.6959
	23	1071.1956*		16	1041.4913*		13	955.1994
rR5	5	1052.9239*		16	1041.4988*		13	954.8808
	6	1054.5354*		17	1044.2599		14	953.5372
	7	1056.1367*		17	1044.2739		14	953.0431
	8	1057.7263		18	1041.0057		15	951.9134*
	9	1059.3049		18	1041.0288		15	951.1774
	10	1060.8713		19	1040.7239		16	950.3321
	11	1062.4240		19	1040.7620		16	949.2791
	12	1063.9636		20	1040.4126		17	948.7994
	12	1063.9636		20	1040.4768		17	947.3421
	13	1065.4879		21	1040.0675		18	947.3134
	13	1065.4879		21	1040. 1714		18	945.3613
	14	1067.0112*		22	1039.8448*		19	945.8664
	14	1067.0112*		23	1039.2502*		19	943.3313
	15	1068.4896*		23	1039.4988*		20	944.4455
	15	1068.4896*	r06	7	1049.2726		20	941.2457
	16	1069.9677*		7	1049.2726		21	943.0298*
	16	1069.9616*		8	1049. 1907		21	939.1012
	17	1071.4260*		8	1049.1907		22	941.5931
	17	1071.4088*		9	1049.0974		22	936.8755*
	18	1072.8650		9	1049.0974		23	940.1075
	18	1072.8457		10	1048.9930		23	934.6179
	19	1074.2863		10	1048.9930		24	938.5446*
	19	1074.2516		11	1048.8757	pP5	5	960.8783
	20	1075.6861*		11	1048.8757		5	960.8783
	20	1075.6301		12	1048.7456		6	959.1505*
	21	1077.0691		12	1048.7456		6	959.1505*
	21	1076.9773		13	1048.6023		7	957.4145*
	22	1078.4318*		13	1048.6023		7	957.4145*
	22	1078.2888		14	1048.4444		8	955.6703*
	23	1079.5577		14	1048.4444		8	955.6703*
	24	1081.1101*		15	1048.2726		9	953.9166*
	24	1080.7772		15	1048.2726		9	953.9166**
	25	1081.9363*		16	1048.0851		10	952.1558*
rR6	6	1061.0380		16	$1048.085:$		10	952.1558*
	6	1061.0380		17	1047.8814*		11	950.3875*
	7	1062.6396		17	1047.8814*		11	950.3875*
	7	1062.6396		18	1047.6606*		12	948.6166*
	8	1064.2300*		18	1047.6606*		12	948.6099*
	8	1064.2300*		19	1047.4220		13	946.8395*
	9	1065.8098		19	1047.4220		13	946.8262*
	9	1065.8098		20	1047.1643		14	945.0593
	10	1067.3781		20	1047.1643		14	945.0298
	10	1067.3781		21	1046.8878*		15	943.2808
	11	1068.9348		21	1046.8878*		15	943.2365
	11	1068.9348		22	1046.5863*		16 16	941.5041*
	12	1070.4794		22	1046.5950*		16	941.4301
	12	1070.4794		23	1046.2623*		17	$939.7341 *$
	13	1072.0105		23	1046.2773*		17	939.6135
	13	1072.0105		24	1045.9127*		18	937.9768
	14	1073.5296		24	1045.9401*		18	937.7859
	14	1073.5296	r07	8	1055.5844*		19	936.2363*
	15	1075.0336*		9	1055.5005		19	935.9466*
	15	1075.0336*		9	1055.5005		20	934.5220*
	16	1076.5238*		10	1055.3983		23	928.3993*
	16	1076.5238*		10	1055.3983	pP6	6	950.8855
	17	1078.9823*		11	1055.2833		6	950.8855
	17	1078.9823*		11	1055.2833		7	949.1497
	18	1079.4562*		12	1055.1515*		7	949.1497
	18	1079.4562*		13	1055.0186		8	947.4049

Appendix III, continued.

		R			Q			P
Branch	U"		Branch	U"		Branch	J"	
rRG	19	1080.8983*	r07	13	1055.0186	pp6	8	947.4049
	19	1080.8983*		14	1054.8669		9	945.6509
	20	1082.3227*		14	1054.8669		9	945.6509
	20	1082.3227*		15	1054.7023		10	943.8883
	21	1083.728 ${ }^{*}$		15	1054.7023		10	943.8883
	21	1083.7281*		16	1054.5236*		11	942.1175
	22	1085.1118*		17	1054.3329		11	942.1175
	23	1086.4858*		17	1054.3329		12	940.3385
	23	1086.4708*		18	1054. 1259*		12	940.3385
	24	1087.8321*		19	1053.9050*		13	938.5518
	24	1087.8170*		20	1053.6692		13	938.5518
	25	1089.1610*		20	1053.6692		14	936.7573*
	25	1089.1333		21	1053.4223*		14	936.7573*
	26	1090.4248*		21	1053.4223**		15	934.9561^{*}
	26	1090.3575*		22	1053.148 ${ }^{*}$		15	934.9561*
rR7	7	1069.0363*		22	1053.1481**		18	929.5201*
	7	1069.0363*	rQ8	9	1061.8161**		18	929.5118*
	8	1070.6266		10	1061.7127*		19	927.6994*
	8	1070.6266		11	1061.5989		19	927.6847*
	9	1072.2067		12	1061.4747		20	925.8776*
	9	1072.2067		12	1061.4747		20	925.8515*
	10	1073.7749		13	1061.3371		21	924.0542*
	10	1073.7749		13	1061.3371		21	924.0132*
	11	1075.3329		14	1061.1880		22	$922.231{ }^{*}$
	11	1075.3329		14	1061.1880		22	922.1676*
	12	1076.8785*		15	1061.0259*	PP7	7	940.7662
	12	1076.8785*		16	1060.8523*		7	940.7662
	13	1078.4125*		17	1060.6641		8	939.0210
	14	1079.9289*		17	1060.6641		8	939.0210
	15	1081.4438		18	1060.4628**		9	937.2674*
	15	1081.4438		19	1060.2462*		10	935.5052
	16	1082.9402		20	1060.0175		10	935.5052
	16	1082.9402		20	1060.0175		11	933.7342
	17	1084.4232		21	1059.7736		11	933.7342
	17	1084.4232		21	1059.7736		12	931.9544
	18	1085.8867*		22	1059.5139*		12	931.9544
	19	1087.3487		23	1059.2391		13	930.1658
	19	1087.3487		23	1059.2391		13	930.1658
	20	1088.7940*		24	1058.9472*		14	928.3691
	21	1090.2200**		25	1058.6402*		14	928.3691
	21	1090.2200*		26	1058.3147		15	926.5645
	23	1093.0102*		26	1058.3147		15	926.5645
	23	1093.0102*	PQ1	1	1000.9813*		16	924.7520
	24	1094.3885*		2	1001. 1124		16	924.7520
	25	1095.7295*		3	1001.3015*		17	922.9322*
	25	1095.7295*		4	1001.5405		17	922.9322**
rR8	8	1076.9357		5	1001.8174		18	921.1042*
	8	1076.9357		6	1002.1190*		18	$921.1042 *$
	9	1078.5143		7	1002.4287		20	917.4283*
	9	1078.5143		8	1002.7353		20	$917.4283 *$
	10	1080.0824*		9	1003.0237		21	$915.5818 *$
	11	1081.6390		10	1003.2853		21	915.5818*
	11	1081.6390		11	1003.5143	pP8	8	930.5386
	12	1083.1847		12	1003. 7086		8	930.5386
	12	1083. 1847		13	1003.8702		9	928.7860
	13	1084.7134*		14	1004.0011*		9	928.7860
	14	1086.2408*		15	1004.1081		10	927.0244
	15	1087.7500		16	1004. 1938		10	927.0244
	45	1087.7500		17	1004. 2634		11	925.2535
	16	1089.2471		18	1004.3205		11	925.2535
	16	1089. 2471		19	1004. 3688		12	923.4737
	17	1090.7314		20	1004.4104		12	923.4737
	17	1090.7314		21	1004.4480*		13	921.6856
	18	1092.2029*		22	1004.4830		13	921.6856
	19	1093.6596		23	1004.5169		14	919.8884

Appendix III, continued.

Appendix III, continued.

Appendix III, continued.

R

Branch	J"	
pQ4	28	987.5992*
p05	5	969.2386*
	5	969.2386*
	6	969.1859*
	6	969.1859*
	7	969. 1260*
	7	969.1260*
	8	969.0586*
	8	969.0586*
	9	968.9853*
	9	968.9853*
	10	968.9064*
	10	968.9064*
	11	968.8264*
	11	968.8202*
	12	968.7435*
	12	968.7285
	13	968.6588
	13	968.6318
	14	968.5784
	14	968.5291
	15	968.5041
	15	968.4193
	16	968.4421*
	16	968.3020
	17	968.3970*
	17	968.1728
	18	968.3793
	18	968.0280*
	19	968.3970*
	19	967.8656*
	20	968.4421*
	20	967.6744*
	21	968.5614*
PQ6	6	960.9167
	6	960.9167
	8	960.7837
	8	960.7837
	9	960.7057*
	9	960.7057*
	10	960.6200
	10	960.6200
	11	960.5279
	11	960.5279
	12	960.4291
	12	960.4291
	13	960.3237*
	13	960.3237*
	14	960.2128*
	14	960.2128*
	15	960.0969*
	15	960.0969*
	16	959.9748*
	17	959.8587*
	17	959.8487*
	18	959.7366*
	18	959.7183*
	19	959.5839
	19	959.6133*
	20	959.4937
	20	959.4453*
	21	959.3002*
	21	959.3758*
	22	959.1627*
	23	958.9872*

Appendix III, continued.

R
Q
P
Branch J"
pO7 8 952.3931*
952.3931** 952.3136* 952. 3 136* 952.2261 952.2261 952.1301 952.1301 952.0267 952.0267 952.9134* 952.9134* 951.7966 951.7966 951.6714 951.6714 951.5399 951.5399 951.4016* 951.4016* 951.2580* $951.2580 *$ 951.1094* 951.1094* 950.9490* 943.9068 943.9068 943.8256 943.8256 943.7367 943.7367 943.6391 943.6391 943.5336 943.5336 943.4193 943.4193 943.2973 943.2973 943. 1668 943. 1668 943.0298* 942.8855* 942.7328 942.7328 942.5744 942.5744 942.4087 942.4087 942.2373* 942.2373* 942.0601* 942.0601* 941.6879* 941.6879* 934.9675* 934.9675* 934.8515* 934.8515* 934.7237* 934.7237* 934.5948* 934.5948* 934.4536* 934.4536*

Appendix III, continued.

B
Q
Branch J"
PQ9 17 934.3056*
17 934.3056*
18 934.1575* 18 934.1575* 21 933.6237* 21 933.6237*

P
aTransitions in units of cm^{-1}. Blended lines are denoted by an asterisk.

REFERENCES

1. J.T. Hougen, The Calculation of Rotational Energy Levels and Line Intensities in Diatomic Molecules, (National Bureau of Standards Monograph115, 1970).
2. M.E. Rose, Elementary Theory of Angular Momentum, (John Wiley and Sons, Inc., New York, 1957), Ch. 1.
3. J.H. Van Vleck, Rev. Mod. Phys. 23, 213 (1951).
4. A. Messiah, Quantum Mechanics, vol. 2, (North-Holland Publishing Co., Amsterdam, 1962), Appendix C.
5. A.R. Edmonds, Angular Momentum in Quantum Mechanics, (Princeton University Press, Princeton, 1960), Ch. 3.
6. A. Messiah, Quantum Mechanics, vol. I, (North-Holland Publishing Co., Amsterdam, 1964), Appendix B.
7. M.E. Rose, ibid, p. 235.
8. A. Messiah, ibid, vol. 1, Ch. 13.
9. M.E. Rose, ibid, Ch. 4.
10. B.L. Silver, Irreducible Tensor Methods, (Academic Press, New York, 1976), Ch. 5.
11. A.R. Edmonds, ibid, Ch. 5.
12. B.L. Silver, ibid, Ch. 2.
13. A.R. Edmonds, ibid, Ch. 4.
14. B.L. Silver, ibid, Ch. 10.
15. D.M. Brink and G.R. Satchler, Angular Momentum, (Clarendon Press, Oxford, 2nd ed., 1968), Ch. 2.
16. B.L. Silver, ibid, Ch. 6.
17. D.M. Brink and G.R. Satchler, ibid, Ch. 4.

REFERENCES (cont.)

18. B.L. Silver, ibid, Ch. 9.
19. B.L. Silver, ibid, Ch. 7.
20. G. Herzberg, Spectra of Diatomic Molecules, 2nd ed., (Van Nostrand, Princeton, 1950), Ch 4.
21. P.W. Atkins, Molecular Quantum Mechanics, 2nd ed., (Oxford University Press, New York, 1983), Ch. 12.
22. Henry Eyring, John Walter and George E. Kimball, Quantum Chemistry, (John Wiley and Sons, Inc., New York, 1944), p.264; G. Herzberg, ibid, p. 240.
23. H. Lefebvre-Brion and R.W. Field, Perturbations in the Spectra of Diatomic Molecules, (Academic Press, New York, 1986), pp. 117119.
24. G. Herzberg, ibid, Ch 5.
25. A. S-C. Cheung and A.J. Merer, Molec. Phys. 46, 111-128 (1982).
26. R.A. Frosch and H.M. Foley, Phys. Rev. 88, 1337 (1952).
27. T.M. Dunn, in Molecular Spectroscopy: Modern Research, Vol. 1, K.N. Rao and C.W. Matthews, eds., (Academic Press, New York, 1972), Ch. 4.4.
28. P.H. Kasai and W. Weltner, Jr., J. Chem. Phys. 43, 2553 (1965).
29. A. Adams, W. Klemperer and T.M. Dunn, Canad. J. Phys. 46, 2213 (1968).
30. R. Stringat, C. Athénour, J-L. Féménias, Canad. J. Phys. 50, 395 (1972).
31. J.M. Brown, I. Kopp, C. Malmberg and B. Rydh, Phys. Scripta 17, 55 (1978).
32. D.W. Green, Canad. J. Phys. 49, 2552 (1971).

REFERENCES (cont.)

33. P.W. Atkins, Proc. Roy, Soc. A 300, 487 (1967).
34. R.F. Barrows, W.J.M. Gissane, D. Richards, Proc. Roy. Soc. A 300, 469 (1967).
35. K.F. Freed, J. Chem. Phys. 45, 1714 (1966).
36. H. Lefebvre-Brion and R.W. Field, ibid. p. 89.
37. M. Tinkham, Group Theory and Quantum Mechanics, (McGraw-Hill Book Co., New York, 1964), p. 129.
38. A. Carrington and A.D. McLachlan, Introduction to Magnetic Resonance, (Chapman and Hall, New York, 1967), Ch. 8.
39. K. Kayama and J.C. Baird, J. Chem. Phys. 46, 2604 (1967).
40. H. Lefebvre-Brion and R.W. Field, ibid. p. 96-101.
41. W.H. Hocking, A.J. Merer, D.J. Milton, W.E. Jones and G. Krishnamurty, Canad. J. Phys. 58, 516 (1980).
42. A.R. Edmonds, ibid, Ch. 6.
43. B.R. McGarvey, J. Phys. Chem. 71, 51 (1967).
44. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Iransition lons, (Clarendon Press, Oxford, 1970).
45. A.S-C. Cheung, R.C. Hansen and A.J. Merer, J. Molec. Spectrosc. 91, 165 (1982).
46. P.H. Kasai, J. Chem. Phys, 49, 4979 (1968).
47. M.E. Rose, ibid, Ch. 5.
48. B.L. Silver, ibid, Ch. 17.
49. A. Messiah, ibid, vol. 2, p. 692.

REFERENCES (cont.)

50. M.R. Spiegel, Mathematical Handbook of Formulas and Tables, (McGraw-Hill Book Co., New York, 1968), p. 19.
51. M.R. Spiegel, ibid, p. 146.
52. A.R. Edmonds, ibid, Ch. 7.
53. M.H. Cohen and F. Reif, Quadrupole Effects in NMR Studies of Solids, in: Solid State Physics, Vol. 5, F. Seitz and D. Turnbull, eds., (Academic Press, Inc., New York, 1957), pp. 327-328.
54. I.C. Bowater, J.M. Brown and A. Carrington, Proc, Roy, Soc. Lond. A 333, 265 (1973).
55. P.A. Tipler, Modern Physics, (Worth Publishers, Inc., New York, 1978), Ch. 11.
56. Landolt-Börnstein, Zahlenwerte und Funktionen Group 1, Vol.3, H. Appel, ed., Numerical Tables of the Wigner 3-j. 6-j and 9-j Coefficients, (Springer-Verlag, New York, 1968), p. 10.
57. J.M. Brown, A.S-C. Cheung and A.J. Merer, J. Molec. Spectrosc. 124, 464 (1987).
58. A. Messiah, ibid, vol. 2, pp. 718-720.
59. T.A. Miller, Molec. Phys. 16, 105 (1969).
60. R.S. Mulliken and A.S. Christy, Phys. Rev. 38, 87 (1931).
61. I. Kopp and J.T. Hougen, Canad. J. Phys. 45, 2581 (1967).
62. J.M. Brown, J.T. Hougen, K.P. Huber, J.W.C. Johns, I. Kopp, H.

Lefebvre-Brion, A.J. Merer, D.A. Ramsey, J. Rostas and R.N. Zare, J. Molec. Spectrosc. 55, 500 (1975).
63. W. Demotröder, Laser Spectroscopy, (Springer-Verlag, New York, 1982), Ch. 7.
64. J.B. West, R.S. Bradford, J.D. Eversole and C.W. Jones, Rev, Sci. Instrum. 46, 164 (1975).

REFERENCES (cont.)

65. W. Demtröder, ibid, Ch. 3.
66. W. Demtröder, ibid, Ch. 10.
67. A.J. Merer, Ulf Sassenberg, J-L. Féménias and G. Cheval, J. Chem. Phys. 86, 1219 (1987).
68. S. Gerstenkorn and P. Luc, Atlas du Spectre d'Absorption de la Molécule d'lode (CNRS, Paris, France, 1978); S. Gerstenkorn and P. Luc, Rev, Phys. Appl. 14, 791 (1979).
69. L. Malet and B. Rosen, Bull. Soc. B. Sci._Liège 14, 382 (1945); B. Rosen, Nature 156, 570 (1945).
70. T.C. Devore and T.N. Gallaher, 」. Chem. Phys. 71, 474 (1979).
71. D.W. Green, G.T. Reedy and J.G. Kay, J. Molec. Spectrosc. 78, 257 (1979).
72. R.J. Van Zee, C.M. Brown, K.J. Zeringue, W. Weltner, Acc. Chem. Res. 13, 237 (1980).
73. W. Weltner, D. McLeod and P.H. Kasai, J. Chem. Phys. 46, 3172 (1967).
74. G. Herzberg, ibid, pp. 335-337.
75. A.S-C. Cheung, R.M. Gordon, A.J. Merer, ل. Molec. Spectrosc. 87, 289 (1981).
76. M. Krauss and W.J. Stevens, J. Chem. Phys. 82, 5584 (1985).
77. W. Weltner, Jr., Ber. Bunsenges. Phys. Chem. 82, 80 (1978).
78. V.I. Srdanov and D.O. Harris, J. Chem. Phys., submitted.
79. M.C.L. Gerry, A.J. Merer, U. Sassenberg and T.C. Steimle, J. Chem Phys. 86, 4654 (1987).
80. L.J. Thénard, J. Mines 15, 128 (1805).

REFERENCES (cont.)

81. R.T. Grimely, R.P. Burns and M.G. Inghram, J. Chem. Phys. 45, 4158 (1966).
82. T.M. Dunn, in Physical Chemistry: An Advanced Treatise. Vol. 5, H. Eyring and W. Jost, eds., (Academic Press, New York, 1970), p. 228.
83. G. Herzberg, ibid, Ch. 3.
84. J.I. Steinfeld, Molecules and Radiation, (Harper and Row, New York, 1974), Ch. 4.
85. O. Appelblad, I. Renhorn, M. Dulick, M.R. Purnell and J.M. Brown, Phys. Scripta 28, 539 (1983).
86. I. Kopp and J.T. Hougen, Canad. J. Phys 45, 2581 (1967).
87. A.S-C. Cheung, A.M. Lyyra, A.J. Merer and A.W. Taylor, J. Molec. Spectrosc.102, 224 (1983).
88. A.S.-C. Cheung, A.W. Taylor and A.J. Merer, J. Molec. Spectrosc. 92, 391 (1982).
89. W.H. Hocking, M.C.L. Gerry and A.J. Merer, Canad. J. Phys. 57, 54 (1979).
90. A.S.-C. Cheung, W. Zyrnicki and A.J. Merer, J. Molec. Spectrosc. 104, 315 (1984).
91. R.M. Gordon and A.J. Merer, Canad_ J.Phys. 58, 642 (1980).
92. O. Appleblad and A. Lagerquist, Phys. Scr. 10, 307 (1974).
93. O. Appleblad and L. Klynning, USIP Report 81-02, University of Stockholm (1981).
94. T.M. Dunn and K.M. Rao, Nature 222, 266 (1969).
95. J.-L. Féménias, C. Athénour and T.M. Dunn, J. Chem. Phys. 63, 286 (1975).

REFERENCES (cont.)

96. B. Chakrabarti, M.Z. Hoffman, N.N. Lichtin and D.A. Sacks, J. Chem. Phys. 58, 404 (1973).
97. N.N. Kabankova, P.I. Stepanov, E.N. Moskvitina and Yu. Ya. Kuzyakov, Vest. Mosk. Univ. Khim. 15, 356 (1974).
98. N.N. Kabankova, E.N. Moskvitina and Yu. Ya. Kuzyakov, Vest. Mosk. Univ._Khim.17, 492 (1976).
99. E.A. Pazyuk, E.N. Moskvitina and Yu. Ya. Kuzyakov, Vest. Mosk. Univ. Khim. 26, 418 (1985).
100. E.A. Pazyuk, E.N. Moskvitina and Yu. Ya. Kuzyakov, Spectrosc. Lett. 19, 627 (1986).
101. N.L. Ranieri, Ph.D. dissertation, Diss. Abst. Int. B. 40, 772 (1979).
102. J.-L. Féménias, C. Athénour, K.M. Rao and T.M. Dunn, submitted.
103. H. Lefebvre-Brion and R.W. Field, ibid. Sec. 3.4.
104. Ira N. Levine, Quantum Chemistry, 3rd ed., (Allyn and Bacon, Inc., Boston, 1983)., Sec. 14.3.
105. D.L. Albritton, A.L. Schmeltkopf and R.N. Zare, in Molecular Spectroscopy: Modern Research, Vol. 2, K. Nakahari Rao, ed., (Academic Press, New York, 1976), Sec. 1.D.
106. R.M. Lees, J.Molec. Spectrosc. 33, 124-136 (1970).
107. F. Ayres, Jr., Theory and Problems of Matrices, (Schaum Publishing Co., New York, 1962), p.55.
108. B. Higman, Applied Group-Theoretic and Matrix Methods, (Dover Publications, Inc., New York, 1964), p. 64.
109. H. Lefebvre-Brion and R.W. Field, ibid, p. 92.
110. J. Raftery, P.R. Scott and W.E. Richards, J.Phys. B 5, 1293 (1972).

REFERENCES (cont.)

111. T.M. Dunn, L.K. Hanson and K.A. Rubinson, Canad. J. Phys. 48, 1657 (1970); J.K. Bates, N.L. Ranieri and T.M. Dunn, Canad. J Phys. 54, 915 (1976).
112. J.K. Bates and T.M. Dunn, Canad. J. Phys. 54, 1216 (1976).
113. J.K. Bates and D.M. Gruen, J. Molec. Spectrosc. 78, 284 (1979).
114. W. Weltner, Jr. and D. McLeod, Jr., J. Phys. Chem. 69, 3488 (1965).
115. J.M. Brom, Jr. and H.P. Broida, J_of Chem. Phys, 63, 3718 (1975).
116. L.J. Lauchlan, J.M. Brom and H.P. Broida, J. Chem. Phys. 65, 2672 (1976).
117. D. McLeod, Jr. and W. Weltner, Jr., ل. Phys. Chem. 70, 3293 (1966).
118. R.F. Barrow, M.W. Bastin, D.L.G. Moore and C.J. Pott, Nature 215, 1072 (1967).
119. J.K. Bates and D.M. Gruen, J. Chem. Phys. 70, 4428 (1979).
120. R. Hoffman, J. Chem. Phys, 40, 2474-2480 (1964).
121. D.R. Armstrong, B.J. Duke and P.G. Perkins, J. Chem. Soc. A, 2566-2572 (1969).
122. O. Gropen and H.M. Seip, Chem. Phys. Lett. 25, 206-208 (1974).
123. J.D. Dill, P.V.R. Schleyer and J.A. Pople, ل_Amer. Chem. Soc. 97, 3402-3409 (1975).
124. T. Fjeldberg, G. Gundersen, T. Jonvik, H.M. Seip and S. Saebø, Acta Chem. Scand. A 34, 547-565 (1980).
125. K.W. Boddeker, S.G. Shore and R.K. Bunting, J.Amer. Chem. Soc. 88, 4396-4401 (1966).

REFERENCES (cont.)

126. P.M. Kuznesof, D.F. Shriver and F.E. Stafford, J. Amer. Chem. Soc. 90, 2557-2560 (1968).
127. C.I. Kwon and H.A. McGee, Inorg. 9, 2458-2461 (1970).
128. S.V. Pusatcioglu, H.A. McGee, Jr., A.L. Fricke and J.C. Hassler, ل Appl. Polymer Sci. 21, 1561 (1977).
129. M. Sugie, H. Takeo and C. Matsumura, Chem. Phys. Lett. 64, 573575 (1979).
130. M. Sugie, H. Takeo and C. Matsumura, J. Molec. Spectrose. 123, 286 (1987).
131. M.C.L. Gerry, W. Lewis-Bevan, A.J. Merer and N.P.C. Westwood, J. Molec. Spectrosc. 110, 153 (1985).
132. D. Anderson, Studies in high resolution spectroscopy, Ph.D. thesis, The University of British Columbia, Vancouver, 1986.
133. D. Steunenberg, The infrared spectrum of gaseous aminoborane: rotational structure of the 81 band, B.Sc. thesis, The University of British Columbia, Vancouver, 1986.
134. D. Cramb, The infrared spectrum of gaseous aminoborane: rotational structure of the 10^{1} band, B.Sc. thesis, The University of British Columbia, Vancouver, 1985.
135. P.R. Griffiths, Science 222, 297 (1983).
136. Spectrophotometer System Manual, (Bomem, Inc., Quebec,1981), Ch. 2.
137. R.J. Bell, Introductory Fourier Transform Spectroscopy, (Academic Press, New York, 1972), Ch. 1.
138. W. Demtröder, ibid, Ch 4.
139. A. Corney, Atomic and Laser Spectrocsopy, (Clarendon Press, Oxford, 1977), pp. 19-20.

REFERENCES (cont.)

140. R.J. Bell, ibid, Ch. 3.
141. J.B. Bates, Science 191, 31 (1976).
142. M.R. Spiegel, ibid, p. 175.
143. R.J. Bell, ibid, pp. 65 and 173.
144. W.D. Perkins, J. Chem. Educ. 63, A5 (1986).
145. Software User's Guide, Version 3.1, (Bomem, Inc., Quebec, 1984), Ch. 5.
146. R.J. Bell, ibid, Ch. 5.
147. J.K. Kauppinen, D.J. Moffatt, D.G. Cameron, H.H. Mantsch, Applied Optics 20, 1866 (1981).
148. P.W. Atkins, ibid, p. 307.
149. A.R. Edmonds, ibid, p. 23.
150. H.C. Allen and P.C. Cross, Molecular Vibration-Rotors: The Iheory and Interpretation of High Resolution Infrared Spectra, (John Wiley and Sons, Inc., London, 1963), pp. 24-25.
151. W. Gordy and R.L. Cook, Microwave Molecular Spectra, 3rd. ed., (John Wiley and Sons, New York, 1984), p. 60.
152. J.K.G. Watson, in Vibrational Spectra and Structure, (J.R. Durig, ed., vol. 6, Marcel Dekker, New York, 1977), Ch. 1.
153. W. Gordy and R.L. Cook, ibid, Sec 8.3.
154. W. Gordy and R.L. Cook, ibid, Sec 8.4.
155. W. Gordy and R.L. Cook, ibid, Ch. 7.
156. I.M. Mills, Pure and Applied Chemistry 11, 325 (1965).
157. H.C. Allen and P.C. Cross, ibid. Ch. 4.

REFERENCES (cont.)

158. J. Michael Hollas, High Resolution Spectroscopy, (Butterworth's and Co., Ltd., London, 1982), p. 243.
159. V.A. Job, N.D. Patel, R. D'Chunha, V.B. Kartha, J. Molec. Spectrosc. 101, 48 (1983).
160. D. Steunenberg, private communication.
161. M.C.L. Gerry, private communication.

[^0]: a Values in cm^{-1}, with error limits of three standard deviations in units of the last significant figure. $a=A \Lambda \approx 244 \mathrm{~cm}^{-1}$.
 bNo least squares fit; see text.

