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ABSTRACT 
ii 

Some unstable gaseous molecules, cobalt oxide (CoO), niobium 

nitride (NbN) and aminoborane (NH2BH2), were studied by high 

resolution optical spectroscopy. A portion of the "red" system of 

CoO, from 7000 A to 5800 A, was measured using laser induced 

fluorescence techniques. Three bands of the system, with origins at 

6338 A, 6411 A and 6436 A, were rotationally analyzed. The lower 

levels of these parallel bands are the ft = 7/2 and 5/2 spin-orbit 

components of a 4 Aj electronic state. Available evidence indicates 

that this is the ground state of the molecule; its bond length is 

1.631 A. This work completes the determination of the ground state 

symmetries for the entire series of first row diatomic transition 

metal oxides. The hyperfine structure in the ground state is very 

small, supporting a CT283TI2 electron configuration. The upper state, 

assigned as ob3n2o*, has large positive hyperfine splittings that 

follow a case (ap) pattern; it is heavily perturbed, both rotationally 

and vibrationally. 

The sub-Doppler spectrum of the 3<x>-3A system of NbN was 

measured by intermodulated fluorescence techniques, and the 

hyperfine structure analyzed. Second order spin-orbit interactions 

have shifted the 3o>3-3A2 subband 40 cm- 1 to the blue of its central 

first order position. The perturbations to the spin-orbit components 

were so extensive that five hyperfine constants, rather than three, 

were required to fit the data to the case (a) Hamiltonian. The 3 A - s O 

system of NbN is the first instance where this has been observed. 

The magnetic hyperfine constants indicate that all components of 
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the 3 A and 3 0 spin orbit manifolds may be affected, though the 3 A 

state interacts most strongly, presumably by the coupling of the 3 A 2 

component with the 1 A state having the same configuration. The 

Fermi contact interactions in the 3 A substates are large and 

positive, consistent with a a 1 8 1 configuration. In the 3 0 state the (b 

+ c) hyperfine constants are negative, as expected from a 7 t 1 6 1 

configuration. The 3 A and 3 0 bond lengths are 1.6618 A and 1.6712 

A, respectively, which are intermediate between those of ZrN and 

MoN. 

The Fourier transform infrared spectrum of the V 7 BH2 wagging 

fundamental of N H 2 B H 2 was rotationally analyzed. A set of 

effective rotational and centrifugal distortion constants was 

determined, but the band shows extensive perturbations by Coriolis 

interactions with the nearby V5 and v n fundamentals. A complete 

analysis could not be made without an analysis of the V 5 - V 7 - V H 

Coriolis interactions, which is currently not possible because the 

very small dipole derivative of the V 5 vibration has prevented its 

analysis. 
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CHAPTER I 

ELECTRONIC TRANSITIONS IN HETERONUCLEAR 

DIATOMIC MOLECULES 

I.A. Some Properties of Angular Momenta. 

In a non-rotating molecule, the angular momentum operators J , 

S and L have the following diagonal matrix elements:1 

<JQ| J z |JQ> =tiQ (1.1) 

<SI| S z |SI> - t i l (1.2) 

<LA| L z |LA> =tiA (1.3) 

<JQ| J2|JQ> =fi 2J(J + 1) (1.4) 

<SI|S2|SX>=fi2S(S + 1) (1.5) 
<LA| L2||_A> =ti 2 L(L+1) (1.6) 

J , S and L are the total, spin and orbital angular momenta, 

respectively; J , S and L are their respective quantum numbers, and Q, 

L and A are the projection quantum numbers in diatomic molecules 

(i.e., along the molecular z axis). 

The ladder operator L+ of a general angular momentum L has the 

Cartesian form 2 

L± = L x ± i L y (1.8) 

It has the property of transforming state |L,m> into state |L,m±1>, 

where m is the quantum number of L. For J and S the laddering 

operations are written:1 

<J,Q±1| J T |Jn> =ti[J(J+1) - Q(Q±1)]1/2 (1.9) 

< S , I ± 1 | S ± | S I > = t i [ S ( S + 1 ) - I ( I ± 1)] 1/2 (1.10) 
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J? in equation (1.9) is not expressed as J± because the commutation 

relations are different in the space-fixed and molecule-fixed axis 

systems: 3 

JXJY - JYJX = Uz SPACE (1.11) 

J x J y - JyJx = -Uz MOLECULE (1.12) 

This leads to a sign reversal upon transformation from the space-

fixed to molecule-fixed systems (the anomalous sign of i): 

J±|JM> = fi[J(J+1) - M(M+1)]1'2 |J,M±1> SPACE (1.13) 

J T |JK> =fi[J(J+1) - K(K+1)]1/2 |J,K±1> MOLECULE (1.14) 

Although the motion of the electrons about the axis defines a good 

quantum number A , L itself is not a good quantum number because a 

diatomic molecule is not a spherical system. Thus L x and L y do not 

obey the usual operator equations, and L± is left in the form <L+L. + 

L.L +>/2, or <L_L>, with the quantity B<Lj_> appearing on the diagonal 

of the rotational Hamiltonian matrix as a minor, constant electronic 

isotope shift incorporated into the effective vibrational energy. 1 

The dot product of two general angular momentum operators A and 

B is: 

A B = A 2 B Z + (A+B. + A.B+)/2 (1.15) 

The addition of angular momenta j i and J2 to form j results in the 

coupled eigenfunction |jm>: 

|jm> = I (-i)ji-j2+m VIJTT / ji j 2 j \ | j imi> | j 2 m 2 > (1.16) 
mirr)2 \ m i m2 -m/ 

where |ji m 1 > and |J2m2> are the uncoupled eigenfunctions, the first 

term is a phase factor, and V2j+1 is a normalization factor. The 

term in brackets is a coefficient called a Wigner 3-j symbol. Its 

definition is given by equation (1.16) rearranged as: 4 
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/ ii J2 j \ (^p-i2+m 

I = ^ —<jiJ2mim 2|jm> (1.17) 
\mi rri2 -my V2j + 1 

According to the angular momentum commutation relations for J1J2 

and j , 5 the algebraic form for the 3-j symbol is determined by the 

requirement that mi + m2 = m and |ji - J2I < j < Gi + J2) (the 

triangle, or vector addition, rule) 4. If these conditions are not 

satisfied, the vector coupling coefficient <jiJ2m 1 m2|jm> is 0. 
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I.B. Spherical Harmonics and Spherical Tensor Operators. 

Spherical harmonics, Y|m(0,(p), are orbital angular momentum 

eigenfunctions normalized to unity on a unit sphere. To be exact 

they are the eigenfunctions of the differential operators L 2 and L z , 

corresponding to the eigenvalues 1(1+1) and m: 6 - 7 

L2Y|m(e,(p) = l(l + 1)Y|m(e,<p) (1.17) 

L2Y|m(e,<p) = mY|m(e,<p) (1.18) 

The angles 6 and <p are the usual polar coordinates as illustrated in 

Figure 1.1. The differential operators L 2 and L Z ) defined in units 

where fi = 1, are 6 

L z = d/id<p (1.19) 

L 2 = -[(sin 9)-l(3/39)(sin 93/39) + (sin 29)-l3 2 /39 2] (1.20) 

Expressed in terms of the orbital angular momentum functions of 9 

and cp on the unit sphere, a spherical harmonic is: 8 

Y|m(e,q>) = C|(-1)'+m [(l-m)!/(l+m)!]1'2 (sin9)m [3/3(cos9)]'+m 

x (sin9)2 1 e i m<P (1.21) 

where ci is a normalization factor: 

|q| = [(21+1 )!]i/2/(47C)i/2 2>l! (1.22) 

Associated Legendre polynomials, P | m ( cos 9), are commonly 

exploited in quantum mechanics because of their connection to 

spherical harmonics: 6 

Y|m(9,(p) = (-)m[(2l+1)(l-m)!/4jt(l+m)!]l/2 P|m(cos 9)eimcp (1.23) 

where 6 

P|m(x) = (1-x2)m/2/2l|! [d'+m/dx'+m](x 2-1)1 (1.24) 

When the component m = 0, the spherical harmonic and Legendre 

polynomial differ only by a constant9 

Y|0(9,<p) = [(2I+1)/4TC]1/2 P|(cos 9) (1.25) 
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Fig. 1,1. Polar and Cartesian coordinates, in which x = rsinBcosq), y = 
rsinGsincp, z = rcosG. 8 
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The derivation of expressions describing the coupling of 

angular momenta, particularly those for the magnetic hyperfine and 

quadrupolar hyperfine interactions, is often best approached using 

irreducible spherical tensors. A brief explanation of spherical 

tensor operators, and the expressions required for their 

manipulation, follows. Spherical tensor methods are then applied 

where necessary in subsequent sections to derive the forms 

employed in the Hamiltonian representing the diatomic molecules in 

the present work. 

The spherical components of a vector, or first rank tensor, 

operator acting on an angular momentum A are related to their 

Cartesian counterparts by: 2 - 4 

T 1 o(A) = A z (1.26) 

T 1 ± 1(A) = T (A x ± iA y)/V2 (1.27) 

A spherical tensor T of rank k is defined as a set of 2k+1 quantities 

("components") which transform into one another upon rotation from 

one coordinate system to another (for example, between molecule-

and space-fixed axis systems): 1 0 - 1 1 

T k

q = X Tk

pDpq(k)(ccpY) (1.28) 
P 

where q and p are the components of the tensor in the molecule- and 

space-fixed axis systems, respectively, and Dpqk(a{3y) is the Wigner 

rotation matrix. The angles a , p and y are the Euler angles 

corresponding to the three successive axis rotations required to 

transform between two coordinate systems. In spectroscopy, a 

beam of photons (in the space-fixed axis system) induces a change in 

the molecule in the molecule-fixed system. Wigner rotation 
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matrices function to project from one axis system to another in 

order to put the photon beam and the molecules being altered by the 

photons into the same frame of reference. In the reverse direction, 

from space- to molecule-fixed coordinates, the relation is: 

T pk = I D p q k>py)Tk q (1.29) 
q 

where the complex conjugation of a rotation matrix is given by 

0 M K k > P Y ) - ( -1 ) M - K 0-M, -K k (apy) (1.30) 

The complex conjugation is required to account for the anomalous 

sign of i. 

A Wigner rotation matrix is a matrix describing how the 

eigenfunctions of J 2 and J z , i.e., a spherical harmonic |jm>, 

transform on coordinate rotation into other functions |jm>: 1 2 

D (apY)|jm> = I |jm ,>Dn V m(])(apY) (1.31) 

Premultiplying equation (1.31) by |jm'>* (i.e., <jm'|) and integrating 

reduces the right hand side to Dm<mQ) due to the orthogonality of 

spherical harmonic functions: 1 2 

Dm'm«)(aPy) = <jm'|D(apY)|jm> (1.32) 

A D matrix element with one of its projections equal to zero 

collapses to a spherical harmonic, which depends on only two 

angles: 1 2 

D^oWy) = (-1)P[4TC/(2I+1)]1/2 Y| p (p,a) SPACE (1.32) 

D 'oq(apY) = [4ic/(2l+1 )]1'2 Y| q (p, Y ) MOLECULE (1.33) 

If both projections are zero, the Wigner rotation matrix collapses to 

a Legendre polynomial: 9- 1 2 

D 'oo(ap Y) = P|(cos P) = [47c/(2l+1)]1/2 Y, 0(p,0) (1.34) 
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The Legendre polynomial P|(cos8) is also related to the spherical 

harmonics by the spherical harmonic addition theorem: 

P|(C0S 9) = (4n/2l+1) I Y * | m ( 9 i , 9 i ) Y|m(e 2 iq>2) (1-35) 
m 

where Y*im(9,cp) = ( - ) m Y | ( . m ( 9 , ( p ) . 6 . 9 , i 3 , i 4 The angles 0 i , 6 2 , 91 and 

cp2 are as defined by Fig. 1.1 for vectors n and r2, and 6 is the angle 

between directions (61,91) and (9 2 ,cp2)- Using Racah's modified 

spherical harmonics to eliminate the factor of [47t/(2l+1)J 1 / 2: 1 6 

C|m(9,cp) = [4TC/(2I+1)]1/2 Y|m(9 >(p) (1.36) 

the spherical harmonic addition theorem b e c o m e s 1 3 ' 1 5 

P|(C0S 9) = I C*im(9i ,91) C|m(e2,q>2) (1-37) 
m 

o r 1 4 

P|(cos 9) = C|(9i ,(pi )C| (9 2 ,cp2) (1.38) 

The coupling of two tensor operators to form a compound tensor 

is similar to the addition of two angular momenta given in equation 

(1.16):"«0 

[Tki(1) ® T k 2 ( 2 ) ] q k = £ (-1)ki-k2+q V2k+1 / k i k 2 k\ 

V^ 1 ^2 <\) 

x [ r k i q 1 ( 1 ) J k 2 q 2 ( 2 ) ] (1.39) 

Here the tensor T k i of rank k i , operating on system (1), is coupled to 

tensor T k 2 [which operates on system (2)]. Shorter, alternative ways 

of denoting a compound tensor are [T k l(1), Tk2(2)] or, for a tensor of 

rank ki coupled to itself, [Tk(1,1)], where k = 2ki. If two tensors 

of the same rank k are coupled to give a scalar , i.e., a quantity 

invariant to a coordinate rotation, the compound tensor of equation 

(1.39) is also a scalar, or of rank zero. The resulting expression 



9 

becomes much simpler and lacks the orientation-dependent 3-j 

symbol : 1 0 

[Tk(1) ® T k ( 2 ) ] 0 ° = (-1)k(2k+1)-1/2Tk(1)Tk(2) (1.40) 

where the conventional scalar product T k ( i )T k ( 2 ) is given a s : 1 0 ' 1 1 

Tk(1)Tk(2) = I (-1)q Tkq(1) Tk.q(2) (1.41) 
q 

After a compound tensor equation is written which appropriately 

represents a particular physical interaction and breaks it into its 

constituent tensors, the Wigner-Eckart theorem is applied to 

evaluate the matrix elements T k

q of the constituent tensors. 

According to the theorem the matrix elements of a tensor operator 

are factored into: 1) a 3-j symbol, which contains information on 

the geometry or orientation of the angular momentum; 2) a reduced 

matrix element (denoted by double vertical bars), related to the 

magnitude of the angular momentum but independent of its direction; 

and 3) a phase factor. Expressed in terms of the eigenfunctions 

|Yjm>, where j is the quantum number acted upon by T k , m is the 

projection of j, and Y contains any remaining quantum numbers not of 

interest in this particular basis, the Wigner-Eckart theorem i s : 1 6 

<YTm,| Tk q |Yjm> = ( - 1)1'^'/ j' k j W j ' l l Tk ||Yj> (1.42) 
\ -m ' q m/ 

Note that the reduced matrix element is independent of m. 

A reduced matrix element is usually worked out by evaluating the 

simplest type of matrix element and then substituting into the 

Wigner-Eckart theorem. For example to obtain <J|| T 1(J) ||J>, where J 

refers to a general angular momentum, we calculate the simplest 

type of matrix element of T 1 (J) , namely its q = 0 (or z) component: 1 7 
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<J'M'| T 1

0 (J) MM> = 8MM'5jj'M (1.43) 

This element is non-vanishing only if J'M' = JM. From the Wigner-

Eckart theorem (equation 1.42), 

M = (-1)J-M / j 1 j \ < j | | -p(J) ||J> (1.44) 
\-M 0 UJ 

Substitution for the 3-j symbol 1 1 produces 

M « (-1)J-M(_1)J-M M[J(J + 1)(2J + 1)]-1 / 2<J|| T 1 (J) ||J> (1.45) 

Since J and M both have integral or half-integral values, (-1)2(J-M) 

is 1, which reduces equation (1.45) to: 

<J ||T1(J)|| J> = [J(J + 1)(2J + 1)]i/2 (1.46) 

An important reduced matrix element is that of the rotation 

matrix element D.q(k)(apy) (cf. equations 1.29 and 1.30): 

<J ,K ,||D.qk*(apy)||JK> = (-1 )J'"K'[(2J + 1)(2J' + 1 ) ] 1 / 2 / J' k J \ (1.47) 
\ - K ' q Kj 

in which the dot replacing the p indicates that no reduction has been 

performed with respect to space-fixed axes, so there is no 

dependence on the M quantum number. Another useful formula gives 

the matrix elements of the scalar product of two commuting tensor 

operators (that is, ones which act on different parts of the system) 

in a coupled basis: 1 8 

<Y'J1 ,J2 ,J'M ,| Tk(1)-Uk(2) |yjiJ2JM> = 

( -1)J1 +J2 ' +J 5 J M 5 M - M / J 12 j l ' l l <yjl'll Tk(1) || YMJ1> < Y V | | Uk(2) ||Yj2> 

{k h j 2 J Y " (1.48) 

in which T k acts on ji and U k on j 2 . The term in curly brackets is a 

Wigner 6-j symbol, a coefficient which arises in the coupling of 

three angular momenta, as compared to two in the 3-j symbol. 1 9 
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I.C. Selection Rules and Hund's Coupling Cases. 

An electronic transition can occur in a molecule only if there are 

non-zero matrix elements of the electric dipole moment operator M 

which allow interaction with electromagnetic radiat ion. 2 0 The 

probability of such a transition occurring between electronic states 

n and m is proportional to the square of the transition moment, R n m : 

Rnm = J^n'M^mdT , (1.49) 

where and are the eigenfunctions of states n and m . 2 0 The 

electric dipole moment M for a total of N particles (electrons and 

nuclei) i s 2 1 

N 
M=Ze in (1.50) 

i=1 

where e\ is the charge on particle i which has coordinates rj. In the 

general case the transition moment integral vanishes unless the 

change in total angular momentum, J , is zero or unity, o r 2 2 

AJ = 0, ±1 (1.51) 

Changes in J of -1, 0 and +1 are denoted by the letters P, Q and R, 

respectively. 

The specific selection rules vary depending on the manner in 

which the spin, orbital and rotational angular momenta are coupled 

to one another and to the internuclear axis. The angular momentum 

coupling schemes in diatomic molecules are distinguished by sets of 

molecule-fixed basis functions called the Hund's coupling cases. The 

main property differentiating the four coupling cases described 

below is the number of angular momenta which have well-defined 

components (quantum numbers) along the internuclear axis. The 
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appropriate coupling case is the one which produces the smallest 

off-diagonal matrix elements for the rotational Hamiltonian, or 

diagonal elements which most closely reproduce the observed 

spectral pattern. The most common cases by far in molecules with 

no very heavy atoms are cases (a) and (b). 

Hund's case (a) coupling has the maximum number of well-defined 

quantum numbers, such that the relations given in equations (1.1), 

(1.2) and (1.3) for a non-rotating molecule remain va l id . 1 - 2 3 The 

basis function for a case (a) coupling scheme is therefore 

|(L)A>|SZ>|Jft>, or |riA;SI,;JftM>, where A, X and ft are the eigenvalues 

of the z components of L, S and J , with M being the space-fixed 

analog of ft, and ft = A + X . 1 The semicolon separators indicate 

products of component wavefunctions. L is incorporated into the 

label TI for the vibronic state, as it is not a good quantum number (cf. 

Section I.A). The case (a) representation is a good working 

approximation when there are no strong interactions in the 

Hamiltonian which uncouple these angular momenta from the axis. 

Case (a) occurs where there is a non-zero orbital angular momentum 

and fairly small spin-orbit coupling, where the coupling of L and S 

to each other is less important than the coupling of L to the ax is . 2 4 

The vector diagram for case (a) coupling is given in Fig. 1.2. 

In case (b) coupling, S is coupled only weakly to the axis, but L 

remains strongly coupled. Given a large enough value of J , any case 

(a) state uncouples toward case (b) because as J increases the 

rotational and spin magnetic moments must ultimately be coupled 

more strongly to one another than L and S are. Formally it can be 

said that the rotation (R) has increased to the point where it couples 
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Fig. 1.2. Vector diagram of Hund's coupling case (a). 2 4 
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to the orbital angular momentum to form a resultant N, causing S to 

uncouple from L, and therefore from the molecular axis. The effects 

of rotation become important when BJ becomes large compared to 

the separations between the spin-orbit components. 1 T h e 

transformation of a case (a) situation to case (b) occurs by way of 

the spin-uncoupling operator, -B(J+S. + J-S+). With its selection 

rules AS and AA = 0, and AO. = AX = ± 1 , this operator most commonly 

mixes spin-orbit components of a given 2 S + 1 A state, which is 

consistent with the physical case (b) phenomenon of uncoupling L 

from S. 2 3 The case (b) representation also arises for X states in 

which there is no orbital angular momentum to couple the spin to the 

axis. The total angular momentum J in case (b) is thus obtained 

a s : 2 * 

R + L = N; N + S = J (1.52) 

instead of the case (a) situation 

R + L + S = J (1.53) 

The case (b) basis function, |r i ;NASJ>, is the more physically 

realistic representation in those cases where the rotational angular 

momentum N is quantized about the axis, with electron spin 

providing only minor corrections to the total energy. Its vector 

diagram appears in Fig. 1.3. 

When nuclear spin is included in the basis set describing angular 

momentum coupling in diatomic molecules, the Hund's coupling cases 

(a) and (b) must be further subdivided. In the majority of diatomic 

molecules, including those considered in the current work, I is 

coupled so loosely to the internuclear axis or to S that the dominant 

coupling is to the rotational angular momentum J, or 
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J + I = F (1.54) 

By analogy with Hund's case (b), those coupling schemes following 

equation (1.54) are denoted by p* subscripts. The extended Hund's 

coupling cases are called ap and bpj , corresponding to basis 

functions |ASXJQIF> and |NASJIF>, respectively.25,26 

Coupling schemes in which I is not coupled to J are a a , bpN and 

bps. In the a a case, nuclear spin is coupled to the molecular axis 

with the projection quantum number l z , though molecules exhibiting 

case (a a) coupling have never been observed. 2 7 This is expected 

since nuclear magnetic moments are on the order of a thousand 

times smaller than that of the electron, making it unlikely that the 

dominant nuclear spin coupling will be to the internuclear axis by a 

magnetic interaction with the electronic and orbital angular 

momenta. In the bpN and bps cases I is coupled to N and S, 

respectively, rather than to J as in case (bpj). Case (bpN) coupling 

is not expected to be observed, as the magnetic moment of N 

(composed of R + L) is normally considerably less than that of either 

J or S, as S has a large magnetic moment and J is the sum of S and 

L. 2 7 In Hund's case (bps), I couples to S to form a vector G, which 

couples to N to form the total angular momentum F: 

I + S = G 
G + N = F 

In a nonrotating molecule, where any rotationally induced angular 

momenta are absent, case (bps) will be the dominant case (b) 

coupling scheme. In a rotating case (b) molecule, however, the 

coupling case that occurs depends on the relative sizes of the 

coupling of S to I and N: if the I S coupling dominates, the (bps) 
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case occurs. The best condition for a case (bps) molecule is a X 

state which originates nearly completely from an atomic s orbital. 

Case (bps) coupling is therefore rather rare, though it has been 

extensively described in the ground 2X state of scandium oxide, 

S c O . 2 8 - 2 9 ' 3 0 This molecule is ideal because the transition metal 

ion and closed shell oxygen have widely differing ionization 

potentials. This leaves the S c 2 + uncontaminated by contributions 

from O 2 " , and the 2X state far removed from the closed state of non-

spherical symmetry with which it could mix . 2 7 Other molecules 

that have been observed to conform to case (bps) coupling are the 

b 3X and c 3X states of AIF 3 1 , and the ground 2X+ state of L a O 3 2 . Note 

that both of these molecules also adhere to the conditions required 

for the bps coupling case. 

Case (c) coupling occurs in molecules containing an atom 

sufficiently heavy that the spin-orbit interaction which results is 

so large that electron motion can no longer be defined in either the L 

or S representations; one of the consequences is that spin 

multiplicity is no longer defined. This phenomenon is expressed as 

an axial J (J a) equal to the sum of L and S, which is then coupled to 

R to form the resultant J, as illustrated in Fig. 1.4. 2 4 The basis 

function for case (c) is therefore |rtJ a ;JQM>, where the only well-

defined axial component is fl.1 Case(c) molecules observed so far 

are 209BiO (X 2 I l i / 2 s ta te) 3 3 . 3 4 and InH ( 3Ili state) 3 5 . 

Case (d) coupling is normally only found in molecules where an 

electron has been promoted to a Rydberg orbital with higher 

principal quantum number n. The effect of the long distance between 
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Fig. 1.4. Vector diagram for Hund's case (c). 2 4 
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the electron and the nuclei is that the electron orbital motion is 

coupled only weakly to the internuclear axis, but can instead 

couple more strongly to the rotational angular momentum, R . 2 1 > 2 4 

Case (d) is equivalent to case (b) but with the difference that L is 

uncoupled from the axis rather than S ; the transition from case (a) 
A A A A 

is made by the L-uncoupling operator, -B(J+L. + J.L+) rather than 

via the S-uncoupling operator. 2 3 

While still in the case (a) or (b) limits, the L-uncoupling operator 

may induce A-doubling, which lifts the degeneracy of the ±A states. 

The selection rules for interactions by this operator are AQ = A A = 

±1 and A S = 0 . 2 3 The phenomenon of A-doubling is discussed in more 

detail in the last section of this chapter. Case (d) becomes the 
appropriate representation when - 2 B J L makes a contribution to 

the energy levels that is large with respect to the separation of 

states with differing A . 

The Hund's coupling cases corresponding to the niobium nitride 

(NbN) and cobalt oxide (CoO) molecules in this work are most 

appropriately described by the case (a) and, with higher rotation, 

case (b) coupling schemes. As A and S are defined in both of 

these cases, the following selection rules can be stated for cases 

(a) and (b): 2 4 

For case (a), with £ and Cl as good quantum numbers, there are the 

more specific rules: 

A A = 0, ±1 (1.55) 

A S = 0 (1.56) 

A Q = 0, ±1 (1.57) 

A l = 0 (1.58) 



20 

where equation (1.57) follows from equations (1.55) and (1.56). 2 4 

The A S = 0 and A X = 0 rules become less strict as the spin-orbit 

interaction increases, because the selection rules for the spin-orbit 

interaction are AQ = 0 with either AA = AX = 0 or AA = -AX =±1. 2 4-36 

In case (b) neither X nor Q. are well-defined, so the 'rotational' 

selection rule becomes 

AN = 0, ±1 (1.59) 



21 

I.D. The Hamiltonian. 

I.D.1. Nuclear rotational Hamiltonian. 

From equation (1.53) it follows that the nuclear rotational 
A _ A . 

Hamiltonian B R 2 - D R 4 should be written in the form appropriate for 

case (a) as: 

Hrot = B(J - L - S ) 2 - D(J - L - S ) 4 (1.60) 

where B is the rotational constant, and D is the centrifugal 

distortion constant representing the influence of centrifugal force 

due to rotation on bond length. Expansion of the B term of equation 

(1.60) gives 
A A A A A A A A - A A 

H = B(J2 + L2 + S2 - 2 J L - 2 J S + 2 L S ) (1.61) 

Because the x and y components of L are not defined in a non-

spherical system, their effects are omitted in subsequent 

calculations 1 . Equation (1.61) therefore simplifies to: 

H = B[J2 + L.2 + S2 - 2J Z L Z - 2 J Z S Z - (J+S. + J .S + ) + 2L Z S Z ] (1.62) 

The off-diagonal term, -(J+S. + J.S + ), is the spin-uncoupling 

operator discussed in Section 1.C. 

The diagonal and off-diagonal rotational matrix elements are 

calculated by applying equations (1.1) through (1.10) and equation 

(1.15) to equation (1.61): 

<JQLASI|H|JnLASX> = B[J(J + 1) - Q2 + S(S +1) - X(Z + 1)]1'2 (1.63) 

and 

<JS, Q±1 ,X±1 |H|JSQX> = -B{[(J(J + 1) - Q(Q ± 1)] 

x[S(S + 1 ) - X ( X ± 1)]}1/2 (1.64) 

The D terms are obtained by squaring the matrix of the coefficients 

of the B terms. 
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I.D.2. Spin Hamiltonian. 

Spin-orbit coupling can be expressed as the scalar product of the 

many-electron electronic spin and orbital angular momentum 

operators, S and L, which (using equations 1.8 and 1.15) is 

represented in Cartesian form as: 

H L-S = A[(LX + iL y ) (S x - iSy)/2 + L Z S Z + (Lx - iL y ) (S x + iSy)/2] 

= A L Z S Z + A ( L + S . + LS+)/2 (1.65) 

where A is the spin-orbit coupling constant. Neglecting the terms 

off-diagonal in L, equation (1.65) can be shortened to: 3 1 

H L .s = A L z S z (1.66) 

which has the selection rule AS = 0, and produces diagonal matrix 

elements of A A S . 

The dipolar spin-spin interaction can be represented by the 

classical Hamiltonian for two bar magnets, or dipoles, n : 3 7 

H = a i i u 2 ) / ( r 1 2 ) 3 - 3(m-r 1 2)(H2-ri2)/(ri2) 5 ( 1- 6 7) 

in which ri2 is the vector between dipoles u i and u 2 , or ri - T2- The 

magnetic dipole of spin S is 

u = - g u B S (1.68) 

where g is the dimensionless electronic g factor and LIB is the Bohr 

magneton (the unit on an electronic magnetic moment, equal to 

efV2m where e and m are the charge and mass of the electron, 

respec t ive ly ) . 3 8 The dipolar interaction in terms of two electron 

spin vectors separated by vector r is therefore: 

H s - s = ( g 2P 2 / r 3 ) { S i - S 2 - 3(si-r)(s2r)/r2} (1.69) 

Considering only the q = 0 terms (i.e., neglecting the components q = 

±1 and ±2) , the interaction reduces to : 3 7 

H s - s = (g 2P 2 /r 3){S z(i)S z(2)(3cos20 1 2 - 1) 
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- (S.(DS + (2) + S +(1)S.(2))(3 C O S2ei2 - 1)/4} (1.70) 

Averaging over all orientations of ri and xi and expressed in terms 

of a total spin S, equation (1.70) becomes: 

Hs-s= ( g W / r 3 ) [ 3 S z2 - S z2 - (S.S+ + S+S.)/2] 

= (9 2 | iB 2 / r 3 ) [2S z - (S x + iS y ) (S x - iSy)] 

= ( g W / r 3 ) ( 3 S z - S2) (1.71) 

or in terms of the spin-spin coupling constant X (or zero-field 

splitting parameter 2 A 3 8 ) , 

H s-s = 2X(3S Z - §2)/3 (1.72) 

The spin-spin interaction originates from two mechanisms: the 

primary contribution to X is from the dipolar interaction of two 

unpaired spins, but there is also an effect due to second order spin-

orbit coupling, which may in fact be considerably larger: 3 9 

x = ass + aso Ci .73) 
Second order perturbation theory applied to the spin-orbit 

interaction produces a spin-spin interaction as follows. The second 

order contribution of the spin-orbit interaction in single particle 

terms is: 

E s o ( 2 ) = I [ E l l A S - E T l - A ' s ,r 1 X^Alai l i ln'A^ X<T1

,A ,|ajfj|TiA> 
TI'A'S' i j 

x X<SX|Si |ST><ST|Si |SX> (1.74) 

The term summing over X ' produces the dipolar spin-spin term 

<SX | s rSj |SX>, as well as other matrix elements not of interest here 

because they are off-diagonal in A . 

The dipolar spin-spin interaction matrix elements are obtained 

by applying equations (1.2) through (1.5) to equation (1.72): 
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<jni_ASI| Hs-s |Jfll_ASI> = 2X[X2 - S(S + 1 )/3] (1.75) 

The states they mix have AX (=AA) and AS = 0, ± 1 , ±2 4 0 

Centrifugal distortion corrections to the spin-orbit and spin-spin 

interactions—Ao and XQ, respectively-must also be considered. 

Terms containing the parameters AQ and XD are therefore added to 

the rotational Hamiltonian (equation 1.60) as follows: 4 1 

Hrot = BR2 - D R 4 + A D R 2 L Z S Z + 2X DR2(3S Z - S 2 ) /3 (1.76) 

Since the products of the operators in the AQ and XJJ terms are not 

Hermitian, a Hermitian average must be taken by symmetrizing the 

products with the anticommutator. The diagonal matrix elements 

for the AD and Xo parameters therefore follow the rotational 

constant B, but are multiplied by the elements for the spin-orbit and 

spin-spin interactions, respectively. The off-diagonal elements do 

likewise, except that since there are no off-diagonal terms in A or 

X, the factor for these interactions becomes the average of the two 
A 

diagonal elements. As before, the operator R 2 is simplified by 

omission of the x and y components of -2J-L + 2L-S + L 2 . 

The spin-rotation operator, the dot product of the spin and 

rotational angular momenta, is written in Cartesian form a s : 3 1 

A- A- A . A-

H S -R = y(J "L - S ) S (1.77) 

Neglecting L+terms, equation (1.77) produces the expanded 

Hamiltonian: 

H S -R = Y[J 2 S Z - L Z S Z - S z

2 + ( J + S. + J-S +)/2] (1.78) 

with diagonal elements: 

<jni_ASX| Hs-s |Jnl_ASX> = y[X2 - S(S + 1)] (1.79) 

and off-diagonal elements equal to those given in equation (1.64), 

but replacing B with -y/2. 



25 

I.D.3. Magnetic hyperfine interactions. 

The magnetic hyperfine interactions include all interactions of 

the nuclear spin, I, with the other angular momenta in the basis set, 

which for the case(a) basis are J , L and S . Nuclear magnetic 

moments interact weakly with the rotational magnetic moment 

giving rise to a scalar interaction term written: 2 5 

H|.j = cil-J (1.80) 

where ci denotes the interaction constant. From equation (1.54), 

F 2 = J 2 + 21-J + I2 (1.81) 

so that the IJ interaction can be expressed in terms of F as: 

H|.j - q ( F 2 - J 2 - i 2)/2 (1.82) 

The matrix elements can be obtained directly from equation (1.4) as: 

<ASIJQIF| HI .J |ASIJQIF> = C|[F(F + 1) - J(J + 1) - l(l + 1)]/2 (1.83) 

The interactions of electronic and nuclear spins are represented 

by the Hamiltonian: 2 6 

Hi.s = b lS + c l z S z (1.84) 

with 

b = aF - c/3 (1.85) 

where aF and c are the isotropic (Fermi-contact) and dipolar 

hyperfine constants, respectively. The former interaction is 

directly proportional to the quantity of electron density at the 

spinning nucleus, while the dipolar, or bar magnet, interaction 

between l z and S z is the same as given in equation (1.67). The 

interaction of nuclear spin with the electronic orbital magnetic 

moment is a scalar product of I and L which is treated in the same 

manner as the L S interaction described by equations (1.65) and 

(1.66). The resulting Hamiltonian is therefore: 2 6 - 3 1 
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HI .L -aizLz (1.8.6) 

in which a is the interaction constant. 

The b term of equation (1.84) is expressed in spherical tensor 

form as: 

H i s = bTl(l)Tl(S) (1.87) 

To derive the matrix elements of the interaction, I is first 

uncoupled from J by application of equation (1.48): 

<nASIJQIF| T1(I)T1(S) h , ASTJ , Q , I F> = 

[l(l + 1)(2I + 1)]1'2 <nASLJQ| | V(S) I h ' A S T ' J ' ^ ^ 

(1.88) 

where the [(l(l + 1)(2I + 1)] 1 / 2 term is the reduced matrix element of 

T 1(l) according to equation (1.46). By projecting the reduced matrix 

element in equation (1.87) from the space-fixed axis system to the 

molecule-fixed system, using Wigner rotation matrices as in 

equation (1.47), the general matrix element can be expressed a s : 3 1 

<iiASUOIF| HT .S |ri ,ASTJ ,n ,IF> = 

(-1)>+J'+F/F J |) [l(l + 1)(2I + 1)(2J + 1)(2J' + 1)]i/2 I ( -1 )J-«/J 1 J ' \ 
\ l I J'J q \-Q q Q'J 

X ( -1 )S - I /S 1 S ' \ Z <S||Tl(S)||S'><TiAS|bih,AS,> (1.89) 

The c l 2 S z and a l z L z Hamiltonians are treated by the same method. 

Evaluation of the 3-j and 6-j symbols with the appropriate 
A- A A A A A 

f o r m u l a e 5 - 4 2 , yields the matrix elements for bl-S, c l z S z and a l z L z , 

except that the only matrix elements written for the a and c 

constants are those diagonal in A and X, respectively. The resulting 

matrix elements employed in the hyperfine analysis of NbN are as 

follows: 
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<JIFQIM| Hut |JIFQIM> . Qh R(J)/[2J(J + 1)] (1.90) 

<JIFftXM| Hhf |J-1,IFflIM> = 

-h(j2-Q2)1/2p (J )Q(J) / [ 2 J(4j2 -1)1/2] (-|.91) 

<JIFQXM| Hhf |JIFQ±1,X±1,M> = 

b[(J+Q)(J±Q+1 )]1/2R(J)V(S)/[4J(J+1)] (1.92) 

<JIFQXM| Hhf_|J-1,IFQ±1,I±1,M> = 

+b[(J*Q)(J+n+1 )]1/2P(J)Q(J)V(S)/[4J(4J2-1 )1/2] (1.93) 

where the following abbreviations have been used: 

R(J) = F(F + 1) - J(J + 1) - l(l + 1) (1.94) 

P(J) = [(F - I + J)(F + J + I + 1)]l/2 (1.95) 

Q(J) = [(J + I - F)(F - J + I + 1)]i/2 (1.96) 

V(S) - [S(S + 1 ) - I ( I ± 1 ) ] l / 2 (1.97) 

The constant b is that given in equation (1.84), while h is used in the 

diagonal elements in order to incorporate the a, b and c constants 

into one: 

h = aA + (b + c)X (1.98) 

I.D.3.a. The sign of nuclear hyperfine coupling constants in 
transition metal complexes. 

I.D.3.a.i. The sign of the Fermi contact interaction. 

For an isotropic (Fermi contact) interaction involving only pure s 

electrons, the isotropic hyperfine constant aF is positive because 

the magnetic field generated at the nucleus by the interaction is in 

the same direction as the electronic spin. However, negative 

contributions to the isotropic hyperfine interaction occur when 

there are open shell d or p electrons which polarize s electrons in 

inner (filled) orbitals via an exchange interaction which promotes an 
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electron from an inner s orbital to an outer empty o n e . 4 3 For 

example, a ground electronic configuration with a single unpaired 3d 

electron, 

¥ 0 = (3s+)(3s-)(3d+) 

can mix with excited states resulting from the promotion of an 

electron from a 3s to 4s orbital to produce the three functions: 4 3 

¥1 = (4s+)(3s-)(3d+) 

¥ 2 = (3s+)(4s-)(3d+) 

¥ 3 = (3s+)(4s+)(3d+) 

This is known as a configuration interaction, in which the ground and 

excited states possess different spin distributions yet form the 

basis for the same irreducible representation, in keeping with the 

requirement that the energy of the system remains constant. 4 4 

First order perturbation theory is applied to describe the mixing, 

yielding an expression for the hyperfine contribution due to 

configuration interaction that is a function of the product of the ns 

and ms orbitals evaluated at the nucleus [ns(0)ms(0)], times an 

exchange integral J(ms,3d,3d,ns), divided by the energy separation 

between the ms and ns orbitals: 

3 °° 

X=8TCS X [ns(0)ms(0) x J(ms,3d,3d,ns)]/(Em-E n) (1-99) 
n-1 m=4 

The quantity x ' s independent of c h a r g e 4 3 and is related to the 

isotropic Fermi contact coupling constant, aF, by : 4 4 

a F = (2/3)geLiBgnHnX (1.100) 

where g e and g n are the electronic and nuclear g factors and LIB and L i n 

are the Bohr and nuclear magnetons. The quantity [ns(0)4s(0)]/(E4-
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E n ) for the n • 1, 2, 3 s orbitals of the neutral atoms of the first row 

transition metals from V to Cu was found to increase by about 20% 

across the series. The exchange integrals varied in the opposite 

sense, though more gradually, decreasing by an overall 14% from V 

to C u . 4 3 

An alternative approach to the configuration interaction (CI) is 

core (or spin) polarization, a treatment which may be easier to 

conceptualize but is not as theoretically s o u n d . 4 4 This theory 

differs from CI in that the orbitals involved belong to a single 

configuration which originates from spin-dependent one-electron 

orbitals. The resulting hyperfine interaction is therefore a function 

of the amount of spin density of each sign. CI requires two spin-

independent configurations to represent the wavefunction. The 

wavefunction for the core polarization model is a spin-polarized 

unrestricted Hartree-Fock function (UHF) where UHF differs from the 

conventional, or restricted, Hartree-Fock function in that the trial 

one-electron wavefunctions are not required to be independent of 

the orientation of the s p i n . 4 4 The radial functions whose spins are 

being polarized, corresponding to spin up and spin down, differ from 

one another because they couple differently with the unpaired d or p 

electrons. The resulting hyperfine interaction is negative because 

the polarized spin has the opposite sense to the unpaired electron 

which induces the polarization. 4 4 
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I.D.3.a.ii. The sign of the dipolar nuclear hyperfine 

interaction. 

The sign and magnitude of the dipolar hyperfine interaction 

depends on the number and type of open shell d and p electrons. The 

interaction constant for such an electron in orbital r\ i s 4 5 

Cj = 3geUBgnun<il|r-3(3cos2e - 1)/2fo> (1.101) 

where 6 is the angle between the nucleus and the ith unpaired 

electron at a distance r; closed shell electrons do not contribute to 

<3cos29 - 1>. Using for sake of illustration the ground electronic 
4 X " state of VO, with the configuration ( a 27i 4 a n

1 5 2 ) , there are three 

non-bonding o n

1 8 2 open shell electrons contributing to the IS 

interaction. If the assumption is made that the interacting 

electrons are metal centered, the hyperfine constants are : 4 6 

( A i s 0 ) V 0 « (1/3)(A|8 0)4so (1-102) 

(A dip)vo= (2/3)(Adip)3d6 (1-103) 

where these A parameters are related to aF, b and c by: 

Aiso = A i + Adip = aF (1.104) 

A ± = b = a F - c/3 (1.105) 

Adip = c/3 (1.106) 

A|| = b + c (1.107) 

Combining equations (1.101), (1.103) and (1.106), the expression for 

c becomes: 

c = 3geUBgnM2/3)<3d5|r-3.(3cos28 - 1)/2|3d8> (1.108) 

Using the algebreic expression for the spherical harmonic Y20 (see 

Section I.B) 4 7, the matrix element portion of equation (1.108) can be 

written in terms of the n, I and m quantum numbers as: 

<nlm)r-3.(3cos2e - 1)/2|nlm> = (1/2)<lm|3cos2e - 1 |lm><nl|r-3|nl> 
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3m2- 1(1+1) 
<r-3> n| (1.109) 

(2l-1)(2l+3) 

For a 8 orbital, equation (1.109) reduces to (2/7)<r3>ni, producing a 

value for c (in cnr 1 ) o f 4 6 

c = -(4/7)geLiBgn^n<r-3>3d/hc (1-110) 

When an electron is promoted from the 4so to 4pa orbital to produce 

the C 4 Z * excited state, all three electrons contribute to the dipolar 

term and c becomes (in cm- 1): 

c = 3geUBgnM(2/3)<r-3-(3cos2e - 1)/2>3d8 

+ (1/3)<r-3(3cos2e-1)/2>4pa]/hc 

c = g e^BgnM-(4/7)<r- 3>3dS + (2/5)<r- 3> 4 p a]/hc (1.111) 

Using this method the different values for c corresponding to the 

various possible electron configurations of an electronic state can 

be estimated, which assists in the assignment of an electronic 

state. 

I.D.4. The nuclear electric quadrupole interaction. 

The nuclear electric quadrupole interaction involves two second 

rank tensors, representing the electric field gradient and the nuclear 

quadrupole moment. A simple method by which to derive the 

quadrupolar Hamiltonian is with the use of spherical harmonics and 

Legendre polynomials. 

To obtain the Hamiltonian for the electrostatic interaction of the 

nuclear quadrupole moment with the electric field gradient at the 

nucleus, a multipole expansion is made for the scalar coupling of the 

charges of the nucleons with those of the electrons. A multipole 
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expansion is a spherical harmonic expansion (or Legendre polynomial 

expansion) where the values of I in the spherical harmonic Y | m are 

referred to as monopole, dipole, quadrupole and octopole for I = 0, 1, 

2 and 3 . 4 8 By Coulomb's law 4 9 , the electrostatic Hamiltonian is 

H = I e q n / R n (1-112) 
n 

which describes the interaction between n nucleons with charge q n 

and an electron with charge e, with an electron-nucleon separation 

of R n . The electrostatic potential at the electron is 

V = I q n / R n (1.113) 

The distance R n is the resultant of the two vectors originating from 

the nuclear center to the nth nucleon (rn) and to the electron (R), 

with the angle between vectors rn and R denoted by 9 n . The law of 

c o s i n e s 5 0 gives the relation between R n , rn, R and 0 n : 

Rn = (R 2 + r n

2 - 2 R r n c o s e n ) 1 / 2 

= R[1 + (r n /R) 2 - 2 ( r n /R)cose n ] 1 / 2 (1.114) 

By the generating function for Legendre polynomials 5 1, 

[1 - 2(r n /R)cos9 n + ( r n /R ) 2 ] 1 / 2 = I P|(cos0 n)(r n/R) 1 (1.115) 

equation (1.113) can be written in terms of a Legendre polynomial 

a s : 5 2 

V = X I P|COS(0n)qnrn l/R'+1 (1.116) 
l=0 n 

Each Legendre polynomial represents the scalar product of 

electronic and nuclear tensor operators (from the spherical 

harmonic addition theorem), producing from equations (1.112) and 

(1.116) the multipole expansion: 4 8 - 5 2 
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A 
Hmultipole = e v * 

= H ( -1) m [I (e/R' + 1) C|m(eei(pe) x I qni-n' C|,.M(0ni(pn)] ( 1 -117 ) 
1=0 m e n 

where the summations over e electrons and n nucleons represent 

terms in electronic (8e,(pe) and nuclear (0n,<pn) angular coordinates, 

respectively. 

The first term in this expansion which is non-vanishing describes 

the quadrupolar interaction. The I = 0 term can be represented by 

Z e V 0 , or the Coulombic interaction between the nuclear charge and 

the electrons, and is included in the electronic Hamiltonian. 5 3 The 

dipole term, I = 1, is the product of the electric dipole moment of 

the nucleus, which is zero, and the electrostatic field of the 

electrons, which is invariant over the nuclear volume and therefore 

produces no interaction. 5 3 The I = 2 quadrupole term, however, is 

the interaction of the nuclear electric quadrupole moment, Q , with 

the electric field gradient ( V E ) experienced by the nucleus due to the 

charge distribution of the electrons. For those nuclei possessing a 

quadrupole moment, then, the quadrupolar Hamiltonian is the scalar 

product of these two tensor quantities: 5 4 

H Q = -T2(VE)T2(Q) ( 1 . 1 1 8 ) 

where the minus sign is present due to the negative charge of the 

electron. 

The quadrupole moment is a measure of how spherical the nucleus 

is, as indicated by the value of the nuclear spin, I. The deviation of 

nuclear charge distribution from spherical symmetry is given by: 

3 z 2
a v e - (x2 + y2 + z 2 ) a v e or 3cos 2e n - 1 (where 8 N is the nuclear 

angular coordinate) . 5 5 This value is non-zero if I is greater than 
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1/2, which is dictated by the number of odd nucleons (i.e, 

differences in the number of neutrons with respect to protons). The 

mechanism giving rise to specific values of I is imperfectly 

understood, though it seems to approximate the same shell model 

that applies to electrons. Thus, zero spin results from spin-pairing 

if the number of protons (Z) equals the number of neutrons (N), and 

predictions for I can usually be made for nuclei possessing odd N or 

Z based on the number of particles occupying open shel ls . 5 5 

By convention, the nuclear electric quadrupole moment is defined 

classically a s 1 1 

Q = ej(3z2 - r2)p(r)dx (1.119) 

where p(r) is the nuclear charge density, and dx denotes integration 

over the nuclear volume. Quantum mechanically the definition 

becomes: 5 2 

Q = e-lXq n r n2(3cos20 n - 1) (1.120) 
n 

The quantum mechanical observable corresponding to equation 

(1.120) is the nuclear quadrupole moment, Q, defined by convention 

a s 5 4 

Q - <l,mi=l| Q |l,mi=l> (1-121) 
A. 

The definition of Q was made prior to the invention of spherical 

tensors and therefore lacks the factor of 1/2 needed for the 

expressions P2(cos9) - T 2

0 (X ) = (3cos 2e - 1)/2; Q was also defined 

without the electron charge e. The spherical tensor definition is 

therefore 

T20(Q) = eQ/2 (1.122) 

with the corresponding scalar quantity 
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eQ/2 = <l ,mi=l|T2 0 (Q)| | ,mi=l> (1.123) 

The quadrupole tensor, from equation (1.117), is of the form 

T2(Q) = Iqnr2nC2(en,(pn) (1-124) 
n 

The electric field gradient (EFG) evaluated at the nucleus, 

( 3 2 V / 3 z 2 ) 0 l has the spherical tensor form (from equation 1.117) of: 

-T2(VE) = ZeR-3C2(ee,cpe) (1 -125) 
e 

with the corresponding field gradient coupling constant defined as 

q = <j,mj=J|(a2V/az2)0|J,mj=J> (1.126) 

where (d2\lldz2)0 = eR-3(3cos6 e - 1). Thus, with the factor of 1/2 

required by the spherical harmonic definition of the quadrupole 

moment, the EFG tensor can be expressed as: 

-T20(VE) = q/2 (1-127) 

To derive the matrix elements for the quadrupolar interaction 

(equation 1.116), equation (1.48) is applied to evaluate the scalar 

coupling of two commuting tensor operators in a coupled basis (I 

must be unravelled from J): 

^'A'lSTiJ'n' IFI HQ |nA;SX;JQIF> 

= ( - 1 ) J + I + F 5 F F / F I J'^Tl 'A ' jJ 'Q 'H -T2(VE) | |r iA;JO><l|| T2(Q) |||> (1.128) 
12 J 1/ 

Then project T 2 ( V E ) from space- to molecule-fixed axes with 

equation (1.29): 

^ • A ' j J ' Q ' H ^ V E J I h A i J ^ = X<J'n'|| D2.q*(apY) ||J«><Ti'A ,||-T2 q (VE)||TiA> 
q 

= X(-1)J'-Q'[(2J+1)(2J'+1)]1/2/j' 2 J W A ' H -T2q(VE) |hA> (1.129) 
q \a' q a) 

The last term of equation (1.128) is evaluated with the Wigner-

Eckart theorem, in conjunction with equation (1.123): 
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<l,mi=l| T2 0 (Q) ||l,mi=l> = eQ/2 « (-1)'-'/ I 2 l \<l | | T2(Q) ||l> (1.130) 

V - l 0 \) 

Substituting for the 3-j symbol 5 7 and solving for the reduced matrix 

element gives 

<l|| T2(Q) ||l> = eQ!2( I 2 
V-IO I/ 

= eQ/2 [(2l+1)(2l+2)(2l+3)/2l(2l-1)]l/2 (1.131) 

In terms of the molecule-fixed T 2 ( V E ) tensor in equation (1.129), 

the coupling constant q is defined by the diagonal reduced element of 

T2(VE): 

<A||-T20(VE) ||A> = q/2 (1.132) 

A first order approximation was made in the current study to 

neglect the ±1 and ± 2 components of T 2 ( V E ) , that is, to exclude 

quadrupole matrix elements off-diagonal in Q . Appropriate 

combination of equations (1.128), (1.129), (1.131) and (1.132) 

therefore yields the matrix elements 
^ 'A' jSTlJ 'n ' IF I -T2(VE)T2(Q) |riA;SI;JftlF> 

= (1/4)eqQ(-1)J+'+F ff I J , Nj [(2l+1)(2l+2)(2l+3)/2l(2l-1)]1/2 
\ 2 J I / 

x l ( -1)J' -« , [ (2J+1)(2J , +1)] l/2/ J' 2 J \ (1.133) 
q \-Q' q ClJ 

From the triangle condition for a 3-j symbol, which states that the 

third J value must not lie outside the sum and difference of the first 

two J va lues 1 8 , the 3-j symbol in equation (1.133) requires AJ to be 

0, ±1 or ± 2 . From equation (1.133) and these selection rules, the 

specific matrix elements employed in this work are as follows: 



37 

<JIFQIM| HQ |JIFQIM> = 

eQq[3fl2-J(J+1 )]{3R(J)[R(J)+1 ]-4J(J+1 )l(l+1)} 

81(21-1 )J(J+1 )(2J-1 )(2J+3) (1.134) 

<JIFnlM| HQ |J-1,IFQIM> = 

-eQq3n[R(J)+J+1](j2-fl2)l/2P(J)Q(J) 
2J(2J-2)(2J+2)(2I-1 )(4J2-1) 112 (1.135) 

<JIFQIM| HQ |J-2,IFQIM> 

= eQq3[(J-1)2-fl2]1/2(j2-fl2)l/2p(J)Q(J)P(J-1)Q(J-1) 
41(21-1 )4J(J-1 )(2J-1 )[(2J-3)(2J+1 )]1 /2 (1.136) 

The terms R(J), P(J), Q(J), P(J-1) and Q(J-1) are as in equations 

(1.93), (1.94) and (1.95). 

I.D.5. A -Doubl ing. 

The phenomenon of A-doubling results from the breakdown of the 

Born-Oppenheimer approximation, which allows the separation of 

electronic and nuclear motion.26 it is the lifting of +A degeneracy 

which occurs when molecular rotation interferes with the well-

defined quantization of the z component of electronic orbital angular 

momentum about the molecular axis. The operators in the spin and 

rotational Hamiltonian responsible for A-doubling are the x and y 

components of the electronic orbital angular momentum operators 

which produce matrix elements off-diagonal in A . In the rotational 
A A 

Hamiltonian, this is the L-uncoupling operator, - 2 B J L . Among the 

spin-interaction terms of the Hamiltonian, the spin-orbit operator 

is used, yielding the complete A-doubling Hamiltonian: 5 7 

V = - 2 B J L + Xaji-Si (1-137) 

The A-doubling interaction is treated by degenerate perturbation 

t h e o r y 5 8 , which for A states must be taken to fourth order in order 
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to connect |A = 2> to |A = -2> via states with A = 1 and 0 (i.e., IT. and X 

states). For this reason the interaction is smaller than that in n 

states, since the mixing of |A = 1> and |A = -1> states requires only 

second order perturbation theory. 5 7 The unperturbed Hamiltonian 

contains those terms adhering to the Born-Oppenheimer 

approximation which are diagonal in A and independent of the orbital 

degeneracy. The perturbation can be treated through the use of a 

fourth-order effective Hamiltonian, which is obtained by subtracting 

out the unperturbed energy from the complete Hamiltonian 

expression to leave an effective Hamiltonian which operates only on 

the vibronic state of interest, | l 0 k > 5 7 ' 5 9 

Heff<4> = P 0 V(Qo/a)V(Q 0 /a )V(Qo/a)VP 0 - P 0 V(Qo / a 2 )VP 0 V(Qo/a )VPo 

- P 0 V(Qo / a 2 )V (Qo/a )VP 0 VPo - PoV(Qo/a)V(Qo /a2)VPoVPo 

+ P 0 V(Qo /a3) V P 0 V P 0 V P 0 (1.138) 

The operator P 0 , extending over the k-fold degeneracy of l 0 , is 

defined as 

Po = I | l 0 k x l 0 k | (1.139) 
k 

while 

(Qo/a n)= I I | l k x l k | / ( E 0 - E n ) n (1.140) 
l=l 0k 

where I denotes any vibronic state with energy E|, E 0 is the energy of 

state <l0k|, and k labels all rotational, spin and electronic quantum 

numbers in a vibronic state l 0 or I. 

The Hamiltonian in equation (1.137) has 2A+1 terms of the form 

( H r o t ) 2 A - n ( H s . 0 . ) n , where n ranges from zero to 2A . In the case (a) 

form it is written: 5 7 
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HL.D..A = m A (S + 4 + S.4)/2 - n A (S +3j+ + S.3J.)/2 

+ 0 A ( S + 2 j + 2 + §.2j.2)/2 - p A ( S + J + 3 + SJ.3)/2 

+ q A ( j + 4 + j.4) ( 1 .141) 

where the factors of 1/2 are included to be consistent with the 

notation of Mulliken and Chr is ty 6 0 for II states. Thus the q A 

parameter accompanies ( H r o t ) 2 A . PA is with (H r o t ) 2 A " 1 ( H s.o. ) and so 

on to m A with (H S . 0 . ) 2 A . The number of those parameters that can be 

determined equals the spin multiplicity up to a maximum of 5. In a 
4 A state, for example, only four of the five parameters are included 

in the A-doubling matrix elements, with m A excluded because the 

spin-orbit interaction need not be extended to fourth order. In a 4 A 

state where there are four Q, substates, the terms appear in the 4 x 

4 matrix as + terms which split a given level into two levels of 

different parity, labelled e and f. By convention, the e levels have 

parity +(-1)J-k and / levels have parity -(-1)i-k, where k is 1/2 and 

0 for half-integer and integer values of spin, respectively. 6 1 ' 6 2 The 

magnitude of the A-doubling observed in this work in the 4 A 7 / 2 -
4 A 7 / 2 transition of CoO ranged from 0.2 to 1.2 c m - 1 , while that in 

the 3 n 0 state of NbN is on the order of six wavenumbers. 
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II.A. Experimental Details. 
The laser excitation experiments were performed using a 

Coherent Radiation model CR-599-21 scanning single frequency 

(standing wave) dye laser, pumped by a Coherent Radiation model 

lnnova-18 argon ion laser operated at a wavelength of 514 nm and a 

power of 2.0 to 3.5 W. Output power from the dye laser was 

normally 100 to 150 mW. The tunability of the laser comes from 

selecting portions of the broad fluorescence band of an organic 

d y e . 6 3 Two dyes were employed for both the cobalt oxide (CoO) and 

niobium nitride (NbN) studies. For maximum output at 590 nm 

(ranging from 570 to 620 nm or 17540 to 16130 cm- 1), the dye used 

was rhodamine 6G (Exciton Chemical Co.), with the structure 6 3 

made to a concentration of 2 x 10 - 3 M in ethylene glycol. To reach 

the lower energy regions, the dye DCM (4-dicyanomethylene-2-

methyl-6-p-dimethylaminostyryl-4H-pyran, from Exciton Chemical 

Co.) was dissolved in 3:7 benzyl alcohol to ethylene glycol to form 

nearly saturated 2.5 x 10"3 M solutions. At a pump wavelength of 

514 nm, DCM's maximum output power occurs at 640 nm, and 

- O C 2 H 5 

^ v - C H j 

^ C 2 H 5 
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broadband laser operation occurs over the range 600 to 695 nm 

(16670 to 14390 cm" 1). The benzyl alcohol required to dissolve the 

DCM leads to bubble formation, so the solution was cooled to 

minimize bubbling by running the dye tubing through a -30 ° C slush 

of dry ice mixed with a 1:3 solution of water to CaCl2- All 

chemicals were used as obtained. 

A small fraction of the output beam was diverted to an iodine 

absorption or emission cell for absolute frequency calibration. 

Another fraction was sent to a Tropel fixed-length semiconfocal 

Fabry-Perot interferometer with a 299 MHz free-spectral range, 

providing a common ladder of frequency markers against which the 

sample and iodine spectra could be referenced. The beam containing 

the majority of the output power was passed down the longitudinal 

axis of the stream of sample molecules, with the laser-induced 

fluorescence (LIF) detected at right angles to the beam with a 

photomultiplier tube equipped with a high transmittance low pass 

optical filter to reduce scattered light, and powered by 300 to 500 V 

from a high voltage power supply. Phase-sensitive detection was 

acheived with a Princeton Applied Research (PAR) model 128A lock-

in amplifier receiving chopped sample and reference signals, with the 

reference beam supplied by a Spectra-Physics model 132 Lablite He-

Ne gas laser. 

The resolved fluorescence experiments were performed with a 

0.7 m Spex Industries model 1702 spectrometer which dispersed the 

spectrum onto the detector elements of a microchannel-plate 

intensified array detector (PAR model 1461), mounted at the output 



end of the spectrometer. The spectral window of the array detector 

was calibrated with a Burleigh model WA-20VIS wavemeter. 
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II.B. Intermodulated Fluorescence. 

A laser-induced fluorescence transition has a Gaussian velocity 

population profile forming an inhomogeneously broadened line, 

because of the Doppler effect, the freqeuncy absorbed by molecules 

moving away from the light source appears to be lower than that 

absorbed by molecules moving toward it. At the center of the 

profile (zero velocity) the transition frequency Q is not Doppler-

shifted; that is, the molecules have zero velocity with respect to 

the light wave with which the molecules interact . 6 5 ' 6 6 In Doppler-

free (or "sub-Doppler") spectroscopy, two travelling waves (laser 

beams) with frequency w propagate in opposite directions through 

the sample gas molecules. Molecules moving with velocity v along 

the axis of the laser beams absorbs radiation from one beam at a 

frequency ft = co(1 + v/c), and from the other beam at ft = co(1 - v/c). 

These opposite Doppler shifts cause each beam to depopulate a 

portion of the lower state velocity profile symmetrically about the 

profile center at v = c(ft ± co)/ft (see Fig. 2.1). This depletion is 

termed "burning a Bennet hole", creating a homogeneous profile in 

the lower state. 6 6 As the laser is scanned, and the laser frequency 

approaches the non-Doppler-shifted resonance frequency, the two 

Bennet holes converge until they meet at the center, or zero velocity 

(see Fig. 2.1). The resulting lower state population depletion causes 

a corresponding depletion in the intensity profile of the 

fluorescence, called a "Lamb dip". 

Intermodulated fluorescence (IMF) is a technique which enables 

relatively small Lamb dips to be detected against the large Doppler-

broadened profile so that they are directly measured as spectral 
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Fig. 2.1. Gauss ian inhomogeneously Doppler-broadened 
veloci ty (v z ) populat ion (n) profile, showing two Bennet 
holes (solid lines) which converge at zero velocity 
(dotted line) to form a Lamb dip in the profile of intensity 
versus laser tuning f r e q u e n c y . 6 6 
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peaks. The two laser beams are modulated (i.e., chopped to produce 

certain phase trains) with frequencies fi and f 2. The lock-in 

amplifier, with the phase sensitive detector referenced to a 

frequency of fi + f2, passes only (fi + f2)-modulated input signals, 

such as those occurring when two Bennet holes meet 6 6 A schematic 

diagram of the IMF experiment used to obtain the niobium nitride 

sub-Doppler spectra is illustrated in Fig. 2.2. In practice, the two 

counterpropagating laser beams must be slightly misaligned from 

one another to avoid feedback into the laser. 

A LIF signal normally arises from Bennet holes caused by allowed 

AF=AJ transitions meeting at the velocity profile center. However, 

Lamb dips also originate from holes burned by "forbidden" A F # A J 

transitions meeting at the center. Since the selection rules 2 4 on F 

and J are AF = 0, ±1 and AJ = 0, ± 1 , transitions with A F = AJ ±1 and 

±2 are also possible. For a Q transition, with AJ = 0, the F selection 

rule requiring that AF = 0, +1 allows the transitions rQ (AF = AJ + 1), 

qQ (AF = AJ) and pQ (AF = AJ - 1). If AJ = +1, A F = +1, 0 and -1 

corresponds to the transitions rR, qR and pR (or AF = AJ, AJ - 1 and 

AJ - 2). The same occurs for P branches where AF = AJ, AJ + 1 and 

AJ + 2 lines (pP, qP and rP) occur. These satellite branches are 

observed only at low values of J because the intensity of the 

transitions is proportional to the angle between the vectors J and 

F . 6 7 When J and F are large with respect to I this angle approaches 

zero, and only A F = AJ transitions are observed. The large value of 

9/2 for the nuclear spin of Nb allows A F * A J transitions to be seen 

at higher values of J than is normally possible. 

Accompanying a pair of AF = AJ and AF = AJ ± 1 transitions, or a 
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Fig. 2.2. Schematic drawing of the intermodulated fluorescence 
experiment used in this laboratory. The discharge cube where the 
sample and laser light are combined is shown in the top left corner. 
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A F = AJ ± 1 and AF = AJ ± 2 pair, may be a "crossover resonance" 

occurring exactly mid-way between the two. Such a phenomenon 

requires that the two transitions sharing a common level lie within 

the same Doppler profile. Crossover resonances occur in the IMF 

spectra of the nearly coincident transitions of closely spaced 

hyperfine components. The means by which crossover resonances 

are generated is depicted in Fig. 2.3, with a schematic stick drawing 

of the resulting spectrum. 



b) AF=AJ=0 

X X AF= 
AJ-I 1 I A J + | 

1 1 1 1 
Fig. 2.3. a) The formation of crossover resonances (Fi + A 2 and F 2 + A-i) as the result of allowed 
AJ = AF transitions (Ai and A 2) occurring within the same Doppler-broadened velocity profile as 
forbidden AJ * AF transitions (Fi and F 2). The diagram shows the laser scanning toward the non-
Doppler-shifted AF = AJ transition (occurring at Ai + A 2) and beyond toward higher frequency to 
the AF = AJ + 1 transition (Fi + F 2) . If the F's and A's are exchanged, the first central Lamb dip is 
the A F = AJ - 1 transition, b) Stick diagram of the spectrum of the four forbidden transitions 
that can accompany a AF = AJ = 0 Q transition (X denotes a crossover). With an R line, the AF = 0 
and A F - -1 transitions and the associated crossovers occur to the red of the A F = AJ + 1 
transition, while with a P line the forbidden transitions lie to the blue to the A F = A J - 1 
transition. 
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II. C. Computerization. 

Part of the work for this thesis involved computerizing all 

stages of the Doppler-limited and intermodulated fluorescence (sub-

Doppler) LIF experiments on a PDP-11/23 microcomputer with an 

RSX-11M operating system. These stages included: 1) laser 

scanning, and data acquisition and storage; 2) peak finding; and 3) 

frequency calibration. Each stage comprises a separate program. 

All of the software was written with FORTRAN-77 except for the 

laser scanning and data acquisition, programmed in MACRO. The 

PDP-11 computer is structured such that space for executable code 

is quite limited. This constraint required that the three programs be 

overlaid. Overlaying is a method of memory management which 

allows the sum of the individual subroutines to far exceed the 

memory limitations of the computer. When an overlaid program is 

executed, only a portion of the subroutines are sent into memory, 

while the remainder resides in the relatively limitless disk space. 

A set of overlay directives is written which describes the program 

in terms of a calling "root" segment and any number of subprogram 

"branch" segments; the branches may themselves call "subbranches". 

The computer uses these directives to build the task file such that 

during program execution the memory space at any given time is 

occupied only by the root segment and the branch being called at that 

time. Since the main responsibility of the root is to call 

subroutines in the branches, the root is made as short as possible to 

allow most of the software to remain disk-resident throughout 

program execution. 
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The heart of the first program is the MACRO routine which 

orchestrates laser scanning and data acquisition via its control of 

the following hardware peripheral devices: 

• The 16-bit digital-to-analog converter (D/A), which sends a 

voltage ramp to the laser so that it scans a range of up to 1.4 cm- 1 . 

• The 4-channel, 12-bit analog-to-digital converter (A/D), 

containing two registers to process incoming data. The control 

status register (CSR) receives the voltages (data points) from the 

sample, iodine and interferometer detectors. The buffer preset 

register receives the point from the CSR, stores it temporarily, then 

delivers it both to the 12-bit output D/A and to the appropriate 

storage buffer for transfer to disk. The sample spectrum is signal 

averaged over four points prior to transfer to the buffer. 

• Three 12-bit D/A's, which send the three data points to the chart 

recorder for a hardcopy of the spectra. 

• The real-time (crystal-oscillator) clock, by which the above 

peripheral devices are interrupt-driven to operate at a user-chosen 

rate producing a resolution compatible with the lock-in time 

constant and the frequency range scanned by the laser. The use of 

interrupts ensures that the task will be serviced by the computer's 

central processing unit exactly as dictated by the clock. 

The interfacing of computer and experiment is illustrated 

schematically in Fig. 2.4. Upon return from the MACRO routine after 

scanning is complete, the three spectral vectors are stored in 

unformatted files with the first record of the sample file serving as 

a housekeeping record containing spectral identification and 

experimental parameters. 
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Fig. 2.4. Schematic diagram of the laser-induced fluorescence 
experiment and how it is interfaced to the PDP-11/23 micro
computer. 
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CHAPTER III 
ROTATIONAL ANALYSIS OF THE RED SYSTEM OF COBALT OXIDE 

III.A. Introduction. 
In German-occupied Belgium during World War II, Malet and Rosen 

observed a number of electronic bands of gaseous cobalt oxide (CoO) 

between 5000 and 10000 A using the exploding wire technique. 6 9 

The lower state vibrational frequency (i.e., the separation of the 

v"=0 and v"=1 vibrational states) was found to be 840 c n r 1 , and this 

state was assumed to be the ground electronic state. The next 

spectroscopic experiments on CoO came years later, in 1979. The 

first was a low resolution infrared spectrum of CoO (with ±0.2 cm- 1 

line precision) obtained with a microwave discharge source, giving a 

vibrational frequency of 842.2 c m - 1 , an equilibrium rotational 

constant (B e) of 0.522, and an equilibrium bond length (re) of 1.60 

A.70 The absence of a Q branch in the spectrum led to the tentative 

assignment of a X ground state 2 4 , though the possibility was not 

ruled out that the spectrum was that of a low-lying excited state. 7 0 

A matrix isolation infrared study followed shortly afterwards 7 1 , in 

which cobalt from a cobalt cathode sputtering source and oxygen 

were codeposited at low temperature (14 K) into a solid matrix of 

argon. The ground state vibrational frequency was measured in this 

work to be 846.4 cm" 1 . In the next year, matrix isolation electron 

spin resonance (ESR) studies of a large group of transition metal-

containing molecules with high spin multiplicities were reported, 

including C o O . 7 2 In spite of high concentrations of CoO within the 

matrices and the expertise of the laboratory in conducting 
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experiments of this type, no CoO ESR signal was observed. CoO was 

therefore concluded to possess an orbitally degenerate ground state, 

because orbital degeneracy in linear molecules (in matrices of low 

enough temperature that only the ground state is populated) causes a 

g tensor anisotropy so large that the spectrum is spread out over 

such a large magnetic field that it cannot be observed. The ESR 

spectrum of a paramagnetic 1 state, on the other hand, will possess 

little or no g anisotropy and will exhibit only a small deviation from 

the free electron value, g e = 2.0023, due to the spherical symmetry 

of the overall orbital angular m o m e n t u m . 7 2 ' 7 3 The value of g is 

deduced from the relation hv = giiBH, where v is the resonance 

frequency, n B the Bohr magneton, H the applied magnetic field, and h 

Planck's constant; the g anisotropy is taken as g_i_ - gn. No further 

work has been published on CoO since this ESR study, leaving the 

ground state of the molecule to be the only one of the first row 

transition metal oxides yet to be established. 

Field-free atomic orbitals of a diatomic transition metal 

molecule are split by the axial field of the other atom, as shown in 

Fig. 3.1. From the electron configurations of manganese, iron and 

nickel monoxides, 

MnO (4SO)1 (3d5)2 (3d7i)2 

FeO (4SC)1 (3d5)3 (3d7i)2 

NiO (4sa) 2 (3d8)4 (3dn)2 , 

it can be seen that there are two possible candidates for the ground 

electronic state of CoO. If the seventh valence electron occupies the 

4 s o orbital, the spin multiplicity and direct products given by the 

resulting o 2 8 3 r c 2 configuration produce a 4 A j electronic state 7 4 ; if 
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Fig. 3.1. Relative orbital energies of a diatomic 3d transition 
metal oxide. 9 2 The ordering of the 3d5 and 4sa molecular 
orbitals is variable. 
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instead it fills up the 8 orbital, a 4 X " state results. However, the 

uncertain ordering of the 4so orbital with respect to the 3d8 

orb i ta l 7 5 left the problem in the hands of the theoreticians. Multi-

configuration self-consistent-field complete active space (CAS 

MCSCF) calculations on FeO were extrapolated to CoO to predict a 
4 X ~ ground state. 7 6 Weltner, however, first predicted a state of A 

symmetry based on trends in the other TM o x i d e s 7 7 , then later 

predicted a 4 0 ground state based on ESR experiments 7 2 . It was 

from this stage of development that the current study proceeded. 
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III.B. Experimental 
III.B.1. Synthesis of gaseous cobalt oxide. 

Cobalt oxide was made in a Broida-type oven assembly 7 4 as 

follows: an alumina crucible containing cobalt metal powder (Fisher 

Scientific Co.; 0.14% Ni, 0.11% Fe) was heated resistively in a 

tungsten basket. The basket was enclosed in a radiation shield 

comprising an inner ceramic sleeve enveloped by an outer copper 

sleeve and fitted lid, with zirconia felt packed very tightly around 

the basket. To produce cobalt oxide (CoO) in quantities sufficient 

for measurable fluorescence, temperatures approaching the melting 

point of the alumina crucible (1920 ° C ) were required, well in 

excess of cobalt's melting point of 1495 ° C . CoO was formed in the 

gaseous stream of vaporized cobalt atoms, argon carrier gas and 

molecular oxygen at a pressure of roughly 1 Torr, with a ratio of 

approximately 150(±15):1 argon to oxygen. Fluorescence, however, 

occurs only in the presence of laser excitation, which is as with NiO 

in which only the ground state is populated by the reaction of metal 

and O2. 7 8 Unlike the production of C u O 7 9 , which is more efficient 

with N2O than O2, no CoO fluorescence was observed using N2O as 

the oxidant. The requirement of high temperature drastically 

hampered the efficiency of CoO synthesis in two ways. First, there 

was extensive formation of Thenard's B l u e 8 0 (cobalt aluminate) 

deposits on the crucible and on the surface of the liquid cobalt; this 

phenomenon was also reported in 1966 by Grimely and coworkers 

who heated solid CoO in an alumina cell to high temperatures 8 1. 

Second, the reaction of cobalt vapor with the tungsten basket 

produces an alloy that renders the basket very susceptible to 



57 

cracking, with breakage occurring after at most three heatings of a 

basket assembly. 

III.B.2. The spectrum. 
The laser excitation spectrum of gaseous CoO was investigated 

over the range of 7000 to 5800 A at Doppler-limited resolution, as 

described in Section II.A. It is evident that the system extends 

further to both higher and lower energies. The bands observed by 

Malet and Rosen with the exploding wire technique 6 9 correspond in 

frequency to those we have measured, though the intensities 

sometimes varied dramatically between the two techniques. With 

the superior sensitivity provided by the LIF method, a number of 

additional bands were observed. The most prominent ones, as 

measured from a broadband laser spectrum (i.e., one obtained 

without the intracavity assembly), are listed in Table 3.1. The 

portion of the spectrum rotationally analyzed thus far covers the 

range from 15450 to 15790 c n r 1 (6470 to 6335 A), which includes 

three red-degraded bands whose heads lie at 15778 cm- 1 (6338 A), 

15598 cm- 1 (6411 A) and 15538 cm- 1 (6436 A). The broadband 

spectrum of this region is shown in Fig. 3.2. 
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Table 3.1. The most prominent bandheads in the 7000 to 5800 A 
broadband emission spectrum of gaseous CoO. Values are accurate 
to roughly ± 3 c m - 1 , with band strength denoted by: s = strong, m = 
medium, w = weak. 

Wavelength 
group 5920 A 6120 A 6320 A 6650 A 6900 A 

Wavenumber 16916 m 16366 w 15832 w 15296 vw 14704 w 

and intensity 16846 s 16322 s 15778 s 15228 w 14477 m 

16256 m. 15597 w 15036 m 14469 s 

16088 w 15538 m 15004 s 



0"= 7 / 2 5 / 2 7 / 2 

Fig. 3.2. Broadband laser excitation spectrum of the three bands of 
gaseous CoO analyzed in this work (linewidths are on the order of 1 
cm- 1 ) . 
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III.C. Analysis. 
III.C.1. Rotational analysis of the 6338 A subband. 
I l l . d . a . Rotational constants and hyperfine structure. 

The strongest band, at 6338 A, was the only band of the three for 

which a complete analysis was possible, given the available data. 

The line assignments, listed in Table 3.II, were made using lower 

state combination differences. For added assurance, some 

wavelength-resolved fluorescence experiments were performed to 

verify that certain lines possessed common upper levels. For 

example, if a pair of lines with a common upper level, such as Q(J") 

and R(J"-1), are excited, the fluorescence pattern produced as a 

result of the R line excitation will be identical to that obtained 

from the Q line, barring changes in the scattered laser light at the 

excitation wavelength. 

Lower state combination differences measure differences 

between lines with a common upper state that differ in their J" 

value, thereby providing information on the lower state energy 

structure: 1 

AiF"(J) = R(J) - Q(J +1) = Q(J) - P(J + 1) (3.1) 

A2F"(J) = R(J - 1) - P(J + 1) (3.2) 

From the definitions of R, Q and P, and from the energy level 

expressions, it can be shown that 8 3 

AiF"(J) = 2B"(J + 1) - 4D"(J + 1) 3 (3.6) 

A 2F"(J) = (4B" - 6D")(J + 1/2) - 8D"(J + 1/2)3 (3.7) 

The lowest Q line of this band was assigned as J' = J" = 7/2, using 

the average of the A-|F" combination differences from the first R and 

P lines, and a rough estimate of 0.5 c m - 1 for the value of B. The 
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possible electronic states corresponding to a value of ft of 7/2 are 
4 A and 2 0 , but only the 4 A state has an electronic configuration that 

can reasonably be expected to belong to the ground state. The three 

subbands analyzed in the current work demonstrate that the most 

intense CoO transitions are those with ft" = 7/2. Presumably these 

must come from the lowest spin-orbit component of the ground 

state. Since the spin-orbit manifold must be inverted for its lowest 

energy component to be 7/2, the electronic state is assigned as 4 Aj. 

The relatively low intensity of the Q lines1 (see Fig. 3.3), identifies 

the transition as parallel, or ft' = ft" = 7/2. The lower state 

vibrational level can definitely be assigned as v" = 0, based on 

resolved fluorescence experiments where the Q(3.5) line was 

excited: strong fluorescence was observed 851.7 cm- 1 to the red of 

the Q(3.5) transition, but nothing to the blue. In the absence of 

isotopic labelling studies, such as with C o 1 8 0 , no information is 

available on the upper state quantum number. 8 3 Extensive structure 

to the red of the 6338 A band indicates that there are lower 

lying vibrational levels; on this basis, the upper state vibrational 

quantum number is suggested to be at least two. 

The lower state rotational constants B and D were calculated by 

least squares from the A 2 F " combination difference formula in 

equation (3.7). The A 2 F"(J) combination differences are given in 

Table 3.II along with the assigned lines of the 6338 A band. Using 

these B" and D" values to calculate the lower state energy levels, the 

upper state energy levels were calculated; then a least squares fit 

to the expression 

E(J) = T 0 + BJ(J + 1) - DJ2(J + 1)2 (3.8) 
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Fig. 3.3. Bandhead of the Q' = Q" = 7/2 transition at 6338 A, exhibiting 
the broadening due to hyperfine interactions and the weak Q branch 
signifying a parallel transition. The weak background is reproducible. 
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Table 3.11. Assigned lines from the 6338 A band ( 4 A 7 / 2 - 4 A 7 / 2 ) of 
CoO with the lower state combination differences, A 2 F H , in cnv 1 . An 
asterisk denotes a blended line. 

J" R Q P A 2 F " i 
103 
O-C 

3.5 157747* 15771.060 
45 15774.7* 15770.2* 15766.64* 
5.5 15774509 15769.2* 15764737 
6.5 15774110 15768.002 15762.704 14.015 I 
7.5 15773.526 15766.64* 15760.494 16.014 -2 
8.5 15772.760 15765.024 15758.096 18.011 -6 
9.5 15771.810 15763.259 15775.515 20.013 -5 
10.5 15770.668 15761.291 15752.747 22.015 -3 
11.5 15769.343 15759.158 15749.791 24021 2 
12.5 15767.828 15756.829 15746.647 26.024 6 
13.5 15766.126 15754316 15743.319 28.017 - l 
145 15764236 15751.615 15739.811 30.019 2 
15.5 15762.159 15748.715 15736.107 32.018 2 
16.5 15759.892 15732.219 34011 -3 
17.5 15757.445 15728.147 36.012 1 
18.5 15754806 15723.880 38.006 -2 
19.5 15751.994 15719.439 40.005 1 
20.5 15749.350 15747.947 15714.801 42.000 0 

15748.821 15749.039 
21.5 15745.600 15745.906 15709.994 43.995 

15745.720 
22.5 15742.273 15742.345 15705.347 15703.946 45.987 -3 

15704829 15705.045 
23.5 15738.696 15738.769 15699.615 15699.914 47.984 1 

15699.735 
245 15734923 15735.005 15694290 15694360 49.980 4 
25.5 15730.951 15731.051 15688.720 15688.786 51.975 6 
26.5 15726.783 15726.911 15682.948 15683.030 53.968 8 
27.5 15722.428 15722.592 15767.986 15677.080 55.956 6 
285 15717.883 15718.106 15670.826 15670.954 57.938 -2 
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Table 3.11. continued. 

J" R 1 P A 2 F " 
103 

O-C 

29.5 15713.130 15713.500 15664491 15664654 59.929 0 
30.5 15709.131 15708.185 15657.951 15658.178 61.908 -9 

15707.960 
31.5 15703.047 15703.110 15651.226 15651.589 63.903 0 
32.5 15697.705 15697.888 15645.226 15644.282 65.890 l 

15644.057 
33.5 15692.171 15692.441 15637.158 15637.220 67.870 -4 
34.5 15686424 15686.786 15629.837 15630.015 69.861 3 
35.5 15680.487 15680.945 15622.311 15622.580 71.836 -5 
36.5 15674.251 15674893 15614.591 15614.950 73.820 -2 
37.5 15667.933 15668.678 15606.670 15607.122 75.787 -15a 
38.5 15661.347 15662.251 15598.464 15599.106 77.783 1 
39.5 15654.547 15665.638 15590.150 15590.896 79.752 -8 
40.5 15647.498 15648.844 15581,594 15582.500 81.738 2 
41.5 15640.453* 15641.831 15572.810 15573.900 83.713 1 
42.5 15634643 15563.785 15565.131 85.684 -2 
43.5 15627.272 15554769 15556.159 87.641 • -183 
44.5 15619.712 15547.002 89.615 -158 
45.5 15611.954 15537.657 91.591 -98 
46.5 15604.010 15528.121 
47.5 15518.405* 

af\lot included in the least squares fit. 



65 

was used to obtain B' and D' from the unperturbed levels with J' = 5.5 

to 19.5. The results appear in Table 3.III. Note that since the 

upper state B value is only 81% of the lower state, by the relation 

r"/r' = (B7B") 1/ 2 the CoO bond length increases by a full 10% upon 

electronic excitation. 

The hyperfine structure in CoO arising from the 5 9 C o nuclear spin 

of 7/2 follows the case (ap) pattern where the hyperfine widths 

decrease with increasing rotation, described to a first 

approximation by equation (1.90):8 5 

E hfs - ft[aA + (b + c)X](1/J){[F(F+1) - J(J+1) - 1(1+1 )]/2(J+1)} (3.9) 

(In case (bpj) coupling the hyperfine widths are independent of N for 

each of the spin components.) The hyperfine splitting in the P lines 

is found to be wider than that in R lines of the same J", while P and 

R lines possessing the same upper state J are of comparable widths. 

Since a comparison of P and R lines of the same J" demonstrate 

upper state properties, while those with equal J ' represent the 

lower state, it can be seen that the hyperfine interactions produce 

larger splittings in the upper state than in the lower state. From 

equation (3.9) it can also be seen that the eight hyperfine 

components of a rotational line will be more widely spaced at 

higher values of F. Partially resolved hyperfine splittings in some 

low J lines, for instance P(5.5), show that the highest F value 

component is on the high frequency side. This ordering of the 

hyperfine components shows that the change in the Fermi contact 

parameter, b' - b", is positive. 8 4 
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Table 3.III. Rotational constants for the analyzed bands of the red 
system of C o 0 . a 

B 10?D 

Upper Levels: 

6338 A, Q = 7/2 15772.513 + 3 0.40531 ± 9 6.4 ± 19 0.0038 

6411 A, ft = 5/2 a+15594.974 ± 2 0.42503 ± 24 27 ± 7 0.0049 

6436 A, Q= 7/2 15535.77 0.422 4

b 

Lower Levels (X4Aj): 

Q = 5/2 a 

Q = 7/2 0 

0.50266 ± 9 3.6 ± 14 0.0024 

0.50058 ± 4 6.50 + 15 0.0031 

a Values in c m * 1 , with error limits of three standard deviations in 
units of the last significant figure, a • AA - 244 c m - 1 . 

b No least squares fit; see text. 
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111.0.1 .b. Perturbations. 
A plot of the upper state energy levels as a function of J(J + 1) 

illustrates the perturbations in the upper states. The lower state 

appears to be free of A-doubling (cf. Section 1.B.6) and other 

perturbations, since the lower state combination differences are 

entirely regular: the two A2F"(J) values, given by the two A-doubling 

components, are equal to within experimental error. Figure 3.4 

shows that upper state A-doublings begin at J ' = 21.5, and that in 

some places extra transitions occur; the section of spectrum in Fig. 

3.5 illustrates these perturbations. The extra lines could be 

securely identified because they give exactly the same A2F" (J ) 

combination differences as the main lines and their relative 

intensities are in the same ratio. 

Two avoided crossings can be seen in Fig. 3.4: a strong one, 

where both of the A components are perturbed, at J' = 30.5 - 31.5, 

and a weaker one where the lower A component is mildly perturbed 

at J' = 37.5. Since the avoided crossings affect the A -components 

differently, the perturbing state is orbitally non-degenerate, or 

alternatively has a very large A-doubling of its own. The state 

perturbing the J' = 22.5 level appears to have a relatively small A -

or Q-doubling. (A-doubling exhibited by a X state is referred to here 

as Q-doubling 8 5 . ) 

The state responsible for all of the above perturbations could 

conceivably be a single case (a) 4 X state. The small Q-doubling 

occurring near J ' = 22.5 could arise from the 4X3/2 component, while 

the considerably larger Q-type splitting associated with the 4 X i / 2 

c o m p o n e n t 8 5 is capable of affecting upper state levels that are 
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4 0 0 8 0 0 1 2 0 0 J(J +1) 
Fig. 3.4. Upper state energy levels of the 4 A z / 2 - 4Aj/2 6338 A band, 
scaled by subtracting the quantity 0.405J(J + 1) - 6.4x10- 7J 2(J + 1)2, 
plotted against J(J + 1). 
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Fig. 3.5. A section of the spectrum of the 6338 A band containing A-
doubling, two avoided crossings, and extra lines. The extra R(30.5) 
line to the blue of the A-doubled R(30.5) lines corresponds to the 
anomalous point in Fig. 3.4 near J(J + 1) = 1000. All lines, down to 
the weakest, are reproducible, though relative intensities between 
lines at either end of the spectrum may not be accurate since the 
spectrum is compiled from several laser scans. 
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widely spaced in J , analogous to the situation observed in Fig. 3.4. 

III.C.2. Rotational analysis of the 6436 A subband. 
The fairly intense 6436 A band is another Q' = Q" = 7/2 parallel 

transition whose lower state is the same as that of the 6338 A 

band, as the lower state combination differences of the two bands 

are equal to within experimental error. Because the upper level lies 

only 237 cm" 1 below that of the 6338 A upper state, and the 

frequency separating the strong groups of subbands (cf. Table 3.1) is 

on the order of 600 c m - 1 , it cannot belong to the same upper 

electronic state as the 6338 A band. Also, the hyperfine structure 

is considerably wider than in the 6338 A subband, which also 

points to a different upper electronic state. There is not enough 

information available to say what this other electronic state is. 

Although its high intensity suggests that it is another 4A7/2 - 4A7/ 2 

transition, there are other channels through which intensity can be 

derived. In the very dense, perturbed "orange" system of FeO, for 

example, transitions to the high vibrational levels of various lower 

electronic states acquire considerable intensity by interacting with 

the upper state of the system. 8 6 

The upper state energy levels are plotted as a function of J(J + 1) 

in Fig. 3.6, up to the limit of our analysis thus far at J ' = 26.5. A-

doubling is first observed at J' = 20.5, very much like the 6338 A 

band upper levels which are first seen to split at J ' = 21.5. 

Perturbations in the upper state have scattered the levels to such a 

degree that a good least squares fit to the upper state constants 

was not possible, though a value of B' could be estimated (see Table 
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Fig. 3.6. Upper state energy levels of the 4 A z / 2 - 4 A 7 / 2 6436 A band, 
scaled by subtracting the quantity 0.42J(J + 1), plotted against 
J(J + 1). 
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3.III). The lines assigned in the 6436 A band are compiled in Table 

3.1V. 

III.C.3. Rotational analysis of the 6411 A subband. 
The ft1 = ft" = 5/2 subband whose head lies at 6411 A is much 

weaker than the other two subbands, and is also badly perturbed, 

which has precluded analysis beyond J ' = 20.5. All the lines assigned 

so far are listed in Table 3.V. The transition was assigned as ft' = ft" 

= 5/2 by the methods used previously for the 6338 A subband, and it 

appears that the lower state is the ft = 5/2 spin-orbit component of 

the ground electronic state. The crowded head region of the band is 

shown in Fig. 3.7. 

The perturbations in the ft' = 5/2 upper state are illustrated by 

the plot of the scaled upper state energy levels as a function of J(J + 

1) in Fig. 3.8. The A-doubling is much larger than in the upper levels 

of the ft = 7/2 bands, with the splitting first discernible at Doppler-

limited resolution at J' = 10.5. At J' = 16.5 one of the A -components 

is drastically pushed to lower energy, and no further J' levels could 

be assigned. The other component also disappears abruptly at J' = 

20.5. The suddenness with which the branches break off is 

surprising, because there is no appreciable loss of intensity before 

the rotational structure ceases. This fragmentary behavior has been 

observed before, for example in the 5866 A band of FeO where the 

structure disappears suddenly at J' = 15, and then reappears 12 cm-
1 to the b lue . 8 6 The 6411 A upper level in CoO has obviously 

suffered a massive perturbation near J ' = 20.5. To find where the 

branches resume will require extensive wavelength resolved 
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Table 3.1V. Assigned lines from the 6436 A (4A7/2-4A7/2) band of 
CoO, in cm- 1 . 

J" R P 

7.5 15537.998 15524.45 

8.5 15537.505 15522.347 

9.5 15536.866 15519.996 

10.5 15536.061 15517.490 

11.5 15535.096 15514.839 

12.5 15533.976 15512.039 

13.5 15532.692 15509.082 

14.5 15531.241 15505.950 

15.5 15529.644 15502.682 

16.5 15527.897 15499.226 

17.5 15525.955 15495.625 

18.5 15523.820 15491.877 

19.5 15521.589 15521.967 15487.959 

20.5 15519.589 15519.536 15483.815 

21.5 15516.412 15517.029 15479.586 15479.959 

22.5 15513.383 15514.393 15475.130 15475.539 

23.5 15511.448 15511.650 15470.420 15471.035 

24.5 15508.438 15508.784 15465.395 15466.408 

25.5 15461.468 15461.670 

26.5 15456.463 15456.809 

27.5 15451.345 15451.840 
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Table 3.V. Assigned lines from the 6411 A band (4A5/2-4As/2) of 
CoO, in c n r 1 . An asterisk denotes a blended line. 

J" R Q P 

2.5 15597.270* 15594.293 

3.5 15597.577* 15593.751 

4.5 15597.730* 15593.067 15589.2* 

5.5 15597.730* 15592.23* 15587.557 

6.5 15597.577* 15591.183 15585.670 

7.5 15597.270* 15590.039* 15583.654 

8.5 15596.194 15588.739 15581.492 

9.5 15596.194 15596.240 15579.076 

10.5 15595.432 15595.512 15576.718 

11.5 15594.523 15594.647 15574.076* 15574.125 

12.5 15593.461 15593.618 15571.307 15571.389 

13.5 15592.254 15592.708 15568.389 15568.512 

14.5 15590.896 15591.441 15565.323 15565.493 

15.5 15589.390 15588.739 15562.106 15562.559 

16.5 15587.729 15582.734 15559.270 

17.5 15585.958 15555.222 15554.561 

18.5 15583.958 15551.558 

19.5 15581.845 15547.736 

20.5 - 15543.770 

21.5 15539.646 
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Fig. 3.7. Bandhead of the ft' = ft" = 5/2 transition at 6411 A. The band is 
extensively overlapped by other bands, as evidenced by the dense collection 
of unassigned lines. 
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Fig. 3.8. Upper state energy levels of the 4As/2 - 4 A s / 2 6411 A 
scaled by subtracting the quantity 0.42J(J + 1), plotted against 
J(J + 1). 
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fluorescence measurements in the surrounding region. Such studies 

must be postponed until we develop a less cumbersome method by 

which to synthesize gaseous CoO. 

The upper and lower state B and D rotational constants, 

calculated in the same manner as for the 6338 A band, are given 

in Table 3.III. Kratzer's relationship 8 3, 

D e = 4Be 3/co e

2 (3.10) 

for the equilibrium values of the rotational constants and the 

vibrational frequency (coe) can be approximated for the v = 0 level by 

D 0 = 4 B 0

3 / A G i / 2 2 (3.11) 

Using equation (3.11) to calculate an approximate value for D", it is 

found to be about 60% larger than the observed value. 
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III. D. Discussion. 
Of the two possible ground electronic state configurations for 

CoO, 4 £ - (a7t 25 4) or 4 A(o 2 J t 2 5 3 ) , evidence has been presented in the 

rotational analysis of the excitation spectrum of gaseous CoO which 

strongly supports that the ground state is 4 A j . The fundamental 

vibrational frequency of 846.4 c m - 1 measured by infrared 

spectroscopy in low-temperature (14 K) matrix isolation 7 1 closely 

matches the value of 851.7 cm- 1 obtained from this laser induced 

fluorescence work. Since the ground electronic state should be the 

only one populated at 14 K, and a 5.3 c n r 1 shift from the solid to 

gas phase is not unreasonable, this suggests that the lower 

electronic state of the three bands studied here is the ground state. 

The matrix isolation electron spin resonance s tudy 7 2 which could 

not produce a signal from CoO eliminates the possibility for 4 £ - as 

the ground state, taking this absence of a result as valid. The only 

condition under which an orbitally non-degenerate electronic state 

with case (a) coupling can produce no ESR signal when isolated in a 

low-temperature matrix is if it possesses an odd spin multiplicity 

with the ft = 0 level the only one populated. The band intensities 

support an inverted order for the spin-orbit manifold since the ft' = 

ft" = 7/2 bands are strongest, followed by ft' = ft" = 5/2. 

The rotational analysis of two ft spin-orbit components of the 

same electronic state provides the information required to 

determine the true B value and an estimate for the spin-orbit 

interval, A A . For molecules in which spin uncoupling is small 

because the spin-orbit interaction is very large, the effective B 

value for a given spin-orbit component differs from the true B value 
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A A 

by an amount that depends on the spin-uncoupling operator, - 2 B J S . 

A second order perturbation treatment of two O substates separated 

by AA and connected by this operator produces the relation: 2 4 

Beff.ft = B(1 +2BI/AA) (3.12) 

Solving equation (3.12) simultaneously for both AA and the true B 

value for the v" = 0 level, using the effective BQ=7/2 and BQ=5/2 
values in Table 3.Ill, gives 

B = 0.5037; AA - -244 cnr 1 (3.13) 

The spin-orbit coupling interval AA is not expected to be accurate to 

better than 10%, as equation (3.12) does not take into account the 

centrifugal distortion corrections to A and X, called AD and Xo (cf. 

Section I.B.3). For example, the initial estimate of |AA| made for 

F e O 7 5 was 180 cm- 1 , based on the approximation in equation (3.12), 

yet the value was later found 8 7 to be 190 cm" 1 . The definition of B, 

as a function of the mean value of the bond length r during the 

vibration, i s 8 3 

B = (h/87i 2cu)<r 2> (3.14) 

where | i is the reduced mass of the molecule. With the B value in 

equation (3.13), the bond length in the zero point vibrational level is 

calculated from equation (3.14) to be: 

r 0(X 4Aj) = 1.631 (±0.001) A (3.15) 

The 10% increase in bond length to 1.80 A upon electronic excitation 

to the upper 4 Aj state is quite large compared to transitions in the 

other first row diatomic transition metal oxides. The A 4 n <- X 4 X " 

transition of VO produces a 7% increase 4 5 ; A 5!, <- X 5 FIr and B 5 I I r<-

X 5 n r in CrO give 2-1/2 and 5-1/2% increases 9 0 ; the 8 £ + <_ 6 £ + 

parallel transition of MnO at 6500 A shows a 4% increase 9 1 ; but 
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various subbands of the orange system of FeO do show bond length 

increases of up to as m u c h a s 1 1 % 8 7 , and a state perturbing the MnO 

A 6 1+ state has a bond 10% longer than that of the ground state 9 1 . 

The magnetic hyperfine structure and spin-orbit coupling 

constant can be used to give information about the excited states as 

well as the ground state. The insignificant hyperfine structure in 

the ground state is consistent with the lack of unpaired s electron 

density in the 4 A o 2 r c 2 8 3 configuration. The upper state 

configuration can be assigned as a7i 2 5 3 a* for three reasons: 

1) the large, positive hyperfine splittings in the upper state 

indicate a strong Fermi contact interaction due to open shell s 

electrons (cf. Section I.B.3). When an unpaired s electron is present 

in a diatomic transition metal oxide it usually shows up clearly in 

the Fermi contact parameter. Most states with unpaired s electrons 

have positive values for ap: aF for S c O 7 3 a 2 L + = +0.0667 cm- 1 ; aF 

for VG-45 o8 2 4 £ - - +0.02593 cm* 1 ; a F for M n O 9 0 o 8 2 n 2 6£+ .» +0.0151 

cm-" 1. An exception is the ground state of CuO, which has a large, 

negative Fermi contact parameter in spite of the presence of open 

shell so electrons. 7 9 Three configurations are believed to make 

significant contributions to the 2Ti\ ground state: 

C u + ( 3 d 1 ° ) 0-(2p5), 

Cu(3d 1 °4s) 0(2p 4), and 

Cu(3d94s4p) 0(2p 4) 

Only the last one has open shell metal-centered orbitals which will 

participate significantly in the hyperfine interactions. In terms of 

molecular orbitals, this configuration is proposed to b e : 7 9 

3da1847i4(Cu), 4sa(Cu) + 2pa(0), PTC(CU) + 2p7i(0) 
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The wavefunction can therefore be expressed as a linear combination 

of Slater determinants (showing only the unpaired electrons for 

clarity): 

V(2rii) = (1A/6){2|do(a) po(a) pit(P)| - |do(a) pa(P) pw(o)| 

-|do(P) pa(a) pn(a)\} (3.16) 

The authors propose that the negative terms in the wavefunction are 

responsible for the negative value for aF of -0.0139 cm- 1 . The C 4 X " 

state of VO, with a 3d8 2 o* configuration, is an example where the 

promotion of an electron from sa to a non-s type a orbital produces a 

negative value for the IS interaction constant of -0.00881 c m - 1 , as 

a result of spin polarization. 4 5 The a* orbital is believed to be a 

linear combination of 3do, 4sa and 0(2pa). 

2) the fact that the Q. = 7/2 and Q. = 5/2 subbands lie very close in 

the spectrum shows that the spin-orbit intervals AA" and AA' are 

nearly equal. The 4 A states of the configurations C 2 T C 2 8 3 and 

o 7 t 2 6 3 a * will have orbital angular momentum coming only from the 

'6' hole, so that they should have roughly the same spin-orbit 

couplings. 

3) Following from 2), the negative sign of A also suggests a 8 hole, 

or 8 3 configuration. 

The o - 7 t 2 8 3 c * configuration can give rise to 19 electronic states 

from the different arrangements of the electrons within the 

orb i ta ls . 7 4 The result will be a dense collection of states ranging 

up to S = 5/2 and A = 4, among which are, for example, a 4 r state 

with the configuration a (T )n ( t i )8 (T 11 )a * (T ), and a 

a(T)jc(TT)8(TiT)a*(T) 6 A state. As the states comprising such a 

melange are expected to interact strongly with one another, this 
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could explain the extensive perturbations experienced by the upper 

states of CoO investigated here. As discussed in Section III.C.I.c, 

the only perturbing state for which we have clear evidence appears 

to be a 4 Z state, arising possibly from a a 7 i 2 8 3 a * configuration, or 
2 I x l A x 2 A x 2 l = 4 £ . 

Now that the ground state configuration of CoO has been 

determined in this work, the entire series of first row diatomic 

transition metal oxide ground states is now established. The ground 

states and some major molecular constants of the 3d transition 

metal monoxides appear in Table 3.V. Although many more excited 

states of cobalt oxide remain to be discovered, the most interesting 

results for the immediate future would be the direct measurements 

of the spin-orbit coupling intervals, and sub-Doppler measurements 

of the hyperfine structure. However, the experiments would require 

a more efficient means of generating CoO than has been used so far. 
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Table 3.VI. Ground states and configurations of the first row 
diatomic transition metal oxides, with the fundamental vibrational 
frequency A G 1/2, B and r for the v" = 0 state, and the spin-orbit 
interval AA for the orbitally degenerate electronic states. The AA 
value for CoO has not been established with certainty. 

Ground Electron AG-| / 2 B 0 r0 

state configuration (cm-1) (cm-1) (A) AA Ref 

ScO 2£+ a 964.65 0.51343 1.668 - 29,30 

TiO 3A r oS 1000.02 0.53384 1.623 101.30 89 

VO 4 I - o82 1001.81 0.54638 1.592 - 45,88 

CrO 5 p i r o827t 884.98 0.52443 1.621 63.22 90 

MnO 6£+ 0 § 2 n 2 832.41 0.50122 1.648 - 91 

FeO 5AJ 00H2 871.15 0.51681 1.619 -189.89 87 

CoO 4 Aj O283TC2 851.7 0.50370 1.631 (-240) this work 

NiO 3£- c28 47c 2 825.4 0.5058 1.631 - 78 

CuO 2 U \ a 2 8 47i3 629.39 0.44208 1.729 -277.04 92,93 
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CHAPTER IV 
HYPERFINE ANALYSIS OF NIOBIUM NITRIDE 

IV.A. Introduction. 
Niobium nitride (NbN) is an exemplary molecule in which to study 

hyperfine interactions in diatomic molecules, because the nuclear 

magnetic moment (JIN) of 9 3 N b exceeds that of any other non

radioactive atom. The magnetic hyperfine structure which results is 

proportionately large and well-resolved, allowing precise, 

informative analysis. Following the initial observation of NbN in 

1969 by Dunn and R a o 9 4 , the first low resolution hyperfine analysis 

of the 3<X>-3A system was performed in 1975 by Femenias e j . a i 9 5 

with a grating spectrograph. The study produced values for the 

magnetic hyperfine constants a, b and c which suggested that the 

excited 3 < X > state makes a non-negligible contribution to the 

hyperfine structure. The spectra also exhibited line broadening at 

very high J values, indicating either A -doubling in the 3 A state or a 

transition from case (ap) to (bpj) coupling with increasing rotation. 

In the meantime, the fundamental frequencies of the ground states 

of N b 1 4 N and N b 1 5 N were measured to be 1002.5 cm- 1 and 974 cm"1 

by IR spectroscopy in a 14 K argon matrix. 9 6 A Russian group 

published a number of papers on the 3 0 - 3 A s y s t e m 9 7 . 9 8 - 9 9 , 

culminating in the 1986 publication by Pazyuk e _ L a i 1 0 0 , in which 

they proposed a set of rotational, centrifugal distortion and spin-

orbit coupling constants (B, D and A), and an energy level scheme for 

the system. However, the spin-orbit splittings for both states were 

drastically miscalculated, and the ordering of the spin-orbit 



85 

manifolds was inverted, due to their interpretation of bands they 

observed near 5600 A as 3 $ 3 - 3 A 3 and 3 o 2 - 3 A 2 sp in -orb i t 

satellites, rather than as parts of the n - A system to which they 

actually belong. In 1979, an optical emission study measured eight 

subbands belonging to five systems, including 3 < E > - 3 A , and determined 

the upper and lower state B values for e a c h . 1 0 1 Most recent was a 

grating spectrograph analysis of the 3 o - 3 A system performed by the 

same investigators involved in the preliminary 1975 study, but at a 

higher resolution (±0.01 cm- 1 line position), and up to J" = 8 8 . 1 0 2 

Their work produced the following set of molecular constants 

for the (0,0) band, in units of cm" 1 with the uncertainty in the last 

digit given in parentheses: 

T 0 A 8 B 10 7D 105A D 

X 3 A fixed to 0 183.0(2) -33.1(2) 0.50144(4) 4.56(6) =-4 

A3o 16504.938(3) 241.6(1) 7.39(2) 0.49578(4) 4.88(6) =-4 

The central shift parameter 8 accounts for the shift in the 3<j>3-
3 A subband because of second order spin-orbit effects. The 

investigations described in the current work mark the first high 

resolution laser spectroscopy performed on NbN. 
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IV.B. Experimental. 
IV.B.1. Synthesis of gaseous niobium nitride. 

Niobium nitride was formed in a flow system by reacting the 

vapor from a sample of warmed niobium (V) chloride (=80 °C) with 

nitrogen. The nitrogen was entrained with argon in a ratio of 

approximately 1:18 (v/v) at 1 Torr pressure. A few centimeters 

upstream from the fluorescnce cell, the vapor was passed through a 

2450 MHz microwave discharge (powered by a Microtron model 200 

microwave generator). To obtain intermodulated fluorescence 

spectra, two nearly coincident laser beams were passed in opposite 

directions across the lavender-colored flame of the discharge, with 

the fluorescence detected at right angles to the beams through a 

deep red low pass filter to the photomultiplier tube, as described in 

Section II.A. 

IV.B.2. Description of the 3 0 - 3 A spectrum. 
Broadband spectra of the three subbands of the 3G> -3A system of 

NbN are illustrated in Fig. 4.1. The middle spin-orbit component, 

3<E>3-3A2, is shifted to higher energy rather than being equidistant 

between the outer subbands, and is also considerably weaker, 

presumably due to intensity stealing by an unseen state. The 

vibrational sequences are plainly visible, up to (v',v") = (5,5) in the 

30>4-3A3 subband. 

At sub-Doppler resolution, the variation in hyperfine structure 

between the three subbands is apparent from the Q head regions 

shown in Fig. 4.2. The hyperfine interaction in the 3<E>3-3A2 

subband is much less pronounced than that in the other two because 



3fl> 2- 3Ai 

50 cm* 1 

i 1 

3<I>3-3A2 

16145 cm-1 16543 c m 1 

Fig. 4.1. Broadband spectrum of the 3<J>-3A system of NbN, obtained 
with the intracavity assembly removed, using the dye rhodamine 6G. 
Note that the vibrational sequence of the 3 O 4 - 3 A 3 subband is visible 
up to (v\v") = (5,5). 



a) 

Fig. 4.2. The Q heads of the a) 3 < D 2 - 3 A i , b) 3 < D 3 - 3 A 2 , and c) 3 < D 4 - 3 A 3 subbands of NbN. 
CD 
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the value of X in both states is zero. In the 3<X>4-3A3 subband the 

hyperfine splitting is considerably larger than that in 3<J>2-3A-|, 

since Q is three times as large in the former subband (cf. equations 

1.90 and 1.98). The assignment of the densely overlapped 3<j>2-3Ai Q 

head is shown in Figs. 4.3 and Fig. 4.4. The low-J R branches of the 

3<x>2-3Ai subband, illustrated in Fig. 4.5, are exemplary for their 

completely resolved A F * AJ transitions and crossover resonances 

(cf. Section II.B for a discussion of these transitions). The 

hyperfine pattern is quite different in the central subband: at J" = 2 

the high F component is on the low frequency side, but at J" = 3 the 

hyperfine structure reverses order and continues on at higher J 

values with the highest F component at high frequency. The 

development of this 3<X>3-3A2 R branch hyperfine structure is shown 

in Fig. 4.6. 

As the rotation of the molecule increases, spin-uncoupling is 

observed in the Q branches of the outer two subbands as a reversal 

in the hyperfine structure: the hyperfine splitting narrows with 

increasing J until the components collapse into a spike; then they 

reverse their order and widen with increasing rotation (see Fig. 4.7). 

Therefore hyperfine structure which begins with its components 

increasing in F toward increasing frequency reverse to an order in 

which the F values decrease with frequency. The reversal in the Q 

branches occurs at J = 27 and J = 38 in the 3<l>2-3Ai and 3<I>4-3A3 

subbands, respectively. The hyperfine structure in the 3<E>3-3A2 

transition is less sensitive to the effects of rotation, since its 

diagonal matrix elements are independent b and c. The Q branch of 



o -»• 
3 2 

Fig. 4.3. The beginning of the Q head of the 3<D2-3Ai subband. Each 
AF = 0 line is connected to the AF = +1 lines with the same F" value 
by a thick horizontal line. Components of the Q(7) and Q(8) lines are 
also present in this region, but are not labelled. 

CO 
o 



Fig. 4.4. The higher J portion of the 30>2 - 3 Ai Q head, and the first 
resolved Q lines. The crossover resonances are not labelled. 

CO 
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a) 4.5 

6.5 

b) 
5.5 0.05 cm-1 R(1) 

4.5 

4 * 
3.5 

• • • 

2.5 

7.5 

c) 6.5 
5.5 

4.5 
3.5 

r r r I ic r 
C C C CC c 

Fig. 4.5. a) R1, b) R2, and c) R3 lines of the 3 o 2 - 3 A i subband, 
illustrating the "forbidden" AF * AJ transitions (• for qR, * for pR) 
and the crossover resonances (c) between the rR and qR lines. Each 
A F - AJ transition (•) is labelled with the lower state F value, with 
the corresponding satellite transitions following it to the red 
(right) in the order: c (if seen), • , * (if seen). The scale shown in (b) 
is the same for all spectra. 
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Fig. 4.6. a) R2, b) R3 and c) R4 lines of the 3<D3-3A2 subband of NbN, 
showing the rR, qR and pR transitions and the crossover resonances 
associated with the rR and qR lines (denoted by c.o.). 
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0.01 cnr1 

I 1 

9 5 5 5 -is 
e) rR| | | | | 

0.01 cnr1 

Fig. 4.6. d) R5 and e) R6 lines of the 3d>3-3A2 subband of NbN; the 
labelling follows that of Fig. 4.6 a, b and c. 
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16851.5933 cm"1 

Fig. 4.7. The reversal of hyperfine structure at high J in the 3<I>4-3A3 
Q branch, caused by the effects of spin-uncoupling. Actual reversal 
occurs in the line of maximum intensity, Q(38). CO 

cn 
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this subband therefore narrows up to about J = 12, and then remains 

nearly constant in width up to the limit of our data at J = 27. 
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IV. C. Non-Linear Least Squares Fitting 
of Spectroscopic Data. 

In order to acquire the best set of molecular constants in a 

Hamiltonian, one must iteratively improve an estimated set of 

constants until a satisfactory fit of the observed data is obtained. 

In approaching the non-linear type of Hamiltonian typically 

describing a spectroscopic problem, the Hamiltonian is divided into 

its two constituents: the coefficients containing the quantum 

number dependence, and the molecular constants, o r 1 0 3 

H = X X m H m 

m=1 
(4.1) 

X m is the mth parameter (or molecular constant) out of a total of p 

parameters, and H m is the "skeleton matrix" containing the quantum 

number dependence of the mth parameter. For example, a simple 2n 

Hamiltonian may be expressed a s : 1 0 3 

1 / 2 0" 
H - T r 

1 0 

0 1 0 -1/2 
+ B 

(J + 1/2)2 - 2 -[(J + 1/2)2 _1]1/2 

-[(J + 1/2)2 - -|]1/2 (J + 1/2)2 

The matrix of eigenvalues (or energy levels) E Of the Hamiltonian is 

obtained by diagonalization with the eigenvectors U: 

UtHU = E (4.2) 

U is a unitary matrix such that the adjoint of U (U^, or the conjugate 

of the transpose U T ) equals the inverse of U (U- 1). 

The combination of equations (4.1) and (4.2) allows the Hellmann-

Feynman theorem to be employed, which states: 1 0 4 

a E m / 3 X = fam*(dWdX)*¥mdx (4.3) 
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For a single matrix element ii of parameter m, the Hellmann-

Feynman theorem becomes: 1 0 3 

[UT(aH/3Xm)U]ii = 3Ei/aXm = Bj (4.4) 

Using equation (4.1), equation (4.4) can also be written as: 

Bim - [UTHmU]ii (4.5) 

The Hellmann-Feynman derivatives B j m form the derivatives matrix, 

B, which give the dependence of the energy on variations in the 

parameters. 

To apply this relation to an iterative solution of unknown 

molecular parameters, equation (4.2) is expressed in terms of a 

single energy level, E j c a l c : 

Ejcalc = (UtHU)n (4.6) 

Substituting equation (4.1) into equation (4.6) gives 

P 
E p i c = X X m (UtH m U)ii (4.7) 

m=1 

With the relations in equations (4.4) and (4.5), the energy can be 

written: 

P 
E p i c = I X m B i m (4.8) 

m=1 

To express equation (4.8) in terms of transitions rather than 

energy levels, the upper and lower state eigenvalue vectors (E 1 and 

E") are subtracted to give y, and B' and -B" are combined into one 

derivatives matrix B. Equation (4.8) therefore transforms t o : 1 0 5 

y = BX (4.9) 

where y is the vector of calculated transitions, B is the matrix of 

known derivatives, and X is the vector of estimated parameters. If 



99 

there are N transitions and p parameters to be determined, y has 

length N, B is a matrix of size N by p, and X has length p. To obtain 

X , both sides of equation (4.9) are multiplied by ( B T B ) - 1 B T : 

(BTB ) -1 (BTB)X = ( B T B ) " 1 B T y 

X = ( B T B ) _ 1 B T y (4.10) 

In a problem where the estimated parameters X are iteratively 

improved, we calculate parameter changes A X . rather than X itself. 

Equation (4.10) is therefore expressed a s : 1 0 6 

A X = ( B T B ) " 1 B T A y (4.11) 

where A y is the vector of residuals (i.e., the observed transitions 

minus the calculated). The fitting process begins with a set of 

estimates for the molecular constants, which are used to generate 

calculated transitions (ycaic) a n c j {heir residuals (Ay). The set of 

corrections to the constants, given by equation (4.11), is added to 

the initial estimates to provide improved constants for the next 

iteration. The process is repeated, iteratively producing improved 

sets of calculated transitions, residuals and constants until the 

magnitude of the residuals is reduced to a satisfactory level, for 

example, to the vicinity of the experimental precision. 

The least squares program for the 3<X> - 3 A system of NbN was 

written in FORTRAN 77 by the author, except for UBC Amdahl library 

routines for diagonalizing and inverting matrices, and calculating 

parameter changes from the Hellman-Feynman derivatives. The 

Hamiltonian matrices for the 3<D and 3 A states have a maximum 

dimension of (21 + 1)(2S + 1), or 30. The 30 x 30 matrices (one for 

each F) were diagonalized in two steps. In the first step, only the 

rotational part of the Hamiltonian was diagonalized, in ten separate 
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J submatrices. In the second step, the entire matrix (rotational and 

hyperfine) was diagonalized. Two steps were employed because the 

ordering of eigenvalues from step one was used in the second 

diagonalization to preserve the matching of eigenvalues with the 

original basis functions. This is possible because the separation of 

the spin-orbit components is large compared to the perturbation 

made by the hyperfine interactions. 

Analogous to the common formula for the standard deviation, 

s = [I(xobs . xcalc)2/ n]l/2 (4.1 2) 

the weighted least squares standard deviation is obtained f r o m : 1 0 5 

n 
a = [ I (yjQbs . y jcalc)2Wjj/(n-m)]1/2 (4.13) 

i=1 

where n is the number of independent measurements, m the number 

of unknowns to be estimated, n-m the degrees of freedom, and Wjj the 

diagonal element of the weight matrix for point i . 1 0 5 To determine 

estimates of the precision of the estimated constants, a variance-

covariance matrix @ is calculated b y : 1 0 5 

0 = c 2 (BTB)- 1 (4.14) 

A diagonal element 0jj is called the variance (not to be confused 

with the variance that is the square of the standard deviation, G2). 

The square root of &\\ gives the standard error, or precision, of 

estimated molecular constant i. The off-diagonal elements ©jj are 

covariances. Both the variances and covariances are only estimated 

values, because they depend on the precision of the measurements, 

a 2 . The goodness of the structure of the model lies in ( B T B ) - 1 . 
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Normalization of the variance-covariance matrix gives the 

correlation matrix, C, with elements 

cjj = eij/(eiiejj)i/2 ( 4 . 1 5 ) 

where Cjj = 1 for i ~ j, and (-1 < Cjj < +1) for i * j. C is independent 

of the precision of the measurements since o 2 has been cancelled 

out. Therefore the off-diagonal elements represent the 

interdependence of the molecular constants on one another, for a 

given data set. A value for CJJ that closely approaches unity 

indicates that constants i and j cannot be determined independently. 
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IV.D. Results and Discussion. 
Initial line assignments were facilitated by the unpublished 

grating spectrograph work of Dunn e l s i 1 0 2 , who listed the positions 

of the P, Q and R rotational lines. Initial attempts to obtain a least 

squares fit to the hyperfine constants in a case (a) basis (i.e., as 

they were presented in Sections I.D.3 and I.D.4) did not succeed, 

because the hyperfine constants required to fit the three subbands 

are not consistent with one another. In the light of this observation, 

and the unequal first order spin-orbit spacings, it was concluded 

that the various substates are perturbed differently by second order 

spin-orbit interactions. According to the AQ = 0 selection rule for 

this interaction 1 0 9 , the electronic states perturbing the 3<J> substate 

include ^3,4, 1T4, 10>3, 3A2,3 and 1A2. The 3 A substates can interact 

with 3 0 2 , 3 , 1<J>3, 1 A 2 , 3T11,2 and 1 n 1. The 1 0 and 1 A states 

isoconfigurational with 3G> and 3 A are expected to be the closest of 

these states to 3d> and 3 A , and therefore the ones most responsible 

for the perturbations (see Fig. 4.8). The effect would be to shift the 

central spin-orbit components, 3<X>3 and 3 A 2 , to lower energy. 

However, the hyperfine constants suggest that there could also be 

second order spin-orbit interactions occurring with the other 

members of the manifolds, though we can say nothing about their 

relative sizes. The 3 o - 3 A system of NbN is the first observed 

instance of a molecule represented by Hund's case (a) which requires 

modifications to the Hamiltonian because of extensive second order 

spin-orbit interactions. This phenomenon can be considered a slight 

tendency toward the case (c) coupling s c h e m e . 1 0 9 

The molecular constants obtained for the 3 o - 3 A system of NbN 
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Fig. 4.8. Partial energy level diagram for NbN. The figure is not to 
scale, but illustrates the relative ordering of states, except in the 
case of the low-lying configurations o 2 and 0 8 where the ordering is 
uncertain. 
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are given in Table 4.1. The unequal perturbations in the 3<D and 3 A 

spin-orbit manifolds means that, in the magnetic hyperfine 

structure, only the h constants in the matrix elements diagonal in 

ft and £ can be determined, rather than individual a, b and c 

constants (cf. equations 1.90 and 1.98). The h constants, subscripted 

by their X values, are as follows: 

In an unperturbed system, the average of h-i and h+i equals ho; that 

is, (b + c)-i and (b + c)+i in equations (4.16) and (4.18) are equal. 

This is far from the case in the 3<x>-3A system of NbN, where (b + 

c)+i is 39% smaller than (b + c)-i in the 3 A state, and 10% larger 

in 30>. It was also found, in the 3 A state, that two distinct b 

constants are required in the <X=-1|X=0> and <X=0|Z=+1> matrix 

elements (referred to here as b.-i/o and brj/+i, respectively). 

Therefore, a total of five magnetic hyperfine constants are required 

to fit the data, rather than the usual three: h-i, ho, h+i, b-1/0 and 

bo/+i replace a, b and c. 

It is clear that the perturbations in the 3 A state are much more 

pronounced than those in 3G>. The 3 A b+i/o value is 34% smaller than 

bo/ - i , comparable to the 39% difference between the 3 A (b + c)-i 

and (b + c)+i constants. In the upper state, however, two distinct b 

values off-diagonal in X are not necessary: attempts to distinguish 

two 3 0 b constants produced values that were very highly correlated 

(-0.998) and with standard errors so high that the constants were 

indeterminable. It is evident, then, that the 1 A state lies closer to 

h-i = aA - b - c = aA - (b + c)-i 

ho = aA 

h+i = aA + b + c = aA+(b + c)+i 

(4.16) 

(4.17) 

(4.18) 
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Table 4.1. Molecular constants for the 3C>-3A system of NbN.a 

O A 

To 16518.509(1) 0 
A 247.4116(5) 191.7038(8) 
B 0.495814(4) 0.501465(4) 
D 0.4943(4) x 10-6 0.4622(2) x 10-6 
X -16.817(2) 3.430(2) 

y 0.011(2) -0.0217(6) 

A D 
-0.58(2) x 10-4 -0.105(3) x 10-3 

XD -0.150(6) x 10-4 -0.1314(6) x 10-3 

h-1 0.0633(2) -0.0616(3) 

ho 0.0411(4) 0.0458(5) 
h+1 0.0168(2) 0.1112(3) 
b -0.02(1) -
b-1/0 - 0.085(5) 
bo/+i - 0.056(5) 
e 2 Q q o -0.39(8) x 10-2 fixed to zero 

Derived constants: 
(b+c).i -0.0222(4) 0.1074(6) 
(b+c)+i -0.0246(5) 0.0654(6) 

a 0.000547 

3 Values are in cm- 1 . The numbers in parentheses are three times 
the standard errors of the constants, in units of the last significant 
figure. The standard deviation of the transition measurements is 
given by a. The magnetic hyperfine constants, h, (b + c) and b, are 
explained in the text. 
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the 3 A state than 10> does to 3<X>. Note from Fig. 4.8 that the ordering 

of states in the 8rc manifold is contrary to that dictated by Hund's 

r u l e 1 1 0 , which would place the higher multiplicity 1<I> state below 

T I (and therefore closer to the 3 0 state). The dipolar hyperfine 

constant c cannot be extracted since separate b constants are 

required for the three substates. 

The (b + c) and b constants clearly support the 5 s a 1 4 d 6 1 and 

4drc 1 5 1 configurations for the 3 A and 3 0 states, respectively. The 
3 A (b + c) and b values are large and positive, indicating that the 

dominant mechanism for the coupling of electronic and nuclear spins 

is the Fermi contact interaction. This is consistent with the 

presence of an unpaired sa electron, as in the s a 1 d 8 1 configuration 

of 3 A . The 3 0 (b + c) and b constants are negative, and small 

compared to those in 3 A . This is characteristic of a hyperfine 

interaction which occurs because of spin polarization by electrons 

in orbitals having nodes at the nucleus, such as T C 1 5 1 . The difference 

between the Fermi contact and spin polarization hyperfine constants 

in NbN is similar to that found in the VO states 4 5 4 s a 1 3 d 8 2 X 4 Z " and 

4 p o 1 3 d 8 2 C 4 I \ The ratio of 3 A(b + c ) a v e / 3 ^(b + c ) a v e = -3.7, while 

b(X 4 !" ) / b(C 4Z-) = -3.1. 

The quadrupole coupling constant for the lower state is -3.9 (+.8) 

x 10"3 c m - 1 , while that of the upper state was fixed to zero after it 

was found to be too small to be determined. The sign of the 3<J> state 

e 2 Q q 0 is consistent with the quadrupole moment for 9 3 N b of -2 x 10-
2 4 e c m 2 . The upper and lower state constants for the interaction 

of nuclear spin and rotation (ci) were fixed to zero, as they were 

found to be on the order of -10 - 5 to -10 - 6 cm- 1 , almost completely 
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correlated ( .999), and with standard errors as large as the values 

themselves. It is the usual case for diatomics containing a 

transition metal for ci to be too small to be determined (see for 

example references 3 1 , 4 5 , 7 9 and 91). 

In the rotational part of the Hamiltonian, the A, B and D constants 

are very well determined in spite of the high correlations between 

A' and A" ( .9985) and B' and B" (.995). The high rotational lines 

carrying information about the spin-uncoupling operator, - 2 B J S , 

allow B and D to be determined individually, rather than simply 

determining their differences, B' - B" and D' - D". Since all three 

subbands were fitted simultaneously, and B was extracted with good 

precision, A could also be determined. This is possible since A, B 

and the effective B values for each subband are related by: 2 4 

Beff,n = B(1 + 2 B I / A A ) ( 4 .19 ) 

From the B values, the bond lengths are calculated to be: 

r0 ( 3 A ) = 1 .6618 A 

r0 ( 3 < D ) = 1 6 7 1 2 A 

There have been very few rotational studies of transition metal 

mononitrides. Aside from the current work, the known bond lengths 

(r0, in A) are: 

T i N l n X 2 I 1.583 

A 2 n r 1.597 

B 2 I 1.646 

Z r N ^ 2 X 2 I 1.696 

B 2 I 1.740 

A 2 n 1.702 

M O N 1 1 3 x4I" 1.634 
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A * n 1 -654 

The 3d transition metal monoxide series isovalent with ZrN (and 

TiN), NbN, MoN is ScO, TiO, VO, whose ground state bond lengths go 

as 1.668 A3<\ 1.623 A89 and 1.592 A*5. Here the bond length 

decreases with each additon of a bonding 8 electron. The 3 A and 3 0 

NbN bond lengths show that the nitrides are consistent with this 

trend, with values intermediate between those of ZrN and MoN. 

The very large spin-spin interaction constants X (equations 1.72 

and 1.73) are caused by contributions from the second order spin-

orbit interactions which induce the substantial shift of the 3 G > 3 - 3 A 2 

subband. The centrifugal distortion correction to X, however, is 

considerably larger than its expected value of Xo - X(Ao/A). The 

reason for this probably lies in the fact that we have not yet made 

direct measurements of the spin-orbit intervals. In this context, 

then, the centrifugal distortion correction constants A D and XQ are 

essentially fudge factors which enable the least squares fit to 

converge to a minimum lying within a broad minimum which contains 

the true molecular constants. So although this set of constants is 

an internally consistent one which fits the data, once the derived A 

values are replaced by direct measurements the constants may 

change slightly to enable the fit to converge to the true, nearby 

minimum. With the data we now possess, however, the A D and Xo 

values given in Table 4.1 are necessary to obtain a fit. 

To demonstrate this fact, a fit of the rotational constants was 

made in which Xo and y were fixed to zero, and all hyperfine 

constants were fixed at the values determined in this work. The 

initial values for the floated constants were taken from the grating 
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spectrograph work of Dunn e_tai 1 0 2 (see p. 85), with the exception of 

AQ which was given an initial value of zero; the parameter 8 in their 

work is equal to -2X. The fit converged to a standard deviation of 

0 . 0 0 1 3 8 c m - 1 , which is about 2 . 5 times higher than the fit which 

incorporates XD and y. As expected, the final set of constants (Table 

4.II) is very similar to those determined by the grating spectrograph 

analysis, with the exception of To, which was found from LIF data to 

be 13.5 cm- 1 higher than that from the grating work. The residuals 

contain systematic errors in the positions of the rotational lines, as 

compared to the random residuals generated by the full set of 

constants. The systematic errors and higher standard deviation 

reflect the inability of the model to fit the data without XD, AD and 

y. However, as stated above, the resulting rotational constants, 

other than B and D, are only effective ones. Another important 

feature of this fit is that the first order spin-orbit coupling 

constants A' and A" are 1 0 0 % correlated, as are the second order 

spin-orbit parameters X' and X." (see the correlation matrix in Table 

4.II). This is a direct reflection of the fact that the spin-orbit 

coupling constants are derived rather than measured. As a result, 

only the difference A X can be determined, rather than separate X' and 

X" values. For these reasons, a fit excluding XD and y may produce a 

set of rotational constants that more accurately represents the real 

situation, though the addition of XD and y creates a model which is 

able to fit the data. It is worth noting that in a purely case (a) basis, 

y, AD and XD are correlated such that only two of the three can be 

determined. 4 1 In the 3 O - 3 A system of NbN this correlation is broken 
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Table 4.II. Rotational constants obtained for the 3d>.3A system of 
NbN with the XD and y parameters fixed to zero, and the hyperfine 
constants fixed to the values in Table 4. l . a The correlation matrix 
follows the constants. 

O A 

To 16518.4653(2) 0 
A 242.59(8) 184.5(1) 
B 0.495796(8) 0.501447(8) 
D 0.5005(7) x 10-6 0.4685(4) x 10-6 
X -3.70(8) 16.53(8) 

A D 
-0.484(5) x 10- 4 -0.793(8) x 10-4 

a 0.00138 

a T h e format of the table follows that of Table 4.I. 

Correlation Matrix 
To A' B' D' X AD 

To 1.0000 0.0996 0.0820 -0.4333 0.3401 0.1538 
A' 1.0000 -0.0473 0.1235 0.5124 -0.0645 
B' 1.0000 -0.0973 0.0934 -0.3204 
D' 1.0000 0.0366 -0.4503 
X' 1.0000 -0.0664 

A D ' 1.0000 

A" B" D" X" A D " 
To 0.0995 0.1580 -0.2227 0.3408 0.1715 
A' 1.0000 -0.0335 0.3977 0.5115 0.3233 
B' -0.0474 0.9936 -0.0789 0.0928 -0.3322 
D* 0.1233 -0.1874 0.4224 0.0360 -0.2099 

X,' 0.5124 0.1025 -0.2270 1.0000 0.0874 
A D ' -0.0643 -0.2737 -0.0883 • •0.0659 0.8660 
A" 1.0000 -0.0336 0.3976 0.5116 0.3233 
B" 1.0000 -0.0839 0.1020 -0.2929 
D" 1.0000 -0.2275 0.0982 
X" 1.0000 0.0875 
A D " 1.0000 
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to some extent by the high J data where there as a distinct tendency 

towards case (b) (see the correlation matrices in Appendix I and 

Table 4.II). 

For the future, a direct measurement of the spin-orbit intervals 

must be made. The most likely method for doing this is to locate 

forbidden "spin-orbit satellite" transitions which disobey the case 

(a) selection rule A £ = 0 (equation 1.57). Since these transitions are 

very weak, resolved fluorescence experiments can be performed to 

enhance the signal. To record the spectrum of a 3<X> 2-3A 2 line, for 

example, an allowed 3 < D 2 - 3 A I transition is excited. The resulting 

emission spectrum of the satellite transition is recorded over a long 

exposure time using the microchannel-plate intensified array 

detector. The lines which hold the most promise for producing spin-

orbit satellites are high J lines affected by spin-uncoupling, since 

the A L = 0 selection rule weakens with increasing rotation. 

However, it is also important that the excited line be strong, so a 

compromise must be made between high J and line strength when 

choosing lines for excitation. 

Other important tasks are to locate the singlet states which 

interact with the 3A2 and 3<x>3 spin-orbit components, and to search 

for the expected a 2 1 Z + state to determine if the ground state is 3 A 

or 1 5> . The ordering of the 0 8 states ( 3 A and 1 A ) and the o 2 state 

( 1 X + ) depends on the relative ordering of the 4 S C T and 3d5 metal-

centered molecular orbitals (see Fig. 3.1). Diatomic transition metal 

oxides and fluorides isoelectronic with NbN demonstrate that these 

orbitals lie very close to one another. Therefore one cannot readily 

predict in NbN whether the 3A R or 1 Z + state will be lower in energy. 
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For example, the d2-transition metal monoxide series, consisting of 

titanium oxide (TiO), zirconium oxide (ZrO) and hafnium oxide (HfO), 

is variable in this respect. TiO has a 3 A r ground s t a t e 1 1 4 , with the 
1 A state lying 3500 cm" 1 above tha t 1 1 5 . However, ZrO has a 1X + 

ground s t a t e 1 1 3 which lies 1650 cm- 1 below the 3 A r s t a t e 1 1 6 . HfO 

is believed to have a 1X+ ground state also, but with the 08 states 

further removed from the ground state than those in ZrO due to the 

greater ligand field splitting between the o and 8 orbitals in H f O . 1 1 4 

In the d1-transition metal monofluoride series, comprising scandium 

fluoride (ScF), yttrium fluoride (YF) and lanthanum fluoride (LaF), 

S c F 1 1 5 and YF have 1 Z + ground states, while the ordering of 1 Z + and 
3 A r in LaF is not k n o w n 1 1 8 . Tantalum nitride (TaN), the 5d 

counterpart of NbN, is predicted from matrix isolation studies to 

have a 1 £ ground state, though the possibility of 3 A has not been 

entirely ruled o u t . 1 1 9 To identify the ground state of NbN securely, 

then, the relative position of the 1 X + and 3 A r states must be 

determined experimentally. 
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CHAPTER V 
ROTATIONAL ANALYSIS OF THE Vy-FUNDAMENTAL 

OF AMINOBORANE, NH 2BH 2 

V.A. Background. 
This work examines the BH2 out-of-plane wagging fundamental 

of aminoborane (NH2BH2), the simplest alkene in the B=N homologues 

of the hydrocarbons. Long before N H 2 B H 2 was studied 

experimentally, its small size and the interest in B-N compounds led 

to extensive theoretical studies of it. In particular, the donor-

acceptor nature of the B-N bond atttracted attention, as Huckel 

theory calculat ions 1 2 0 done in 1964 predicted that the bond moment 

was in the direction B to N rather than the reverse, as required by 

formal valence theory. These preliminary calculations, covering 

charge distributions, electronic structures and geometries for a 

number of B-N compounds, were followed by CNDO (complete neglect 

of differential over lap ) 1 2 1 and ab i n i t i o 1 2 2 ' 1 2 3 - 1 2 4 calculations 

predicting these and other properties such as the dipole moment, 

force constants, barriers to rotation and stabilities. Aminoborane's 

extreme instability at room temperature, however, imposed 

practical difficulties for experimentalists to verify or refute the 

theoreticians' predictions. It's first synthesis was in 1966 from 

the symmetrical cleavage of vacuum sublimed cycloborazine 

pyrolyzed at 135°C, where NH2BH2 and other decomposition products 

could be trapped in a liquid nitrogen cold trap, and then identified by 

mass s p e c t r o s c o p y 1 2 5 . The aminoborane was found to have 

decomposed spontaneously after warming to room temperature. In 
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1968, gaseous aminoborane and diborane (B2H6) were observed by 

molecular beam mass spectroscopy as products of the spontaneous 

decomposition of solid ammonia borane ( N H 3 B H 3 ) at room 

temperature. 1 2 6 When Kwon and McGee performed both pyrolysis and 

radiofrequency discharge experiments on borazine (the BN analog of 

benzene), N H 2 B H 2 a n d B 2 H 6 w e r e again the products. 1 2 7 They were 

recovered in a -168 ° C trap, then separated by vacuum distillation of 

diborane from aminoborane at -155 ° C . At this temperature, small 

amounts of both evaporation and polymerization of NH2BH2 were 

observed. Polymerization becomes the dominant process at 

temperatures above this, and is fairly significant at -130 ° C . 1 2 7 

The pronounced instability of monomeric aminoborane led 

Pusatcioglu et a l 1 2 6 in 1977 to investigate the possibility of using 

N H 2 B H 2 to build thermally stable inorganic polymers. They 

pyrolyzed gaseous ammonia borane, condensed the monomeric 

NH2BH2 product at 77 K, then allowed it to polymerize as it warmed. 

In 1979 a microwave spectrum of NH2BH2 was obtained, using a 

sample formed from the reaction of 5-10 mTorr each of ammonia 

and diborane at 500 ° C . 1 2 9 Molecular constants calculated by a 

least-squares fit were consistent with a planar configuration, 

thereby establishing the symmetrical structure N H 2 = B H 2 for 

aminoborane, rather than the asymmetrical NH3BH. Perhaps the most 

important outcome of this work was the determination of the dipole 

moment to be 1.844 D in the direction from N to B, as opposed to the 

theoretical predictions of B to N . 1 2 0 ' 1 2 1 The assumption of an N B 

direction for the dipole moment was based on the observation that 

the dipole moment of NH2BH2 is 0.751 D smaller than that in BH2BF2. 
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The same group recently reported microwave spectra of five 

isotopic species of NH2BH2, improving the constants and geometric 

parameters obtained in the previous s tudy . 1 3 0 

Recently, at the University of British Columbia, the first gas 

phase Fourier transform infrared spectrum of aminoborane was 

m e a s u r e d . 1 3 1 The synthesis combined the solid-state and vapor-

phase ammonia borane pyrolysis techniques. Solid N H 3 B H 3 w a s 

heated to about 70 ° C in a flow system maintained at approximately 

200 microns, and the vapors produced were passed through a furnace 

at about 400 ° C , to pyrolyze unreacted sublimed sample. Nine of 

aminoborane's eleven infrared (IR) active fundamental vibrations 

were recorded at medium resolution (0.05 cm- 1) , with the V4 A-type 

band at 1337 cm- 1 being also recorded at very high resolution (0.004 

c m - 1 ) . Since that time the bands of all of the IR active 

fundamentals have been recorded at UBC at 0.004 cm- 1 resolution 

(see Table 5.1), though V5 is vanishingly weak because its dipole 

derivative appears to be very small. Some analysis has been 

c o m p l e t e d 1 3 2 - 1 3 3 ' 1 3 4 , with the remainder currently underway. The 

present work is a contribution to the high resolution Fourier 

transform IR study of aminoborane, being the rotational analysis of 

the C-type V7 fundamental whose origin is at 1004.7 cm- 1 . 
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Table 5.1. Vibrational fundamentals of gaseous NH2 1 1BH2-

Symmetry cm- 1 Type of motion 

Ai V1 3451 NH symmetric stretch 

v 2 2495 BH symmetric stretch 

V3 1617 NH2 symmetric bend 

v 4 1337.4741 BN stretch 

V5 1145 BH2 symmetric bend 

A 2 V6 837 Torsion (twist) 

Bi V7 1004.6842 BH2 wag 

V8 612.19872 NH2 wag 

B 2 V9 3533.8 NH asymmetric stretch 

vio 25643 BH asymmetric stretch 

V11 1122.2 N H 2 rock 

V12 742 B H 2 rock 

1 Reference (131) 
2Reference (133): vs (1,0) band; reference (132): vs (2,0) band 
3Reference (134) 
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V.B. The Michelson Interferometer and Fourier Transform 

Spectroscopy. 
The infrared interferogram was recorded and Fourier 

transformed with a BOMEM DA3.002 Michelson interferometer and 

associated software (version 3.1). Three sources of infrared light 

are available depending on the wavelength region desired: a quartz-

halogen lamp for the near IR and visible regions, a globar for the 

mid-IR, and a mercury-xenon lamp for the far IR. After first being 

filtered and focused at an aperature, the infrared light passes to a 

collimating mirror and is reflected as a parallel beam to a 

beamsplitter, where it is divided in two. One beam continues 

through to a fixed mirror, while the other is reflected onto a mirror 

moving at constant velocity. As one of the beams has a fixed path 

length and the other a constantly varying one, the recombination of 

the beams at the beamsplitter produces a resultant of sinusoidal 

waves that are out of p h a s e . 1 3 5 The portion of the resultant not 

absorbed by the sample is measured at the detector as the 

interferogram. The point along the moving mirror's travel at which 

the fixed and moving mirrors are exactly equidistant-called the 

zero path difference (ZPD)--should in principle bring all the 

sinusoidal waves into phase, with constructive interference 

producing a maximum in the amplitude. 1 3 5 

Because the interference patterns producing the infrared 

interferogram result from the optical path difference between the 

two light beams, it is essential that signal sampling occur at 

constant intervals of mirror displacement. This is achieved in the 

BOMEM DA3 spectrophotometer by a He-Ne laser. Operating at 632.8 
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nm, or 15796 cm" 1 , the laser provides an extremely precise time 

base of 31,592 cycles per cm of mirror travel . 1 3 6 The cycles, called 

fringes, trigger spectral sampling at a frequency normally equal to 

one sample/laser fringe, though the rate can be increased to up to 

eight times the laser fringe frequency. The phase coherence 

provided by this laser is excellent: its single-mode operation 

prevents destructive interference by two other closely lying 

transition frequencies, and its thermal stabilization removes 

temperature dependent fluctuations in the laser optics. The 

resulting uncertainty in the mirror's position is 0.0025 fringes per 

cm of mirror travel, which even at the maximum translation of 125 

cm amounts to a variation of only 0.3 fringes over the length of the 

mirror's s c a n . 1 3 6 

The interferogram not only requires that its points be sampled at 

precise intervals, but also that one of these points occurs at an 

origin that is exactly reproducible from scan to scan. The BOM EM 

DA3 spectrophotometer acheives this by triggering the 

commencement of each scan at the ZPD of an interferogram of white 

light. The beams from the white light source follow the same 

optical path as that of the radiation of interest, with the incoherent 

nature of the white light producing an interferogram characterized 

by an intense pulse at ZPD (the WLZPD), and low intensity amplitudes 

at non-zero mirror translations. The occurrence of the pulse is 

precise to well within one laser fringe, so the actual WLZPD trigger 

is marked as the laser fringe immediately following the pulse. The 

result is a synchronization signal which references the points in the 
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IR interferogram to a constant position along the scanning mirror's 

path .136,137 

A Fourier transform infrared experiment is therefore the process 

of obtaining the infrared interferogram in conjunction with the 

white light reference interferogram and the time base generated by 

the He-Ne laser. These data are processed by Fourier transformation 

from the IR interferogram time domain to an IR spectrum in the 

frequency domain. The integrals of the Fourier transformation can 

be understood in terms of the phase differences between the IR 

beams split by the beamsplitter. When a wave with angular 

frequency co reflects off a mirror moving with velocity v, the 

frequency is Doppler shifted by an amount 138 

Aco = 4JIV/X (5.1) 

Expressed as a function of the speed of light and the incident 

frequency, using the relation X= 2TIC/CO, the phase shift becomes 138 

Aco = (v/c)2co (5.2) 

The magnitude of Aco is on the order of 1 kHz to 100 kHz, a frequency 

that can be processed easily as compared to the 1 0 1 3 to 1 0 1 5 Hz 

frequencies of IR radiation itself. 

The time-averaged beat intensity, I, produced by the combination 

of two waves out of phase by Aco i s 1 3 8 

I = l0(1 + cosAcot)cos2[(co + co')t/2] = (l0/2)(1 + cosAcot) (5.3) 

where l 0 is the signal intensity when Aco = 0. Represented in terms 

of amplitude or electric field strength [E0(co)], phase difference [5(co) 

= Acot], and the reflectivity (R) and transmittance (T) of the 

beamsplitter, equation (5.3) becomes 1 38; 

l(co,8) = cec-RT |E0(co)2| [1 + cos8(co)] (5.4) 
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where c is the speed of light and e 0 is the vacuum permittivity 1 3 9, 

equal to 8.85 x 1 0 - 1 2 C 2 J - 1 r r r 1 . Integrating over all frequencies of 

the spectral components, 

l(8) = J l(co,5)dco = ceoRT[J |E0(co)|2dco + j [E0(co)|2cos8dco] (5.5) 

At zero path difference, or 8 = 0, the two terms in brackets in 

equation (5.5) are equal, so the ZPD intensity is given by: 

l 0 = 2ce 0RTJ |E0(co)|2dco (5.6) 

The time-averaged signal intensity as a function of phase 

difference, l(8), is the quantity measured at the detector. The 

interferogram points themselves are taken to be the oscillations of 

these intensities about l 0 / 2 : 1 3 8 

|l(8) - l 0/2| = C £ 0 R T J |E0(co)|2cos8dco (5.7) 

The cosine Fourier transform of an interferogram of the form of 

equation (5.7) yields a spectral intensity distribution function l(co) 

in which intensity is a function of discrete frequencies: 

l(co) = ( 1 / K R T ) J [l(8) - l 0/2]cos8d8 (5.8) 

However, since imperfections in manufacture do not produce 

equivalent reflectivities in the fixed and moving mirrors, sine 

components as well as cosine are introduced into the interferogram. 

The actual Fourier transform therefore employs the complex form of 

the e x p r e s s i o n 1 3 8 - 1 4 0 ' 1 4 1 

l(v) = C J [l(8) - l 0/2] e - i 2 * v 5 d8 (5.9) 

In general form, the Fourier transform of function f(x) i s 1 4 2 

3{f(x)} = F(a) = Jf(x)e-'«xdx (5.10) 

The inverse Fourier transform of F(a) is therefore 

3"1{Fa)} = f(x) = (1/2TI)J F ( a ) e ! « x d a (5.11) 
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Likewise, the spectrum expressed in equation (5.9) is one member of 

a Fourier pair, which consists of two non-periodic functions related 

by the Fourier integral transforms 1 4 1 : 

g(v) = J f(5)e'2"v6ds (5.12) 

f(8) = 1 g(v)e-'2*v8dv (5.13) 

A Fourier pair is illustrated graphically in Fig. 5.1. 

Fourier transform spectroscopy is able to exploit the Fourier pair 

relationship between the time domain (phase, 5) and the frequency 

domain (co or v), because frequency can be obtained with greater 

accuracy, resolution and speed by measuring and transforming 

phase differences rather than by directly measuring relative 

frequency. With the Michelson interferometer the integration 

cannot be performed over all space (-°° to +°°) but is limited to the 

range 0 - L where L is the total mirror displacement. As the 

distance travelled by the mirror increases, the number of terms 

included in the integration increases, extending the amount of 

information available for extraction into the spectrum l (v ) . 1 4 1 The 

theoretical maximum spectral resolution of an interferometer is 

therefore inversely proportional to the maximum optical path 

difference between the fixed and moving m i r r o r s . 1 4 2 Defining 

resolution as the full width at half height, the maximum unapodized 

resolution i s : 1 4 4 

Avi/2 = 1/(2L) (5.14) 

Imposing the 0 to L limits on an interferogram is known as a 

"boxcar" truncation (see Fig. 5 . 2 ) . 1 4 4 When a boxcar-truncated 

interferogram is Fourier transformed, the spectral line shape 

contains the sine function [sine z = (sin z ) / z ] : 1 4 6 « 1 4 7 
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Fig. 5.1. A polychromatic signal in the frequency domain (above) 
Fourier transformed into the time domain (below).141 
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F{D(x)} = 2L(sincz) (5.15) 

where z = 2ji(a-a 0)L. The half-width of the center spike of this form 

is very narrow: A a = 1.207/2L, or about 20% wider than the 

theoretical resolution of 1/2L. However, the sidelobes next to the 

central peak have about 21% of its intensity, and the amplitudes of 

subsequent lobes are slow to die a w a y . 1 4 5 In order to approximate 

more closely the true frequency domain spectrum, an apodization 

function is often included in the data processing. This process 

dampens the effects caused by truncating the interferogram at a 

definite mirror displacement of L. Though there are many forms of 

apodization functions, the effect is to give decreasing weight to the 

data points recorded at large mirror d isp lacements . 1 4 5 - 1 4 6 One 

of the simplest is the triangular function in Fig. 5.3, in which 

all sidelobes are positive and the largest is only about 4.5% that 

of the center spike; the linewidth is increased by almost 50% over 

the boxcar c a s e . 1 4 6 - 1 4 7 The apodization applied to the aminoborane 

experiment in this work was a cosine function referred to as 

"Hamming" or "Happ-Genzel". It produces spectral lines with 

negative sidelobes of only 0.0071 the height of the maximum peak, 

and lines about 2% broader than those from the triangular 

apodiza t ion . 1 4 5 
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^ V 

Fig. 5.2. A boxcar function D(x) (above). The Fourier transform of a 
boxcar truncated interferogram is a spectrum with the line shape 
function F{D(x)} = 2Lsin(27ivL)/27tvL (where L denotes the maximum 
mirror displacement.) The full width at half-height (Avi/2) is 
1.207/2L, and the strongest sidelobe has 21% the intensity of the 
m a x i m u m . 1 4 5 
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Triangular D(x){1 - |x|/L} 

Fig. 5.3. The triangular apodization function D(x) (above) produces a 
spectrum with the line shape function F{D(x)} = 2Lsin(27tvL)/(27cvL)2 

(below). The full width at half-height (Avi/2) is 1.772/2L, with the 
strongest sidelobe only 4.5% of the maximum intensity. 1 4 5 
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V.C. Experimental. 
The aminoborane was prepared by pyrolysis of borane ammonia 

(BH3NH3, Alfa Products) according to the procedure of Gerry and 

c o w o r k e r s 1 3 1 , except that in the present work the temperature of 

the solid N H 3 B H 3 was raised to only 67 ° C - 68 ° C for the first 

several hours, then lowered to 63 ° C - 65 ° C for the remainder of the 

experiment. The 70 ° C pyrolysis temperature employed in reference 

131 was found to be unnecessarily close to the temperature of 

uncontrolled thermal decomposition, which initiates violently at 

approximately 71 ° C . At the time the interferogram was measured, 

the temperature of the solid ammonia borane was 63.5 (±0.5) °C . The 

sample absorption cell, set to an optical path of 9.75 m, was 

maintained at a pressure of IOOJJ. during data acquisition. The 

BOMEM DA3.002 interferometer was fitted with a potassium chloride 

beam splitter and a liquid nitrogen-cooled HgCdTe detector. 
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V.D. The Asymmetric Rotor. 

A vibrational fundamental is infrared active if the dipole moment 

JI changes as a result of motion along the normal coordinate Qk, or in 

other words if the derivative (3|i /3Qk)o in the Taylor series 

expansion of the dipole moment 

u = uo + I (3u/3Q k ) 0 Q k (5.16) 

is non-zero . 1 4 8 The linear character of the dipole operator means 

that its components transform as translations along the principal 

axes, and therefore so do the various (3^i/3Qk)o Qk's. 

Aminoborane is a prolate asymmetric top molecule belonging to 

the point group C 2 v , whose character table is given in Table 5.II. The 

irreducible representations of the normal vibrations are: 5Ai + A 2 + 

2 B i + 2 B 2 , for a total of twelve fundamental vibrations. The B H 2 

out-of-plane wagging vibration is antisymmetric with respect to 

reflection in the yz plane, and therefore transforms as the Bi 

representation (see Fig. 5.4). Thus the V7 vibration represents 

translation along the c inertial axis and generates a C-type infrared 

band. 

Accompanying any molecular vibration are the rotational 

transitions involving changes in the total angular momentum, J . In 

order to understand the rotational selection rules for an asymmetric 

top molecule, one must write down asymmetric top rotational wave 

functions which are eigenfunctions of the symmetry operations of 

the molecular point group, in this case C 2 v . We begin by examining 

the effects of the C 2 v symmetry operations on the symmetric top 

wave functions, YJK(6,<|>). From equation (1.23) we know that: 

YjK(e,<>) - NPjK(cos 6)e'K<|> (5.17) 
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Table 5.II. Character table for the C 2 v point group, and the 
correlation of the axes of translation to infrared band type. The 
molecule-fixed axes x, y, z given here are related to the inertial 
axes a, b, c by the l r representation. 

Rotation (R) and 
C 2 v E c 2 CTv(XZ) oV(yz) Translation (T) axes 

A i 1 1 1 1 T a 

A 2 
1 1 -1 -1 Ra (Rz) 

Bi 1 -1 1 -1 T o Rb (Ry) 

B 2 1 -1 -1 1 T b . Rc (Rx) 
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where N is a normalization factor, P j K ( cos 6) is an associated 

Legendre polynomial, and the spherical polar angles 9 and $ are 

shown in Fig. 5.4. 

A C 2 rotation about the a inertia! axis (C2<a)) adds an amount n 

to <|>, but does not change the 6 coordinate: 

C2(a)YjK(8,(t)) = NPjK(cos e)e'KM>+«) (5.18a) 

= NPjK(cos e)eiK<J)eiK« (5.18b) 

= eiK*YjK(e,<|>) (5.18c) 

where 
(- 1 for even K 

e'K* \ (5.19) 
I. = -1 for odd K 

Note that the operation of C2 on YJK(9,<)>) gives a multiple of the 

original spherical harmonic, YJK(9,<1>). C2 rotations about the b and c 

inertial axes are not symmetry operations of the CZM point group. 

Unlike CzW, the a v

a c and a v

a b operators reverse the directions of 

the angles 6 and (>. Both reflections change e into -9, causing the 

associated Legendre polynomial to become Pj K ( -cos 9). By the 

Rodrigues formula 1 4 9 

Pj K ( -cos 9) = (-1)J+KpjK( C 0 S 0) (5.20) 

The operation of o v

a c changes <|> to -<|>. o v

a b projects the c axis in the 

opoosite direction and changes <J> ton -<J>. The overall effects of the 

reflections are therefore: 

av

acYjK(9,<)>) = (-1)J + KNPjK(cos 9)e-iK<|> (5.21) 

and 

o-v

abYjK(9,(|>) = (-1)J + KNPjK(cos 9)e'K^e-'K(t> (5.22) 

Clearly the spherical harmonics themselves are not eigenfunctions 

of the reflection operators, though the linear combinations obtained 
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a(z) 

>b(y) 

Fig. 5.4. Schematic drawing of the C 2 v NH2BH2 molecule in the x, y, z 
principal axis system and the a, b, c inertial axis system, showing 
the C2 o v reflection planes. 



131 

by taking Wang sum and difference funct ions 1 5 0 are eigenfunctions 

of these operators: 

*FJK± = ( 1 / V 2 ) ( Y J K ± Yj, . K ) (5.23) 

In equation (5.23) the sums and differences (JK+ and JK., 

respectively) correspond to the upper and lower asymmetry 

components of a JK level. 

The effects of the C 2 v symmetry operations, performed on 

asymmetric top rotational wavefunctions, follow from equations 

(5.18c), (5.19), (5.21), (5.22) and (5.23): 

C 2( a) ^ J K t = ( - 1 ) K ¥ J K ± (5.24) 

C v a c ^ J K t = (1/V2)(-1)J-K Y j , . K ± (1/V2)(-1)J+K Y J K 

- ± ( - 1 ) J + K(i /V2) ( Y J K ± Y j , . K ) 

= + ( - 1 ) M f j K ± (5.25) 

o v

a b x F j K ± = ( "1) K ( -1 ) J + K , PJK± 

- ± ( - 1 ) J * j K ± (5.26) 

For even and odd values of K, and the + and - asymmetry components, 

the result of each operation can be tabulated using (5.24) through 

(5.26), as given in the first two sections of Table 5.III. The 

irreducible representations in the third section of Table 5.Ill are 

obtained by substituting even and odd values for J into section 2. 

The quantum numbers K a and K c in section 3 denote the projections 

of the angular momentum components J a and J c along the axes of 

lowest and highest inertia. The values of K a and K c corresponding to 

each irreducible representation are derived from the rule that K c = J 

- K a and K c = J - K a + 1, for the + and - asymmetry components, 

respectively. For example, for even J , even K a and the - asymmetry 

component, K c must be odd, giving K a K c = eo. The eo notation 
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Table 5.III. Character sets for an asymmetric top rotational 
wavefunction in the C 2 v point group. 

Wang sum & Irred. represen-
difference tations ( K a K c ) E ± / 0 ± 

J K a functions E c 2 a v

a c o v

a b Jeven Jodd notation 

J Keven + 1 1 (-1)J (-1)J A i (ee) A 2(eo) E+ 

J Keven 1 1 -(-1)J -(-1)J A 2(eo) A i (ee) E -

J Kodd + 1 -1 -(-1)J H) J B 2(oe) Bi(oo) o + 

J Kodd 1 -1 (-1)J -(-1)J Bi (oo) B 2(oe) o-
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indicates that the rotational wavefunction is symmetric with 

respect to rotation about the a inertial axis and antisymmetric with 

respect to rotation about the c inertial a x i s . 1 5 1 The E±/0± notation 

given in the last column of Table 5.Ill is explained in Section V .E . 

From Table 5.Ill, the selection rules for a C-type band are: 

Ai <=> B 2 and A 2 <=> Bi (5.27) 

or in K a K c notation: 

ee <=> oe and eo <=* oo (5.28) 

The restrictions on changes in K a and K c are therefore: 

A K a = ± 1 , ±3, ±5,... and A K C = 0, ±2, ±4,... (5.29) 

so that C-type bands consist of the following branches, in A K a A J 

notation: 

Branch AJ. AKa Intensitv 

+1 +1 0,0 strong 

PP -1 -1 0,0 strong 
r Q 0 +1 0,-2 intermediate 

PQ 0 -1 0,+2 intermediate 

rp -1 +1 -2,-2 weak 

PR +1 -1 +2,+2 weak 
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V.E. The Rotational Hamiltonian. 
V.E.1. The Hamiltonian without vibration interaction. 

The rotational Hamiltonian representing the purely kinetic 

energy, T, of a freely rotating rigid asymmetric top molecule is: 

Hrigid = (B x + B y) J 2 / 2 + [B z - (B x + By)/2] J z

2 / 2 + 

(Bx - B y ) (J + 2 + J.2)/4 (5.20) 
A A A A A A 

where J+ 2 + J . 2 = (J x + U y ) 2 + (J x - i J y ) 2 , and the quantities B a = 

h / 8 7 i 2 c l a (in cm- 1) are the rotational constants . 1 5 2 B X ) B y and B z 

are to be identified with the rigid-rotor rotational constants B, C 

and A, respectively, for the l r representation which is appropriate 

for a near-prolate asymmetric top molecule. 

The third term of equation (5.20) (which vanishes in a symmetric 
A- . 

top) produces a matrix representation for H r |9 l d that contains off-

diagonal matrix elements with AK ± 2: 

<J,K±2|J ±2 |JK> = (f|2/4)[J(J + 1) - K(K ± 1)] 1 / 2 

x [J(J + 1) - ( K ± 1 ) ( K ± 2)]1'2 (5.21) 
A . 

The matrix of H r |9 | d can be factorized at once into blocks containing 

only odd or even values of K in the basis set (because no matrix 

elements of the type AK = ±1 arise from (5.20). These submatrices 

can be further factorized by taking sums and differences of the 

original symmetric top basis functions by means of a Wang 

similarity t ransformat ion 1 5 0 : 

|J,0+> = |J,0> 

|J,K±> = (1Al2){|J,K> ± |J,-K>} , (K > 0) (5.22) 

The four submatrices constructed from the basis functions |J,K ±> are 

designated E±and Q± for even and odd K, respectively. 
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To obtain a more accurate description of the rotational structure 

of an asymmetric top, centrifugal distortion must be considered. 

Centrifugal forces cause expansion (or stretching) and distortion in 

a rotating molecule, which lead to deviations from the rigid rotor 

Hamiltonian that increase with increasing angular momentum. The 

distortion Hamiltonian, H'd, is therefore treated as a power series 

which adds higher degree angular momentum terms to the rigid rotor 

Hamiltonian: 

H'd = (f>4/4) I T „ P y 8 JaJpJrJs (5.23) 

afJyS 

where T a p Y s is the centrifugal distortion constant and a, (3, y and 5 = x, 

y or z . 1 5 3 The number of terms in the general power series of 

equation (5.23) is 81. However, symmetry constraints reduce the 

number to 6 for an orthorhombic molecule (i.e., one which possesses 

at least two perpendicular planes of symmetry), since all terms 

vanish which are antisymmetric with respect to one or more of the 

symmetry operations. All of the remaining terms have only even 

powers of J , since those with odd powers change sign under the 

operation of Hermitian conjugation and time r e v e r s a l . 1 5 2 ' 1 5 4 

Further reduction of the orthorhombic Hamiltonian follows one of 

two routes: the "asymmetric top reduction" for the general 

asymmetric top, or the "symmetric top reduction" for asymmetric 

tops that are nearly symmetric. In the A-reduction the J+ 4 + J . 4 

term is eliminated, leaving only terms of the type A K = 0, ± 2 , 

whereas the "S" reduced Hamiltonian retains AK = ±4 , ±6, . . . terms. 

Aminoborane was treated using Watson's "A" reduced 
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H a m i l t o n i a n . 1 5 2 Written out completely up to terms in J 8 , this 

i s : 1 5 4 

I W A ) = B X ( A ) J X

2 + B Y ( A ) j y
2 + B Z ( A ) J 2

2 - A J J 4 - A j K J 2 J Z

2 - A K J Z

4 

- 2 5 j J 2 ( J x 2 - J y

2 ) - 8 K [ J 2

2 ( J x 2 - Jy 2 ) + (Jx 2 - J y 2 ) J z 2 ] + <X>J J 6 

+ O j K J 4 j z

2 + 0 K j J 2 J Z

4 + 0 K J Z

6 + 2 ( j)jj4 (J X

2 - j y 2 ) 

+ <!>JKJ2tfz2(Jx2 - Jy 2 ) + (Jx 2 " Jy 2 )Jz 2 ] + <MJz 4(Jx 2 - Jy 2 ) 

+ (3x2 - J y 2 ) J z 4 ] + L j J 8 + L j J K J 6 J z 2 + L J K J 4 J z 4 + L K K j J 2 J z 6 

+ L K J z 8 + 2 l j j 6 ( j x 2 . j y 2 ) + | J K J 4 [ j z 2 ( j x 2 . j y 2 ) + ( j x 2 . j y

2 ) j z

2 ] 

+ l K j J 2 [ J z 4 ( J x 2 " Jy 2 ) + (Jx 2 - J y 2 ) J z 4 ] + I K [ J Z

6 ( J X 2 " J y 2 ) 

+ (Jx 2 - Jy 2)JAz 6] (5.24) 

The fitting program employed in this work to analyze the 

aminoborane vj band included all matrix elements through to the 

off-diagonal sextic terms (J6), plus the diagonal elements from the 

octic terms: 

E K I K = <J,K | H R O T ( A ) | J , K > 

= [ B X ( A ) + B Y ( A ) ] J ( J + 1)/2 + ( B Z ( A ) + [ B X ( A ) + B Y ( A ) ] / 2 } K 2 

- A j J 2 ( J + 1) 2 - Aj K J(J + 1 ) K 2 - A K K 4 + O J J 3 ( J + 1)3 

+ <*>JKJ 2 (J + 1 ) 2 K 2 + 0 K j J ( J + 1)K4 + 0 K K 6 + LJJ4(J + 1)4 

+ LjJKJ 3 (J + 1 ) 3 K 2 + L J K J 2 ( J + 1 ) 2 K 4 + L K KJJ (J + 1 ) K 8 + L K K 8 

(5.25) 

EK±2 ,K = <J ,K±2 | Hrot<A> | J , K > 

= { [B X (A ) - B Y (A)] /4 - 8jJ(J + 1) - 8K[(K ± 2 ) 2 + K 2 ] / 2 + 

+ (J)jJ2(J + 1) 2+ 4> J K J(J + 1)[(K ± 2 ) 2 + K 2 ] /2 + <J)K[(K ± 2)4 + K4]/2} 

{[J(J + 1- K ( K ± 1)][J(J + 1) - ( K ± 1)(K ± 2)]}1/2 (5.26) 
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V.E.2. Coriolis interaction. 
The only perturbation present in the \-? fundamental, up to the 

limit of this analysis at K a ' =11, is a Coriolis interaction globally 

affecting all levels to an extent which increases quadratically with 

the rotational quantum number K. A Coriolis interaction is the 

coupling of two vibrations by the rotation of the molecule. Put 

simply, certain combinations of vibrations generate an internal 

angular momentum which is part of the total angular momentum of 

the molecu le . 1 5 5 In other words, rotational and vibrational motion 

are not separable. This internal, or vibrational, angular momentum 

is a vector, written n , whose components are Tlx, Ily and TIz- To 

obtain the rotational Hamiltonian, the vibrational angular momentum 

must be subtracted from the total angular momentum, P, to give the 

rotational angular momentum. Instead of the simple form 

H - f |2 ( j x 2/ | x + J y 2 / | y + J z 2/ | z ) /2 + H v i b (5.27) 

the rotation-vibration Hamiltonian (in joules) b e c o m e s 1 5 5 ' 1 5 6 ' 1 5 7 : 

H = fi2{ [(Px - ftx)]2/lx + [(Py - n y )]2/ |y + [(P2 - f h ) ] 2 / | 2 }/2 + H v i b 

(5.28) 

H = f j 2 ( P x 2 / | x + p y 2 / | y + P 2 2 / | z ) / 2 - f i 2 ( n x P x / l x + ftyPy/ly + n z P z / l z ) 

+ f i 2 (n x 2/ iy+ n y 2 / i y + n z 2 / i z ) + H v i b (5.29) 

The first term in equation (5.29), independent of the vibrational 

angular momentum, is the rigid rotor Hamiltonian, while the third 

term, independent of rotational angular momentum, affects only the 

vibrational energy. The second term, a function of both the 

vibrational and the total angular momenta, represents Coriolis 

coupling. The Coriolis interaction can therefore be considered as the 

scalar product of the rotational and vibrational angular momenta, 
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the magnitude of which increases the faster the molecule rotates 

and the nearer the vibrations approach degeneracy. According to 

Jahn's rule two normal coordinates Qk and Q| are coupled via an a-

axis Coriolis interaction only if the product of their irreducible 

representations is of the same symmetry as P a - 1 5 7 Thus the V 7 (Bi) 

fundamental at 1005 cm- 1 undergoes an a-axis Coriolis interaction 

with the nearby v n (B 2) fundamental at 1122 c m - 1 , since Bi x B 2 

gives the A 2 symmetry species (corresponding to rotation around the 

a-axis). The v n vibration in turn interacts with vs (A-|) at 1145 

c m " 1 (the B H 2 symmetric bending vibration) by a c-axis Coriolis 

interaction, while the direct product of the V 7 and vs symmetries 

produces Bi symmetry for a b-axis Coriolis interaction. Each of 

these three vibrations is therefore affected by the other two. 

The vibrational angular momentum, in units of fi, is defined a s 1 5 5 : 

I I « - I Ck|(«)qkPl(co|/cok)1 / 2 (5.30) 
k.l 

where the normal coordinate Q and its momentum conjugate, P = 

-ih3/3Q, are expressed in the dimensionless forms, q and p: 

Qk = Y k 1 / 2 Q k (5.31) 

Pk = Pk/Yk 1 / 2h (5.32) 

Yk = 27iCG)k/h (5.33) 

The Coriolis coupling constant, Ck|(°0, is a measure of the angular 

momentum about the a-axis induced by the interaction of two 

normal vibrational modes, Qk and Q|, having frequencies (in cm- 1) of 

cok and co|. 
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V.F. Band Analysis and Discussion. 
Aminoborane's BH2-wag forms a C-type band whose appearance 

is characterized by a central spike, due to the asymmetry of the 

molecule causing low-K Q branches to pile up about the band origin 

(see Fig. 5 .5) . 1 5 8 At high resolution (Fig. 5.6), it can be seen that the 

spike is composed largely of the two lowest Q branches, PQi and rQo 

(using the notation A K aAJKa")- The | i n e s of the 1 1 B form of NH2BH2 

were assigned by a process of successive refinement of the upper 

state constants. The ground state constants were held fixed at the 

best values available so f a r , 1 3 3 and the structure of the band was 

calculated using a prediction program. As the upper state constants 

were improved the prediction became more accurate so that more 

lines could be assigned. The assignments were limited to a 

maximum upper state value of K a equal to 11, as a result of the 

Boltzmann distribution at room temperature. Lines of ammonia, 

present as an impurity in the spectrum, were used as an internal 

standard for absolute frequency calibration. The NH3 frequencies 

were taken from the diode laser study by Job et a l . 1 5 9 

A complete set of molecular constants cannot be given at this 

time because the V 5 fundamental has not yet been observed directly 

since its dipole derivative is very small. Without lines from V 5 , it is 

extremely difficult to analyze the V 5 - V 7 - V 1 1 Coriolis interactions. 

However, it is hoped that a sufficient portion of the V 5 band can be 

assigned in the near future to allow a fit to be made. The data were 

fitted to the matrix elements in equation (5.25) and (5.26) by means 

of a least-squares program written by Dr. Wyn Lewis-Bevan. In this 

program the Hellmann-Feynman theorem is used to calculate the 
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Fig. 5.5. NH2BH2 spectrum of the v7 band and the vs and v n bands 
with which it undergoes Coriolis interactions. 
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Fig. 5.6. Center of the V 7 band of NH2 1 1BH2. 
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derivatives of the energy levels with respect to the parameters 

(see Section IV.C). The computations were performed on the 

University of British Columbia Computing Centre Amdahl 470 V/8 

mainframe computer. 

Two sets of molecular constants appear in Table 5.IV. Both were 

obtained by ignoring the Coriolis perturbation, but one was produced 

from a reduced data set of 606 transitions With a maximum K A ' of 6. 

In the excited state, all constants were floated except the off-

diagonal sextics, namely §j, < | > J K , and <J>K- Eliminating all K A ' values 

above six reduces the standard deviation in the line positions from 

0.001 cnrr1 to 0.0003 c n r 1 . This is expected from the K dependence 

of the Coriolis coupling. The standard errors of most constants 

improved when the data set was reduced, except for very small ones 

(= 10"8 cm- 1) and with matrix elements dependent on K . Note in 

particular that O K J , L K K J and I _ K , which accompany the variables K 6 , 

J ( J + 1 ) K 6 and K 8 , are very poorly determined in the reduced data set. 

This reflects the importance of a wide range of K values in 

determining terms containing high powers of K . 

Without including Coriolis terms in the Hamiltonian, the 

constants in Table 5.IV are not true values. Rather, they comprise 

internally consistent sets which have incorporated the effects of 

the Coriolis interactions in order to fit the data. This is 

particularly evident in that the A K and 8 K constants are negative, 

rather than positive as they should be. Since A K and 8 K accompany 

the variables - K 4 and - [ ( K ± 2 ) 2 + K 2 ] , these terms are the most 

sensitive to Coriolis interactions. An estimate of -0.406 was made 

for the V7-V11 a-axis Coriolis coupling constant (£7,11) from the V7 
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Table 5.IV. Molecular constants of the \j band of N H 2 1 1 B H 2 (in cm-
1) , for both the full and reduced (K a ' ^ 6) data sets. The numbers in 
parentheses denote one standard deviation in units of the last 
significant figures. Where a ground state constant is blank, it was 
fixed to zero. 

EXCITED STATE GROUND STATE 
Reduced Full 

T 0 
1004.68420(5) 1 0 0 4 . 6 8 3 1 ( 2 ) 

A 4.51446(2) 4 .51512(3) 4 .610569(8 ) 

B 0.9060531(8) 0.90605(2) 0 .916897(2) 

C 0.7646658(7) 0.76467(2) 0 .763137(2) 

Aj 1.173(1) x 10-6 1.161(3) x 10-6 1.542(2) x 10-6 

AjK 1.04(1) x 10-5 1.15(2) x 10-5 9.87(3) x 10-6 

A K 
-1.17(3) x 10-4 -0.68(1) x 10-4 8.692(8) x 10-5 

§ J 1.116(6) x 10-7 1.06(2) x 10-7 2.86(3) x 1 0 - 7 

8 K 
-1 .197(6) x 10-5 -1.89(2) x 10-5 1.016(2) x 10-5 

<E>JK 6.7(2.2) x 10-10 -3.3(2) x 10-10 

<E>KJ -4.3(7) x 10-8 5.7(4) x 10-8 7.0(32) x 10-11 

<DK -6.7(1.6) x 10-7 3.7(2) x 10-7 5.94(30) x 1 0 - 9 

LjK -2.5(7) x 10-11 6.4(3) x 10-11 

L-KKJ 4.6(1.3) x 10-10 

L K 
3.8(2.3) x 10-9 

o 0 . 0 0 0 3 0.001 
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and v n d a t a . 1 6 0 This is in good agreement with a force field 

estimate of -0 .40 . 1 6 1 



Appendix I. NbN 3<D_3A Correlation Matrix 

B' A D ' X D' A' X' i U h.i' h 0 ' h + 1 ' b' e2qQ' 
B' 1 -0.462 0.105 0.028-0.107 0.034 0.055-0.002 0.039 0.022 0.025 0.013 

A D ' 1 -0.159-0.258-0.158 0.333 0.157-0.032 0.022 0.047-0.319-0.004 
XD' 1 0.248-0.273 0.004 0.049-0.072 0.242-0.143 0.133-0.005 

A' 1 0.241-0.515-0.235 0.012 -0.073-0.004 0.671 0.049 
X' 1 -0.573 -0.187 0.124-0.391 0.151 0.392 0.011 
i 1 0.517 -0.1 17 0.121 -0 .011-0.706-0.013 
D' 1 0.002 0.066 0.151-0.119-0.016 

h.i' I -0.027 -0.004 -0.002 -0.068 
h 0 ' 1 -0.027 -0.075 -0.002 
h+i' 1 0.101 -0.018 

b' 1 0.041 
e2qQ' I 

Ul 



T 0 B" A D " XD" A" X" f D" h . r h 0

M h + 1 " b.i/o" b 0 / + r 
B' -0.038 0.995-0.462-0.017 0.026-0.113 0.011 -0.131 -0.025 0.032 0.021 0.027 0.023 

A D ' -0 .278-0.464 0.974-0.181 -0.275 -0.100 0.272 0.232 0.013 0.030 0.027-0.318-0.318 
XD' -0.108 0.091-0.206 0.884 0 .250-0.255-0.168-0.257-0.068 0.195-0.106 0.127 0.146 

A' 0.152 0.026 -0.355 0.396 0.999 0 .235-0 .882-0 .455-0 .026-0 .078 0.041 0.670 0.672 
X' 0 .592-0.091-0.060-0.114 0.242 0.965-0.268-0.067 0.084-0.345 0.150 0.398 0.377 
i -0.902-0.004 0.227-0.267 -0.520-0.382 0.680 0.284-0.063 0.123-0.050-0.701 -0.701 
D' -0.512-0.022 0.089-0.145 -0.247-0.053 0.246 0.518 0.017 0.077 0.134-0.116-0.012 

h-i ' 0.111 0.008-0.017-0.031 0.021 0.106-0.060 0.152 0.848-0.016 0.003 0.010 0.002 
h 0 ' -0.116 0.036 0.005 0.221 -0.073-0.415 0.072 0.105-0.011 0 .910-0 .012-0 .082-0 .062 
h+i' 0.034 0.034 0.073-0.110 -0.020 0.151 0.056 0.356 0.000-0.006 0.933 0.096 0.081 

b' 0.408 0.025-0.350 0.312 0.670 0.330-0.877-0.191-0.050-0.078 0.153 0.996 0.994 
e2qQ'-0.016 0.015-0.017-0.003 0.047 0 .018-0.058-0.008-0.047 0.001-0.012 0.043 0.036 

T 0 1 0.007-0.097 0.147 0.159 0.368-0.301-0.110 0.074-0.112 0.050 0.401 0.400 
B" 1 -0.453-0.024 0.025-0.108 0.012 -0.130-0.017 0.028 0.031 0.027 0.022 

A D " 1 -0.197-0.364-0.045 0.346 0.269 0.028 0.014 0.045-0.350 -0.352 
X\f 1 0 .397-0.176-0.351-0.308-0.042 0.187-0.069 0.307 0.324 
A" I 0.234-0.883 -0 .460-0 .021-0 .078 0.028 0.669 0.671 
X" 1 -0.221-0.048 0.069-0.365 0.148 0.339 0.316 
y" 1 0.442-0.005 0 .078-0.008-0.877-0.880 
D" I 0.149 0.121 0.318-0.186-0.200 
h_i" 1 -0 .010-0.004 -0.051-0.051 
h 0 " 1 -0.01 1 -0.079 -0.078 
h + 1 " 1 0.153 0.150 

b.1/0" 1 0-993 
b o / + i " 



APPENDIX II. Transitions 

Appendix II.A. 3 0 2 - 3 A i . 

E 
J " F" J " F ft 
1 4 .5 pR 16146 .4540 2 5 5 
1 4 .5 qR 1 6 1 4 6 .5474 2 6 5 
1 4 .5 r R 1 6146 .6629 3 5 .5 
1 5 .5 pR 16146 .7154 3 6 .5 
1 5 .5 qR 16146 .8310 3 7 .5 
1 5 . 5 r R 16146 .9692 4 5 .5 
2 2 .5 pR 16147 .3250 4 6 .5 
2 2 .5 qR 16147 .3517 4 8 .5 
2 2 .5 CO 16147 .3705 5 4 .5 
2 2 .5 r R 16147 .3890 5 5 .5 
2 3 . 5 PR 16147 . 3 8 3 3 5 6 .5 
2 3 .5 qR 16147 .4205 5 7 .5 
2 3 .5 CO 1 6 1 4 7 .4442 5 8 5 
2 3 .5 r R 16147 .4682 5 9 5 
2 4 .5 pR 16147 .4643 6 5 5 
2 4 5 qR 16147 .5121 6 6 5 
2 4 5 r R 16147 .5698 6 7 5 
2 5 5 qR 16147 6 2 7 2 6 9 5 
2 5 5 r R 16147 6 9 4 8 6 10 5 
2 6 5 qR 16147 7 6 6 9 7 2 5 
2 6 5 r R 16147 8 4 3 6 7 3 5 
3 1 5 pR 16148 3 5 0 6 7 4 5 
3 1 5 qR 16148 3 6 0 4 * 7 5 5 
3 1 5 CO 16148 3 6 8 4 * 7 6 5 
3 1 5 r R 16148 3 7 6 3 7 7 5 
3 2 5 PR 16148 3 7 1 2 * 7 8 5 
3 2 5 qR 16148 3 8 7 3 7 9 5 
3 2 5 CO 16148 3 9 8 5 7 10 5 
3 2 5 r R 16148 4 0 9 8 7 1 1 5 
3 3 5 pR 16148 4 0 3 2 8 3 5 
3 3 5 qR 16148 4 2 5 7 8 4 5 
3 3 5 CO 16 148 4 3 9 9 8 5 5 
3 3 5 r R 16148 4541 8 6 5 
3 4 5 pR 16148 4 4 6 9 8 7 5 
3 4 5 qR 16148 4 7 5 5 8 8 5 
3 4 5 CO 16148 4 9 3 0 8 9 5 
3 4 5 r R 16148 5 1 0 3 8 10 5 
.3 5 5 qR 16148 5 3 7 5 8 1 1 5 
3 5 5 CO 16148 5 5 8 2 8 12 5 
3 5. 5 r R 16148 5 7 8 2 9 4 5 
3 6. 5 qR 16148 61 18 9 5 5 
3 6. 5 r R 16148 6 5 8 3 9 6 5 
3 7 . 5 qR 16148 6 9 9 6 9 6 5 
3 7 . 5 r R 16148 7 5 1 2 9 6 5 
4 O. 5 r R 1 6 149 3518 9 7 5 
4 1 . 5 qR 1 6 1 4 9 3 5 5 3 9 7 5 
4 1 . 5 CO 1 6 1 4 9 . 3 6 0 7 9 8 5 
4 1 . 5 r R 1 6 1 4 9 . 3661 9 8 5 
4 2 . 5 qR 1 6 1 4 9 . 3 7 2 5 9 9 5 
4 2 . 5 C O 16149 3801 9 9 5 
4 2 . 5 r R 1 6 1 4 9 . 3 8 7 5 9 9 5 
4 3. 5 qR 1 6 1 4 9 . 3 9 6 9 9 10 5 
4 3. 5 CO 1 6 1 4 9 . 4 0 6 4 9 10. 5 
4 3. 5 r R 1 6 1 4 9 . 4 1 5 9 9 10. 5 
4 4 . 5 qR 1 6 1 4 9 . 4 2 8 2 9 1 1 . 5 
4 4 . 5 CO 1 6 1 4 9 . 4 3 9 7 9 1 1 . 5 
4 4 . 5 r R 1 6 1 4 9 . 4 5 1 4 9 1 1 . 5 
4 5. 5 qR 1 6 1 4 9 . 4 6 7 0 9 12. 5 
4 5. 5 CO 1 6 1 4 9 . 4 8 0 7 9 12. 5 

147 
of the 3 < D _ 3 A System of NbN.a 

Q £ 

J" F" 
qO 16144 7 0 7 4 3 6. 5 PP 1 6 1 4 1 . 71 14 
qO 16144 9 1 7 9 3 7 . 5 pP 1 6 1 4 1 . 8 9 3 0 
qO 16144 5 9 7 5 4 3. 5 pP 1 6 1 4 0 . 4 1 5 5 
qO 16144 6 9 8 2 4 4 . 5 PP 1 6 1 4 0 . 4 6 5 3 
qO 16144 .8162 4 5. 5 PP 1 6 1 4 0 . 5 2 9 3 
qO 16144 5 2 5 5 5 4 . 5 PP 1 6 1 3 9 . 4 4 7 4 
qO 16144 .5854 5 5. 5 PP 1 6 1 3 9 . 4 8 5 8 
qO 16144 .7337 5 6. 5 PP 1 6 1 3 9 . 5321 
qO 16144 .4281 5 7 . 5 pP 1 6 1 3 9 . 5 8 7 5 
qO 16144 .4622* 5 8 . 5 pP 1 6 1 3 9 . 6 5 0 6 
qO 16144 .5010 5 9. 5 PP 1 6 1 3 9 . 7 2 1 6 
qO 16144 .5462 6 3. 5 PP 1 6 1 3 8 . 3 8 8 4 * 
qO 16144 5 9 7 5 6 4 . 5 pP 1 6 1 3 8 . 4 0 8 3 * 
qO 16144 6 5 5 5 6 5 . 5 PP 1 6 1 3 8 . 4 3 3 9 
qO 16144 3 9 6 1 * 6 6 5 pP 16138 4 6 4 8 
qO 16144 4 2 3 2 * 6 7 5 PP 16138 5 0 1 5 
qO 16144 4 5 5 6 * 6 8 5 pP 16138 5 4 3 5 
qO 16144 5 3 1 4 6 9 5 pP 16138 5 9 0 9 
qO 16144 5764 6 10 5 PP 16138 6441 
qO 16144 2 8 2 9 7 2 5 pP 16137 3 3 4 7 
qO 16144 2937 7 3 5 PP 16137 3 4 4 9 
qO 16144 3 0 6 9 * 7 4 5 pP 16137 3 5 9 2 
qO 16144 3241 7 5 5 PP 16137 3 7 7 3 
qO 16144 3 4 4 5 * 7 6 5 PP 16137 3992 
qO 16144 3674 7 7 5 pP 16137 4251 
qO 16144 3 9 3 8 7 6 5 p P 16137 4 5 4 8 
qO 16144 4 2 3 2 7 9 5 PP 16137 4 8 8 6 
qO 16144 4 5 5 6 7 10 5 pP 16137 5 2 6 3 
qO 16144 4 9 1 5 7 1 1 5 PP 16137 5 6 7 8 
qO 16144 2 2 1 6 8 3 .5 pP 16136 .2870 
qO 16144 2 3 2 5 8 4 . 5 PP 16136 .2976 
qO 16144 2 4 5 0 8 5 .5 pP 16136 .3108 
qO 16 144 2 GOO 8 6 .5 PP 16136 . 3 2 7 0 
qO 16144 2 7 8 1 * 8 7 .5 PP 16136 .3461 
qO 16144 2 9 7 6 8 8 .5 PP 16136 . 3 6 8 2 
qO 16144 3198 8 9 .5 PP 16136 .3931 
qo 16144 3 4 4 5 8 10 .5 PP 16136 .421 1 
qO 16144 3 7 1 9 8 1 1 .5 PP 16136 .4520 
qO 16144 4 0 2 4 8 12 .5 pP 16136 .4858 
qO 16144 1476* 9 4 .5 pP 16135 .2249 
qO 16144 1575* 9 5 .5 PP 1 6 1 3 5 .2350 
CO 16144 1647* 9 6 .5 pP 16135 .2472 
qO 16144 1 6 9 5 * 9 7 .5 PP 16135 .2616 
CO 16144 1750* 9 8 .5 pP 1 6 1 3 5 .2784 
qQ 16144 1830 9 9 .5 PP 16135 .2974 
CO 16144 1888* 9 10 .5 p P 1 6 1 3 5 .3187 
qO 16144 1989 9 1 1 .5 PP 16135 . 3422 
CO 16144 2 0 4 9 * 9 12 .5 PP 16135 .3681 
CO 16144 2 0 9 2 * 9 13 .5 pP 1 6 1 3 5 .3961 
qO 16144 2 1 5 7 

pP 

CO 16144 2 2 2 6 * 
CO 16144 2 2 7 9 * 
qO 16144 2 3 5 0 
C O 1 6 1 4 4 . 2 4 3 1 * 
CO 1 6 1 4 4 . 2 4 8 5 * 
qO 1 6 1 4 4 . 2 5 6 2 
CO 1 6 1 4 4 . 2 6 4 5 * 
CO 16144 2 7 1 0 * 
qO 1 6 1 4 4 . 2 7 9 4 
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Appendix II.A, continued. 3®2

m3&i. 

H Q P 

J" F n J" F It 
4 5 .5 rR 16149 4943 9 13 5 C O 16144 2947* 
4 6 .5 qR 16149 5134 9 13 5 qO 16144 3047* 
4 6 .5 C O 16149 5292 10 5 5 qO 16144 0616* 
4 6 5 rR 16149 5446 10 6 5 qO 16144 0707* 
4 7 5 qR 16149 5678 10 6 5 CO 16144 0749* 
4 7 5 rR 16149 6026 10 7 5 qO 16144 0815* 
4 8 5 qR 16149 6298 10 8 5 CO 16144 0888* 
4 8 5 rR 16149 6681 10 8 5 qO 16144 0937 
5 1 5 CO 16150 3267 10 8 5 CO 16144 0989* 
5 1 5 rR 16150 3306 10 9 5 CO 16144 1018* 
5 2 5 qR 16150 3348 10 9 5 qO 16144 1075 
5 2 5 CO 16150 3401 10 9 5 CO 16144 1 132* 
5 2 5 rR 16150 3454 10 10 5 CO 16144 1 167* 
5 3 5 qR 16150 3513 10 10 5 qO 16144 1226 
5 3 5 C O 16150 3581 10 10 5 C O 16144 1289* 
5 3 5 rR 16150 3649 10 1 1 5 CO 16144 1328* 
5 4 5 qR 16150 3726 10 11 5 qO 16144 1393 
5 4 5 CO 16150 3808 10 12 5 CO 16144 1507* 
5 4 5 rR 16150 3891 10 12 5 qO 16144 1575 
5 5 5 qR 16150 3989 10 13 5 qO 16144 1775 
5 5 5 CO 16150 4086 10 14 5 qO 16144 1989 
5 5 5 rR 16150 4 184 1 1 7 5 CO 16143 9767 
5 6 5 qR 16150 4302 11 8 5 CO 16143 9783 
5 6 5 CO 16150 4414 11 8 5 qO 16143 9824 
5 6 5 rR 16150 4528 11 8 5 CO 16143 9869 
5 7 5 qR 16150 4669 11 9 5 CO 16143 9889 
5 7 5 CO 16150 4795 11 9 5 qO 16143 9933 
5 7 5 rR 16150 4921 11 9 5 CO 16143 9982 
5 8 5 qR 16150 5088 11 10 5 CO 16144 0004 
5 8 5 C O 16150 5228 11 10 5 qo 16144 0053 
5 8 5 rR 16150 5364 1 1 10 5 CO 16144 0106 
5 9 5 rR 16150 5862 11 11 5 CO 16144 0134 
6 1 5 rR 16151 2772 11 11 5 qO 16144 0188 
e 2 5 CO 16151 2838 11 11 5 CO 16144 0246 
6 2 5 rR 16151 2878 11 12 5 CO 16144 0278 
6 3 5 qR 16151 2917 11 12 5 qO 16144 0334 
6 3 5 CO 16151 2968 11 12 5 CO 16144 0396 
6 3 5 rR 16151 3019 11 13 5 CO 16144 0431 
6 4 5 qR 16151 3071 11 13 5 qO 16144 0494* 
6 4 5 CO 16151 3133 11 14 5 qO 16144 0666* 
6 4 5 rR 16151 3195 11 15 5 qO 16144 0852 
6 5 5 qR 16151 3260 12 7 5 CO 16143 8591 
6 5 5 CO 16151 3332 12 8 5 CO 16143 8609 
6 5 5 rR 16151 3407 12 8 5 CO 16143 8671 
6 e 5 qR 16151 3485 12 9 5 CO 16143 8684 
6 6. 5 CO 16151 3569 12 9 5 qO 16143 8722 
6 6 5 rR 16151 3652 12 9 5 CO 16143 8763 
S 7 5 qR 16151 3748 12 10 5 CO 16143 8778 
6 7. 5 CO 16151. 3843 12 10 5 qO 16143 8819 
6 7. 5 rR 16151 3937 12 10 5 CO 16143 8864 
6 8 5 qR 16151 4046 12 1 1 5 CO 16143 8882 
€ 8 5 C O 16151 4153 12 1 1 5 qO 16143 8928 
€ 8 . 5 rR 16151. 4256 12 1 1 5 CO 16143 8977 
6 9. 5 qR 16151. 4385 12 12 5 CO 16143 8997 
6 9. 5 C O 16151 . 4501 12 12 5 qO 16143 9046 
6 9. 5 rR 16151 4613 12 12 5 CO 16143 9097 
e 10. 5 rR 16151. 5009 12 13 5 CO 16143 9121 
7 2. 5 rR 16152. 2180 12 13 5 qO 16143 9175 
7 3. 5 C O 16152. 2246 12 13 5 CO 16143 9230 
7 3. 5 rR 16152 2287 12 14 5 C O 16143 9257 
7 4 . 5 CO 16152. 2370 12 14 5 qO 16143 9315 
7 4 . 5 rR 16152. 2419 12 14 5 CO 16143 9374 
7 5. 5 qR 16152. 2461 12 15 5 CO 16143 9405 
7 5. 5 C O 16152. 2521 12 15 5 qO 16143 9464 
7 5. b rR 16152. 2578 12 15 5 CO 16143 9525 
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Appendix II.A, continued. 3<D2- 3Ai. 

H fl £ 
J" F n 0" F 
7 6 5 qR 16152 2632 12 16 5 CO 16143 9559 
7 6 5 CO 16152 2697 12 16 5 qO 16143 .9626» 
7 6 5 rR 16152 2762 13 9 5 qO 16143 7435 
7 7 5 qR 16152 2827 13 10 5 qO 16143 7524 
7 7 5 CO 16152 2900 13 10 5 CO 16143 7553 
7 7 5 rR 16152 2972 13 1 1 5 CO 16143 7562 
7 8 5 qR 16152 3047 13 1 1 .5 qO 16143 .7602 
7 8 5 CO 16152 3130 13 12 .5 qO 16143 .7698 
7 8 5 rR 16152 3210 13 12 . 5 CO 16143 .7744 
7 9 5 qR 16152 3298 13 13 . 5 CO 16143 . 7756 
7 9 5 CO 16152 3388 13 13 . 5 qO 16143 .7801 
7 9 5 rR 16152 3477 13 13 .5 CO 16143 .7851 
7 10 5 qR 16152 3578 13 14 . 5 CO 16143 . 7870 
7 10 5 CO 16152 3676 13 14 5 qO 16143 7916 
7 10 5 rR 16152 3772 13 14 5 CO 16143 7966 
7 11 5 CO 16152 3995 13 15 5 CO 16143 .7986 
7 11 5 rR 16152 4096 13 15 5 qO 16143 8036 
8 3 5 rR 16153 1443 13 15 5 CO 16143 .8099 
8 4 5 CO 16153 1507 13 16 5 CO 16143 8113 
8 4 5 rR 16153 1546 13 16 5 qO 16143 .8168 
8 5 5 CO 16153 1621 13 17 5 qO 16143 .8307 
8 5 5 rR 16153 1668 14 10 5 qO 16143 6131 
8 6 5 CO 16153 1758 14 1 1 5 qO 16143 6199 
8 6 5 rR 16153 1810 14 12 5 qo 16143 6279 
8 7 5 CO 16 153 1914 14 13 5 qO 16143 6365 
8 7 5 rR 16153 1973 14 14 5 qO 16143 6459 
8 8 5 CO 16153 2091 14 15 5 qO 16143 6557 
8 8 5 rR 16153 2157 14 16 5 qO 16143 6662 
8 9 5 CO 16153 2290 14 17 5 qO 16143 6778 
8 9 5 rR 16153 2362 14 18 5 qO 16143 6901 
8 10 5 qR 16153 2432 15 10 5 qO 16143 4662» 
8 10 5 CO 16 153 251 1 15 1 1 5 qO 16143 4721» 
8 10 5 rR 16153 2589 15 12 5 qO 16143 4787 
8 1 1 5 CO 16153 2754 15 13 5 qO 16143 4854 

15 14 5 qO 16 143 4931 
15 15 5 qO 16143 501 1 
15 16 5 qO 16143 5100 
15 17 5 qO 16143 5193 
15 18 5 qO 16143 5293 
15 19 5 qo 16143 5401 
16 12 5 qO 16143 321 1* 
16 13 5 qO 16143 3267 
16 14 5 qO 16143 3331 
16 15 5 qO 16143 3393 
16 16 5 qO 16143 3465 
16 17 5 qO 16143 3544 
16 18 5 qO 16143 3625 
16 19 5 qO 16143 3713 
16 20 5 qO 16143 3805 
17 12 5 qO 16143 1555 
17 13 5 qO 16143 1602 
17 14 5 qO 16143 1650 
17 15 5 qO 16143 1706 
17 16 5 qO 16143 1763 
17 17 5 qO 16143 1824 
17 18 5 qO 16143 1890 
17 19 5 qO 16143 1963 
17 20. 5 qO 16143 2037 
17 21 . 5 qO 16143 2118 
18 13. 5 qO 16142 9849 
18 14 . 5 qO 16142 9887 
18 15. 5 qO 16142 9932 
18 16 . 5 qO 16142. 9978 
18 17. 5 qO 16143. 0028 
18 18. 5 qO 16143. 0081 



Appendix II.A, continued. 3 0 2 - 3 A i . 

R a 

0" F M 
16 19 5 qO 16143 0140 
18 20 5 QO 16143 0200 
18 21 5 qO 16143 0266 
18 22 5 qO 16143 0336 
19 15 5 qQ 16142 8074 
19 22 5 qO 16142 8404 
19 23 5 qO 16142 8462 
20 15 5 qQ 16142 6139 
20 16 5 qO 16142 6166 
20 17 5 qO 16142 6194 
20 18 5 qQ 16142 6230 
20 19 5 qQ 16142 6262 
20 20 5 qQ 16142 6301 
20 21 5 qQ 16142 6341 
20 22 5 qQ 16142 6387 
20 23 5 qQ 16142 6433 
20 24 5 qO 16142 6486 
21 16 5 qQ 16142 4132 
21 17 5 qo 16142 4152 
21 18 5 qQ 16142 4182 
21 19 5 qQ 16142 4207 
21 20 5 qO 16142 4233 
21 21 5 qQ 16142 4261 
21 22 5 qO 16142 4299 
21 23 5 qQ 16142 4337 
21 24 5 qO 16142 4378 
21 25 5 qQ 16142 4417 
31 27 5 qQ 16139 8508 
31 28 5 qQ 16139 8488 
31 29 5 qO 16139 8467 
31 30 5 qQ 16139 8423 
31 31 5 qO 16139 8408 
31 32 5 qO 16139 8382 
31 33 5 qQ 16139 8366 
32 28 5 qQ 16139 5394 
32 29 5 qQ 16139 5368 
32 31 5 qQ 16139 5321 
32 32 5 qQ 16139 5293 
32 33 5 qQ 16139 5268 
32 34 5 qO 16139 5242 
32 35 5 qQ 16139 5217 
33 28 5 qQ 16139 2199 
33 29 5 qQ 16139 2171 
33 30 5 qQ 16139 2143 
33 31 5 qQ 16139 2113 
33 32 5 qQ 16139 2083 
33 33 5 qQ 16139 2053 
33 34 5 qQ 16139 2023 
33 35 5 qQ 16139 1994 
33 36 5 qQ 16139 1966 
33 37 5 qQ 16139 1938 
34 29 5 qQ 16138 8863 
34 30 5 qQ 16138 8832 
34 31 5 qQ 16138 8798 
34 32 5 qQ 16138 8764 
34 33 5 qQ 16138 8730 
34 34 5 qQ 16138 8696 
34 35 5 qO 16138 8662 
34 36 5 qQ 16138 8628 
34 37 5 qQ 16138 8596 
34 38 5 qQ 16138 8562 
35 32 5 qQ 16138 5376 
35 34 5 qO 16138 5299 
35 35 5 qO 16138 5261 
35 36 5 qQ 16138 5222 



Appendix II.A, continued. 3 C>2- 3 Ai . 

R Q. 
J " F It 

35 37 .5 qo 16 138 5184 
35 38 5 qO 16138 5147 
35 39 .5 qo 16138 51 10 
36 31 .5 qO 16138 1934 
36 32 5 qo 16138 1893 
36 33 5 qO 16138 1853 
36 34 5 qO 16138 1812 
36 35 5 qO 16138 1773 
36 36 5 qO 16138 1729 
36 37 5 qO 16138 1686 
36 38 5 qo 16138 1642 
36 39 5 qO 16138 1601 
36 40 5 qO 16138 1559 
37 32 5 qO 16137 8315 
37 33 5 qO 16137 8270 
37 34 5 qO 16137 8226 
37 35 5 qO 16137 8181 
37 36 5 qO 16137 8136 
37 37 5 qO 16137 8087 
37 38 5 qo 16137 8044 
37 39 5 qO 16137 7995 
37 40 5 qO 16137 7950 
37 41 5 qO 16137 7904 
38 33 5 qO 16137 4595 
38 34 5 qO 16137 4548* 
38 35 5 qO 16137 4505 
38 36 5 qO 16137 4449 
38 37 5 qo 16 137 4403 
38 38 5 qO 16137 4352 
38 39 5 qO 16137 4305 
38 40 5 qO 16137 4251* 
38 41 5 qo 16137 4199 
38 42 5 qO 16137 4150 
39 34 5 qO 16137 077 1 
39 35 5 qo 16137 0720 
39 36 5 q O 16137 0669 
39 37 5 q O 16137 0617 
39 38 5 qo 16137 0563 
39 39 5 qO 16137 05 10 
39 40 5 qo 16137 0455 
39 4 1 5 qO 16137 0403 
39 42 5 qO 16137 0346 
39 43 5 qO 16137 0293 
40 35 5 qo 16136 6841 
40 36 5 qo 16136 6787 
40 37 5 qO 16136 6732 
40 38 5 qO 16136 6677 
40 39 5 qo 16136 6619 
40 40 5 qO 16136 6562 
40 41 5 qO 16136 6505 
40 42 5 qO 16136 6444 
40 43 5 qO 16136 6387 
40 44 5 qO 16136 6329 
41 36 5 qO 16136 2810 
41 37 5 qO 16136 2749 
41 38 5 qO 16136 2689 
41 39 5 qO 16136 2631 
41 40 5 qO 16136 2569 
41 41 5 qO 16136 2510 
41 42 5 qO 16136 2448 
41 43 5 q O 16136 2387 
41 44 5 qO 16136 2324 
41 45 5 qO 16136 2261 
42 37 5 qO 16135 8672 



Appendix II.A, continued. 

E 

3<j>2-3Ai. 

F 
4 2 38 .5 qO 16135 8 6 1 2 
42 39 .5 qO 16135 8 5 4 9 
42 4 0 5 qO 16135 .8485 
42 41 5 qO 16135 8421 
42 42 5 qO 16135 8 3 5 6 
42 43 5 qO 16135 8 2 9 3 
42 44 5 qO 16135 8 2 2 7 
42 45 5 qO 16135 8 1 5 8 
42 4 6 5 qO 16135 8091 
4 3 38 5 qO 16135 4 4 2 7 
4 3 39 5 qO 16135 4 3 6 2 
43 4 0 5 qO 16135 4 2 9 8 
43 41 5 qO 16135 4 2 3 0 
43 42 5 qO 16135 4 1 6 4 
43 43 5 qO 16135 4 0 9 3 
43 44 5 qO 16135 4 0 2 4 
43 45 5 qO 16135 3961 
43 46 5 qO 16135 3 8 8 9 
43 47 5 qO 16135 3 8 1 6 
44 39 5 qO 16135 0 0 8 1 
44 4 0 5 qO 16135 0 0 1 4 
44 41 5 qO 16134 9 9 4 7 
44 42 5 qO 16134 9 8 7 5 
44 43 5 qO 16134 9 8 0 4 
44 44 5 qO 16134 9 7 3 3 
44 45 5 qO 16134 9 6 6 4 
44 4 6 . 5 qO 16134 9 5 8 8 
44 47 . 5 qO 16134 9 5 1 5 
44 48 5 qO 16134 9 4 4 2 

Appendix II.B. 3 d > 3 - 3 A 2 . 
J " F J " F 
2 2 5 r R 16545 9 6 8 0 * 3 5 5 qO 16542 8 9 9 2 
2 3 5 PR 16545 8 8 1 0 3 5 5 r O 16542 9 6 5 4 
2 3 5 r R 1 6 5 4 5 9621 3 6 5 qO 16542 9 1 8 0 
2 4 5 pR 16545 8 4 9 5 3 6 5 r O 16542 9 9 4 4 
2 4 5 qR 16545 8 9 5 4 3 7 5 qO 16542 9 4 0 3 
2 4 5 rR 16545 951 1* 4 1 5 qO 16542 8 1 8 2 
2 5 5 qR 16545 8 6 8 4 4 3 5 qO 16542 8 2 8 9 
2 5 5 rR 1 6 5 4 5 9 3 5 0 * 4 4 5 qO 16542 8 3 7 9 
2 6 5 r R 16545 9 1 3 3 * 4 5 5 qO 16542 8 4 6 5 
3 2 5 qR 16546 8 6 0 8 4 6 5 qO 16542 8 5 7 4 
3 3 5 qR 16546 8 5 5 5 4 6 5 r O 16542 9 0 3 4 
3 4 5 PR 16546 8 2 3 3 * 4 7 5 qo 16542 8 7 0 7 
3 4 5 qR 16546 8 4 9 2 * 4 7 5 r O 16542 9 2 2 4 
3 5 5 PR 16546 8 0 8 7 * 4 8 5 qO 16542 8 8 5 8 
3 5 5 qR 16546 8 4 2 2 * . 5 1 5 CO 16542 7 6 9 0 
3 6 5 qR 1 6 5 4 6 8 3 3 9 5 2 5 CO 16542 7 7 2 3 
3 6 5 r R 16546 8 7 9 2 * 6 2 5 qO 16542 6 9 7 6 
3 7 5 qR 16546 8 2 4 6 * 6 2 5 CO 16542 7 0 2 8 
3 7 5 r R 16546 8 7 6 3 * 6 3 5 qO 16542 7 0 0 9 
4 2 5 qR 16547 7 9 8 1 * 6 4 5 qO 16542 7 0 5 4 
4 2 5 r R 16547 8 1 0 9 * 6 5 5 qO 16542 7 1 0 7 
4 3 5 qR 16547 7 9 6 5 * 6 6 5 qO 16542 7 1 6 5 
4 3 5 r R 16547 8 1 3 9 * 6 7 5 qO 16542 7 2 2 7 
4 4 .5 qR 16547 7 9 4 8 * 6 8 5 qO 16542 7 2 9 8 
4 4 .5 r R 16547 8 1 5 8 * 6 9 5 qO 16542 7 3 8 2 
4 5 . 5 qR 16547 7 9 3 1 * 6 10 5 qO 16542 7 4 7 3 
4 5 .5 r R 16547 8 1 7 8 * 7 4 5 qO 16542 6 2 2 8 
4 6 . 5 qR 16547 7 9 1 0 * 7 5. 5 qO 16542 6 2 6 5 
4 6 .5 r R 16547 8 1 9 7 * 7 6 . 5 qO 16542 6 3 1 2 
4 7 .5 qR 16547 .7888* 7 7 . 5 qO 16542 6 3 5 4 
4 7 .5 r R 16547 . 8 2 0 9 * 7 8. 5 qO 16542 6 4 0 8 



Appendix II.B, continued. 3 < E > 3 - 3 A 2 . 

E 
F n 0" F II 4 8 5 qR 16547 7 8 6 4 * 7 9 5 qQ 

4 8 5 r R 16547 8 2 2 1 * 7 10 5 qQ 
15 10 5 r R 16557 3 9 6 3 7 1 1 5 qQ 
15 11 5 r R 16557 3 9 8 0 8 4 5 qQ 
15 12 5 r R 16557 4 0 0 3 8 5 5 qQ 
15 13 5 r R 16557 4 0 2 7 8 6 5 qQ 
15 14 5 r R 16557 4 0 5 3 8 7 5 qQ 
15 15 5 r R 16557 4 0 7 6 8 8 5 qQ 
15 16 5 r R 16557 41 10 8 9 5 qQ 
15 17 5 r R 16557 4 1 4 6 8 10 5 qQ 
15 18 5 r R 16557 4 1 7 6 8 1 1 5 qQ 
15 19 5 r R 16557 4 2 1 9 8 12 5 qQ 
16 1 1 5 r R 16558 1 9 6 5 * 9 7 5 qQ 
16 12 5 r R 16558 1986 9 8 .5 qQ 
16 13 5 r R 1 6 558 2 0 0 8 9 10 5 qQ 
16 14 5 r R 16558 2 0 2 9 * 9 1 1 5 qQ 
16 15 5 r R 16558 2 0 5 6 9 12 5 qQ 
16 16 5 r R 1 6 558 2 0 8 6 9 13 5 qQ 
16 17 5 r R 16558 21 16 10 8 5 qQ 
16 18 5 r R 16558 2 1 5 0 10 9 5 qQ 
16 19 5 r R 16558 2 1 8 6 10 10 5 qQ 
16 2 0 5 r R 16558 2 2 2 2 10 1 1 5 qQ 
17 12 5 r R 16558 9 8 5 3 * 10 12 5 qQ 
17 13 5 r R 16558 9 8 6 9 10 13 5 qQ 
17 14 5 r R 16558 9 8 9 2 10 14 5 qQ 
17 15 5 rR 16558 9 9 1 7 11 8 5 qQ 
17 16 5 r R 16558 9 9 4 3 11 9 5 qQ 
17 17 5 r R 16558 9 9 7 2 11 10 5 qQ 
17 18 5 r R 1 6559 0 0 0 4 11 11 5 qQ 
17 19 5 r R 1 6 5 5 9 0 0 3 6 11 12 5 qQ 
17 2 0 5 r R 1 6 5 5 9 0 0 7 1 11 13 5 qQ 
17 21 5 r R 1 6 5 5 9 0 1 0 9 11 14 5 qQ 
18 13 5 r R 1 6 5 5 9 7 6 0 5 * 11 15 5 qQ 
18 14 5 r R 1 6559 7 6 3 5 * 12 9 5 qQ 
18 15 5 r R 1 6 5 5 9 7 6 5 2 * 12 10 5 qQ 
18 16 5 r R 1 6559 7 6 7 9 12 1 1 5 qQ 
18 17 5 rR 1 6 5 5 9 7 7 0 2 12 12 5 qQ 
18 18 5 rR 1 6 5 5 9 7 7 3 2 12 13 5 qQ 
18 19 5 r R 1 6559 7 7 6 5 12 14 5 qQ 
18 2 0 5 r R 1 6 5 5 9 7 7 9 8 12 15 5 qQ 
18 2 1 5 r R 1 6 5 5 9 7 8 3 2 12 16 5 qQ 
18 22 5 r R 1 6 5 5 9 7872 13 10 5 qQ 
19 14 5 r R 1 6 5 6 0 5 2 4 8 13 1 1 5 qQ 
19 15 5 r R 1 6 5 6 0 5 2 6 8 13 12 5 qQ 
19 16 5 r R 1 6 5 6 0 5291 13 13 5 qQ 
19 17 5 r R 1 6 5 6 0 5 3 1 4 13 14 5 qQ 
19 18 5 r R 1 6 5 6 0 5 3 4 4 13 15 5 qQ 
19 19 5 r R 1 6 5 6 0 5371 13 16 5 qQ 
19 2 0 5 r R 1 6 5 6 0 5 4 0 4 13 17 5 qQ 
19 21 5 rR 1 6 5 6 0 5 4 3 7 14 10 5 qQ 
19 22 5 r R 1 6 5 6 0 5 4 7 4 14 1 1 5 qQ 
19 23 5 r R 1 6 5 6 0 5 5 1 4 14 12 5 qQ 
2 0 16 5 r R 16561 2 7 8 2 14 13 5 qQ 
2 0 17 5 r R 16561 2 8 0 8 14 14. 5 qQ 
2 0 18 5 r R 16561 2 8 3 4 14 15 5 qQ 
2 0 19 5 r R 16561 2 8 6 3 14 16 5 qQ 
2 0 2 0 5 r R 16561 2891 14 17. 5 qQ 
2 0 21 5 r R 16561 2 9 2 2 14 18. 5 qQ 
2 0 22 5 r R 16561 .2957 15 12. 5 qQ 
2 0 23 5 r R 16561 2991 15 13. 5 qQ 
2 0 24 5 r R 16561 3 0 3 2 15 14. 5 qQ 
21 16 5 r R 1 6562 .0156 15 15 5 qQ 
21 17 5 r R 16562 .0181 15 16. 5 qQ 
21 18 .5 r R 1 6562 .0203 15 17. 5 qQ 



Appendix II.B, continued. 3<J> 3-3A2. 

B 
d " F" 
21 19 5 r R 16562 0 2 2 8 
21 2 0 . 5 r R 1 6 5 6 2 . 0 2 5 6 
21 21 . 5 r R 16562 0 2 8 7 
21 2 2 . 5 r R 1 6 5 6 2 . 0 3 2 1 
21 2 3 . 5 r R 1 6 5 6 2 . 0 3 5 5 
21 24 5 r R 16562 0 3 8 9 
21 2 5 . 5 r R 16562 0 4 2 5 
22 17. 5 r R 16562 7 4 3 3 
22 18 5 r R 16562 7 4 5 6 
22 19 5 r R 1 6562 7 4 8 3 
22 2 0 5 r R 16562 7 5 0 6 
22 21 5 r R 1 6562 7 5 3 6 
22 22 5 r R 16562 7 5 6 9 
22 23 5 r R 16562 7 5 9 9 
22 24 5 r R 1 6562 7 6 3 3 
22 25 5 r R 16562 7 6 6 9 
22 26 5 r R 1 6562 7 7 0 6 
2 3 18 5 r R 16563 4 5 8 5 
2 3 19 5 r R 16563 4 6 0 8 
23 2 0 5 r R 16563 4 6 3 5 
23 21 5 r R 16563 4 6 6 0 
23 22 5 r R 16563 4 6 8 9 
2 3 23 5 r R 1 6 5 6 3 4 7 2 2 
2 3 24 5 r R 16563 4 7 4 8 
2 3 25 5 r R 1 6 5 6 3 4 7 8 5 
2 3 26 5 r R 16563 4821 
2 3 27 5 r R 16563 4 8 6 4 
24 19 5 r R 16564 1609 
24 2 0 5 r R 16564 1637 
24 21 5 rR 16564 1668 
24 22 5 r R 16564 1690 
24 23 5 r R 16564 1724 
24 24 5 r R 16564 1752 
24 25 5 r R 16564 1785 
24 26 5 r R 16564 1818 
24 27 5 r R 16564 1857 
24 28 5 r R 16564 1897 
2 5 2 0 5 r R 16564 8 5 1 4 
25 21 5 r R 16564 8 5 4 3 
25 22 5 r R 16564 8 5 6 8 
25 23 5 r R 16564 8 5 9 7 
25 24 5 r R 16564 8 6 2 7 
2 5 25 5 r R 16564 8 6 6 0 
25 26 5 r R 16564 .8687 
2 5 27 5 r R 16564 8 7 2 9 
25 28 5 r R 16564 .8765 
2 5 2 9 5 r R 16564 8 8 0 3 
26 21 5 r R 1 6 5 6 5 .5304 
26 22 .5 r R 16565 .5326 
26 23 .5 r R 16565 .5349 
26 24 .5 r R 16565 .5381 
2 6 2 5 .5 r R 1 6 5 6 5 . 54 1 1 
26 26 .5 r R 16565 . 544 1 
26 27 .5 r R 1 6 5 6 5 .5474 
26 28 .5 r R 16565 .5510 
26 29 .5 r R 16565 .5547 
26 3 0 .5 r R 1 6 5 6 5 .5590 
27 22 .5 r R 16566 . 1951 
27 23 .5 r R 16566 . 1975 
27 24 5 r R 16566 . 2 0 0 6 
27 25 .5 r R 16566 .2034 
27 26 .5 r R 1 6 5 6 6 .2068 
27 27 5 r R 1 6 5 6 6 .2103 
27 28 .5 r R 16566 .2138 
2 7 2 9 .5 r R 16566 .2171 

d " F H 
15 18 5 qO 16541 5 6 1 6 
15 19 5 qO 16541 5 6 6 2 
16 13 5 qO 16541 3521 
16 14 5 qO 16541 3 5 4 7 
16 15 5 qO 16541 3 5 7 7 
16 16 5 qO 16541 3 6 0 8 
16 17 5 qO 16541 3644 
16 18 5 qO 16541 3 6 8 3 
16 19 5 qO 16541 3 7 2 5 
16 2 0 5 qO 16541 3 7 6 7 
17 14 5 qO 1654 1 1503 
17 15 5 qo 1654 1 1529 
17 16 5 qO 16541 1558 
17 17 5 q O 1654 1 1591 
17 18 5 qO 16541 1628 
17 19 5 qO 16541 1664 
17 2 0 5 qO 16541 1707 
17 21 5 qO 16541 1748 
18 14 5 qO 1 6 5 4 0 9 3 4 6 
18 15 5 qO 1 6 5 4 0 9 3 7 0 
18 16 5 q O 1 6 5 4 0 9 3 9 7 
18 17 5 qO 1 6 5 4 0 9 4 2 8 
18 18 5 q O 1 6 5 4 0 9 4 6 0 
18 19 5 qO 1 6 5 4 0 9 4 9 4 
18 2 0 5 qO 1 6 5 4 0 9 5 3 0 
18 2 1 5 q O 1 6 5 4 0 9571 
18 22 5 qO 1 6 5 4 0 961 1 
19 15 5 qO 1 6 5 4 0 7098 
19 16 5 qO 1 6 5 4 0 7 1 2 3 
19 17 5 q O 1 6 5 4 0 7 150 
19 18 5 q O 1 6 5 4 0 7 180 
19 19 5 qO 1 6 5 4 0 7214 
19 2 0 5 qO 1 6 5 4 0 7 2 4 7 
19 21 5 qO 1 6 5 4 0 7 2 8 3 
19 22 5 qO 1 6 5 4 0 7322 
19 23 5 qO 1 6 5 4 0 7 3 6 5 
2 0 16 5 qO 1 6 5 4 0 4 7 2 8 
2 0 17 5 qO 1 6 5 4 0 4 7 5 5 
2 0 18 5 qO 1 6 5 4 0 4781 
2 0 19 5 qo 1 6 5 4 0 4 8 1 0 
2 0 2 0 5 qO 1 6 5 4 0 4 8 4 3 
2 0 21 5 qO 1 6 5 4 0 4 8 7 7 
2 0 22 5 qO 1 6 5 4 0 4 9 1 2 
2 0 23 5 q O 1 6 5 4 0 4 9 5 3 
2 0 24 5 q O 1 6 5 4 0 4 9 9 3 
21 17 5 qO 1 6 5 4 0 2 2 4 5 
21 18 5 qO 1 6 5 4 0 2 2 6 9 
21 19 5 qO 1 6 5 4 0 2 2 9 7 
21 2 0 5 qO 1 6 5 4 0 2327 
21 21 5 qO 1 6 5 4 0 2 3 5 7 
21 22 5 qO 1 6 5 4 0 2391 
21 23 5 qo 1 6 5 4 0 2 4 2 7 
21 24 5 qO 1 6 5 4 0 2 4 6 6 
21 25 5 qO 1 6 5 4 0 2507 
22 18 5 qO 1 6 5 3 9 9 6 3 3 
22 19 5 qO 16539 9 6 6 0 
22 2 0 5 qO 16539 9 6 8 8 
22 21 5 qO 16539 97 17 
22 22 5 qO 1 6 5 3 9 9751 
22 23 5 qO 16539 9 7 8 4 
22 24 5 qO 16539 9 8 2 2 
22 25 5 qO 16539 9 8 5 8 
22 26 5 qO 16539 9901 
23 19 5 qO 16539 6 9 0 3 
2 3 2 0 5 qO 16539 6 9 2 8 
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Appendix II.B, continued. 3d>3- 3A2. 

R Q. 
J " F " 
27 3 0 . 5 r R 
27 3 1 . 5 r R 

1 6 5 6 6 . 2 2 1 1 
1 6 5 6 6 . 2 2 5 4 

J " F " 
23 21 . 5 qQ 16539 6 9 5 6 
23 22 5 qQ 16539 6 9 8 8 
23 23 5 qQ 1 6 5 3 9 7021 
23 24 5 qQ 16539 7054 
23 25 5 qQ 1 6 5 3 9 7 0 9 2 
2 3 26 5 qQ 16539 7 1 3 0 
23 27 5 qQ 16539 7172 
24 21 5 qQ 16539 4 0 7 4 
24 22 5 qQ 16539 4 1 0 0 
24 23 5 qQ 1 6 5 3 9 4131 
24 24 5 qQ 1 6 5 3 9 4 1 6 5 
24 25 5 qQ 16539 4 2 0 0 
24 26 5 qQ 16539 4 2 3 6 
24 27 5 qQ 16539 4 2 7 5 
24 28 5 qQ 16539 4 3 1 7 
25 21 5 qQ 16539 1073 
25 22 5 qQ 16539 1099 
25 23 5 qQ 16539 1 129 
25 24 5 qQ 16539 1 158 
25 25 5 qQ 16539 1 191 
25 26 5 qQ 16539 1227 
25 27 5 qQ 16539 1264 
25 28 5 qQ 16539 1307 
25 29 5 qQ 16539 1344 
26 22 5 qQ 16538 7 9 6 8 
26 23 5 qQ 16538 8 0 1 4 
26 24 5 qQ 16538 8 0 4 3 
26 25 5 qQ 16538 8 0 7 7 
26 26 5 qQ 16538 8 1 0 7 
26 27 5 qQ 16538 8 1 4 6 
26 28 5 qQ 16538 8 1 8 3 
26 29 5 qQ 16538 8 2 2 5 
26 3 0 5 qQ 16538 8 2 6 4 
27 23 5 qQ 16538 4771 
27 24 5 qQ 16538 4 8 0 2 
27 25 5 qQ 16538 4 8 2 9 
27 26 5 qQ 16538 4 8 5 9 
27 27 5 qQ 16538 4 8 9 5 
27 28 5 qQ 16538 4931 
27 29 5 qQ 16538 4 9 6 9 
27 3 0 5 qQ 16538 5 0 1 0 
27 31 5 qQ 16538 5 0 5 0 

Appendix II.C. 3<X>4-3A3. 
d " F » d " F M 

3 3 5 pR 16864 5 1 2 3 7 2 5 
3 3 5 qR 16864 5 2 4 0 7 3 5 
3 3 5 C O 16864 5 3 1 2 7 4 5 
3 3 5 r R 16864 5 3 8 5 7 5 5 
3 4 5 pR 16864 4 0 1 6 7 6 5 
3 4 5 qR 16864 4 1 6 7 7 8 5 
3 4 5 CO 16864 4 2 5 5 7 10 5 
3 4 5 r R 16864 4 3 4 8 8 5 5 
3 5 5 pR 16864 2 6 5 7 9 4 5 
3 5 5 qR 16664 284 1 9 6 5 
3 5 5 c o 16864 2 9 5 0 9 8 5 
3 5 5 r R 16864 3 0 5 8 9 9 5 
3 6 5 pR 16864 1039 9 1 1 5 
3 6 5 qR 16864 1256 9 12 5 
3 6 5 CO 16864 1383 10 6 5 
3 6 5 r R 16864 1509 10 7 5 
3 7 5 qR 1 6 8 6 3 9 3 9 6 10 8 5 

<J" F " 
qQ 1 6 8 6 0 1 9 9 5 * 6 7 5 pP 16854 1702 
qQ 1 6 8 6 0 1 8 1 1 * 6 8 5 pP 16854 1221 
qQ 1 6 8 6 0 1 6 1 3 * 6 9 5 pP 16854 0 6 8 9 
qQ 1 6 8 6 0 1358* 6 10 5 pP 16854 0 1 1 7 
qQ 1 6 8 6 0 10 6 1 * 7 3 5 pP 16853 2 2 8 6 
qQ 1 6 8 6 0 0 3 2 9 * 7 4 5 pP 16853 2077 
qQ 16859 9 4 3 6 * 7 5 5 p P 16853 1823 
qQ 1 6 8 6 0 0 4 1 2 * 7 6 5 pP 16853 1531 
qQ 16859 9 4 7 6 * 7 7 5 pP 16853 1202 
qQ 16859 9 1 3 4 * 7 8 5 PP 16853 0 8 3 6 
qQ 16859 8 6 8 5 * 7 9 5 pP 16853 0 4 3 1 
qQ 16859 8 4 2 0 * 7 10 5 PP 16852 9 9 9 3 
qQ 1 6 8 5 9 7 8 1 9 * 7 1 1 5 PP 16852 9 5 1 8 * 
qQ 16859 7 4 8 2 * 8 3 5 pP 16852 1317 
qQ 16859 7 9 3 8 * 8 4 5 pP 16852 1151 
qQ 16859 7 7 7 0 * 8 5 5 pP 16852 0 9 5 8 
qQ 1 6 8 5 9 7 5 7 2 8 6 5 PP 16852 0 7 2 6 * 
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Appendix II.C, continued. 3<I>4-3A3. 

E Q 

d " F " J " F n 
3 7 .5 C O 16863 .9543 10 9 5 qO 1 6 8 5 9 7 3 6 0 
3 7 .5 r R 16863 .9686 10 10 5 qO 16859 7 1 2 4 * 
4 0 .5 r R 1 6 8 6 5 . 5 2 4 3 * 10 11 5 qO 16859 6 8 7 2 
4 2 .5 qR 16865 .4658* 10 12 5 qO 1 6 8 5 9 6 5 9 8 
4 2 .5 CO 1 6 8 6 5 .4690* 10 13 5 qO 16859 6 3 0 1 
4 2 .5 r R 1 6 8 6 5 . 4 7 2 9 * 10 14 5 qO 16859 5991 
4 3 .5 PR 16865 .4072 11 7 5 qO 16859 6 4 6 1 
4 3 .5 qR 16865 .4154 11 8 5 qO 16859 6 3 0 1 * 
4 3 .5 C O 16865 .4201 11 9 5 qO 16859 6 1 2 4 
4 3 .5 r R 16865 .4250* 11 10 5 qO 16859 5931 
4 4 .5 pR 16865 .3407 11 11 5 qO 16859 5 7 1 9 
4 4 .5 qR 16865 .3509 11 12 5 qO 16859 5 4 9 4 
4 4 .5 C O 1 6 8 6 5 .3568 11 13 5 qO 1 6 8 5 9 5251 
4 4 .5 r R 1 6 8 6 5 .3630 11 14 5 qO 1 6 8 5 9 4 9 9 9 
4 5 .5 pR 16865 .2600 11 15 5 qO 16859 4 7 2 5 * 
4 5 .5 qR 16865 .2726 12 8 5 qO 1 6 8 5 9 4 8 7 4 
4 5 .5 CO 16865 .2796 12 9 5 qO 16859 4 7 2 5 * 
4 5 .5 r R 1 6 8 6 5 2 8 7 0 12 10 5 qO 16859 4 5 6 7 
4 6 .5 pR 16865 1656 12 1 1 5 qQ 16859 4 3 8 9 
4 6 .5 qR 16865 1802 12 12 5 qO 16859 4 2 0 2 
4 6 5 C O 16865 1886 12 13 5 qQ 16859 3 9 9 8 
4 6 5 r R 16865 1970 12 14 5 qQ 16859 3781 
4 7 5 PR 16865 0 5 7 7 12 15 5 qQ 16859 3 5 5 2 
4 7 5 qR 1 6 8 6 5 0 7 4 3 12 16 5 qO 1 6 8 5 9 3 3 1 0 
4 7 5 C O 16865 0 8 4 1 13 8 5 qQ 16859 3 3 1 0 * 
4 7 5 r R 1 6 8 6 5 0 9 3 6 13 9 5 qQ 16859 3 1 8 3 
4 8 5 qR 16864 9 5 5 7 13 10 5 qQ 16859 3 0 4 6 
4 8 5 C O 16864 9 6 6 4 13 11 5 qQ 16859 2 8 9 6 
4 8 5 r R 16864 9 7 7 3 13 12 5 qQ 16859 2 7 3 6 
5 3 5 qR 1 6 8 6 6 3 2 1 8 13 13 5 qQ 1 6 8 5 9 2 5 6 4 
5 3 5 C O 16866 3 2 4 7 13 14 5 qQ 16859 2 3 8 3 
5 3 5 r R 16866 3 2 8 3 13 15 5 qQ 16859 2 1 8 7 
5 4 5 PR 16866 2 7 1 7 13 16 5 qQ 16859 1983 
5 4 5 qR 16866 2 7 9 2 13 17 5 qQ 16859 1771 
5 4 5 CO 16866 2 8 3 3 14 9 5 qQ 16859 1494 
5 4 5 r R 16866 2 8 7 6 14 10 5 qQ 16859 1377 
5 5 5 PR 16866 2 183 14 1 1 5 qQ 16859 1248 
5 5 5 qR 16866 2 2 7 4 14 12 5 qQ 16859 1112 
5 5 5 C O 1 6 8 6 6 2 3 2 6 14 13 5 qQ 16859 0 9 6 4 
5 5 5 r R 16866 2 3 7 8 14 14 5 qQ 16B59 0 8 0 8 
5 6 5 PR 16866 1563 14 15 5 qQ 16859 0 6 4 2 
5 6 5 qR 16866 1667 14 16 5 qQ 16859 0 4 6 8 
5 6 5 C O 16866 1726 14 17 5 qQ 16859 0 2 8 3 
5 6 5 r R 16866 1785 14 18 5 qQ 16859 0 0 9 2 
5 7 5 pR 1 6 8 6 6 0 8 5 2 15 10 5 qQ 16858 9 5 6 2 
5 7 5 qR 1 6 8 6 6 0 9 7 5 15 1 1 5 qQ 16858 9451 
5 7 5 C O 16866 1043 15 12 5 qQ 16858 9 3 3 2 
5 7 5 r R 1 6 8 6 6 1 109 15 13 5 qQ 16858 9 2 0 5 
5 8. 5 qR 1 6 8 6 6 . 0 1 9 8 15 14 5 qQ 16858 9 0 7 0 
5 8. 5 C O 1 6 8 6 6 . 0 2 7 3 15 15 5 qQ 16858 8 9 2 8 
5 8 5 r R 1 6 8 6 6 . 0 3 5 0 15 16 5 qQ 16858 8 7 7 7 
5 9 5 qR 1 6 8 6 5 . 9 3 3 8 15 17 5 qQ 16B58 8 6 1 7 
5 9 5 r R 1 6 8 6 5 . 9 5 0 8 15 18 5 qQ 16858 8 4 5 3 
6 1 . 5 r R 1 6 8 6 7 . 2 7 0 2 15 19 5 qQ 16858 8 2 7 9 
6 2. 5 r R 1 6 8 6 7 . 2 5 4 6 16 1 1 5 qQ 16858 7 5 1 2 
6 4 . 5 qR 1 6 8 6 7 . 1976 16 12 5 qQ 16858 7407 
6 4 . 5 C O 1 6 8 6 7 . 2 0 0 7 16 13 5 qQ 16858 7 2 9 B 
6 4 . 5 r R 1 6 8 6 7 . 2 0 3 7 16 14 5 qQ 16858 7 1 8 2 
6 5. 5 qR 1 6 8 6 7 . 1611 16 15 5 qQ 16858 7 0 5 7 
6 5. 5 C O 1 6 8 6 7 . 1647 16 16 5 qQ 16858 6 9 2 6 
6 5. 5 r R 1 6 8 6 7 . 1687 16 17 5 qQ 16858 6 7 8 7 
6 6. 5 qR 1 6 8 6 7 . 1 182 16 18 5 qQ 16858 6 6 4 4 
6 6. 5 C O 1 6 8 6 7 . 1225 16 19 5 qQ 16858 6 4 9 9 
6 6. 5 r R 1 6 8 6 7 . 1270 16 2 0 5 qQ 16858 6 3 3 8 
6 7 . 5 qR 1 6 8 6 7 . 0 6 8 9 17 12 5 qQ 16858 5 3 4 4 

p 

J - F" 
8 8 5 pP 16852 0 1 8 4 
8 9 5 pP 16851 9 8 6 5 
8 10 5 pP 16851 9 5 2 0 
8 11 5 PP 16851 9 1 4 7 
8 12 5 pP 16851 8 7 4 8 
9 4 5 PP 16851 0 1 0 2 
9 5 5 pP 1 6 8 5 0 9 9 4 6 
9 6 5 PP 1 6 8 5 0 9 7 6 4 
9 7 5 PP 1 6 8 5 0 9 5 5 8 
9 8 5 PP 1 6 8 5 0 9 3 2 5 
9 9 5 PP 1 6 8 5 0 9 0 7 2 
9 10 5 pP 1 6 8 5 0 8 7 9 3 
9 11 5 pP 1 6 8 5 0 8 4 9 4 
9 12 5 pP 1 6 8 5 0 8171 
9 13 5 pP 1 6 8 5 0 7 8 2 7 

10 5 5 pP 16849 8 8 0 2 
10 6 5 PP 16849 8 6 5 6 
10 7 5 pP 16849 8 4 8 8 
10 8 5 pP 16849 8 2 9 8 
10 9 5 PP 16849 8 0 8 9 
10 10 5 pP 16849 7861 
10 1 1 5 PP 16849 7 6 1 5 
10 12 5 PP 16849 7 3 5 2 
10 13 5 pP 16849 7 0 7 0 
10 14 5 PP 16849 6 7 7 1 
11 6 5 PP 16848 7 4 0 2 
11 7 5 pP 16848 7261 
11 8 5 pP 16848 7 1 0 6 
11 9 5 pP 16848 6 9 3 4 
11 10 5 PP 16848 6 7 4 5 
11 1 1 5 PP 16848 6 5 3 4 
11 12 5 pP 16848 6 3 1 6 
11 13 5 PP 16848 .6086 
11 14 .5 PP 16848 .5835 
11 15 .5 pP 16848 .5575 



Appendix II.C, continued. 3 0 4 - 3 A 3 . 

B. Q. 
J" , F m 
6 7 5 CO 16867 0742 
6 7 5 r R 16867 0792 
6 8 5 qR 16867 0141 
6 8 5 CO 16867 0197 
6 8 5 r R 16867 0254 
6 9 5 qR 16866 9532 
6 9 5 C O 16866 9597 
e 9 5 r R 16866 9659 
6 io 5 qR 16866 8867 
6 10 5 C O 16866 8940 
6 10 5 r R 16866 9008 
7 2 5 r R 16868 1433 
7 3 5 r R 16868 1266 
7 5 5 qR 16868 0739 
7 5 5 CO 16868 0768 
7 5 5 r R 16868 0795 
7 6 5 qR 16868 0420 
7 6 5 CO 16868 0456 
7 6 5 r R 16868 0488 
7 7 5 qR 16868 O057 
7 7 5 CO 16868 O097 
7 7 5 r R 16868 0136 
7 8 5 qR 16867 9650 
7 8 5 CO 16867 9695 
7 8 5 r R 16867 9738 
7 9 5 qR 16867 9200 
7 9 5 C O 16867 9247 
7 9 5 r R 16867 9297 
7 10 5 qR 16B67 8706 
7 10 5 C O 16867 8760 
7 10 5 r R 16867 8815 
7 1 1 5 qR 16867 8172 
7 1 1 5 CO 16867 8234 
7 1 1 5 r R 16867 8292 
8 3 5 r R 16869 0122 
8 4 5 r R 16868 9957 
8 6 5 qR 16868 9467* 
8 6 5 C O 16868 9496* 
8 6 5 r R 16868 9521 
8 7 5 qR 16868 9187* 
8 7 5 C O 16868 9219* 
8 7 5 r R 16868 9250 
8 8 5 qR 16868 8873 
8 8 5 C O 16868 8909 
8 8 5 r R 16868 8943 
8 9 5 qR 16868 8526 
8 9 5 C O 16868 8566 
8 9 5 r R 16868 8604 
8 10 5 qR 16868 8144 
8 10 5 CO 16868 8188 
8 10 5 r R 16868 8231 
8 1 1 5 qR 16868 7731 
8 11 5 C O 16868 7779 
8 1 1 5 r R 16868 7826 
8 12 5 qR 16868 7289 
8 12 5 C O 16868 7341 
8 12 5 r R 16868 7390 
9 4 5 r R 16869 8738 
9 5 5 r R 16869 8579 
9 6. 5 qR 16869 8346 
9 6. 5 C O 16869 8369 
9 6. 5 r R 16869 8391 
9 7 . 5 qR 16869 8123 
9 7 . 5 C O 16869 8152 
9 7. 5 r R 16869 8177 

J " F N 

17 13 .5 qO 16858 5253 
17 14 .5 qO 16858 5158 
17 15 .5 qO 16858 5037 
17 16 .5 qO 16858 4922 
17 17 5 qQ 16858 4801 
17 18 .5 qO 16858 4676 
17 19 5 qO 16858 4546 
17 20 5 qo 16858 44 12 
17 21 5 qO 16858 4269 
18 13 5 qO 16858 3054 
18 14 5 qO 16858 2967 
18 15 5 qO 16858 2868 
18 16 5 qO 16858 2771 
18 17 5 qO 16858 2665 
18 18 5 qQ 16858 2556 
18 19 5 qQ 16858 2439 
18 20 5 qQ 16858 2325 
18 21 5 qQ 16858 2197 
18 22 5 qO 16858 2072 
19 15 5 qQ 16858 0564 
19 16 5 qO 16858 0475 
19 17 5 qO 16858 0383 
19 18 5 qO 16858 0284 
19 19 5 qQ 16858 0186 
19 20 5 qQ 16858 0081 
19 2 1 5 qO 16857 9973 
19 22 5 qQ 16857 9862 



Appendix II.C, continued. 3<J>4-3A3. 

R 
J " F n 

9 8 .5 qR 1 6 8 6 9 .7877 
9 8 .5 C O 1 6 8 6 9 .7907 
9 8 .5 r R 1 6 8 6 9 .7936 
9 9 .5 qR 1 6 8 6 9 .7600 
9 9 .5 C O 1 6 8 6 9 .7635 
9 9 .5 r R 1 6 8 6 9 .7668 
9 10 .5 qR 1 6 8 6 9 .7299 
9 10 .5 C O 1 6 8 6 9 .7335 
9 10 .5 r R 1 6 8 6 9 .7369 
9 1 1 .5 qR 1 6 8 6 9 .6975 
9 1 1 .5 C O 1 6 8 6 9 7 0 1 3 
9 1 1 5 r R 1 6 8 6 9 .7051 
9 12 5 qR 1 6 8 6 9 6 6 2 1 
9 12 5 C O 1 6 8 6 9 6 6 6 3 
9 12 5 r R 1 6 8 6 9 6 7 0 4 
9 13 5 qR 1 6 8 6 9 6 2 4 6 * 
9 13 5 CO 1 6 8 6 9 6 2 9 2 
9 13 5 r R 1 6 8 6 9 6 3 3 4 

22 17 5 r R 1 6 8 8 0 0 7 6 8 
22 18 5 r R 1 6 8 8 0 0 6 9 9 
22 19 5 r R 1 6 8 8 0 0 6 2 8 
22 2 0 5 r R 1 6 8 8 0 0 5 5 7 
22 21 5 r R 1 6 8 8 0 0 4 7 6 
22 22 5 r R 1 6 8 8 0 0 3 9 8 
22 23 5 r R 1 6 8 8 0 0 3 1 3 
22 24 5 r R 1 6 8 8 0 0 2 2 8 
22 2 5 5 r R 1 6 8 8 0 0 1 5 1 
22 26 5 r R 1 6 8 8 0 0 0 6 3 
24 19 5 r R 16881 4 6 2 7 
24 2 0 5 r R 16881 4 5 6 9 
24 21 5 r R 16881 4 5 1 2 
24 22 5 r R 16881 4 4 5 0 
24 23 5 r R 16881 4 3 8 7 
24 24 5 r R 16881 4 3 2 0 
24 25 5 r R 16881 4 2 5 1 
24 26 5 r R 16881 4 181 
24 27 5 r R 16881 4 1 1 3 
24 28 5 r R 16881 4 0 4 3 
25 2 0 . 5 r R 1 6882 1360 
2 5 21 . 5 r R 1 6882 1305 
25 22 . 5 r R 1 6 8 8 2 . 1254 
25 23 5 r R 1 6882 1 193 
25 24 . 5 r R 1 6882 1 138 
25 2 5 . 5 r R 1 6 8 8 2 . 1085 
25 26 . 5 r R 1 6 8 8 2 . 1 0 2 0 
2 5 2 7 . 5 r R 1 6 8 8 2 . 0 9 5 8 
25 2 8 . 5 r R 1 6 8 8 2 . 0 8 9 7 
25 2 9 . 5 r R 1 6 8 8 2 . 0 8 3 2 
26 21 . 5 r R 1 6 8 8 2 . 7961 
26 2 2 . 5 r R 1 6 8 8 2 . 7 9 1 9 
26 2 3 . 5 r R 1 6 8 8 2 . 7 8 6 2 
26 2 4 . 5 r R 1 6 8 8 2 . 7 8 1 5 
26 25 . 5 r R 1 6 8 8 2 . 7 7 6 6 
26 2 6 . 5 r R 1 6882 . 7 7 1 2 
26 27 5 r R 1 6 8 8 2 7 6 6 0 
26 28 5 r R 16882 7 6 0 3 
26 29 5 r R 16882 7 5 4 8 
26 3 0 5 r R 16882 7491 

F n 
19 23 .5 qO 16857 9 7 4 5 
2 0 15 .5 qQ 16857 8 1 1 6 
2 0 16 .5 qQ 16857 .8037 
2 0 17 .5 qQ 16857 .7960 
2 0 18 .5 qQ 16857 .7872 
2 0 19 .5 qQ 16857 7 7 8 2 
2 0 2 0 5 qQ 16857 7 6 8 9 
2 0 21 5 qQ 16857 7 5 9 3 
2 0 22 5 qQ 16857 7 4 9 2 
2 0 23 .5 qQ 16857 7 3 9 0 
2 0 24 5 qQ 16857 7 2 8 6 
21 16 5 qQ 16857 5 4 6 3 
21 17 5 qQ 16857 5 3 9 3 
21 18 5 qQ 16857 5 3 1 8 
21 19 5 qQ 16857 5 2 3 6 
21 2 0 5 qQ 16857 5 1 5 5 
21 21 5 qQ 16857 5 0 7 0 
21 22 5 qQ 16857 4 9 8 3 
21 23 5 qQ 16857 4 8 9 4 
21 24 5 qQ 16857 4 8 0 0 
21 25 5 qQ 16857 4 7 0 6 
22 17 5 qQ 16857 2691 
22 18 5 qQ 16857 2621 
22 19 5 qQ 16857 2 5 5 0 
22 2 0 5 qQ 16857 2 4 8 0 
22 21 5 qQ 16857 2 4 1 0 
22 22 5 qQ 16857 2 3 3 0 
22 23 5 qQ 16857 2 2 5 0 
22 24 5 qQ 16857 2 1 6 7 
22 25 5 qQ 16857 2084 
22 26 5 qQ 16857 1997 
23 18 5 qQ 16856 9 7 8 9 
23 19 5 qQ 16856 9 7 2 7 
2 3 2 0 5 qQ 16856 9 6 6 4 
23 21 5 qQ 16856 9 5 9 8 
23 22 5 qQ 16856 9 5 2 8 
23 23 5 qQ 16856 9 4 5 7 
23 24 5 qQ 16856 9 3 8 6 
23 25 5 qQ 16856 9 3 0 9 
23 26 5 qQ 16856 9 2 3 3 
23 27 5 qQ 16856 9 1 5 7 
24 19 5 qQ 16856 6761 
24 2 0 5 qQ 16856 6 7 0 6 
24 21 5 qQ 16856 6 6 4 5 
24 22 5 qQ 16856 6 5 8 5 
24 23 5 qQ 16856 6 5 2 2 
24 24 5 qQ 16856 6461 
24 25 5 qQ 16856 6391 
24 26 5 qQ 16856 6 3 2 4 
24 27 5 qQ 16856 6 2 5 6 
24 28 5 qQ 16856 6 1 8 5 
2 5 2 0 5 qQ 16856 361 1 
25 21 5 qQ 16856 3 5 6 0 
2 5 22 5 qQ 16856 3 5 0 9 
25 2 3 5 qQ 16856 3 4 5 4 
25 24 5 qQ 16856 3 3 9 6 
25 25 5 qQ 16856 3 3 4 2 
2 5 26 5 qQ 1 6 8 5 6 3 2 7 7 
2 5 27 5 qQ 1 6 8 5 6 3 2 1 7 
25 28 5 qQ 16856 3 1 5 4 
25 29 5 qQ 16856 3 0 9 3 
26 21 5 qQ 16856 0 3 3 0 
26 22 5 qQ 16856 0 2 8 4 
26 23 5 qQ 16856 0 2 3 4 
26 24 5 qQ 16856 0 1 8 8 



Appendix II.C, continued. 3 3>4 - 3 a 3 . 

R Q. £ 

d " F 
26 25 5 qQ 
26 26 5 qO 
26 27 5 qQ 
26 28 5 qQ 
26 29 5 qQ 
26 30 5 qQ 
27 22 5 PQ 
27 24 5 q Q 

27 25 5 qQ 
27 26 5 qQ 
27 27 5 qQ 
27 28 5 qQ 
27 29 5 qQ 
27 30 5 qQ 
27 31 5 qQ 
28 23 5 qQ 
28 24 5 q Q 

28 25 5 qQ 
28 26 5 qQ 
28 27 5 qQ 
28 28 5 qQ 
28 30 5 qO 
28 31 5 qQ 
28 32 5 qQ 
29 24 5 q Q 

29 25 5 qQ 
29 26 5 q Q 

29 27 5 qQ 
29 28 5 qQ 
29 29 5 qQ 
29 30 5 qQ 
29 31 5 qo 
29 32 5 qQ 
29 33 5 qO 

16856.0135 
16856.0079 
16856.0028 
16855.9973 
16855.9916 
16855.9862 
16855.6942 
16855.6846 
16855.6800 
16855.6754 
16855.6705 
16855.6663 
16855 .6610 
16855 .6560 
16855.6509 
16855.3426* 
16855.3366 
16855.3329 
16855.3288 
16855.3251 
16855.3199 
16855.3117 
16855.3064 
16855.3030 
16854.9763 
16854.9724 
16854.9690 
16854.9656 
16854.9620 
16854.9575 
16854.9542 
16854.9505 
16854.9466 
16854.9423 

aTransitions in units of crrr 1. Blended lines are denoted by 
asterisk. 
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APPENDIX III. Transitions of the V7 Fundamental of 

N H 2

1 1 B H 2 . a 

E 
B r a n c h J " B r a n c h J " 

r R O 0 1010. 1049 rOO 1 
1 1011 . 9 0 7 7 2 
2 1013 . 7 7 3 8 3 
3 1 0 1 5 . 7 0 9 5 4 
4 1017 . 7 2 4 4 * 5 
5 1 0 1 9 . 8 2 8 7 * 6 
6 1022 . 0 4 0 8 * 7 
7 1 0 2 4 . 3 6 9 6 8 
8 1026. 8 2 8 0 9 
9 1029 . 4 2 1 4 * 10 

10 1032. 1 5 2 5 * 1 1 
1 1 1 0 3 5 . 01 15 12 
12 1037 . 9 8 5 4 13 
13 1041 . 0 5 3 8 14 
14 1044 . 1942 15 
15 1 0 4 7 . 3 8 3 0 16 
16 1050. 5 9 8 3 * 17 
17 1053. 8 2 0 6 * r 0 1 3 
18 1057 . 0 3 4 9 2 
19 1060. 2 3 2 8 * 2 
2 0 1063 . 4 0 7 8 3 
21 1066 . 5 5 8 2 4 
22 1069 . 6 8 4 6 * 4 
23 1072 . 7 8 8 5 5 

r R 1 1 1019 . 0 4 0 7 * 5 
1 1018 . 8 9 1 2 6 
2 1020. .8460* 6 
2 1020. .4058* 7 
3 1021 . .8576* 7 
3 1022 . .7189 8 
4 1024 . .6586* 8 
4 1023. .2645 9 
5 1026. .6682 9 
5 1024 . .6459* 10 
6 1028 .7450* 10 
6 1026 . 0 2 5 3 1 1 
7 1030 .8941 1 1 
7 1027 .4255 12 
8 1033 . 1 127 12 
8 1028 .8737* 13 
9 1035 .4025 13 
9 1030 . 3 8 9 3 14 

10 1037 .7617 15 
10 1031 . 9 9 2 3 16 
1 1 1040 .1900* 17 
1 1 1033 .7003 18 
12 1042 . 6 9 9 9 * 19 
12 1035 . 5 3 0 9 * 2 0 
13 1045 .2437 21 
13 1037 .4928 22 
14 1048 . 8 6 1 6 * 23 
14 1039 .6025 24 
15 1 0 5 0 .5364* 25 
15 104 1 .8683 26 
16 1053 .2621 27 
16 1044 . 2 9 6 4 * 28 
17 1058 . 0 3 6 7 * 29 
17 1046 . 8 8 7 3 * r 0 2 3 
18 1058 . 8 4 9 7 * 3 
18 1049 .6386* 4 
19 1061 . 7 9 8 1 * 4 
19 1052 .5335* 5 
2 0 1064 .7856* 5 
2 0 1055 . 5 5 5 2 * 6 

a E 
B r a n c h J " 

1008 . 2 8 4 1 * r P O 2 1005 .0696 
1008 .1281 3 1003 .5316* 
1007 .9039 4 1002 .0797* 
1007 .6227 5 1000 .7299* 
1007 . 2 9 8 3 * 6 9 9 9 . 4 9 8 5 
1006 .9468 7 998, ,4016* 
1006 . 5 8 7 5 * 8 997 , .4567* 
1006 . 2 3 6 6 9 9 9 6 .6731 
1005 . 9 0 9 4 10 9 9 6 .0551 
1005 .6170 1 1 9 9 5 .6010 
1005 . 3 6 4 5 12 995, . 3008 
1005 . 1540 13 995, . 1399* 
1004 .9840* 14 9 9 5 , .0959 
1004 .8502 15 9 9 5 , .1471* 
1004 . 7 4 6 8 * 16 9 9 5 , , 2 6 6 9 
1004 . 6 7 1 1 * 17 9 9 5 .4321 
1004 .6182* 18 9 9 5 .6203 
1016 .0602 19 995 .8127 
1015 . 3731 2 0 9 9 5 . 9 9 5 3 
1015 .8385 21 9 9 6 .1585* 
1015 . 1 179* r P 1 4 1008 . 1 2 8 1 * 
1016 .3770* 5 1008 .3194* 
1014 .7801* 5 1006 .0794* 
1016 .8055 6 1007, .0793* 
1014 .3608 7 1005, ,9205* 
1017 . 3 6 5 7 7 1001 .9 174* 
1013 .8658 8 9 9 9 .8510* 
1018 .0803 9 1003 . 8 4 5 6 
1013. .2978 9 997 . 8 3 0 0 
1018 . ,9708* 10 1002 .9319 
1012 . ,6643* 10 9 9 5 .8851 
1020. 0551 1 1 1002 .1016* 
1011. 9 7 2 6 1 1 994 .0435* 
102 1 . 3 4 9 6 * 12 992 .3300* 
101 1 . 2 3 2 7 13 1000 . 6831 
1022 . 861 1 13 9 9 0 . 7 6 7 8 
1010. 4 5 6 3 14 1001 .0897* 
1024 . 5 9 6 3 14 9 8 9 . 3 7 5 3 
1 0 0 9 . 6 5 9 0 15 999, .5678* 
1008 . 8 5 5 6 15 9 8 8 . 1679 
1026 . 5 5 3 8 16 987 , . 1582* 
1008 . 0 6 4 9 17 9 8 6 . , 3492 
1007 . 2 9 8 3 * 18 9 8 5 , .7379* 
1006. 5 8 7 5 * 19 9 8 5 . ,3241* 
1 0 0 5 . 9 3 2 3 20 9 8 5 . .0787* 
1005 . 3 4 3 3 21 984 . .9990 
1004 . 8 2 5 3 * r P 2 4 1015 , ,9509* 
1004 . 3 7 9 1 * 5 1014 . ,2566* 
1004 . 001 1* 6 1012 . ,564 1* 
1003 . 6 7 8 6 7 1010. ,8849* 
1003 . 4 1 1 5 8 1009. 2 2 6 6 
1003 . 1891 9 1007 . 5 9 7 1 * 
1003. 0 0 3 4 9 1006 . .2047* 
1002 . 8 4 7 8 * 10 1006 . .0037* 
1002. 7 1 7 6 10 1004 . .0011* 
1002 . 6 0 6 2 * 1 1 1001 . 7142 
1002 . 5 3 4 5 * 12 1002. ,9580 
1022 . 6 4 5 7 * 12 9 9 9 , 3 4 7 3 * 
1022 . 6 7 2 4 * 13 1001 . 5 2 0 8 
1022 . 5 7 4 6 13 9 9 6 9 3 0 5 
1022 . 6 4 5 7 * 14 1000. 1527* 
1022 . 4 5 8 3 14 9 9 4 . 4 8 3 1 * 
1022 . 6 2 2 5 * 15 9 9 8 . 8 5 6 1 * 
1022 . 2841 15 992 . 0 4 2 0 



Appendix III, continued. 

a 
B r a n c h J " B r a n c h U' 

r R 1 21 1058 .68 13* r 0 2 6 
22 1061 . 8 7 0 9 * 7 
23 1065 .1156* 7 

r R 2 2 1027 . 7 0 6 6 * 8 
2 1027 . 7 0 6 6 * 8 
3 1029 . 3 5 9 9 9 
3 1029 .3 3 7 7 * 9 
4 1031 .0100 10 
4 1030 .9418 10 
5 1032 .6636 1 1 
5 1032 . 5071 1 1 
6 1034 .3278* 12 
6 1034 . 0 2 1 2 * 12 
7 1036 .0076 13 
7 1035 .4699 13 
8 1037 .71 10 14 
8 1036 .8455 14 
9 1039 . 4 4 4 5 15 
9 1038 . 1416 15 

10 1041 .2140 16 
10 1039 .3617 16 
1 1 1043 .0269 17 
1 1 1040 .5153 17 
12 1044 .8897* 18 
12 104 1 .6205 18 
13 1046 .8063 19 
13 1042 .6999* 19 
14 1048 .7838* 2 0 
14 1043. .7824 2 0 
15 1050 .8236 21 
15 1044 . .8975* 22 
16 1052 . .9239* 23 
16 1046 . .0744 24 
17 1055 , , 1066 25 
17 1047 . , 3 4 0 8 26 
18 1057 . 3 5 2 3 27 
18 1048. ,7218* 28 
19 1059 . .6674 29 
19 1050. 2 3 9 6 * r 0 3 4 
2 0 1062 . 0 5 1 0 4 
2 0 1051 . 91 10 5 
21 1064 . 5001 5 
21 1053. 7 5 1 8 7 
22 1067 . 0 1 2 0 * 7 
23 1069. 5 8 3 5 8 
23 1057 . 9821 8 
24 1072 . 2 1 6 5 * 9 
24 1060. 3 8 2 2 9 
25 1074 . 8 8 3 6 10 
25 1062 . 9 7 0 8 10 
26 1077 . 7 0 3 0 * 1 1 
26 1 0 6 5 . 7 3 7 2 1 1 
27 1080. 3 6 1 4 * 12 

r R 3 3 1036 . 2 7 4 4 * 12 
3 1036 . 2 7 4 4 * 13 
4 1037 . 9 0 6 0 * 13 
4 1037 . 9 0 6 0 * 14 
5 1039 . 5 2 6 2 * 14 
5 1 0 3 9 . 5 2 6 2 * 15 
6 1041 . 1 3 8 3 * 15 
6 104 1 . 1 3 0 4 * 16 
7 1042 . 7 3 6 3 * 16 
7 1042 . 7 1 8 4 * 17 
8 1044 . 3 2 3 3 17 
8 1044 . 2 8 3 4 18 

161 

B r a n c h d " 
1022 .6132* r P 2 16 997 . 6 3 7 2 
1022 .0408* 16 9 8 9 . ,6367 
1022 .6225* 17 9 9 6 . ,5003 
1021 .6947 17 9 8 7 . 3044 
1022 . 6 6 1 9 * 18 9 9 5 . ,4475* 
1021 .2534 18 9 8 5 . 0 7 8 7 * 
1022 . 7 4 7 3 * 19 9 8 2 . 9 9 1 2 
1020 .7012* 2 0 9 9 3 . 5 9 8 4 * 
1022 . 8 9 1 9 2 0 981 . 0 7 1 6 
1020 .0366 21 9 9 2 . 8 0 2 9 * 
1023 .1151 21 9 7 9 . 3 4 3 6 * 
1019 .2616 23 9 7 6 . 5 3 8 7 * 
1023 .4372* 24 9 7 5 . 4 8 1 6 * 
1018 . 3 8 2 5 pP1 2 9 9 7 . 3 1 4 0 
1023 .8812 3 9 9 5 . 3837 
1017 .4096* 4 9 9 3 . 3 6 2 0 
1024 .4698 5 991 . 2 4 2 3 
1016 . 3552 6 9 8 9 . 0 1 5 1 
1025 .2282 7 9 8 6 . 6 7 0 4 
1015 .2320 8 984 . 1997 
1026 . 1794 9 981 . ,5953 
1014 .0559 10 9 7 8 . ,8544 
1027 , .3419 1 1 9 7 5 , , 9 8 0 2 
1012 . .8439* 12 9 7 2 , .9832 
1028 . ,7324* 13 9 6 9 . .8798 
101 1 , .6111 14 9 6 6 .6919 
1030. . 3 5 9 4 * 15 9 6 3 .4440 
1010. .3800* 16 9 6 0 . 1606 
1032. .2262* 17 9 5 6 .8643 
1009. . 1683* 18 9 5 3 . 5 7 3 8 
1007 . .9954 pP2 2 9 8 9 .9796 
1006 . .8817* 

pP2 
3 9 8 9 .8431* 

1005. .8420* 3 9 8 8 .4041 
1004 , .8886* 3 9 8 8 .0031 
1004 . .0550* 4 9 8 6 . 8 6 2 6 
1003. ,2674* 4 9 8 6 .0845 
1002. ,5995* 5 9 8 5 . 3 387 
1002 . ,0207* 5 984 .0876 
1029 . 5 4 5 5 * 6 9 8 3 .8095 
1029. 5 4 5 5 * 6 982 .0125 
1029 . ,4912* 7 982 , .2515 
1029. ,4912* 7 9 7 9 . 8 5 9 2 
1029 . ,3290* 8 980, .6406* 
1029 . . 3 4 7 5 8 977 .6288 
1029. ,2137 9 9 7 8 . 9 5 3 0 
1029. , 2551 9 9 7 5 . 3 2 2 1 * 
1029. ,0685 10 977 , .1707* 
1029. ,1510* 10 972 .9398 
1028 . .8846 1 1 975, .2746 
1029. .0362* 1 1 970, .4851 
1028. .6512 12 973, .2551* 
1028. ,9174 12 967 .9602 
1028. , 3 5 6 8 13 971 , . 1009 
1028. ,7961 13 9 6 5 . 3 6 8 6 
1027 . .9869 14 9 6 8 . 7 4 4 3 * 
1028. ,6796 14 9 6 2 .7151 
1027. .5265 15 9 6 0 .0028 
1028. ,5772 16 9 6 3 .7555 
1026. .9597* 16 9 5 7 .2391 
1026. ,9597* 17 9 6 0 .9989 
1026 . ,2778* 17 954 .4276 
1028 . ,4608 18 951 .5756 
1025. .4670 19 9 5 5 .0372 
1028. .4753 19 9 4 8 .6880 
1024 .5247* 2 0 951 .8544 



162 

Appendix III, continued. 

R 
B r a n c h J " B r a n c h J " 

r R 3 9 1045 .8996 r 0 3 18 
9 1045 .8216 19 

10 1047 .4676* 2 0 
10 1047 . 3 2 4 8 2 0 
11 1049 .0294 21 
11 1048 .7838* 21 
12 1050 .5882* 22 
12 1050 . 1895 22 
13 1052 . 1491 23 
13 1051 .5302 r Q 4 5 
14 1053 .7169 5 
14 1052 .7941 6 
15 1055 .2980 6 
15 1053 .9720* 7 
16 1056 .8992 7 
16 1055 .0612 8 
17 1058 .5274 8 
17 1056 .0591 9 
18 1060 .1880* 9 
18 1056 .9737 10 
19 1061 . 8 9 2 3 * 10 
19 1057 .8196 1 1 
2 0 1063 .6434 1 1 
2 0 1058 .6198* 12 
21 1065 .4484 12 
21 1059 , .4005 13 
22 1067 . .3136* 13 
22 1060. .1829* 14 
24 1061 . ,9630* 14 
25 1062 . 9 9 9 0 * 15 
26 1064 . 1769* 15 

r R 4 4 1044 . 6 7 4 1 16 
4 1044 . 6 7 4 1 16 
5 1046 . 2 9 6 5 17 
5 1046 . 2 9 6 5 18 
6 1047 . 9 0 7 6 18 
6 1047 . 9 0 7 6 19 
7 1049. 5 0 7 0 * 19 
7 1049 . 5 0 7 0 * 2 0 
8 1051 . 0 9 4 1 * 2 0 
8 1051 . 0 9 4 1 * 21 
9 1052 . 6 6 7 6 * 22 
9 1052 . 6 6 7 6 * 23 

10 1054. 2 2 6 0 * 23 
10 1054 . 2 2 6 0 * 24 
11 1 0 5 5 . 7 7 3 9 * 24 
11 1 0 5 5 . 7 6 5 8 * 25 
12 1057. 3 0 4 4 * 25 
12 1057. 2 8 6 8 * 26 
13 1 0 5 8 . 8 1 7 7 * 26 
13 1058 . 7 8 5 8 27 
14 1 0 6 0 . 3 1 5 5 27 
14 1 0 6 0 . 2 5 8 6 * r 0 5 6 
15 1061 . 7 9 8 1 * 6 
15 1061 . 7 0 0 8 * 7 
16 1 0 6 3 . 2 6 4 5 7 
16 1063 . 1 060 9 
17 1064 . 7 190* 9 
17 1064. 4 6 7 6 10 
18 1066 . 1 620 10 
18 1065 . 7771 1 1 
19 1067. .5976 1 1 
19 1067 . ,0244* 12 
2 0 1069, .0303* 12 
2 0 1068. .1959* 13 

Q E 
B r a n c h i P 

1028. 5 6 1 2 * pP2 2 0 9 4 5 . 7 7 2 0 
1023 . 4 5 0 6 * 21 9 4 8 . 5 6 1 6 
1022 . 2521 21 942 . 8 3 0 0 * 
1029. 0 3 6 2 * 22 9 4 5 . 1 8 3 9 * 
1020. 9 3 8 3 22 9 3 9 . 8 6 8 3 
1 0 2 9 . 4 6 7 0 23 94 1 . 7 4 7 5 
1030. 0 6 3 9 23 9 3 6 . 8 7 5 5 * 
1019 . 5 2 3 6 24 938 . 2 7 9 8 * 
1018 . 0 0 5 6 * 25 934 . 8 0 3 2 
1036. 2 6 6 9 * p P 3 4 9 7 8 . 7 0 8 2 
1036. 2 6 6 9 * 4 9 7 8 . 6 8 8 4 
1036 . 2 0 3 4 * 5 977 . 01 16 
1036. 2 0 3 4 * 5 9 7 6 . 9 5 5 5 * 
1036. 1 2 8 9 * 6 9 7 5 . 3 3 0 3 * 
1036. ,1289* 6 9 7 5 . , 1961 
1036. .0395* 7 9 7 3 . ,6720 
1036 . 0 3 9 5 * 7 9 7 3 . ,4099 
1035. ,9358* 8 972 , ,0465* 
1035. ,9358* 8 971 , .5892* 
1035, .8159* 9 9 7 0 .4631 
1035, ,8159* 9 969, , 7 2 8 2 
1035 .6753* 10 9 6 8 . 9 2 2 4 
1035 .6843* 10 9 6 7 .8217 
1035 .5144 1 1 967 .4219* 
1035 .5309* 1 1 9 6 5 .8621 
1035 . 3291 12 9 6 5 .9497 
1035 . 3631 12 9 6 3 .8465 
1035 .1149* 13 964 . 4 8 9 3 
1035 . 1769 13 961 .7748* 
1034 .8680 14 9 6 3 .0167 
1034 .9734 14 9 5 9 .6248* 
1034 .5800 15 961 .5062 
1034 . 7 5 3 7 15 957 .4 1 4 5 * 
1034 .5206 16 9 5 9 . 9 2 9 6 
1033 .8482* 16 9 5 5 . 1299 
1034 . 2 7 8 3 17 9 5 8 . 2 6 2 3 
1033 . 3 8 2 3 17 9 5 2 .7749 
1034 .0309* 18 9 5 6 . 4 8 0 8 
1032 .8330 18 9 5 0 . 3 4 7 6 
1033 .7838* 19 954 .5650* 
1032 . 1 8 5 3 * 19 9 4 7 .8489 
1031 .4235 2 0 952 . 5 0 3 2 
1030 .5349 20 9 4 5 . 2 8 0 3 
1033 .1511 21 9 5 0 .2831 
1029 .5080 21 942 .6462* 
1033 .0169 22 9 4 7 .8973 
1028 . 3 3 5 4 * 22 9 3 9 .9468 
1032 .9486 23 9 4 5 . 3 4 0 8 
1027 .0079 23 9 3 7 . 1 8 9 7 * 
1032 .9670 24 9 4 2 .6114 
1025 .5505 24 934 .3056* 
1033 .0 9 1 5 * 25 9 3 9 . 7 1 1 1 * 
1042 .8 3 5 7 * p P 4 4 9 7 0 . 7 2 4 3 * 
1042 .8 3 5 7 * 4 9 7 0 .7243* 
1042 .7645 5 9 6 9 .0060* 
1042 .7645 5 9 6 9 .0060* 
1042 .5844 6 967 .2789* 
1042 .5844 6 967 . 2 7 8 9 * 
1042 .4754 7 9 6 5 .5417* 
1042 .4754 7 9 6 5 . 5 4 6 7 * 
1042 .3520* 8 9 6 3 .8095 
1042 .3520* 8 9 6 3 .7943* 
1042 .2139 9 962 .0712 
1042 .2139 9 962 .0391 
1042 .0604 10 9 6 0 .3347 
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Appendix III, continued. 

E 
B r a n c h J " B r a n c h J " 

21 1070 .4622* r 0 5 13 
21 1069 . 2 9 4 7 * 14 
22 1071 .9036 14 
22 1070 . 3 0 6 8 * 15 
2 3 1073 . 3 2 3 9 * 15 
23 1071 . 1 9 5 6 * 16 
5 1052 . 9 2 3 9 * 16 
e 1054 .5354* 17 
7 1056 . 1 3 6 7 * 17 
8 1057 .7263 18 
9 1059 . 3 0 4 9 18 

10 1060 .8713 19 
11 1062 .4240 19 
12 1063 .9636 2 0 
12 1063 .9636 2 0 
13 1065 .4879 21 
13 1065 .4879 21 
14 1067 .0112* 22 
14 1067 .0112* 23 
15 1068 .4896* 23 
15 1068 .4896* r 0 6 7 
16 1069 . .9677* 7 
16 1069 .9616* 8 
17 107 1 .4260* 8 
17 1071 .4088* 9 
18 1072 . .8650 9 
18 1072 . ,8457 10 
19 1074 . , 2 8 6 3 10 
19 1074 . , 2 5 1 6 1 1 
2 0 1075 . 6 8 6 1 * 1 1 
2 0 1075 . 6 3 0 1 12 
21 1077 . 0 6 9 1 12 
21 1076. 9 7 7 3 13 
22 1078. 4 3 1 8 * 13 
22 1078 . 2 8 8 8 14 
23 1079 . 5 5 7 7 14 
24 1081 . 1 101* 15 
24 1080. 7 7 7 2 15 
25 108 1 . 9 3 6 3 * 16 
6 1061 . 0 3 8 0 16 
6 106 1 . 0 3 8 0 17 
7 1062 . 6 3 9 6 17 
7 1062. 6 3 9 6 18 
8 1064 . 2 3 0 0 * 18 
8 1064 . 2 3 0 0 * 19 
9 1065 . 8 0 9 8 19 
9 1065. 8 0 9 8 2 0 

10 1067. 3781 2 0 
10 1067. 3781 21 
1 1 1068 . 9 3 4 8 21 
1 1 1068. 9 3 4 8 22 
12 1070. ,4794 22 
12 1070. ,4794 23 
13 1072. .0105 23 
13 1072. 0 1 0 5 24 
14 1073. ,5296 24 
14 1073 . .5296 r 0 7 8 
15 1075, .0336* 9 
15 1075. .0336* 9 
16 1076. .5238* 10 
16 1076 .5238* 10 
17 1078 . 9 8 2 3 * 1 1 
17 1078 . 9 8 2 3 * 1 1 
18 1079 .4562* 12 
18 1079 .4562* 13 

Q. E 
B r a n c h J " 

1042 .0604 pP4 10 9 6 0 . 27 18 
1041 .8900* 

pP4 
1 1 9 5 8 . 6 0 6 9 

104 1 .8900* 1 1 9 5 8 . 4 9 2 2 * 
104 1 .7013* 12 9 5 6 . 8 9 2 0 
1041 .7013* 12 9 5 6 . 6 9 5 9 
104 1 , :4913* 13 9 5 5 . 1994 
1041 .4988* 13 954 . 8 8 0 8 
104 1 , . 2 5 9 9 14 9 5 3 . 5 3 7 2 
1041 .2739 14 9 5 3 . ,0431 
104 1 .0057 15 951 . 9 1 3 4 * 
1041 , .0288 15 951 . 1774 
1040 .7239 16 9 5 0 . ,3321 
1040 .7620 16 9 4 9 . , 2791 
1040 .4126 17 9 4 8 . 7 9 9 4 
1040 .4768 17 9 4 7 . . 3421 
1040 .0675 18 947 . ,3134 
1040 .17 14 18 9 4 5 , .3613 
1039, .8448* 19 9 4 5 , ,8664 
1039, .2502* 19 9 4 3 , ,3313 
1039 .4988* 2 0 944 .4455 
1049 . 2 7 2 6 2 0 941 . 2 4 5 7 
1049 , , 2 7 2 6 21 9 4 3 .0298* 
1049 , , 1907 21 9 3 9 . 1012 
1049, . 1907 22 941 .5931 
1049 , ,0974 22 9 3 6 .8755* 
1049 , 0 9 7 4 23 9 4 0 . 1075 
1048 , .9930 23 934 .6179 
1048 . .9930 24 9 3 8 .5446* 
1048 .8757 p P 5 5 9 6 0 . 8 7 8 3 
1048 . ,8757 

p P 5 
5 9 6 0 .8783 

1048 .7456 6 9 5 9 .1 5 0 5 * 
1048 , . 7 4 5 6 6 9 5 9 .1 5 0 5 * 
1048 .6023 7 957 .4 1 4 5 * 
1048 . 6 0 2 3 7 957 .4 145* 
1048 , .4444 8 9 5 5 .6703* 
1048 , . 4 4 4 4 8 9 5 5 . 6 7 0 3 * 
1048 .2726 9 953 .9166* 
1048 . 2 7 2 6 9 9 5 3 .9166* 
1048 .0851 10 9 5 2 .1558* 
1048 .0851 10 9 5 2 .1558* 
1047 .8814* 1 1 9 5 0 . 3 8 7 5 * 
1047 .8814* 1 1 9 5 0 . 3 8 7 5 * 
1047 .6606* 12 9 4 8 .6166* 
1047 .6606* 12 9 4 8 . 6 0 9 9 * 
1047 .4220 13 9 4 6 . 8 3 9 5 * 
1047 .4220 13 9 4 6 . 8 2 6 2 * 
1047 . 1643 14 9 4 5 .0593 
1047 . 1643 14 9 4 5 .0298 
1046 .8878* 15 9 4 3 . 2 6 0 8 
1046 .8878* 15 9 4 3 .2365 
1046 .5863* 16 941 . 5 0 4 1 * 
1046 .5950* 16 941 .4301 
1046 . 2 6 2 3 * 17 9 3 9 . 7 3 4 1 * 
1046 . 2 7 7 3 * 17 9 3 9 .6135 
1045 .9127* 18 9 3 7 .9768 
1045 .9401* 18 937 .7859 
1055 .5844* 19 9 3 6 . 2 3 6 3 * 
1055 .5005 19 9 3 5 .9466* 
1055 . 5 0 0 5 2 0 934 . 5 2 2 0 * 
1055 .3983 23 9 2 8 .3993* 
1055 .3983 p P 6 6 9 5 0 .8855 
1055 .2833 

p P 6 
6 9 5 0 .8855 

1055 .2833 7 9 4 9 . 1497 
1055 .1 5 1 5 * 7 9 4 9 . 1497 
1055 .0186 8 9 4 7 . 4 0 4 9 



Appendix III, continued. 

E 
B r a n c h d " B r a n c h d " 

r R 6 19 1080. 8 9 8 3 * r 0 7 13 
19 1080. 8 9 8 3 * 14 
2 0 1082 . 3 2 2 7 * 14 
2 0 1082. 3 2 2 7 * 15 
21 1 0 8 3 . 7 2 8 1 * 15 
21 1083 . 7 2 8 1 * 16 
22 1 0 8 5 . 1 118* 17 
23 1086 . 4 8 5 8 * 17 
23 1086 . 4 7 0 8 * 18 
24 1087. 8 3 2 1 * 19 
24 1087 . 8 1 7 0 * 2 0 
25 1089 . 1 6 1 0 * 2 0 
25 1 0 8 9 . 1333 21 
26 1090. 4 2 4 8 * 21 
26 1090. 3 5 7 5 * 22 

r R 7 7 1 0 6 9 . 0 3 6 3 * 22 
7 1069 . 0 3 6 3 * r 0 8 9 
8 1070. 6 2 6 6 10 
8 1070. 6 2 6 6 1 1 
9 1072 . 2 0 6 7 12 
9 1072 . 2 0 67 12 

10 1073 . 7 7 4 9 13 
10 1073 . 7 7 4 9 13 
1 1 1 0 7 5 . 3 3 2 9 14 
1 1 1075 . 3 3 2 9 14 
12 1076 . 8 7 8 5 * 15 
12 1076 . 8 7 8 5 * 16 
13 1078 . 4 1 2 5 * 17 
14 1 0 7 9 . 9 2 8 9 * 17 
15 1081 . 4 4 3 8 18 
15 1081 . 4 4 3 8 19 
16 1082. 9 4 0 2 2 0 
16 1082 . 9 4 0 2 2 0 
17 1084 . 4 2 3 2 21 
17 1084 . 4 2 3 2 2 1 
18 10 8 5 . 8 8 6 7 * 22 
19 1087. 3 4 8 7 23 
19 1087 . . 3 487 23 
2 0 1088 , ,7940* 24 
21 1090. .2200* 25 
21 1090. .2200* 26 
23 1093 . .0102* 26 
23 1093 .0102* PQ1 1 
24 1094 .3885* 

PQ1 
2 

25 1095 .7295* 3 
25 1095 .7295* 4 

r R 8 8 1076 .9357 5 
8 1076 .9357 6 
9 1078 .5143 7 
9 1078 .5143 8 

10 1080 .0824* 9 
1 1 1081 .6390 10 
1 1 1081 .6390 1 1 
12 1083 . 1847 12 
12 1083 . 1847 13 
13 1084 .7134* 14 
14 1086 .2408* 15 
15 1087 .7500 16 
15 1087 .7500 17 
16 1089 . 247 1 18 
16 1089 .2471 19 
17 1090 .7314 2 0 
17 1090 .7314 21 
18 1092 . 2 0 2 9 * 22 
19 1093 .6596 23 
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a E 
B r a n c h d " 

1055 .0186 p P 6 8 947 .4049 
1054 .8669 9 9 4 5 .6509 
1054 .8669 9 9 4 5 .6509 
1054 . 7 0 2 3 10 9 4 3 . 8 8 8 3 
1054 .7023 10 943 .8883 
1054 .5236* 1 1 942 . 1 175 
1054 .3329 1 1 9 4 2 . 1 175 
1054 .3329 12 9 4 0 .3385 
1054 . 1 2 5 9 * 12 9 4 0 . 3 3 8 5 
1053 .9050* 13 9 3 8 .5518 
1053 .6692 13 9 3 8 .5518 
1053 .6692 14 9 3 6 . 7 5 7 3 * 
1053 . 4 2 2 3 * 14 9 3 6 . 7 5 7 3 * 
1053 . 4 2 2 3 * 15 934 . 9 5 6 1 * 
1053 . 1 4 8 1 * 15 934 . 9 5 6 1 * 
1053 . 1 4 8 1 * 18 9 2 9 .5201* 
1061 .8161* 18 9 2 9 .5118* 
1061 .7127* 19 927 .6994* 
1061 .5989 19 927 .6 8 4 7 * 
1061 .4747 20 9 2 5 .8776* 
1061 .4747 2 0 9 2 5 .8 5 1 5 * 
1061 . 3371 21 924 .0542* 
1061 .3371 21 924 .0132* 
1061 . 1880 22 922 .2312* 
106 1 .1880 22 922 .1676* 
1061 .0259* pP7 7 9 4 0 . 7 6 6 2 
1060 .8523* 7 9 4 0 .7662 
1060 .6641 8 9 3 9 .0210 
1060 . 664 1 8 939 .0210 
1060 .4628* 9 9 3 7 .2674* 
1060 .2462* 10 9 3 5 .5052 
1060 .0175 10 9 3 5 . 5052 
1060 .0175 1 1 9 3 3 . 7 3 4 2 
1059 .7736 1 1 9 3 3 . 7 3 4 2 
1059 .7736 12 931 .9544 
1059 .5139* 12 931 . .9544 
1059. .2391 13 9 3 0 . . 1658 
1059 . 2391 13 9 3 0 . . 1658 
1058 .9472* 14 928 . 3691 
1058 . .6402* 14 928 . 3691 
1058 3 1 4 7 15 9 2 6 . 5 6 4 5 
1058 . .3147 15 9 2 6 . 5 6 4 5 
1000. .9813* 16 924 . .7520 
1001 . . 1 124 16 924 . 7 5 2 0 
1001 . 3 0 1 5 * 17 922 . 9 3 2 2 * 
l O O l . 5 4 0 5 17 922 . 9 3 2 2 * 
1001 . 8 1 7 4 18 921 . 1042* 
1002 . 1 190* 18 92 1 . 1042* 
1002 . 4 2 8 7 2 0 917 . 4 2 8 3 * 
1002 . 7 3 5 3 2 0 917 . 4 2 8 3 * 
1003. 0 2 3 7 21 9 1 5 . 5 8 1 8 * 
1003. 2 8 5 3 21 9 1 5 . 5 8 1 8 * 
1003. 5 1 4 3 p P 8 8 9 3 0 . 5 3 8 6 
1003 . 7 0 8 6 8 9 3 0 . 5 3 8 6 
1003 . 8 7 0 2 9 9 2 8 . 7 8 6 0 
1004. OOI 1* 9 928 . 7 8 6 0 
1004 . 1081 10 927 . 0 2 4 4 
1004. 1938 10 9 2 7 . 0 2 4 4 
1004 . 2 6 3 4 1 1 9 2 5 . 2 5 3 5 
1004 . 3 2 0 5 1 1 9 2 5 . 2 5 3 5 
1004. 3 6 8 8 12 9 2 3 . 4 7 3 7 
1004 . 4 1 0 4 12 9 2 3 . 4 7 3 7 
1004 . 4 4 8 0 * 13 921 . 6 8 5 6 
1004. 4 8 3 0 13 921 . 6 8 5 6 
1004 . 5 1 6 9 14 9 1 9 . 8 8 8 4 



Appendix III, continued. 

Q. 
B r a n c h J 

r R 8 

r R 9 

pR1 

pR2 

J * B r a n c h J " 
19 1093 .6596 pQ1 24 1004 . 5 5 0 3 * 
2 0 1095 .1036* 25 1004 . 5 8 2 8 * 
2 0 1095 .1036* 26 1004 .6182* 
21 1096 .5326* 27 1004 . 6 4 9 5 * 
22 1097 .9470 28 1004 .6954* 
22 1097 .9470 29 1004 . 7 3 5 9 * 
23 1099 .34 14* 3 0 1004 . 7 7 9 0 * 
24 1100 .7295 p 0 2 2 9 9 3 .4676 
24 1 100 .7295 2 9 9 3 .0378 
25 1 102 .0978* 3 9 9 2 .7770* 
27 1 104 .7808* 3 9 9 3 .6490 
28 1106 .0987* 4 992 .4059 
9 1084 . 7 4 6 8 4 9 9 3 . 8 8 9 5 * 
9 1084 .7468 5 991 .9070 

1 1 1087 .8486 5 994 . 1894 
1 1 1087 .8486 6 991 . 2 5 8 3 
13 1090 .9030 6 994 .5445 
13 1090 .9030 7 9 9 0 .4366 
14 1092 .4124 7 994 .9527 
14 1092 .4124 8 9 8 9 . 4 2 0 0 
15 1093 . .9097 8 9 9 5 .4 107 
15 1093 .9097 9 9 8 8 .1900* 
16 1095 . .3929* 9 9 9 5 .9129 
17 1096. .8673* 10 9 8 6 .7319 
17 1096. , 8 6 7 3 * 10 9 9 6 . 4 5 2 1 * 
18 1098. .3274* 1 1 9 8 5 .0383 
19 1099 , . 7738 1 1 997 . 0 2 0 7 * 
19 1099. . 7738 12 9 8 3 . 1079 
2 0 1 101 . 2 0 7 9 12 997 .6071 
2 0 1101. 2 0 7 9 13 9 8 0 .9447 
21 1 102 . 6 2 8 4 * 13 9 9 8 . 1994 
21 1 102 . 6 2 8 4 * 14 9 9 8 . 7 8 4 3 * 
22 1 104 . 0 2 2 3 * 15 9 9 9 . 3 4 7 3 * 
1 1004 . . 1651 16 9 9 9 .8737 
2 1005 .6467 17 1000 .3537* 
3 1007 , .0216 18 1000 .7778 
4 1008. . 2 7 6 6 * 19 1001 .14 14 
5 1009 . . 3984 2 0 1001 , .4443* 
6 1010. 3 7 4 5 * 21 1001 .6879 
8 101 1 . . 8422 22 1001 , .8780 
9 1012 . ,3259* 23 1002 , .0207 

10 1012 . .6451 24 1002 . , 1190* 
1 1 1012 . 8 1 2 6 25 1002 . , 1934* 
12 1012 . .8438* 26 1002 . ,2361* 
13 1012 . . 7 6 8 7 * 27 1002, ,2564* 
14 1012 . .6051 28 1002 . ,2851* 
15 1012 . ,3836 29 1002 . ,3037* 
16 1012 . 1 2 9 3 * P 0 3 3 9 8 5 . 4 1 6 4 
2 9 9 7 . ,8488* 3 9 8 5 . 4 3 8 2 * 
3 9 9 9 . ,1911* 4 9 8 5 . ,4283* 
4 1000. 4591 4 9 8 5 . 3 6 7 1 * 
5 1001 . 6 3 7 1 * 5 9 8 5 . 4 3 8 2 * 
6 1006. ,3518* 5 9 8 5 . 2 9 4 5 
7 1008 . ,2185* 6 9 8 5 . 4 8 1 3 * 
7 1003. 7 3 3 0 6 9 8 5 . 1924* 
8 1010. 01 10 7 9 8 5 . 5 6 9 5 
8 1004 . 6 4 9 5 * 7 9 8 5 . 0 5 2 0 * 
9 101 1 . 7 0 2 3 8 9 8 5 . 7 1 7 7 * 
9 1005. 4 7 4 8 8 9 8 4 . 8 6 0 5 

10 1013. 2 6 7 3 9 9 8 5 . 9 3 7 7 
10 1006. 2 1 6 0 9 984 . 6 0 5 4 
1 1 1014 . 6 8 4 9 10 9 8 6 . 2 3 8 0 
1 1 1006. 8 7 5 0 * 10 984 . 2701 
12 1015. 9 3 8 8 1 1 9 8 6 . 6 2 2 0 
12 100 7 . 4 5 1 4 1 1 9 8 3 . 8 3 4 7 * 

B r a n c h 
p P8 

p P 9 

r P O 

14 
15 
15 
16 
16 
17 
17 
18 
18 
19 
19 
2 0 
2 0 
21 
21 
22 
23 
9 
9 

10 
10 
1 1 
1 1 
12 
12 
13 
13 
14 
14 
15 
15 
16 
16 
17 
17 
18 
18 
10 
10 
1 1 
12 
12 
13 
13 
14 
14 
15 
15 
16 
16 
17 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
12 
13 
14 
15 

9 1 9 . 
9 1 8 . 
9 1 8 . 
9 1 6 . 
9 1 6 . 
9 1 4 . 
914 . 
9 1 2 . 
912 . 
9 1 0 . 
9 1 0 . 
908 . 
9 0 8 . 
9 0 7 . 
9 0 7 . 
9 0 5 . 
9 0 3 . 
9 2 0 . 
9 2 0 . 
9 1 8 . 
9 1 8 . 
9 1 6 . 
9 1 6 . 
914 . 
914 . 

9 1 3 . 
9 1 3 
91 1 
911 
9 0 9 
9 0 9 
9 0 7 
9 0 7 
9 0 5 
9 0 5 
904 
904 
9 0 9 
9 0 9 
9 0 8 
9 0 6 
9 0 6 
904 
904 
9 0 2 
9 0 2 
9 0 0 
9 0 0 
8 9 9 
8 9 9 
8 9 7 

1005 
1003 
1002 
1000 
9 9 9 
9 9 8 
9 9 7 
9 9 6 
9 9 6 
9 9 5 
9 9 5 
9 9 5 
9 9 5 
9 9 5 

8 8 8 4 
0 8 3 0 
0 8 3 0 
2 6 8 4 
2 6 8 4 
4 4 6 5 
4 4 6 5 
6 1 6 0 
6 1 6 0 
7 7 8 2 
7 7 8 2 
9 3 1 8 
9 3 1 8 
0 7 9 4 
0 7 9 4 
2 1 8 6 * 
.3517* 
.2284 
.2284 
.4668* 
.4668* 
.6970 
.6970 
.9177 
.9177 
. 1299 
. 1299 
. 3 3 3 0 
. 3 3 3 0 
.5262 
.5262 
.7126 
.7126 
.8895 
.8895 
.0587' 
.0587' 
.8565' 
.8565' 
.0866' 
.3071 
. 3071 
.5200 
.5200' 
. 7215' 
.7215 
.9151 
.9151 
. 1004 
. 1004 
. 2 7 5 8 
.0696 
. 5 3 1 6 
.0797 
.7299 
.4985 
.4016 
.4567 
.6731 
.0551 
.6010 
.3008 
. 1399 
.0959 
.1471 



Appendix III, continued. 

E 
B r a n c h J " 

pR2 13 1017 .0141 
13 1007 .9534 
14 1017 .9005 
14 1008 . 3 8 2 2 * 
15 1018 .5919 
15 1008 .7512* 
17 1019 . 3 8 2 5 * 
17 1009 .3150* 
18 1019 .5032 
18 1009 .5251 
19 1009. .6976* 
21 1018 .9620* 
22 1018 .5698 

pR3 5 9 9 5 . 5 7 9 1 * 
6 9 9 7 . 3 5 1 6 
6 9 9 6 .8616* 
7 9 9 9 . 1 8 0 1 * 
7 9 9 8 .3831* 
8 1001 .0670* 
8 9 9 9 .8603* 
9 1001 .2852 

10 1002 .6512 
1 1 1007 .0793* 
1 1 1003 .9510 
12 1009 . 1494 
12 1005 . 1782 
13 1006 . 3 2 8 5 * 
14 1013 . 2431 
14 1007 . 3 9 7 2 
15 1015 .2062 
16 1017 .0540* 
17 1018 .8015 
19 102 1 .7521* 

pR4 7 9 9 0 .6643 
8 992 .2798* 
9 994 .0085 

10 9 9 5 . .6927 
10 9 9 5 . .4825 
1 1 9 9 7 .4076* 
1 1 9 9 7 . .0645 
12 9 9 9 . . 1 6 2 7 * 
12 9 9 8 . .6270 
13 1000. .9692* 
13 1000. ,1659* 
14 1002. .8357 
14 1001 . .6739 
15 1003. , 1454 
16 1006. 7 6 9 6 * 
17 1008 . 8 3 5 7 * 
17 1006 . 9 4 9 1 * 
18 1007 . 1670* 
19 1008 . 5 1 8 1 * 
2 0 1009. 6 9 7 6 * 
21 1010. 8 0 0 8 * 

P04 
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a E 
J " B r a n c h J " 
12 9 8 7 . 0 9 0 7 * r P O 16 9 9 5 . 2 6 6 9 
12 9 8 3 .2784* 17 9 9 5 . 4 3 2 1 
13 9 8 7 . 6 3 8 7 * 18 9 9 5 . 6 2 0 3 
13 9 8 2 .5775 19 9 9 5 . 8 1 2 7 
14 9 8 8 .2622 2 0 9 9 5 . 9 9 5 3 
14 981 .7067 21 9 9 6 . 1 5 8 5 * 
15 9 3 8 .9500 r P I 4 1 0 0 8 . 1 2 8 1 * 
15 9 8 0 .6406* 5 1 0 0 8 . 3 1 9 4 * 
16 9 8 9 .6941 5 1 0 0 6 . 0 7 9 4 * 
16 9 7 9 . 3 6 0 8 * 6 1 O 0 7 . 0 7 9 3 * ' 
17 9 9 0 .4827 7 1 0 0 5 . 9 2 0 5 * 
17 9 7 7 . 8 4 2 2 * 7 1 0 0 1 . 9 1 7 4 * 
18 991 .3031 8 9 9 9 . 8 5 1 0 * 
19 9 9 2 . 1436 9 1 0 0 3 . 8 4 5 6 
2 0 9 9 2 .9882 9 9 9 7 . 8 3 0 0 
21 9 9 3 . 8 2 2 4 10 1 0 0 2 . 9 3 19 
22 994 . 6 2 9 5 * 10 9 9 5 . 8 8 5 1 
23 9 9 5 . 3 947 11 1 0 0 2 . 1 0 1 6 * 
24 9 9 6 . 1022 1 1 9 9 4 . 0 4 3 5 * 
25 996 .7844* 12 9 9 2 . 3 3 0 0 * 
26 9 9 7 .4076* 13 1 0 0 0 . 6 8 3 1 
28 9 9 8 .4732* 13 9 9 0 . 7 6 7 8 
4 9 7 7 . 4 1 4 1 * 14 1 0 0 1 . 0 8 9 7 * 
4 9 7 7 . 4 1 4 1 * 14 9 8 9 . 3 7 5 3 
5 9 7 7 .3718* 15 9 9 9 . 5 6 7 8 * 
5 9 7 7 .3718* 15 9 8 8 . 1679 
6 9 7 7 .3208* 16 9 8 7 . 1582* 
7 9 7 7 . 2 7 7 8 17 9 8 6 . 3 4 9 2 
7 977 . 2 6 2 5 18 9 8 5 . 7 3 7 9 * 
8 977 .2310* 19 9 8 5 . 3 2 4 1 * 
8 9 7 7 . 1963* 2 0 9 8 5 . 0 7 8 7 * 
9 977 . . 1 8 9 1 * 21 9 8 4 . 9 9 9 0 
9 977 . . 1 199* r P 2 4 1 0 1 5 . 9 5 0 9 * 

10 9 7 7 . .1609* 5 1 0 1 4 . 2 5 6 6 * 
10 977 . .0319 6 1 0 1 2 . 5 6 4 1 * 
1 1 977 . . 1 5 2 6 * 7 1 0 1 0 . 8 8 4 9 * 
1 1 976 , .9286 8 1 0 0 9 . 2 2 6 6 
12 9 7 7 . 1707* 9 10O7.597 1* 
12 9 7 6 . 8 0 4 0 9 1 0 0 6 . 2 0 4 7 * 
13 9 7 7 . 2 3 9 7 * 10 1 0 0 6 . 0 0 3 7 * 
13 9 7 6 . 6 5 1 7 10 1 0 0 4 . 0 0 1 1 * 
14 9 7 7 . 3 6 0 3 * 1 1 1 0 0 1 . 7 1 4 2 
14 9 7 6 . 4 6 2 7 12 1 0 0 2 . 9 5 8 0 
15 977 . 5 5 0 2 12 9 9 9 . 3 4 7 3 * 
15 9 7 6 . 2 2 6 2 13 1 0 0 1 . 5 2 0 8 
16 9 7 7 . 8 2 1 2 * 13 9 9 6 . 9 3 0 5 
16 9 7 5 . 9 2 7 4 14 1 0 0 0 . 1 5 2 7 * 
17 978 . 1846 14 9 9 4 . 4 8 3 1 * 
17 9 7 5 . 551 1 15 9 9 8 . 8 5 6 1 * 
18 9 7 8 . 6 4 6 6 15 9 9 2 . 0 4 2 0 
18 9 7 5 . 0 7 8 3 16 9 9 7 . 6 3 7 2 
19 9 7 9 . 2 1 0 4 16 9 8 9 . 6 3 6 7 
19 974 . 4 8 7 2 17 9 9 6 . 5 0 0 3 
2 0 9 7 9 . 8 7 4 4 17 9 8 7 . 3 0 4 4 
2 0 9 7 3 . 7 5 3 7 18 9 9 5 . 4 4 7 5 * 
21 9 8 0 . 6 3 3 5 * 18 9 8 5 . 0 7 8 7 * 
21 9 7 2 . 8 5 3 2 19 9 8 2 . 9 9 1 2 
22 981 . 4 7 6 4 * 2 0 9 9 3 . 5 9 8 4 * 
22 971 . 7 6 0 9 2 0 9 8 1 . 0 7 1 6 
23 9 8 2 . 3 9 4 4 * 21 9 9 2 . 8 0 2 9 * 
23 9 7 0 . 4 5 1 3 21 9 7 9 . 3 4 3 6 * 
24 9 8 3 . 3 7 2 6 * 23 9 7 6 . 5 3 8 7 * 
25 984 . 3 9 6 6 24 9 7 5 . 4 8 1 6 * 
26 9 8 5 . 4 5 0 7 
27 9 8 6 . 5 1 8 6 * 
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Appendix III, continued. 

R 
Branch U" 

P04 28 987 . 5992* 
P05 5 969. 2386* 

5 969. 2386* 
6 969. 1859* 
6 969 . 1859* 
7 969 . 1260* 
7 969 . 1260* 
8 969 . 0586* 
8 969 . 0586* 
9 968 . 9853* 
9 968 . 9853* 

10 968. ,9064* 
10 968 . ,9064* 
1 1 968 . 8264* 
1 1 968. 8202* 
12 968 . 7435* 
12 968 .7285 
13 968 .6588 
13 968 .6318 
14 968 .5784 
14 968 .5291 
15 968 .504 1 
15 968 .4193 
16 968 .4421* 
16 968 . 3020 
17 968 .3970* 
17 968 . 1728 
18 968 . 3793 
18 968 .0280* 
19 968 .3970* 
19 967 .8656* 
20 968 .4421* 
20 967 . 6744* 
21 968 .5614* 

p06 6 960 .9167 
6 960 .9167 
8 960 .7837 
8 960 . 7837 
9 960 .7057* 
9 960 .7057* 

10 960 .6200 
10 960 .6200 
1 1 960 .5279 
1 1 960 .5279 
12 960 .4291 
12 960 .4291 
13 960 .3237* 
13 960 .3237* 
14 960 .2128* 
14 960 .2128* 
15 960 .0969* 
15 960 .0969* 
16 959 .9748* 
17 959 .8587* 
17 959 .8487* 
18 959 .7366* 
18 959 .7183* 
19 959 . 5839 
19 959 .6133* 
20 959 .4937 
20 959 .4453* 
21 959 .3002* 
21 959 .3758* 
22 959 . 1627* 
23 958 .9872* 
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Appendix III, 

R 

continued. 

Q. E 
B r a n c h j " 

P07 

P08 

p09 

8 952 . 3931* 
8 952 . 3931* 
9 952 .3136* 
9 952 .3136* 

10 952 .2261 
10 952 .2261 
11 952 . 1301 
11 952. . 1301 
12 952, .0267 
12 952 . .0267 
13 952 .9134* 
13 952 .9134* 
14 951 .7966 
14 951 .7966 
15 951 .6714 
15 951 .6714 
1S 951 .5399 
16 951 .5399 
17 951 .4016* 
17 951 .4016* 
18 951 .2580* 
18 951 .2580* 
19 951 .1094* 
19 951 .1094* 
20 950, .9490* 
8 943 .9068 
8 943 .9068 
9 943, .8256 
9 943 .8256 

10 943 . 7367 
10 943 , .7367 
1 1 943, .6391 
1 1 943 .6391 
12 943 .5336 
12 943 . 5336 
13 943 .4193 
13 943 .4193 
14 943 . 2973 
14 943, . 2973 
15 943 . 1668 
15 943 . 1668 
16 943 .0298* 
17 942 .8855* 
18 942 .7328 
18 942 . 7328 
19 942, .5744 
19 942 .5744 
20 942, .4087 
20 942 .4087 
21 942, .2373* 
21 942 , .2373* 
22 942 , .0601* 
22 942, .0601* 
24 941 .6879* 
24 941 , .6879* 
12 934, .9675* 
12 934 , .9675* 
13 934 , .8515* 
13 934 , .8515* 
14 934 .7237* 
14 934 , .7237* 
15 934 , .5948* 
15 934 .5948* 
16 934 , .4536* 
16 934 .4536* 



Appendix III, continued. 

a a 
B r a n c h J " 

PQ9 17 934.3056* 
17 934.3056* 
18 934.1575* 
18 934.1575* 
21 933.6237* 
21 933.6237* 

^Transitions in units of cm 
asterisk. 

Blended lines are denoted by an 



170 
REFERENCES 

1. J.T. Hougen, The Calculation of Rotational Energy Levels and Line 
Intensities in Diatomic Molecules. (National Bureau of Standards 
Monograph115, 1970). 

2. M.E. Rose, Elementary Theory of Angular Momentum. (John Wiley 
and Sons, Inc., New York, 1957), Ch. 1. 

3. J.H. Van Vleck, Rev. Mod. Phvs. 23. 213 (1951). 

4. A. Messiah, Quantum Mechanics, vol. 2, (North-Holland Publishing 
Co., Amsterdam, 1962), Appendix C. 

5. A.R. Edmonds, Angular Momentum in Quantum Mechanics. 
(Princeton University Press, Princeton, 1960), Ch. 3. 

6. A. Messiah, Quantum Mechanics, vol. I, (North-Holland Publishing 
Co., Amsterdam, 1964), Appendix B. 

7. M.E. Rose, ibjd_, p. 235. 

8. A. Messiah, ibid, vol. 1, Ch. 13. 

9. M.E. Rose, M i , Ch. 4. 

10. B.L. Silver, Irreducible Tensor Methods. (Academic Press, New 
York, 1976), Ch. 5. 

11. A.R. Edmonds, M i , Ch. 5. 

12. B.L. Silver, M i , Ch. 2. 

13. A.R. Edmonds, M i , Ch. 4. 

14. B.L. Silver, M i , Ch. 10. 

15. D.M. Brink and G.R. Satchler, Angular Momentum. (Clarendon 

Press, Oxford, 2nd ed., 1968), Ch. 2. 

16. B.L. Silver, M L Ch. 6. 

17. D.M. Brink and G.R. Satchler, M i , Ch. 4. 



171 

REFERENCES (cont.) 

18. B.L. Silver, M i , Ch. 9. 

19. B .L Silver, M i , Ch. 7. 

20. G. Herzberg, Spectra of Diatomic Molecules. 2nd ed., (Van 
Nostrand, Princeton, 1950), Ch 4. 

21. P.W. Atkins, Molecular Quantum Mechanics. 2nd ed., (Oxford 
University Press, New York, 1983), Ch. 12. 

22. Henry Eyring, John Walter and George E. Kimball, Quantum  
Chemistry. (John Wiley and Sons, Inc., New York, 1944), p.264; G. 
Herzberg, ibid, p. 240. 

23. H. Lefebvre-Brion and R.W. Field, Perturbations in the Spectra of  
Diatomic Molecules. (Academic Press, New York, 1986), pp. 117-
119. 

24. G. Herzberg, M i , Ch 5. 

25. A. S-C. Cheung and A.J. Merer, Molec. Phvs. 46. 111-128 (1982). 

26. R.A. Frosch and H.M. Foley, Phvs. Rev. 88. 1337 (1952). 

27. T.M. Dunn, in Molecular Spectroscopy: Modern Research. Vol. 1, 
K.N. Rao and C.W. Matthews, eds., (Academic Press, New York, 
1972), Ch. 4.4. 

28. P.H. Kasai and W. Weltner, Jr., J . Chem. Phvs. 43. 2553 (1965). 

29. A. Adams, W. Klemperer and T.M. Dunn, Canad. J . Phvs. 46. 2213 
(1968). 

30. R. Stringat, C. Athenour, J - L Femenias, Canad. J . Phvs. 50. 395 
(1972). 

31. J.M. Brown, I. Kopp, C. Malmberg and B. Rydh, Phvs. Scripta 17. 55 
(1978). 

32. D.W. Green, Canad. J. Phvs. 49. 2552 (1971). 



172 

REFERENCES (cont.) 

33. P.W. Atkins, Proc. Roy. Soc. A 300. 487 (1967). 

34. R.F. Barrows, W.J.M. Gissane, D. Richards, Proc. Roy. Soc. A 300. 

469 (1967). 

35. K.F. Freed, J . Chem. Phys. 45. 1714 (1966). 

36. H. Lefebvre-Brion and R.W. Field, ibid, p. 89. 

37. M. Tinkham, Group Theory and Quantum Mechanics. (McGraw-Hill 
Book Co., New York, 1964), p. 129. 

38. A. Carrington and A.D. McLachlan, Introduction to Magnetic  
Resonance. (Chapman and Hall, New York, 1967), Ch. 8. 

39. K. Kayama and J.C. Baird, J . Chem. Phvs. 46. 2604 (1967). 

40. H. Lefebvre-Brion and R.W. Field, ibid, p. 96-101. 

41. W.H. Hocking, A.J. Merer, D.J. Milton, W.E. Jones and G. 

Krishnamurtv. Canad. J . Phvs. 58. 516 (1980). 

42. A.R. Edmonds, ibjcj, Ch. 6. 

43. B.R. McGarvey, J . Phvs. Chem. 71. 51 (1967). 
44. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of 

Transition Ions. (Clarendon Press, Oxford, 1970). 

45. A.S-C. Cheung, R.C. Hansen and A.J. Merer, J. Molec. Spectrosc. 91. 

165 (1982). 

46. P.H. Kasai, J . Chem. Phys. 49. 4979 (1968). 

47. M.E. Rose, ibjci, Ch. 5. 

48. B.L. Silver, ibjci, Ch. 17. 

49. A. Messiah, ibid, vol. 2, p. 692. 



173 
R E F E R E N C E S (cont.) 

50. M.R. Spiegel, Mathematical Handbook of Formulas and Tables. 

(McGraw-Hill Book Co., New York, 1968), p. 19. 

51. M.R. Spiegel, M i , p. 146. 

52. A.R. Edmonds, M l , Ch. 7. 
53. M.H. Cohen and F. Reif, Quadrupole Effects in NMR Studies of 

Solids, in: Solid State Physics. Vol. 5, F. Seitz and D. Turnbull, 
eds., (Academic Press, Inc., New York, 1957), pp. 327-328. 

54. I.C. Bowater, J.M. Brown and A. Carrington, Proc. Rov. Soc. Lond. A 
333, 265 (1973). 

55. P.A. Tipler, Modern Phvsics. (Worth Publishers, Inc., New York, 
1978), Ch. 11. 

56. Landolt-Bornstein, Zahlenwerte und Funktionen Group I. Vol.3, H. 
Appel, ed., Numerical Tables of the Wigner 3-j. 6-j and 9-j 

Coefficients. (Springer-Verlag, New York, 1968), p. 10. 

57. J.M. Brown, A.S-C. Cheung and A.J. Merer, J . Molec. Spectrosc. 
124, 464 (1987). 

58. A. Messiah, ibid, vol. 2, pp. 718-720. 

59. T.A. Miller, Molec. Phvs. 16. 105 (1969). 

60. R.S. Mulliken and A.S. Christy, Phys. Rev. 38. 87 (1931). 

61. I. Kopp and J.T. Hougen, Canad. J . Phvs. 45. 2581 (1967). 

62. J.M. Brown, J.T. Hougen, K.P. Huber, J.W.C. Johns, I. Kopp, H. 
Lefebvre-Brion, A.J. Merer, D.A. Ramsey, J . Rostas and R.N. Zare, 

J . Molec. Spectrosc. 55. 500 (1975). 

63. W. Demotroder, Laser Spectroscopy. (Springer-Verlag, New York, 
1982), Ch. 7. 

64. J.B. West, R.S. Bradford, J.D. Eversole and C W . Jones, Rev. Sci.  
Instrum. 46. 164 (1975). 



174 

REFERENCES (cont.) 

65. W. Demtroder, M i , Ch. 3. 

66. W. Demtroder, M i , Ch. 10. 

67. A.J. Merer, Ulf Sassenberg, J-L. Femenias and G. Cheval, J . Chem.  
Phys. 86. 1219 (1987). 

68. S. Gerstenkorn and P. Luc, Atlas du Spectre d'Absorption de la 
Molecule d'lode (CNRS, Paris, France, 1978); S. Gerstenkorn and P. 
Luc. Rev. Phys. Appl. 14. 791 (1979). 

69. L. Malet and B. Rosen, Bull. Soc. R. Sci. Liege 14. 382 (1945); B. 
Rosen, Naiiire. 156, 570 (1945). 

70. T.C. Devore and T.N. Gallaher, J . Chem. Phys. 71. 474 (1979). 

71. D.W. Green, G.T. Reedy and J.G. Kay, J. Molec. Spectrosc. 78. 257 
(1979). 

72. R.J. Van Zee, C M . Brown, K.J. Zeringue, W. Weltner, Acc. Chem.  
Res. 13. 237 (1980). 

73. W. Weltner, D. McLeod and P.H. Kasai, J . Chem. Phys. 46. 3172 
(1967). 

74. G. Herzberg, M i , pp. 335-337. 

75. A.S-C. Cheung, R.M. Gordon, A.J. Merer, J. Molec. Spectrosc. 87. 
289 (1981). 

76. M. Krauss and W.J. Stevens, J . Chem. Phvs. 82. 5584 (1985). 

77. W. Weltner, Jr., Ber. Bunsenges. Phys. Chem. 82. 80 (1978). 

78. V.I. Srdanov and D.O. Harris, J . Chem. Phvs.. submitted. 

79. M.C.L. Gerry, A.J. Merer, U. Sassenberg and T.C. Steimle, J . Chem  
Phvs. 86. 4654 (1987). 

80. L.J. Thenard, J . Mines 15. 128 (1805). 



175 
REFERENCES (cont.) 

81. R.T. Grimely, R.P. Burns and M.G. Inghram, J . Chem. Phvs. 45. 
4158 (1966). 

82. T.M. Dunn, in Physical Chemistry: An Advanced Treatise. Vol. 5, 
H. Eyring and W. Jost, eds., (Academic Press, New York, 1970), p. 

228. 

83. G. Herzberg, ibid, Ch. 3. 

84. J.I. Steinfeld, Molecules and Radiation. (Harper and Row, New 
York, 1974), Ch. 4. 

85. O. Appelblad, I. Renhorn, M. Dulick, M.R. Purnell and J.M. Brown, 
Phvs. Scripta 28. 539 (1983). 

86. I. Kopp and J.T. Hougen, Canad. J . Phvs. A S 2581 (1967). 

87. A.S-C. Cheung, A.M. Lyyra, A.J. Merer and A.W. Taylor, J . Molec.  
Spectrosc.102. 224 (1983). 

88. A.S.-C. Cheung, A.W. Taylor and A.J. Merer, J . Molec. Spectrosc. 
92, 391 (1982). 

89. W.H. Hocking, M.C.L. Gerry and A.J. Merer, Canad. J . Phvs. 57. 54 
(1979). 

90. A.S.-C. Cheung, W. Zyrnicki and A.J. Merer, J. Molec. Spectrosc. 
104, 315 (1984). 

91. R.M. Gordon and A.J. Merer, Canad. J . Phvs. 58. 642 (1980). 

92. O. Appleblad and A. Lagerquist, Phvs. Scr. 10. 307 (1974). 

93. O. Appleblad and L. Klynning, USIP Report 81-02, University of 
Stockholm (1981). 

94. T.M. Dunn and K.M. Rao, Nature 222. 266 (1969). 

95. J.-L. Femenias, C. Athenour and T.M. Dunn, J . Chem. Phvs. 63. 286 
(1975). 



176 
REFERENCES (cont.) 

96. B. Chakrabarti, M.Z. Hoffman, N.N. Lichtin and D.A. Sacks, J . Chem.  
Phvs. 58. 404 (1973). 

97. N.N. Kabankova, P.I. Stepanov, E.N. Moskvitina and Yu. Ya. 
Kuzyakov. Vest. Mosk. Univ.. Khim.15. 356 (1974). 

98. N.N. Kabankova, E.N. Moskvitina and Yu. Ya. Kuzyakov, Vest. Mosk. 
Univ.. Khim.17. 492 (1976). 

99. E.A. Pazyuk, E.N. Moskvitina and Yu. Ya. Kuzyakov, Vest. Mosk.  
Univ.. Khim. 26. 418 (1985). 

100. E.A. Pazyuk, E.N. Moskvitina and Yu. Ya. Kuzyakov, Spectrosc. 
LeiL19, 627 (1986). 

101. N.L Ranieri, Ph.D. dissertation, Diss. Abst. Int. B. 40. 772 
(1979). 

102. J.-L. Femenias, C. Athenour, K.M. Rao and T.M. Dunn, submitted. 

103. H. Lefebvre-Brion and R.W. Field, ibid. Sec. 3.4. 

104. Ira N. Levine, Quantum Chemistry. 3rd ed., (Allyn and Bacon, Inc., 
Boston, 1983)., Sec. 14.3. 

105. D.L. Albritton, A.L. Schmeltkopf and R.N. Zare, in Molecular  
Spectroscopy: Modern Research. Vol. 2, K. Nakahari Rao, ed., 

(Academic Press, New York, 1976), Sec. 1.D. 

106. R.M. Lees, J . Molec. Spectrosc. 33. 124-136 (1970). 

107. F. Ayres, Jr., Theory and Problems of Matrices. (Schaum 
Publishing Co., New York, 1962), p.55. 

108. B. Higman, Applied Group-Theoretic and Matrix Methods. (Dover 

Publications, Inc., New York, 1964), p.64. 

109. H. Lefebvre-Brion and R.W. Field, ibjci, p. 92. 

110. J . Raftery, P.R. Scott and W.E. Richards, J . Phvs. B 5. 1293 
(1972). 



177 
REFERENCES (cont.) 

111. T.M. Dunn, L K . Hanson and K.A. Rubinson, Canad. J . Phvs. 48. 
1657 (1970); J.K. Bates, N.L. Ranieri and T.M. Dunn, Canad. J .  
Phys. 54. 915 (1976). 

112. J.K. Bates and T.M. Dunn, Canad. J . Phys. 54, 1216 (1976). 

113. J.K. Bates and D.M. Gruen, J . Molec. Spectrosc. 78. 284 (1979). 

114. W. Weltner, Jr. and D. McLeod, Jr., J . Phvs. Chem. 69. 3488 

(1965) . 

115. J.M. Brom, Jr. and H.P. Broida, J . of Chem. Phvs. 63. 3718 (1975). 

116. L J . Lauchlan, J.M. Brom and H.P. Broida, J . Chem. Phvs. 65. 2672 
(1976). 

117. D. McLeod, Jr. and W. Weltner, Jr., J . Phys. Chem. 70. 3293 
(1966) . 

118. R.F. Barrow, M.W. Bastin, D.L.G. Moore and C.J. Pott, Nature 215. 

1072 (1967). 

119. J.K. Bates and D.M. Gruen, J . Chem. Phvs. 70. 4428 (1979). 

120. R. Hoffman, J . Chem. Phvs. 40. 2474-2480 (1964). 

121. D,R. Armstrong, B.J. Duke and P.G. Perkins, J . Chem. Soc. A. 

2566-2572 (1969). 

122. O. Gropen and H.M. Seip, Chem. Phvs. Lett. 25, 206-208 (1974). 

123. J.D. Dill, P.V.R. Schleyer and J.A. Pople, J . Amer. Chem. Soc. 97, 
3402-3409 (1975). 

124. T. Fjeldberg, G . Gundersen, T. Jonvik, H.M. Seip and S. Saebo, 
Acta Chem. Scand. A 34. 547-565 (1980). 

125. K.W. Boddeker, S.G. Shore and R.K. Bunting, J . Amer. Chem. Soc. 
88, 4396-4401 (1966). 



178 
REFERENCES (cont.) 

126. P.M. Kuznesof, D.F. Shriver and F.E. Stafford, J . Amer. Chem. Soc. 
90, 2557-2560 (1968). 

127. C.I. Kwon and H.A. McGee, Inorg. 9. 2458-2461 (1970). 

128. S.V. Pusatcioglu, H.A. McGee, Jr., A . L Fricke and J.C. Hassler, iL 
Appl. Polvmer Sci. 21. 1561 (1977). 

129. M. Sugie, H. Takeo and C. Matsumura, Chem. Phys. Lett. 64. 573-
575 (1979). 

130. M. Sugie, H. Takeo and C. Matsumura, J . Molec. Spectrosc. 123. 
286 (1987). 

131. M.C.L. Gerry, W. Lewis-Bevan, A.J. Merer and N.P.C. Westwood, iL 
Molec. Spectrosc.110. 153 (1985). 

132. D. Anderson, Studies in high resolution spectroscopy, Ph.D. 
thesis, The University of British Columbia, Vancouver, 1986. 

133. D. Steunenberg, The infrared spectrum of gaseous aminoborane: 
rotational structure of the 8 1 band, B.Sc. thesis, The University 
of British Columbia, Vancouver, 1986. 

134. D. Cramb, The infrared spectrum of gaseous aminoborane: 
rotational structure of the 10 1 band, B.Sc. thesis, The 
University of British Columbia, Vancouver, 1985. 

135. P.R. Griffiths, Science 222. 297 (1983). 

136. Spectrophotometer System Manual. (Bomem, Inc., Quebec,1981), 
Ch. 2. 

137. R.J. Bell, Introductory Fourier Transform Spectroscopy. 

(Academic Press, New York, 1972), Ch. 1. 

138. W. Demtroder, M i , Ch 4. 

139. A. Corney, Atomic and Laser Spectrocsopv. (Clarendon Press, 
Oxford, 1977), pp. 19-20. 



179 

REFERENCES (cont.) 

140. R.J. Bell, ibjcL Ch. 3. 

141. J.B. Bates, Science 191. 31 (1976). 

142. M.R. Spiegel, ibjci, p. 175. 

143. R.J. Bell, ibid, pp. 65 and 173. 

144. W.D. Perkins, J . Chem. Educ. 63. A5 (1986). 

145. Software User's Guide. Version 3.1, (Bomem, Inc., Quebec, 
1984), Ch. 5. 

146. R.J. Bell, M i , Ch. 5. 

147. J.K. Kauppinen, D.J. Moffatt, D.G. Cameron, H.H. Mantsch, Applied  
Optics 20. 1866 (1981). 

148. P.W. Atkins, ibjci, p. 307. 

149. A.R. Edmonds, ibid, p. 23. 

150. H.C. Allen and P.C. Cross, Molecular Vibration-Rotors: The 
Theory and Interpretation of High Resolution Infrared Spectra. 

(John Wiley and Sons, Inc., London, 1963), pp. 24-25. 

151. W. Gordy and R.L. Cook, Microwave Molecular Spectra. 3rd. ed., 
(John Wiley and Sons, New York, 1984), p. 60. 

152. J .K.G. Watson, in Vibrational Spectra and Structure. (J.R. Durig, 

ed., vol. 6, Marcel Dekker, New York, 1977), Ch. 1. 

153. W. Gordy and R.L. Cook, M l , Sec 8.3. 

154. W. Gordy and R.L. Cook, M i , Sec 8.4. 

155. W. Gordy and R.L. Cook, M i , Ch. 7. 

156. I.M. Mills, Pure and Applied Chemistry 11. 325 (1965). 

157. H.C. Allen and P.C. Cross, M L Ch. 4. 



180 
REFERENCES (cont.) 

158. J . Michael Hollas, High Resolution Spectroscopy. (Butterworth's 
and Co., Ltd., London, 1982), p. 243. 

159. V.A. Job, N.D. Patel, R. D'Chunha, V.B. Kartha, J . Molec. Spectrosc, 
101, 48 (1983). 

160. D. Steunenberg, private communication. 

161. M.C.L. Gerry, private communication. 


