2. Argument-driven auxiliary selection

(1) a. Maria ha lavato la camicia.
 Maria have-PRES.3SG wash-PRTCP the skirt 'Maria has washed the skirt.'

b. Maria ha lavato a.
 Maria 3SG.F-ACC=have-PRES.3SG wash-PRTCP-5G.F 'Maria has washed her.'

c. Maria ha lavato se stessa.
 Maria have-PRES.3SG wash-PRTCP herself 'Maria has washed herself.'

- Transitive, unergative verbs: HAVE

- Unaccusative verbs: BE

3. Auxiliary selection is \(\pi \)-Agree

Previous analyses: incorporation of D/\(\pi \)P to \(\pi \) (Kayne 1993, Cocchi 1995), types of \(\pi \) (D’Alessandro & Roberts 2010), external argument (Bjorkmann 2011) \(\rightarrow \) Problems in root clauses and in restructuring.

We need to track the \(\pi \)-features of the object:
- object: /HAVE/
- no object: /BE/
- \(\pi \)-defective object: /BE/.

- Person Agree: \(\pi \)-features realized not as inflection, but as lexical selection.
- BE inserted when Agree on Perf has failed (Perminger 2014): either no goal, or defective goal.
- Minimality violation: Perf agrees with \(\pi \) across the subject.

Nestled Agree (Amato 2020): Let \(F_1 \) and \(F_2 \) be two ordered probes on the same head \(H \). The locality domain of \(F_2 \) is the sister of \(H \). An Agree operation \(A_2 \) for the feature \(F_2 \) must target the goal \(G \) if \(G \) has been targeted by a previous Agree operation \(A_1 \) for the feature \(F_1 \). If \(G \) is not a matching goal for \(F_2 \), the locality domain of \(F_2 \) is the sister of \(G \).

Features on the same head are existentially ordered (Muller 2009, Georgi 2014).

(i) Try to agree with the same goal: cf. Maximize Matching Effect (Chomsky 2001), General Specificity Principle (Lahne 2012), Multitasking (Van Uruk & Richards 2015).

(ii) You cannot backtrack: the latest goal becomes the upper boundary of the nested operation (Amato 2020).

Solution to the minimality problem: the intervener lies outside the locality domain of the nested Agree operation.

- The perfective auxiliary spells out the head \(\text{PerfP: [unfil-perf]} \rightarrow [\text{ux-}] \)
- (3) \([\text{InfL}]\) checking: Perf targets \(\pi \)
- (4) \(\text{Nestled Agree for } [\text{ux-}] \)

- Infl checking: Perf targets \(\pi \)
- \(\text{PerfP: [unfil-perf]} \rightarrow [\text{ux-}] \)

Vocabulary entries (metarule):
- /HAVE/ \(\rightarrow \text{PerfP}\{\pi}\)
- /BE/ \(\rightarrow \text{PerfP}\) elsewhere

- And participle agreement (ppAgree)?

\(\pi \)-Agree (Kayne 1989, D’Alessandro and Roberts 2008, Belletti 2017) spells out an edge feature on \(\pi \). \(\text{ppAgree/} \rightarrow [\text{v-p}], [\text{a-p}] \).

Each \(\pi \) is a phase (Legate 2003, Muller 2011): it can be assigned an edge feature (EF) if a XP in its complement bears an unchecked feature (Chomsky 2001, Muller 2010). \(\text{EF comes with a fiat gender and number probe that targets that XP.} \)

4. Deriving the alternation

(1a) Transitive \(\pi \rightarrow [\text{Infl]} \rightarrow [\text{case-acc]} \rightarrow [\text{u#}] \rightarrow [\text{D-}]

(2a) Unaccusative \(\pi \rightarrow [\text{Infl]} \rightarrow [\text{BE-}]

(2b) Impersonal \(\pi \rightarrow [\text{Infl]} \rightarrow [\text{ux-}] \rightarrow \text{BE insertion} \)

References