Unifying classical spin models using a quantum formalism

*Gemma De las Cuevas
Ying Xu
Wolfgang Dür
Hans J. Briegel

Maarten Van den Nest @ MPQ Garching
Miguel Angel Martin-Delgado @ Madrid

@ Innsbruck

Vancouver, 23rd July 2010
Motivation

Completeness
The 4D \mathbb{Z}_2 lattice gauge theory is complete

Complexity
Approximating the partition function of some models is BQP-complete

Summary
Motivation
Motivation

~ Classical spin models:

- Classical magnetism
- Spin glasses
- Neural networks
- Econophysics
...
Motivation

~ Classical spin models:

- Classical magnetism
- Spin glasses
- Neural networks
- Econophysics
- ...

Toy models to tackle complex systems

Make a simple microscopic model & study the macroscopic behavior
Motivation

Many different kinds of classical spin models

- Different dimensions, defined on complicated graphs...
- Many-body interactions...
Motivation

Many different kinds of classical spin models

- Different dimensions, defined on complicated graphs...
- Many-body interactions...
- Symmetries:

 Global: Ising, Potts ...

 \[H(s) = -J \sum_{(i,j) \in E} s_i s_j \]

 \[H(s) \quad \text{global flip} \quad H(s') \]

 Local: lattice gauge theories

 \[H(s) = -J \sum_{(i,j,k,l) \in \partial f} s_i s_j s_k s_l \]

 \[H(s) \quad \text{local flip} \quad H(s') \]
Motivation

Can one relate all these models?

By studying one model, can one learn something of other models?
Motivation

Can one relate all these models?

By studying one model, can one learn something of other models?

Yes!

Completeness results:

Models with different features can be mapped onto a single model

\[Z = \sum_{s} e^{-\beta H(s)} \]
Completeness
A model is ‘complete’

Its partition function can specialize
(by tuning its coupling strengths)
to the partition function of any other classical spin model
Completeness of the 2D Ising

Result:

\[Z_{2D \text{ Ising with } h(J, J')} = Z_{\text{any classical spin model}}(J) \]

\[\uparrow \]

Ising, Potts, ...

✓ on an arbitrary graph
✓ \(q\)-level systems, any \(q\)
✓ any many-body int.

Completeness of the 2D Ising

Result:

\[Z_{2D \text{ Ising with } h(J, J')} = Z_{\text{any classical spin model}(J)} \]

- ✓ on an arbitrary graph
- ✓ \(q \)-level systems, any \(q \)
- ✓ any many-body int.

Completeness with real coupl.

~ Result:

- Ising model:

\[Z_{3D \text{ Ising}}(J, J') = Z_{\text{Ising, any } G(J)} \]

- Analogous for \(q \)-level systems

Completeness with real coupl.

Result:

- Ising model:

\[Z_{3D \text{ Ising}}(J, J') = Z_{\text{Ising, any } G(J)} \]

same kind of interactions

- Analogous for \(q \)-level systems
Completeness with real coupl.

Result:

- Ising model:
 - $Z_{3D \text{ Ising}}(J, J') = Z_{\text{Ising}, \text{any } G(J)}$
 - J' real ✓
 - larger

- Analogous for q-level systems

$\text{tradeoff between 'completeness power' and real parameters?}$
Completeness of the 4D \mathbb{Z}_2 LGT

~ Main result:

$Z_{4D\mathbb{Z}_2 \text{LGT}}(J, J') = Z_{\text{any classical spin model}}(J)$

- Abelian discrete
- \checkmark any dimensions
- \checkmark q-level systems, any q
- \checkmark any many-body int.

Completeness of the 4D \mathbb{Z}_2 LGT

~ Idea of the proof:

all k-cliques for $k=1,\ldots,n$ with Ising-type int.

4D \mathbb{Z}_2 LGT \rightarrow Superclique

real couplings $J = 0, \infty$
Completeness of the 4D \mathbb{Z}_2 LGT

~ Idea of the proof:

- lattice gauge theory

$4D$ \mathbb{Z}_2 LGT \rightarrow Superclique

all k-cliques for $k=1,\ldots,n$ with Ising-type int.

real couplings $J = 0, \infty$
Completeness of the 4D \mathbb{Z}_2 LGT

~ Idea of the proof:

all k-cliques for $k=1,...,n$ with Ising-type int.

4D \mathbb{Z}_2 LGT \rightarrow Superclique

real couplings $J = 0, \infty$
Completeness of the 4D \mathbb{Z}_2 LGT

~ Idea of the proof:

4D \mathbb{Z}_2 LGT \rightarrow Superclique

real couplings $J = 0, \infty$
Completeness of the 4D \mathbb{Z}_2 LGT

\textbf{~ Idea of the proof:~}

\begin{itemize}
 \item 4D \mathbb{Z}_2 LGT \quad \rightarrow \quad \text{Superclique}
 \item \text{Superclique} \quad \leftrightarrow \quad \text{Any Abelian discrete classical spin model}
\end{itemize}

Real couplings $J = 0, \infty$
Completeness of the 4D \mathbb{Z}_2 LGT

Idea of the proof:

4D \mathbb{Z}_2 LGT \rightarrow Superclique \rightarrow Any Abelian discrete classical spin model \rightarrow non planar

real couplings $J = 0, \infty$

lattice gauge theory

$\{J_1, \ldots, J_{1234}\}$ \rightarrow Potts... on high dim.

$\{J_1, \ldots, J_{1234}\}$ \rightarrow any many-body int....

$\{J_1, \ldots, J_{1234}\}$ \rightarrow Hamiltonian!
Complements of the 4D \mathbb{Z}_2 LGT

~ Quantum formulation of Abelian discrete LGTs

- Hamiltonian $H(s) = -\sum_{f \in F} J_f \cos \left[\frac{2\pi}{q} (s_1 + \ldots + s_k)_{\text{mod } q} \right]$

Partition function: $Z_G(J) = \sum_s e^{-\beta H(s)}$

| $s \rangle_1 := |(s_a + s_b + s_c + s_d)_{\text{mod } q} \rangle_1$

\[\begin{align*}
&\text{a} & & \text{b} \\
&\text{d} & & \text{c} \\
&1 & & 2 \\
&4 & & 3
\end{align*} \]
Completeness of the 4D \mathbb{Z}_2 LGT

~ Quantum formulation of Abelian discrete LGTs

- Hamiltonian \(H(s) = -\sum_{f \in F} J_f \cos \left[\frac{2\pi}{q} (s_1 + \ldots + s_k)_{\text{mod} q} \right] \)

Partition function: \(Z_G(J) = \sum_{s} e^{-\beta H(s)} \)

- State defined on the faces:

\[
|\psi_G\rangle = \sum_{s} \bigotimes_{f \in F} |(s_1 + \cdots + s_k)_{\text{mod} q}\rangle_f
\]

Product state with coefficients: \(|\alpha(J)\rangle = \bigotimes_{f} |\alpha_f(J_f)\rangle \)

\[
|\alpha_f(J_f)\rangle = \sum_{s_c \in \partial f} e^{\beta J_f \cos \left[\frac{2\pi}{q} (s_1 + \ldots + s_k) \right]} |s_1 + \ldots + s_k\rangle_f
\]
Completeness of the 4D \mathbb{Z}_2 LGT

~ Quantum formulation of Abelian discrete LGTs

- Hamiltonian
 \[H(s) = - \sum_{f \in F} J_f \cos \left[\frac{2\pi}{q} (s_1 + \ldots + s_k)_{\text{mod} q} \right] \]

 \[Z_G(J) = \sum_{s} e^{-\beta H(s)} \]

- State defined on the faces:
 \[|\psi_G\rangle = \sum_{s} \bigotimes_{f \in F} |(s_1 + \ldots + s_k)_{\text{mod} q}\rangle_f \]

Product state with coefficients:
 \[|\alpha(J)\rangle = \bigotimes_{f} |\alpha_f(J_f)\rangle \]

 \[|\alpha_f(J_f)\rangle = \sum_{s_c \in \partial f} e^{\beta J_f \cos \left[\frac{2\pi}{q} (s_1 + \ldots + s_k) \right]} |s_1 + \ldots + s_k\rangle_f \]

\[Z_G(J) = \langle \alpha(J) | \psi_G \rangle \]
Completeness of the 4D \mathbb{Z}_2 LGT

~ Tools to ‘transform’ the model:

- Merge rule:

 - $J_f = \infty$
 - $s_b = s_a + s_c + s_d$

- Deletion rule:

 - $J_f = 0$

- Fixing the spins using the gauge symmetry:

 - No loops!
Completeness of the 4D \mathbb{Z}_2 LGT

~ Construction of the superclique

- Construction of many-body Ising-type int.:
Completeness of the 4D \mathbb{Z}_2 LGT

Construction of the superclique

- Transportation in the 4D lattice:

Propagation

Replication

Turns

4th dimension required to avoid loops!
Completeness of the 4D \mathbb{Z}_2 LGT

~ Construction of the superclique

- Layout of the superclique:

Superclique: complicated interaction pattern with simple interactions
Completeness of the 4D \mathbb{Z}_2 LGT

Hamiltonian of superclique

\Downarrow

Hamiltonian of any classical spin model

1. General Hamiltonian on n 2-level systems: different $E(s)$ for each s

2. Show that one can invert the system of equations

$$\begin{pmatrix}
1 & (-1)^0 & \ldots & (-1)^{0+0+\ldots+0} \\
1 & (-1)^0 & \ldots & (-1)^{0+0+\ldots+1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & (-1)^{1} & \ldots & (-1)^{1+1+\ldots+1}
\end{pmatrix}
\begin{pmatrix} J \\ J_1 \\ \vdots \\ J_{12\ldots n} \end{pmatrix} =
\begin{pmatrix} E(s = (0,0,\ldots,0)) \\ E(s = (0,0,\ldots,1)) \\ \vdots \\ E(s = (1,1,\ldots,1)) \end{pmatrix}$$

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

3. All rows are linearly independent, thus the determinant is non zero

4. q-level models: encode each q-level system into $\lceil \log_2 q \rceil$ 2-level sys.
Completeness of the 4D \mathbb{Z}_2 LGT

~ Note: efficient constructions for specific target models
Example: 2D Ising model: linear overhead

Note: 2D Ising can magnetize, but LGT cannot
Completeness of the 4D \mathbb{Z}_2 LGT

We have proven that:

$Z_{4D\mathbb{Z}_2\text{LGT}}(J, J') \cong Z_{\text{any classical spin model}}(J)$

- constructive
- global & local symmetries

- real
- larger

$Z_{4D\mathbb{Z}_2\text{LGT}}(J, J') = Z_{\text{any classical spin model}}(J)$

Target Hamiltonian with M terms and k-body int: scaling $\text{poly}(M, 2^k)$

- any dimensions
- q-level systems, any q
- any many-body int.

Result holds approx for continuous models: let $q \to \infty$
Applications of completeness

~ Symmetries of the states \[Z_G(J) = \frac{\langle \alpha(J)|S|\varphi_G \rangle}{\langle \alpha(J') \rangle} = Z_G(J') \]

~ Mapping models with poly overhead: infer comput. complexity

 e.g. 2D Ising with fields \[\text{poly larger} \] 4D \[\mathbb{Z}_2 \text{ LGT} \]

 #P-hard \[\text{poly larger} \] #P-hard

~ Many different universality classes are mapped to a single model

? They should be reproducible in the phase diagram of the complete model

this includes ‘unexplored’ models
Computational complexity
Mapping partition functions to quantum circuits

Classical spin model

- Boltzmann weight of each int.
 \[w^a = e^{-\beta h^a(s_1, s_2)} \]

- Product of interactions
 \[\prod_a w^a \]

- Left & Right bound. cond.
 \[L = (s^L_1, \ldots, s^L_n) \]
 \[R = (s^R_1, \ldots, s^R_n) \]

Quantum circuit

- Quantum gate, e.g.
 \[W^a_{(12)(12)} = \sum e^{-\beta h^a(s_1, s_2)} |s_1, s_2\rangle\langle s_1, s_2| \]

- Contraction of quantum gates = Circuit \(\mathcal{C} \)

- Output & Input of circuit
 \[|L\rangle = |s^L_1\rangle \ldots |s^L_n\rangle \]
 \[|R\rangle = |s^R_1\rangle \ldots |s^R_n\rangle \]

- \(Z^{L,R} = \langle L | \mathcal{C} | R \rangle \)

- \(\square PBC \quad Z = \text{Tr} \mathcal{C} \)
- \(\checkmark \) other geometries
Mapping for vertex models

- Particles at the edges
- Interaction at vertex a

$$w^a(s) = \sum e^{-\beta h^a(s_is_js ks)}$$

Two-qudit gate

$$W^a_{(ij)(kl)} = \sum e^{-\beta h^a(s_is_js ks)} |s_i, s_j\rangle \langle s_k s_l|$$

Z$_{vm}^{L,R}$ = $\langle L|C|R\rangle$
Mapping partition functions to quantum circuits

~ Mapping for edge models

- Particles at the vertices
- Int. at edge in time dir.
 \[w^{ij} = e^{-\beta h(s_i, s_j)} \]
- Int. at edge in space dir.
 \[w^{jk} = e^{-\beta h(s_j, s_k)} \]

Single qudit gate
\[w(i)(j) = \sum e^{-\beta h(s_i, s_j)} |s_i\rangle \langle s_j| \]

Two qudit diagonal gate
\[w(jk)(jk) = \sum e^{-\beta h(s_j, s_k)} |s_j s_k\rangle \langle s_j s_k| \]

\(Z_{em}^{L,R} = \langle L|C|R \rangle \)
Mapping partition functions to quantum circuits

Mapping for lattice gauge theories

- Particles at the edges
- Int. at face in time dir.
 \[w^{ij} = e^{-\beta h(s_i,s_j)} \]
- Int. at face in space dir.
 \[w^{jk} = e^{-\beta h(s_j,s_k)} \]

&

Fixing the temporal gauge

Single qudit gate

\[w(i)(j) = \sum e^{-\beta h(s_i,s_j)} |s_i\rangle \langle s_j| \]

Four qudit diagonal gate

\[w(jk)(jk) = \sum e^{-\beta h(s_j,s_k)} |s_j s_k\rangle \langle s_j s_k| \]

\[Z_{\text{LGT}}^{L,R} = \langle L|C|R \rangle \]

[Diagram showing mappings and quantum gates]
II BQP-completeness results

Main idea:

Model \rightarrow Gates corresp. to that model \rightarrow Show that they form a universal gate set

\[Z = \langle L|C|R \rangle \]

Approximating that partition function is as hard as simulating arbitrary quantum computation
BQP-completeness results

Main idea:

Model \rightarrow Gates corresp. to that model \rightarrow Show that they form a universal gate set

\[Z = \langle L|C|R \rangle \]

Approximating that partition function is as hard as simulating arbitrary quantum computation
BQP-completeness results

Main idea:
- Model
- Gates correspond to that model
- Show that they form a universal gate set

$$Z = \langle L|C|R \rangle$$

Approximating that partition function is as hard as simulating arbitrary quantum computation

- Prove BQP-completeness of computing Z
- Provide a quantum algorithm
\section{BQP-completeness results}

\textbf{Six vertex model}

- (Encoded) universal interaction $U = e^{itH_{\text{ex}}}$ with $H_{\text{ex}} = \sigma_x \otimes \sigma_x + \sigma_y \otimes \sigma_y + \sigma_z \otimes \sigma_z$

- Encoding $|0\rangle = \frac{1}{2} (|01\rangle - |10\rangle)^\otimes 2$

- Preparation of $|0\rangle|0\rangle \ldots |0\rangle$ from $|R\rangle = |0\rangle|1\rangle|0\rangle|1\rangle \ldots$ possible

- The exchange int. is achieved with the six-vertex model-type gate:

$$W_{(ij)(jk)} = \begin{bmatrix} e^{i2t} & \cos(2t) & i \sin(2t) \\ i \sin(2t) & \cos(2t) & e^{i2t} \end{bmatrix}$$
Ⅱ BQP-completeness results

~ Six vertex model

- (Encoded) universal interaction $U = e^{itH_{ex}}$ with $H_{ex} = \sigma_x \otimes \sigma_x + \sigma_y \otimes \sigma_y + \sigma_z \otimes \sigma_z$
- Encoding $|0\rangle = \frac{1}{2} (|01\rangle - |10\rangle) \otimes 2$
- Preparation of $|0\rangle |0\rangle \ldots |0\rangle$ from $|R\rangle = |0\rangle |1\rangle |0\rangle |1\rangle \ldots$ possible
- The exchange int. is achieved with the six-vertex model-type gate:

$$W_{(ij)(jk)} = \begin{bmatrix}
 e^{2it} & \cos(2t) & i\sin(2t) \\
 \cos(2t) & i\sin(2t) & \cos(2t) \\
 i\sin(2t) & \cos(2t) & e^{2it}
\end{bmatrix}$$

Approximating the partition function of the six vertex model on a certain complex parameter regime is BQP-complete
BQP-completeness results

Potts model

- **Encoding:** \(|0\rangle = |0\rangle |1\rangle \)
 \[|1\rangle = |1\rangle |2\rangle \]
- **Trivial preparation of** \(|0\rangle \ldots |0\rangle \) **from** \(|R\rangle = |0\rangle |1\rangle \ldots |0\rangle |1\rangle \)
- Each Potts gate is characterized by the pair \((e^{\beta J_{ii}}, e^{\beta J_{ij}}) \)
- Construct an (encoded) universal gate set:

![Diagram showing single qubit identity, phase gate, two qubit identity, and controlled phase gate](image)

II BQP-completeness results

Example of part of a circuit:

Note distribution of physical and auxiliary qubits
Approximating the partition function of a 2D 3-level Potts with auxiliary qubits on a certain complex parameter regime is BQP-complete
BQP-completeness results

3D \mathbb{Z}_2 LGT

- **Encoding:**
 - $|0\rangle = |0\rangle|0\rangle|0\rangle|0\rangle$
 - $|1\rangle = |1\rangle|1\rangle|1\rangle|1\rangle$

- **Trivial preparation of** $|0\rangle \ldots |0\rangle$ **from** $|R\rangle = |0\rangle \ldots |0\rangle$

- **Each** \mathbb{Z}_2 **LGT-type gate is characterized by the pair** $(e^{\beta J_{ii}}, e^{\beta J_{i\neq j}})$

- **Construct an (encoded) universal gate set:**
BQP-completeness results

3D \mathbb{Z}_2 LGT

Hadamard gate:

Note: many spins fixed by the gauge
BQP-completeness results

3D \(\mathbb{Z}_2 \) LGT

Verify that there are no loops of spins fixed by the gauge:

Two–qubit gate

Single–qubit gate

Two–qubit gate

\(e^{i\varphi \sigma_z \otimes \sigma_z} \)

\(R_z(\alpha + \frac{\pi}{2}) \)

\(R_z(\frac{\pi}{2})H \)

\(R_z(\beta + \frac{\pi}{2}) \)

\(R_z(\frac{\pi}{2})H \)

\(R_z(\gamma) \)

\(e^{i\varphi \sigma_z \otimes \sigma_z} \)

1

2

3

4

5

6

7

8

9

10

11

12

13

\(\otimes \)

all time steps
Ⅱ BQP-completeness results

3D \mathbb{Z}_2 LGT

Verify that there are no loops of spins fixed by the gauge:

Approximating the partition function of a 3D \mathbb{Z}_2 LGT on a certain complex parameter regime is BQP-complete.
Summary

~ Completeness

\[
Z = \langle \alpha | \psi \rangle
\]

\[
Z_{4DZ_2 LGT}(J, J') = Z_{\text{any classical spin model}}(J)
\]

\[
\begin{align*}
\uparrow & \quad \text{real} \\
\uparrow & \quad \text{Abelian discrete} \\
\checkmark & \quad \text{any dimensions} \\
\checkmark & \quad q\text{-level systems, any } q \\
\checkmark & \quad \text{any many-body int.}
\end{align*}
\]

~ Complexity

\[
Z = \langle L | C | R \rangle
\]

Approximating \(Z \) of Six vertex model Potts model

3D \(\mathbb{Z}_2 \) LGT

is BQP-complete in a certain complex parameter regime
Thank you for your attention!

