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Measurement-based quantum computation

® |s a model of universal quantum computation.

® |. Create a special multi-qubit entangled state

® c¢o A cluster state

9000000

® 2. Then measure qubits ¢ ¢ ©-6-© - ©-©-
individually, in certain ¢ o ©-0-0-0-6-
(adaptive) bases, and ©-0-06-0-0-0-0-
pOSt-process outcomes. 0000000

® \ia a surtable choice of measurements, any
quantum computation can be acheived.

R. Raussendorf and H.). Briegel, A one-way quantum computer”, PRL 2000.
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Measurement-based quantum computation

Prepare entangled | Measure a sub-set of
resource state qubits
e.g. cluster state
. ‘
‘ ‘ ‘ ‘ ‘ ‘ Process measurement
0000000 results
90 0 0 0 0 @ ’\
'
90 0 0 0 0 0 Choose bases for
, . , , , , , next subset of
measyrements
\

Computational Output

Requires classical “side-computation”
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Measurement-based quantum computation

(—1)Sj Sin (9]' Y

—1—1

lsj e {0,1}

lmj c{0,1}

R. Raussendorf, D. E. Browne and H.J. Briegel, PRA (2003).
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Measurement-based quantum computation

® [or a cluster state resource It suffices for side-computation to

be linear.

® [ach measurement is of the form

cost; X +

(—1)%

Sin (9]' Y

and meas. outcomes are relabelled
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® [ach measurement is of the form
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Measurement-based quantum computation

® [or a cluster state resource It suffices for side-computation to

be li .
e linear lSj c 0.1}

® [ach measurement is of the form
cosf; X +(—1)%|sinf; Y
and meas. outcomes are relabelled

-1 — 0 —1—1 lij{O,l}

® [he angle 0; is pre-set and differs for each measurement.

® But bit-value Sj Is calculated on the fly - and set equal to the
parity of a sub-set of previous measurement outcomes.

® Final output bits are encoded In the parity of a sub-set of the
measurement outcomes.

R. Raussendorf, D. E. Browne and H.J. Briegel, PRA (2003).
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Measurement-based quantum computation

Prepare entangled | Measure a sub-set of
resource state qubits
e.g. cluster state
. ‘
‘ ‘ ‘ ‘ ‘ ‘ Process measurement
0000000 results
90 0 0 0 0 @ ’\
'
90 0 0 0 0 0 Choose bases for
, . , , , , , next subset of
measyrements
\

Computational Output

Requires (linear / XOR) classical “'side-computation”
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Bell inequalities

® Bell iInequalities (Bls) express restrictions on the joint
probability distributions for spatially separated
measurements in local hidden variable (LHV) theories.
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CHSH inequality

Setting: s1 € {0,1} s2 €{0,1}

l l
i ! !

Outcome: mq € {0,1} my € {0,1}

® Ve focus on the parity of the outcomes and define:

Es, s, = p(m1 @ ma = 0|s1,s2) — p(my1 & ma = 1]sq, s2)
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CHSH inequality

Setting: s1 € {0,1} s2 €{0,1}

l l
i ! !

Outcome: mq € {0,1} my € {0,1}

® Ve focus on the parity of the outcomes and define:
Es, s, = p(m1 @ ma = 0|s1,s2) — p(my1 & ma = 1]sq, s2)
® and show that for correlations in any LHV theory:

Eoo+LEop1+E10—FE11 <2
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CHSH inequality

® \With entangled quantum state, Alice and Bob can
violate this inequality, although not exceeding Tsirelson’s
bound:

Eoo+Eo1+E1o—Ei1 <2V2
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CHSH inequality

® \With entangled quantum state, Alice and Bob can
violate this inequality, although not exceeding Tsirelson’s
bound:

Eoo+Eo1+E1o—Ei1 <2V2

® A (loophole-free) demonstration of a Bell Inequalrty
violation would refute local hidden variable theories.

® [he maximal violation (stronger than QM) Is achieved by
the Popescu-Rohrlich (PR) Box, which acheives

Eoo+Lo1+E10—E11=4

B.S. Tsirelson, Lett. Math. Phys. (1980). S. Popescu and D. Rohrlich, Found. Phys. (1994)
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CHSH inequality

Eoo+LEo1+E10—FE11 <2

® [t s useful to re- express the CHSH Inequalrity directly in terms
of condrtional probahil
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CHSH inequality

Eoo+LEo1+E10—FE11 <2

® [t s useful to re- express the CHSH Inequalrity directly in terms
of conditional probahil

® Some simple algebra gives us a very neat representation [ | ] of
the CHSH inequality:

1 3
1 Z p(my1 @ mo = $153|5152) < 1

S1,52

[I] QIP Folklore: earliest reference | know: Wim Van Dam, PHD Thesis (2000)
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CHSH inequality

Eoo+LEo1+E10—FE11 <2

® [t s useful to re- express the CHSH Inequalrity directly in terms
of conditional probahil

® Some simple algebra gives us a very neat representation [ | ] of
the CHSH inequality:

1 3
1 Z p(m1 @ ma = 5152|5152) < 1

S1,52

® [hus we can phrase the CHSH inequality in terms of a game.

[I] QIP Folklore: earliest reference | know: Wim Van Dam, PHD Thesis (2000)
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CHSH game

® Rules:

® Alice, Bob are given independent bits s, s2 from a
uniform distribution.

% ® [hey may not communicate during the game. %
® Aim:
® |[hey should each produce a bit mj, my,such that
mi © Mg = 5152

™1 XOR Mo — 51 AND S9

® \We call games where the desired data Is encoded In
the XOR of measurement outcomes XOR-games.
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CHSH game

® CHSH inequalities bound the mean success
probability of the game.
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CHSH game

® CHSH inequalities bound the mean success
probability of the game.

3
< T LHV
1
— m1 + Mmoo = 818
48122821?( ! 2 = 5182) < 2+4\/§ ~ (.85 Quantum
— 1 PR Box

® [he GHZ paradox can also be related to a
very similar game.
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GHZ correlation

) = [001) + [110)

(uniguely) satisfies:

XX QX[Y) =)

XY YY)
Y@ X YY)

which also imply:

N. D. Mermin (1990), building on Greenberger, et al. (1989)

Y@V @ X)) = =)

)
)

Correlations
N outcomes of
local
mMmeasurements
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GHZ correlation

) = [001) + [110)
(uniguely) satisfies:

X ©X @ X)) =[y)
XQY @Y[) =)
Y@ X QYY) = |¢)

Correlations
N outcomes of
local
mMmeasurements

which also imply:

Y ®Y @ X[y) =)

N. D. Mermin (1990), building on Greenberger, et al. (1989)
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GHZ correlation

) = [001) + [110)
(uniguely) satisfies:

X ©X @ X)) =[y)
XQY @Y[) =)
Y@ X QYY) = |¢)

which also imply:
Y @Y @ X[v) =)

GHZ “Paradox”: No (non-contextual) rea

Correlations
N outcomes of
local
mMmeasurements

number

assisnment of X and Y can satisty all of -

N. D. Mermin (1990), building on Greenberger, et al. (1989)

‘hese,
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GHZ “paradox”

® A very clean way to express this correlation is to use
the binary notation introduced above.

S1 S9 S1 - S9

M1 &© Mo B M3 = S152

® |e.the correlations “win” an XOR-game, nearly
identical to the CHSH game.

J.Anders and D. E. Browne PRL (2009).
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Geometric interpretation of Bls

® Another useful representation of Bell inequalities is to form a
vector from the conditional probabilities.

p(817 82) = p(ml D Mo = 1|31, 82)
1,11

3 conditional
) probability
) space
)

0,0,0,0
® [ach possible set of conditional probabillities is represented a
point In a unit hypercube.
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Geometric interpretation of Bls
We can thus classity the regions of conditional probability

space (2-

D Schematic).

Quantum
region —~—

/ PR Box

N LHV region:
' “Bell polytope”™
Bell inequalrties

" define facets

of polytope.

Marcel Froissart: Nouvo Cimento (1981), B.S. Tsirelson, |. Sov. Math. (1987)




Convex polytopes

® [he convex hull of a set of vectors (vertices) in RAd.
Vertex

! Facet inequality

Facet

® (eneralisation of polygons, polyhedra to higher d.

® May be defined in terms of Its vertices or its facets
(as a set of inequalities defining half planes.)
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Geometric interpretation of Bls

® [he "Bell polytope” represents the region of
conditional probabllities allowed in LHV theories.

® |t is a hyper-octahedron. [he facets represent the
CHSH inequalities (and normalisation conditions).

Marcel Froissart: Nouvo Cimento (1981).
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inequalities




Many-party Bell-inequalities
® Werner and Wolf (2001) generalised the CHSH setting

to n-parties.

® Ve still keep 2-settings, 2-outputs per meas and
consider condrtional probs for the XOR of all outputs.

S1 S9 Sn

l l l
M:;mj | | ¢ o .
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Many-party Bell-inequalities
® Werner and Wolf (2001) generalised the CHSH setting

to n-parties.

® Ve still keep 2-settings, 2-outputs per meas and
consider condrtional probs for the XOR of all outputs.

S1 S9 Sn

| | |

M= m | | e |
f l l l

m1 m9 (A7)

® W & W derived the full n-party Bell polytope - and

found that, for any n, it is a hyper-octahedron in 2*n
dimensions.
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Loopholes in Bell Inequality experiments

® [he beauty of Bell inequalities Is that they are
experimentally testable.
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experimentally testable.

® However, Bell's assumptions are strict.
® Space-like separated measurements
® Perfect detection efficiency

® [Measurement settings chosen at random
(free-will).
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Loopholes in Bell Inequality experiments

® [he beauty of Bell inequalities Is that they are
experimentally testable.

® However, Bell's assumptions are strict.
® Space-like separated measurements
® Perfect detection efficiency

® [Measurement settings chosen at random
(free-will).

® |[f these do not hold, then the Bls may not hold
- there may be loopholes.
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Loopholes in Bell Inequality experiments

Loopholes make the LHV region larger.

Allowed LHV
correlations
under Bell’s
assumptions
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Loopholes in Bell Inequality experiments

Loopholes make the LHV region larger.

Allowed LHV
Allowed lLI—I\/ correlations
correlations under actual
under Bell’s

experimental

assumptions conditions
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Bell inequalities
VS
Measurement-Based
Quantum Computation




MBQC vs Bls
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MBQC vs Bls

“ ‘ ‘ ‘ “ s1 € {0,1} se € {0,1}

o0 0 0000 ! |

9000000 |\ E/

9000000 ] )

000606060 mi € {0,1} ma € {0.1)
® Both

® Require (only) XOR side-processing to
perform computational game or task.

® This task is impossible (non-linear) with XOR
gates alone (linear gates).
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MBQC vs Bls

“‘ ‘ ‘ ‘ “‘ s1 € {0,1} se € {0,1}
90 00000 ! Voo
90000090 |\ E/ A
9000000 ] ) -
006060606 mi € {0,1) ms € {0,1)

® But

® MBQC requires adaptive measurements, and thus
measurements cannot be space-like separated.

® Spatial separation is one of the most important
assumptions in deriving the Bell inequalrties.
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This talk

“ ‘ ‘ ‘ “ s1 € {0,1} se € {0,1}
o0 0 0000 ! Voo
9000000 vsg/ A
9000000 ] [
006060606 mi € {0, 1} ms € {0,1)

® Main result:
® We will derive an equivalent of the Bell polytope for MBQC.

® |e. Within LHV theories, which measurement-based
computations can be achieved!

® Main tool:

® Polytopes over Boolean functions.
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Boolean functions

® A Boolean function is a map from n-bits to a single bit.

® Fvery such function can be represented by a 2" bit
vector listing the outputs for each of the 2" inputs.

®*Lg  Tf0...00)
£(0...01)

F— |£(0...10)
_f(l.:..ll)_

® [t |s convenient to enumerate the Boolean functions
as where j =1, ..., 2%(2"n).
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Boolean functions

® A Boolean function is a map from n-bits to a single bit.

® Fvery such function can be represented by a 2" bit
vector listing the outputs for each of the 2" inputs.

®*Lg  Tf0...00)
f(0...01)
f=|f(0...10) ® |e. There 2A(2"n)
; Boolean functions.
f(1...11)

® [t |s convenient to enumerate the Boolean functions
as fi(s) wherej=I,..,2%2"n).




Boolean functions

® Fvery Boolean function may be expressed as a polynomial
(modulo 2) (known as “algebraic normal form™).

® Lo if inputisthe bitstring s = s153... 5,

f(s):a0‘|‘a131‘|‘CZ282—|—---—|—a123132_|_...
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Boolean functions

® Fvery Boolean function may be expressed as a polynomial
(modulo 2) (known as “algebraic normal form™).

® Lo if inputisthe bitstring s = s153... 5,

f(s):a0‘|‘a131‘|‘CZ282—|—---—|—a123132_|_...

® |n other words, any Boolean function can be expressed as a
sequence of XOR (add mod 2) and AND (multiply) gates.
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Boolean functions

® Fvery Boolean function may be expressed as a polynomial
(modulo 2) (known as “algebraic normal form™).

® Lo if inputisthe bitstring s = s153... 5,

f(s):a0‘|‘a131‘|‘CZ282—|—---—|—a123132_|_...

® |n other words, any Boolean function can be expressed as a
sequence of XOR (add mod 2) and AND (multiply) gates.

® [he degree of the polynomial is a useful way of classifying
Boolean functions.
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Linear Boolean functions

® Linear Boolean functions are degree | polynomials, and can
be most generally written

Z(S) :a0+2ajsj ar < {0,1}
j=1
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enumerate [x(S) where k =1,..,2"(n+1).

Sunday, 1 August 2010



Linear Boolean functions

® Linear Boolean functions are degree | polynomials, and can
be most generally written
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® Linear Boolean functions are degree | polynomials, and can
be most generally written

Z(S) :a0+2ajsj ar < {0,1}
j=1

® [here are thus 2*(n+1) such functions, which we shall
enumerate [x(S) where k =1,..,2"(n+1).

® All linear functions may be generated via XOR gates alone.

® | inear functions are closed under composition.
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Linear Boolean functions

® Linear Boolean functions are degree | polynomials, and can
be most generally written

Z(S) :a0+2ajsj ar < {0,1}
j=1

® [here are thus 2*(n+1) such functions, which we shall
enumerate [x(S) where k =1,..,2"(n+1).

® All linear functions may be generated via XOR gates alone.
® | inear functions are closed under composition.

® |n contrast, by composing a quadratic gate (e.2. NAND)
one can generate all Booleans.
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Stochastic Boolean maps

® (Consider a stochastic machine which, given input string
s, outputs [f;(5) with probability A;.

prob: A ; s
' . 15 (5)
</ choice: )
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Stochastic Boolean maps

® (Consider a stochastic machine which, given input string
s, outputs [f;(5) with probability A;.

prob: A ; s
o . J > fj (S)
</ choice: )

® [he probability that the output bit of the machine is I,
conditional upon the Input s, Is given by:

p(1]5) = Z)\jp(fj(g) = 1) Z)‘j =1

Sunday, 1 August 2010
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Stochastic Boolean maps

® \We can simplify this expression, due to a very
convenient identity:

p(f;(8) =1) = f;(5)
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® \We can simplify this expression, due to a very
convenient identity:

p(f;(8) =1) = f;(5)

® and thus obtain  P(115) = Z Aj [ (S)
J




Stochastic Boolean maps

® \We can simplify this expression, due to a very
convenient identity:

p(f5(s) =1) = f;(5)
 andthus obtain  P(1[5) = Z A;fi(5)
J

® or equivalently p = Z A f
J
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Stochastic Boolean maps

® \We can simplify this expression, due to a very
convenient identity:

p(f5(s) =1) = f;(5)
 andthus obtain  P(1[5) = Z A;fi(5)
J

® or equivalently p = Z A f
J

® [hisis a convex combination of real-space vectors and
thus a polytope, we call it the Boolean polytope.
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Stochastic Boolean maps

® \We can simplify this expression, due to a very
convenient identity:

p(f5(s) =1) = f;(5)
 andthus obtain  P(1[5) = Z A;fi(5)
J

® or equivalently p = Z A f
J

® [hisis a convex combination of real-space vectors and
thus a polytope, we call it the Boolean polytope.

® Geometrically, it is a unit 2n d. hypercube.
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The Linear Polytope

® (Consider now a stochastic machine which can
only implement linear functions:

. » prob: \ ; _,
s — ". 4 | T 15(5)
«/ Choice:]
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The Linear Polytope

® (Consider now a stochastic machine which can
only implement linear functions:

. o prob: )\j l(g)
S — o . : J
**./ choice:]

® [he output probability of a linear stochastic

machine lies In the 2*(n+1) vertex polytope:
2n—|—1

=Y Ml
j=1
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The Linear Polytope

® (Consider now a stochastic machine which can
only implement linear functions:

. o prob: )\j l(g)
S — o . : J
**./ choice:]

® [he output probability of a linear stochastic

machine lies In the 2*(n+1) vertex polytope:
2n—|—1

=Y Ml
j=1

® We shall call this the (n-bit) linear polytope.
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The linear polytope

® \We can classify the linear polytope using standard
techniques.

® [t has 2A(n+1) vertices in a 2*n dimensional space.

® (Can show that it is a hyper-octahedron.

Sunday, 1 August 2010
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Bell inequalities for MBQC

“‘ ‘ ‘ ‘ “- s1 € {0,1} se € {0,1}
90 00000 ! |
90000090 |\ E/
9000000 ] )
006060606 mi € {0,1) ms € {0,1)

® | et us ask a “"Bell inequality” type question
for MBQC:

® Using the correlations from a LHV theory,
within an MBQC setting what
computations can we achieve!
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Bell inequalities for MBQC
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Bell inequalities for MBQC

“‘ ‘ ‘ ‘ “‘ s1 € {0,1} se € {0,1}
90 00000 ! |
90000090 |\ E/
9000000 ] )
006060606 mi € {0,1) ms € {0,1)

® |f we allow side computation to be universal, we

could access the full Boolean polytope with side
computation alone.
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Bell inequalities for MBQC

“‘ ‘ ‘ ‘ “- s1 € {0,1} se € {0,1}
90 00000 ! N
90000090 |\ E/ A
9000000 ] ) -
006060606 mi € {0,1) ms € {0,1)

® |f we allow side computation to be universal, we

could access the full Boolean polytope with side
computation alone.

® [or our guestion to make sense we make the
following key assumption:
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Bell inequalities for MBQC

“‘ ‘ ‘ ‘ “- s1 € {0,1} se € {0,1}
90 00000 ! N
90000090 |\ E/ A
9000000 ] ) -
006060606 mi € {0,1) ms € {0,1)

® |f we allow side computation to be universal, we

could access the full Boolean polytope with side
computation alone.

® [or our guestion to make sense we make the
following key assumption:

® Side-computation will be solely linear.
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Bell inequalities for MBQC

® [o simplify further, let's initially adopt the precise CHSH
(Werner-Wolf) setup.

® Spatially separated parties with independent inputs.

® Output of computation encoded in the XOR of all
outcome bits.

f l2 Sln
ho i
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Bell inequalities for MBQC

® \What computations M (S) can this setup perform?

® | HV model may be stochastic
and thus the computations may
include stochastic maps -
allowed computations will form a
region of the Boolean polytope.
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and thus the computations may
include stochastic maps -
allowed computations will form a
region of the Boolean polytope.

® Randomness arises In LHV theories by random
assignment of the hidden variables.
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Bell inequalities for MBQC

® \What computations M (S) can this setup perform?

® | HV model may be stochastic
and thus the computations may
include stochastic maps -
allowed computations will form a
region of the Boolean polytope.

® Randomness arises In LHV theories by random
assignment of the hidden variables.

® Hence, this region will be a convex polytope, whose
vertices correspond to the deterministic computations.
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Bell inequalities for MBQC

® First let us consider a single box.

57

|
!

1

® [he most general deterministic relationships
between output and Input can be written:

m; = aj + bym; aj €10,1}  b; € {0,1}

® |e. there are only 4 |-bit to I-bit functions.
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Bell inequalities for MBQC

® |f we associates bit aj and b with each box, the most
general expression for the output XOR bit M (S) is

L f
Lo i
M = ij = Zaj +Zb333




Bell inequalities for MBQC
M (5) :a+ijsj

J




Bell inequalities for MBQC

M(g) :&+ij8j
J

® \We see
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M(g) — CL—I—ijSj
® \\e see ’

® this s linear in s,

® by suitable choice of aj and b
all 2™ (n+1) linear functions can be achieved.
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Bell inequalities for MBQC

M(g) — CL—I—ijSj
® \\e see ’

® this s linear in s,

® by suitable choice of aj and b
all 2™ (n+1) linear functions can be achieved.

® Hence the full range of computations achievable by LHV
correlations with XOR on the outcomes
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Bell inequalities for MBQC

M(g) — CL‘FZZ?ij
® \\e see ’

® thisis linear in s,

® by suitable choice of aj and b
all 2™ (n+1) linear functions can be achieved.

® Hence the full range of computations achievable by LHV
correlations with XOR on the outcomes

® |sthe Linear Polytope.
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The linear polytope vs the Werner Wolf polytope
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The linear polytope vs the Werner Wolf polytope

® T[he linear polytope is a hyper-octahedron with 27 (n+1) vertices.

® T[he Werner-Wolf polytope is a hyper-octahedron with 27 (n+1)
vertices.

® Are they the same polytope!?
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Werner and Wolf (2001).
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The linear polytope vs the Werner Wolf polytope

® T[he linear polytope is a hyper-octahedron with 27 (n+1) vertices.

® T[he Werner-Wolf polytope is a hyper-octahedron with 27 (n+1)
vertices.

® Are they the same polytope!?

® Yes! In fact, the derivation above Is essentially a line-by-line recasting of
Werner and Wolf (2001).

® Qur derivation is a computational reformulation of the traditional Bell
inequalities.
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Bell inequalities for MBQC

® So is this a failure!
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® Ve have reproduced a |0-year old result.

® \We have falled to derive Bell inequalities relevant to
standard MBQC since that utilises adaptive measurements.
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Bell inequalities for MBQC

® 50 Is this a failure!?
® Ve have reproduced a |0-year old result.

® \We have falled to derive Bell inequalities relevant to
standard MBQC since that utilises adaptive measurements.

® However, sometimes new representations give new insights....
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Loopholes and linearity

® Our Bell polytope Is the polytope of linear functions.
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® Recall that a “loophole’ is any experimental imperfection
which enlarges the LHV region.
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® Our Bell polytope Is the polytope of linear functions.

® Recall that a “loophole’ is any experimental imperfection
which enlarges the LHV region.

® Since the LHV region is the linear polytope, and since
inear functions are closed under composition.

® |ntroducing extra linear computation will never
introduce a loophole!
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Loopholes and linearity

® Our Bell polytope Is the polytope of linear functions.

® Recall that a “loophole’ is any experimental imperfection
which enlarges the LHV region.

® Since the LHV region is the linear polytope, and since
inear functions are closed under composition.

® |ntroducing extra linear computation will never
introduce a loophole!

® All known loopholes must be associated with some
non-linear computation.

Sunday, 1 August 2010



Loopholes and linearity

® Our Bell polytope Is the polytope of linear functions.

® Recall that a “loophole’ is any experimental imperfection
which enlarges the LHV region.

® Since the LHV region is the linear polytope, and since
inear functions are closed under composition.

® |ntroducing extra linear computation will never
introduce a loophole!

® All known loopholes must be associated with some
non-linear computation.

® [his allows us to weaken our assumptions and derive
the same Bell inequalrties.
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An example: pre-processing in GHZ

® Notice the third input depends upon the other two!

S1 S92 S1 + S9

| | |
! ! l

(105] %, T3

M1 @D Mo D Mg = S152
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An example: pre-processing in GHZ

® Notice the third input depends upon the other two!

S1 S92 S1 + S9

| | |
! ! l

(105] %, T3

M1 @D Mo D Mg = S152

® \Why does this not induce a loophole!
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An example: pre-processing in GHZ

® Notice the third input depends upon the other two!

S1 S92 S1 + S9

| | |
! ! l

(105] %, T3

M1 @D Mo D Mg = S152

® \Why does this not induce a loophole!

® |n an experiment, we simulate the dependency
using post-selection.
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An example: GHZ

® |n an experimental test of GHZ, the third
input Is set at random.

® \/Ve then post-select our data, and only keep
data where r = s1 + s2.
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An example: GHZ

® |n an experimental test of GHZ, the third
input Is set at random.

® \/Ve then post-select our data, and only keep
data where r = s1 + s2.

® Does this induce a detection loop-hole! No,
't doesn't...
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Linear measurement post-selection

e (Consider a more general setting. Let us set all inputs to
n measurements as n uniformly random bits.

L l
M =a+ Z b;ir; e o o
T b

® |ets be the input bit-string (provided by a referee, say).

® Ve can post-select data such that each rjis a linear
function of the bits In s.

Sunday, 1 August 2010



Linear measurement post-selection

® Observation: This post-selection does not induce a
loophole.

® Reason: closure of linear maps under composition.
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Linear measurement post-selection

® Observation: This post-selection does not induce a
loophole.

® Reason: closure of linear maps under composition.

M:&—FZZ?J‘?“]'
J
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Linear measurement post-selection

® Observation: This post-selection does not induce a
loophole.

® Reason: closure of linear maps under composition.
M = a -+ E bj?“j
J

® Mislinearin riThe rjs are linear in s. Hence M Is
iInear in s.

Sunday, 1 August 2010



Linear measurement post-selection

® Observation: This post-selection does not induce a
loophole.

® Reason: closure of linear maps under composition.
M = a -+ E bj?“j
J

® Mislinearin riThe rjs are linear in s. Hence M Is
iInear in s.

® M remains inside the linear polytope and no
loopholes are induced - the LHV region is no larger
than before.
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Linear measurement post-selection

® But we can go further.

L
i
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Linear measurement post-selection

® But we can go further.

® By the same reasoning, we can post-select r to be a linear
function in both s and the measurement output bits m;.
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® By the same reasoning, we can post-select r to be a linear
function in both s and the measurement output bits m;.
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Linear measurement post-selection

® But we can go further.

® By the same reasoning, we can post-select r to be a linear
function in both s and the measurement output bits m;.

® Since mj are linear in r, M will remain within the linear polytopel!

S1 ;- MMy T 82

I
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Linear measurement post-selection

® But we can go further.

® By the same reasoning, we can post-select r to be a linear
function in both s and the measurement output bits m;.

® Since mj are linear in r, M will remain within the linear polytopel!
® This allows us to simulate linearly adaptive measurements,

S1 ;- MMy T 82
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Linear measurement post-selection

® But we can go further.

® By the same reasoning, we can post-select r to be a linear
function in both s and the measurement output bits m;.

® Since mj are linear in r, M will remain within the linear polytopel!
® This allows us to simulate linearly adaptive measurements,

S1 ;- MMy T 82

L
o

mq : mo

® And the linear polytope will still describe all LHV correlations.
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Computational Bell
inequalities




Computational Bell Inequalities

® \We can use these observations to generalise the
traditional Bell inequalities.

Sunday, 1 August 2010



Computational Bell Inequalities

® \We can use these observations to generalise the
traditional Bell inequalities.

® A computational Bell inequality Is a facet of the polytope
of Boolean stochastic maps achieved in any LHV theory

® On a random m-bit input string s

® (iven n 2-setting, 2-outcome space-like separated
measurements

® \WVith post-selection of measurement settings which
are a linear function of input data and other

measurement outcomes (simulated linear adaptivity)

® And arbitrary linear pre- and post-computation.
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Computational Bell Inequalities

® [he "Computational Bell inequalities™ are easy to
characterise.

® Forn = m they are facets of the m-bit linear polytope.

® Setting n = m and forbidding post-selection, we
recover the traditional definrtion of CHSH inequalities.
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From LHV to Quantum Correlations

® A significant strand of Bell inequality research has been to
characterise the set of conditional probabllities /
stochastic maps allowed within Quantum Mechanics.

[I] Known as Tsirelson - Landau - Masanes region.,
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® A significant strand of Bell inequality research has been to
characterise the set of conditional probabllities /
stochastic maps allowed within Quantum Mechanics.

® Usually only non-

adaptive measurements are
considered.

® But in our new framework, we
can also allow extra parties,
and simulated linear adaptive
measurement.

[I] Known as Tsirelson - Landau - Masanes region.,
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From LHV to Quantum Correlations

® A significant strand of Bell inequality research has been to
characterise the set of conditional probabllities /
stochastic maps allowed within Quantum Mechanics.

® Usually only non-
adaptive measurements are
considered.

® But in our new framework, we
can also allow extra parties,

and simulated linear adaptive \ J

measurement. \
A bigger
® [o these enlarge the quantum region!? quantum set?

[I] Known as Tsirelson - Landau - Masanes region.,
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From LHV to Quantum Correlations

® Yes!

® [orafixed n,
® Allowing extra parties F W
® Allowing linear post-selection

(simulated adaptivity).

® can increase the guantum region. \ J
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From LHV to Quantum Correlations

® Yes!

® [or afixed n,

® Allowing extra parties f W
® Allowing linear post-selection

(simulated adaptivity).

® can increase the guantum region. \ J
o

This can provide a greater
degree of violation of Bell
Inequalities than in the standard
setting.
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Quantum correlations with adaptive measurements

® For example, If we limit the number of parties to 6.

® \With linear adaptive measurement we can access the
deterministic 3-brit AND function.

® T[he triple product sis2s3 of input bits sy, s2, s3.

linear linear linear

b4
b

b
by

® \With no adaptivity, deterministic computation of this
function Is impossible with only 6 measurements [ | ].

[ ] In Hoban et al (2010 - arxiv next week) we show that 2”7 (n-1) qubits are
required to acheive an n-bit AND deterministically with no adaptivity.
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Summary

® \We derived Bell inequalities from the perspective of
measurement-based quantum computation.
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Summary

® \We derived Bell inequalities from the perspective of
measurement-based quantum computation.

® [his allowed us to characterise all 2-setting, 2-output Bell
inequalities In terms of the linear Boolean polytope.

® And made it clear that extra linear computations
(including simulated adaptivity) do not lead to loopholes.

® [his enables one to consider a richer structure of
quantum correlations in the context of Bls (including the

adaptive measurements arising in MBQC) which we are
only starting to Investigate.
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Summary

® \We derived Bell inequalities from the perspective of
measurement-based quantum computation.

® [his allowed us to characterise all 2-setting, 2-output Bell
inequalities In terms of the linear Boolean polytope.

® And made it clear that extra linear computations
(including simulated adaptivity) do not lead to loopholes.

® [his enables one to consider a richer structure of
quantum correlations in the context of Bls (including the

adaptive measurements arising in MBQC) which we are
only starting to Investigate.

® Are Bell inequality violations more about non-linearity than
non-locality...!
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