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The iStone: 1 bit





The iStone 4: ~ 20 bits





The iPhone 4: ~ 2.6 x 1011 bits





The iPod: ~ 1.4 x 1012 bits





http://en.wikipedia.org/wiki/Hard_disk_drive
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Magnetic Order = 0
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A spin-1/2 particle:





Magnetic Order = 1

“spin up” “spin down”

A spin-1/2 particle:





Magnetic Order = 1

“spin up” “spin down”

A spin-1/2 particle:

Terrific for storing 
classical information, 
but useless for quantum 
Information.
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A valence bond:

Many spin-1/2 particles:
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Use periodic boundary
conditions
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Controlled-Not

Any N qubit operation can be carried 
out using these two gates.
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Universal Quantum Gates
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Controlled Not

Any N qubit operation can be 
carried out using these two gates.
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One way to go…

Loss and DiVincenzo, ‘98

| 0    = |1    =

Manipulate electron spins with electric and magnetic fields to 
carry out quantum gates.

Problem:  Errors and Decoherence!  May be solvable, but it 
won’t be easy!



Topological Order  (Wen & Niu, PRB 41, 9377 
(1990))

Conventionally Ordered States:  Multiple “broken symmetry” 
ground states characterized by a locally observable order 
parameter.

Topologically Ordered States:  Multiple ground states on 
topologically nontrivial surfaces with no locally observable 
order parameter.
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Nature’s classical error correcting codes !

Nature’s quantum error correcting codes ?
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What braid corresponds to this circuit?
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A valence bond:

Quantum superposition
of many valence-bond 
states:  A “spin liquid.”
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α β+

Environment can measure the state of the qubit by a local 
measurement – any quantum superposition will decohere 
almost instantly.

Bad Qubit!



α β+
Odd Even

Environment can only measure the state of the qubit by a 
global measurement – quantum superposition should have 
long coherence time.



Good Qubit!



α β+
Odd Even



Topologically Ordered States ) :  Multiple ground 
states on topologically nontrivial surfaces with no locally 
observable order parameter. 
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Nature’s quantum error correcting codes ?













Spin flip:  “quasiparticle” with total Sz =+1













Breaking a bond creates an excitation with Sz = 1





Breaking a bond creates an excitation with Sz = 1





Breaking a bond creates an excitation with Sz = 1





Sz = 1 excitation fractionalizes into two Sz = ½ quasiparticles.





B

A two dimensional gas of electrons in a strong 
magnetic field B.

Electrons





B Quantum Hall Fluid

An incompressible quantum liquid can form when 
the Landau level filling fraction νννν = nelec(hc/eB) is a 
rational fraction.





Electron
(charge = e)

Quasiparticles
(charge = e/3 for νννν=1/3)

When an electron is added to a FQH state it can be 
fractionalized --- i.e., it can break apart into 
fractionally charged quasiparticles.



 41, 9377 (1990))

As in our spin-liquid example, FQH states on topologically 
nontrivial surfaces have degenerate ground states which can 
only be distinguished by global measurements.

Degeneracy

1

3

9

For the νννν = 1/3 state:

… 3N

1 2 N





Fractionally charged quasiparticles

A degenerate Hilbert space whose dimensionality is 
exponentially large in the number of quasiparticles.

States in this space can only be distinguished by global 
measurements provided quasiparticles are far apart.

Essential features:

A perfect place to hide quantum information!





( ) ( )2112 ,, rrrr ψλψ =

( )21 , rrψ

( ) ( )12
2

21 ,, rrrr ψλψ =

Two exchanges = Identity λ2 = 1

λ = +1    Bosons λ = −1    Fermions

One exchange

A second exchange

r1 r2

Photons, He4 atoms, Gluons… Electrons, Protons, Neutrons…





2 space dimensions

1 time
dimension

Particle “world-lines” form braids in 2+1 (=3) dimensions



Particle “world-lines” form braids in 2+1 (=3) dimensions

Clockwise
exchange

Counterclockwise
exchange







iψ

i
i

f e ψψ ϑ=

Phase

θ = 0    Bosons 

θ = π Fermions

θ = π/3    ν=1/3 quasiparticles

Only possible for particles in 
2 space dimensions.

Anyons
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ψ i Matrix!

Matrices form a non-Abelian representation of the braid group.

(Related to the Jones Polynomial, TQFT (Witten), Conformal 
Field Theory (Moore, Seiberg), etc.)  
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Matrix depends only on the topology of the braid swept out by 
anyon world lines!

Robust quantum computation?
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Controlled-Not

Any N qubit operation can be carried 
out using these two gates.
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What braid corresponds to this circuit?



 
J.S. Xia et al., PRL (2004).



 
J.S. Xia et al., PRL (2004).

ν= 5/2:  Probable Moore-Read 
Pfaffian state.   

Charge e/4 quasiparticles described by 
SU(2)2 Chern-Simons Theory.  
Nayak & Wilczek, ’96



 

ν = 12/5:  Possible Read-Rezayi 
“Parafermion” state. Read & Rezayi, ‘99

Charge e/5 quasiparticles described by 
SU(2)3 Chern-Simons Theory.
Slingerland & Bais ’01

Universal for Quantum Computation!
Freedman, Larsen & Wang ’02

J.S. Xia et al., PRL (2004).
ν= 5/2:  Probable Moore-Read 
Pfaffian state.   

Charge e/4 quasiparticles described by 
SU(2)2 Chern-Simons Theory.  
Nayak & Wilczek, ’96


