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ABSTRACT 
The aim of this work is to model the thermal evolution inside a hydrate forming system which is submitted 

to an imposed steady cooling. The study system is a cylindrical thin film of aqueous solution at 19 Mpa, the 

methane is the hydrate forming molecule and it is assumed that methane is homogeneously dissolved in the 

aqueous phase. The model in this work takes into account two factors involved in the hydrate 

crystallization: 1) the stochastic nature of crystallization that causes sub-cooling and 2) the heat source term 

due to the exothermic enthalpy of hydrate formation. The model equation is based on the resolution of the 

continuity equation in terms of a heat balance. The crystallization of the methane hydrate occurs at 

supercooling conditions (Tcryst < TF), besides, the heat released during crystallization interferes with the 

imposed condition of steady decrease of temperature around the system. Thus, the inclusion of the heat 

source term has to be considered in order to take into account the influence of crystallization. The rate of 

heat released during the crystallization is governed by the probability of nucleation J(T ). The results 

provided by the model equation subjected to boundary conditions allow depict the evolution of temperature 

in the dispersed phase. The most singular point in the temperature–time curve is the onset time of hydrate 

crystallization. Three time intervals characterize the temperature evolution during the steady cooling: (1) 

linear cooling, (2) hydrate formation with a release of heat, (3) a last interval of steady cooling. 
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NOMENCLATURE 

 

A Coefficient in function J(T) 

B Coefficient in function J(T) 

Cps Specific heat of the dissolved methane at solid 

phase 

Cpl Specific heat of the dissolved methane at 

liquid phase. 

∆G Gibbs free energy      

E Coefficient in function J(T) 

i  Radial position in discretized terms 

J Probability of nucleation 

k Boltzman constant 

k Global heat transfer coefficient 

L Apparent latent heat of the dissolved phase 

m Time in discretized terms  

M Final time of the cooling experiment in 

discretized terms 

N Total number of liquid micro-domains 

n Number of crystallized micro-domains 
•
q  Rate of heat released by the crystallization of 

micro-domains 

r Radial position     

R Width of the annulus cylinder 

t Time    

tend  Final time of the cooling experiment 

TF Melting temperature of the dispersed phase 

Tend Lower limit of temperature of the cooling 

experiment 

β Cooling rate 

λs Thermal conductivity of the dissolved phase in 

liquid state 

λl Thermal conductivity of the dissolved phase in 

solid state 

φ Fraction of solidified micro-domains 

Φ Mass fraction of dissolved phase 

Θ Temperature in discretized terms 

µ Chemical potential 

ρ Density of the dissolved phase 

 

INTRODUCTION 
Gas hydrates or clathrate hydrates are one class of 

inclusion compounds. The gas hydrate is an ice-

like compound; it results from kinetic process of 

crystallization of an aqueous solution 

supersaturated with a dissolved gas. 

From the thermodynamics point of view, the 

prediction of hydrate formation is performed out 

knowing the gas and water composition and the 

temperature (or pressure) of the gas-water system. 

In this way, the series of equilibrium points allows 

to construct the phase diagram of the hydrate 

system. The state of the art in equilibrium 

thermodynamics of methane hydrates has evolved 

since the pioneering works of Parrish and 

Prausnitz (1972), Ng and Robinson (1976), 

Vyasnuskas and Bishnoi (1983), Englezos et al 

(1987).    

However, when the hydrate former solution is 

subject to dynamic conditions of pressure and 

temperature, the onset point of methane hydrate 

formation differs from that stipulated by 

equilibrium thermodynamics. Such a dynamic 

scenario characterized by low temperatures and 

high pressures is commonly met during the 

transportation of hydrocarbon fluid in submarine 

pipelines. First, the water content of the 

hydrocarbon fluid condensates and then high 

pressure enhances the solubility of methane gas in 

the liquid aqueous phase. The concentration of 

methane in the aqueous solution gradually 

increases until the system reaches the saturation 

concentration. From this moment or super 

saturation condition, the environment required to 

begin the nucleation and crystallization is fulfilled. 

Nucleation and growth of the crystal occur 

predominantly on the gas-water interface, where 

the super saturation is higher than in bulk water. 

Nevertheless, in several cases the solution reaches 

a uniform super saturation before the appearance 

of the nuclei, and as a result, the nucleation 

process occurs everywhere in the liquid phase. 

 

Unfortunately, the actual temperature of hydrate 

formation in undersea pipelines usually differs 

from that stipulated by equilibrium considerations. 

Such a difference between theoretical equilibrium 

temperature Te, and the actual temperature of 

hydrate crystallization is due to the stochastic 

nature of nucleation. The difference ∆T = Te – T is 

also known as sub-cooling. In addition, the non-

equilibrium occurrence of hydrate formation is 

emphasized by the amount of heat released during 

the crystallization. Most of the hydrate work 

focuses on the equilibrium conditions of hydrate 

formation [13–18]. It has been confirmed since the 

nineteenth century that hydrate formation follows 

a complicated process of crystallization. In this 

sense, there are still few works that deals with the 

kinetic aspects of hydrate formation. Two of the 

pioneering works that deals with the induction 



time concept are due to Englezos et al. [9] and the 

work of Natarajan et al. [19]. It is worthwhile to 

mention the experimental works of Jakobsen et al. 

[20], Lekvam and Ruoff [3],Munck et al. [21] and 

Zatsepina and Buffet [22]. The works 

aforementioned make evident the influence of the 

supercooling on hydrate formation kinetics. As 

those fine writers have shown, the gas hydrate is 

formed through a kinetic process which requires 

three necessary steps: (1) The first one is 

supercooling, (2) The second step is nucleation, 

(3) The third step is the growth of the crystal. 

 

The objective of this work is to develop a 

simplified model to determine the onset time of 

hydrate nucleation within a hydrate forming 

system subject to an imposed steady cooling. The 

model includes a function that allows to consider 

the stochastic nature of the nucleation. 

The model in this work necessarily takes into 

account both factors stated before: 1) the 

stochastic nature of crystallization that causes sub-

cooling and 2) the heat source term due to the 

exothermic enthalpy of crystallization. The steady 

temperature decrease β acting on the hydrate 

former system is a known parameter in the model. 

Thus, once the onset point of hydrate 

crystallization is determined, it is possible to 

transform the sub-cooling ∆T into an induction 

time. 

 

STATEMENT OF THE PROBLEM  

 
Methane hydrate is formed trough a kinetic 

process of nucleation and crystallization. The need 

to predict the onset time of nucleation with a 

model necessarily requires to consider the 

induction time. In this work, the model is based on 

the resolution of the continuity equation in terms 

of the heat balance which includes the source term 

and the probability of nucleation J(T). The 

boundary volume of the aqueous solution is a 

cylindrical annulus of a few µm of width as shown 

in figure 1. The internal radius R of the crucible is 

small in comparison to its length L (R <L). In order 

to simulate the steady cooling of the emulsion we 

imposed a constant cooling rate around the 

external surface of the boundary volume. 

  

 
 

Figure 1. The study system is an annulus 

cylinder of width R. The system may be 

assimilated to an aqueous film at the 

saturation concentration in methane. The 

aqueous thin film is partitioned in a grid of 40 

points.  

 

The interest of this work to the real industrial 

needs lies in the fact that it enables to link the 

thermodynamic aspects of hydrate formation with 

the kinetic aspects through the function probability 

of nucleation J(T). 
 

Ehmimed et al. [4] measured the influence of the 

global heat transfer coefficient k on the rate of 

thermal transfer between a wall and a dispersed 

system by differential scanning calorimetry. In that 

work [4] the authors concluded that thermal 

transfer is influenced by the heat transfer 

coefficient only for values of k lower than 100 

W·m−2·K−1
. The modeling conditions in this 

particular work are similar to that reported by 

Zeraouli [5]. The coefficient of heat transfer 

greater than 500W·m−2·K−1
, so, it is possible to 

neglect the influence of the global heat transfer 

coefficient k on the rate of thermal transfer. In 

addition, the viscosity of the aqueous solution 

allows to consider the liquid as a Newtonian fluid. 

Therefore, we can assume that the thermal transfer 

between the cooling boundary and the solution is 

not ruled by the global heat transfer coefficient k, 

neither by the viscosity of the emulsion. In 

contrast, the thermal transfer is strongly influenced 

by an important amount of heat released during the 

formation of the solid hydrate. In consequence, the 

temperature distribution in the time interval of 

r = R 

r = 1 

∆r 

r = 2 

r = 3 

r = R-1 

Width of the 
aqueous film 

Innermost 
position of the 
aqueous film 



hydrate formation in the emulsion is determined 

by two effects: 

(1) The external effect of the imposed steady 

cooling (Temperature decrease from the bulk 

liquid phase towards the boundary wall). 

(2) The internal effect due to the exothermic heat 

released by the crystallization of the droplets. 

 

For long, thin cylinders having negligible axial 

variations in heat flux, the gradient of heat transfer 

in the radial direction dominates over the axial. 

Since the geometry of the boundary volume fulfills 

this condition of R > L we can focus the analysis 

on the heat transfer in radial direction. 

Additionally, since the methane is homogeneously 

dissolved in the solution volume, we can assume 

that the temperatures varies in the radial direction, 

such a variation of temperature is axisymmetrical 

[6,7]. The metastability of the solution is broken 

when the nucleation begins. In this manner, the 

problem is to determine the temperature of 

solution T (r, t). at any time, t during the steady 

cooling, and for all position r between the wall of 

the annulus cylinder and the radius R (interface of 

the aqueous film in contact with the methane gas). 

The initial and final temperatures of the cooling 

interval are free parameters that must be specified. 

In this work, the steady cooling begins at 298 K 

and the lower limit of temperature is 240 K. The 

cooling rate denoted as β is 10 K·hr
−1

. 

 

Therefore, the numerical modeling of the thermal 

history is expressed as a heat transfer balance. A 

heat source term is taken into consideration within 

the energy balance of the dispersed phase. During 

the thermal history of the aqueous solution, the 

onset time of crystallization initiates the release of 

heat inside the aqueous solution. The source term 

depends on the probability of nucleation. Not all 

the aqueous volume crystallizes simultaneously 

due to the steady cooling. Actually, a progressive 

crystallization occurs and the rupture of the 

metastable state in the liquid phase begins when 

the rate of nucleation J(T ) > 0  [8]. 

 

Hereafter Φ shall denote the mass fraction of the 

disolved methane phase in the solution. This 

parameter is the ratio of the mass of methane to 

the total mass of aqueous solution. It is assumed 

that the thermal conductivity λ and the specific 

heat Cp do not vary in the range of cooling 

temperatures. Nevertheless, λ and Cp are 

considered dependent functions of the fraction of 

crystallized mass ϕ in the solution. The fraction of 

solid state within the solution at position r and 

time t shall be denoted by ϕ(r, t) and it varies 

between 0 < ϕ(r, t) < 1. Therefore, from the work 

of Fouconnier et al. [10] a linear law of variation 

allows to write the following equations: 

 

λ(ϕ) = λl +(λs − λl)  (1) 

Cp(ϕ) = Cpl +(Cps −Cpl)   (2) 

 

The thermal transfer during the cooling process of 

the aqueous solution is modeled with the 

continuity equation of heat conduction: 

 
•









• +∇λ∇=

∂
∂ρ qTC T

p
t

 (3) 

 

The heat source term ˙q is different from zero at 

the onset time of nucleation. The occurrence of 

such event at undercooling conditions is governed 

by a probabilistic law of nucleation [9,11,12]. A 

fraction of the undercooled aqueous volume 

crystallizes ϕ(r, t) ≠  0  only when the probability 

of nucleation J(T) > 0 The latent heat of 

solidification of the fraction ϕ(r, t) represents the 

heat source term 
•

q . The solution of equation (3) 

enables the determination of the space–time 

distribution of temperature across the radial 

position in the annulus cylinder T (r, t). Before 

enterprising the solution of equation (3) it is 

important to point out the connection between the 

heat source term 
•

q  and the probability of 

nucleation J(T). In order to precise such a 

connection, it is convenient to remind the 

mechanisms of nucleation and crystallization that 

allow to derive an expression of the type            
•

q  = J(T). Then, the continuity equation (3) can 

be expressed in terms of the dependent variable T 
(r, t) and known functions. 

 

 The probability of nucleation . 
 

The supercooling phenomenon is characterized by 

the persistence in the liquid state of a material 

below its melting point TF. However, the rupture 

of the metastable equilibrium of the supercooled 

liquid occurs at the beginning time of hydrate 

formation. One of the main parameters that has 



influence on the supercooling is the volume of the 

liquid. For example, a bulk volume of water of a 

few cm
3
 is characterized by a supercooling degree 

of ∆T = −14 K, while micro-droplets of water 

dispersed in a w/o emulsion (volumes of a fraction 

of µm3) the crystallization occurs at 233 K or 

lower temperatures [5, 6, 25].  

 

The steady cooling of an aqueous solution shows 

the stochastic nature of crystallization [4].  

 

 

During the induction time the nuclei growth in 

size, once the nuclei attain a stable size the 

metastable equilibrium of the aqueous solution no 

longer exists. The occurrence of such instant in 

time is a phenomenon of random and probabilistic 

nature if the conditions of supercooling, pressure 

and composition are fulfilled [11, 27]. At 

conditions of nucleation, it is not possible to 

determine the place where the nuclei are formed 

inside the aqueous volume. Nevertheless, a 

probability P = VJt of appearance of solid phase 

within the aqueous volume can be predicted 

because it is possible to calculate the nucleation 

rate J [5, 22]. 

 

The appearance of a nucleus is essentially a 

random phenomenon for which a probability can 

be predicted. If we consider a population of N 
aqueous micro-domains whose volumes are V , the 

nucleation will not occur in all those micro-

domains at the same time as temperature 

decreases. Instead, the birth of nuclei occurs 

randomly. Let n(r, t) be a fraction of N that 

represents the number of solidified micro-domains 

at position r and time t , then the proportion of 

solidified micro-domains in the total population of 

N at position r and time t is: 

 

N

,n
,













 =ϕ

tr
tr  (4) 

 

and the number of micro-domains remaining in 

liquid state at time t is N −n(r, t). Assuming that 

each solidified micro-domain of n corresponds to 

the appearance of a nucleus, there is an equal 

probability of forming a nucleus in each of them. 

The probability of nucleation in a micro-domain of 

volume V in a time increment dt is 1VJdt . 
 

Let us consider not only one aqueous micro-

domain but a large population composed of N 
micro-domains per unit volume of aqueous 

solution. The aqueous solution is submitted to a 

steady cooling from a starting temperature of 298 

K until an imposed temperature lower than TF. At 

the beginning of the cooling all the aqueous micro-

domains N are in liquid state, as the cooling 

progresses the metastable equilibrium will be 

broken at instant time t . In consequence, at time t 
> 0 there are n(r, t) micro-domains in solid state 

per unit volume aqueous solution. 

 

The rate of crystallization is proportional to the 

number of micro-domains remaining in liquid 

state, N − n(r, t), and proportional also to the 

probability of crystallization by unit of time and 

volume J(T). The rate of crystallization of those 

remaining micro-domains in a time increment dt is 

expressed as: dn(r, t) 
 
 































⋅−= TJ,nN
d

,nd
tr

t

tr
  (5) 

 

We can also express equation (5) in terms of the 

proportion of crystallized micro-domains ϕ(r, t), 
then: 

 































⋅ϕ−=
ϕ

TJ,1
d

,d
tr

t

tr
  (6) 

 

Equation (6) expresses the kinetics of 

crystallization of the dispersed micro-domains 

inside the total volume of aqueous solution subject 

to steady cooling. 

 

4. Estimation of the rate of nucleation J(T ) 

 

In classical nucleation theories the rate of 

homogeneous nucleation J represents the number 

of nuclei formed per unit time and unit volume, 

the expression of J(T ) is given by: 

 






















 ∆+−= ⋅
Tk
GEexpATJ    (7) 

 

J(T ) is a nonlinear function of temperature T. For 

temperatures above the melting temperature the 

function J(T ) is close to zero. On the contrary, as 



supercooling increases J(T) also increases 

exponentially and very quickly [8,28]. 

 

The coefficient E is a function of the viscosity of 

the liquid whereas ∆G is the energy barrier that 

nuclei must overcome in order to reach a stable 

critical size. The energy barrier is basically 

imposed by the interfacial tension between the 

nuclei and the liquid phase [12,29,30]. 

 

Moreover, if the viscosity of the liquid is too large 

in comparison to ∆G, then the value of E must be 

taken into consideration. A large value of E 
implies that the rate of nucleation is limited by 

viscosity. In this work, the viscosity of the 

aqueous solution behaves as a Newtonian liquid, 

hence, it has a weak influence on the 

crystallization behavior of the dispersed phase [1]. 

It is assumed the following form of Eq. (7): 

 






















 ∆= ⋅
Tk
GexpATJ    (8) 

 

 

Quantifying the rate of hydrate nucleation is a 

difficult experimental problem. First, we must be 

able to detect the appearance of hydrate nuclei. 

Second, we need to observe a large number of 

nucleation events in order to obtain a meaningful 

statistical average for the nucleation rate. 

 

The rate of nucleation can be determined by means 

of the differential scanning calorimetry technique 

(DSC) [6, 31]. An experimental function described 

in the form of equation (9) can be fitted from 

measurements by means of differential scanning 

calorimetry [5, 8]. 

 









































−⋅

−= ⋅
2

FTTT

BexpATJ   (9) 

 

To carry out the experimental procedure may turn 

most difficult than the determination of A and B. 

Several temperatures must be recorded at different 

positions inside the sample container, this implies 

the use of thermocouple in contact with the liquid. 

In this work such method was not followed since it 

requires very coercive experimental conditions 

inside the crucible. A complete description of the 

method may be found in references [5,27,32,33]. 

The main condition to validate the quantification 

of  J(T ) by means of the cooling-heating 

thermogram is to use a cooling rate lower than 15 

K·hr
−1

. In this manner we can assume that the 

same temperature is maintained between the first 

layer of liquid inside the crucible and the 

surrounding resistance of the calorimeter [5]. 

 

In this work the coefficients A and B of equation 

(9) are fitted from kinetic data of a previous 

experimental work developed by Sloan et al [1]. 

The fitted values are A = 1.6755 × 10
34

 

nuclei·m
−3

·s
−1 

and B = 4×10
6
 K

3
. 

 

 

MATHEMATICAL MODEL AND 

BOUNDARY CONDITIONS 
 

Assumptions and derivation of the model. 
 

The nonlinear heat conduction of a cylindrical 

annulus of aqueous solution is defined by the 

model equation (3). Equation (3) can be expressed 

in terms of the dependent variable T (r,t), the rate 

of crystallization J(T) and the fraction of 

crystallized micro-domains ϕ(r, t). The precedent 

assumption of R < L enables to consider a one-

dimensional heat conduction in radial direction 

[34]. The analog form of equation (3) in 

cylindrical coordinates is: 

 








•







































+
∂

∂
λ

∂
∂=

∂

∂
⋅ρ ⋅⋅⋅⋅ tr

r

tr
trr

rrt

tr
,q

,T
,1,T

Cp  

(10) 

 

The thermal properties of the dissolved methane in 

Eqs. (1) and (2) are linear functions of ϕ(r, t). In 

this sense, during the steady cooling ϕ(r, t) = 0 for 

the time interval where the dissolved methane in 

the form of subcooled liquid. Nevertheless, from 

the moment of hydrate formation ϕ(r, t) > 0 and 

increases until ϕ(r, t) = 1. In consequence the 

thermal properties λ and Cp change in time. In this 

sense, the rupture of the metastable equilibrium of 

the liquid micro-domains points out the beginning 

of hydrate formation. 

 

The source term is no longer 
•

q = 0 in reason of the 

exothermic character of the phase transition. The 

heat flow per unit volume of dispersed phase (in 



J·m
−3

·s
−1

) is proportional to the kinetics of 

crystallization. The relation between 
•

q (r, t) and 

the kinetics of crystallization can be expressed as 

follows: 

 

t

tr

d

,d
Lq






• ϕ

ρ= ⋅    (11) 

 

where L is the apparent latent heat of the dissolved 

methane. 

 

 

 

 

The boundary conditions.  

 

The temperature of the cooling fluid decreases at a 

constant rate, at t = 0, T∞(0) > 0 where TF is the 

melting temperature of the dissolved methane. At 

any time t > 0 the external surface of the 

cylindrical annulus is always in contact with the 

cooling fluid at T∞(t), therefore: 

 

T (r, t) = T∞(t)  at      r = R and t > 0 

 

The condition of axisymmetrical temperatures in 

relation to r imposes: 

 

0
,T

=
∂

∂ 






r

tr
  at      r = 0 and t > 0 

 

The initial conditions 
 

T (r, t) = T∞(0) > TF         for       0 < r <R, t = 0 

ϕ(r, t) =0                    for       0 < r <R, t = 0 

 

Numerical solution of the model equation 

 

The equation (10) of heat conduction can be 

solved by means of a numerical algorithm for T (r, 

t). Here we choose an explicit forward finite 

difference method for the solution of the partial 

differential equation (10). In order to determine T 

(r, t) in the radial direction during the cooling, the 

position coordinate r and the time t are represented 

by discrete set points m and i respectively, 

 

i  = 1, 2, 3,... I        for t1 = 0,  t2 = t1 + ∆t,  t3 = t1 + 

2 ∆t , ... tend 

m = 1, 2, 3,... M     for r1 = 1,  r2 = r1+∆r,  r3 = r1 + 

2 ∆r , ... R 

 

 

Thus, the coordinate r in radial direction is 

represented by a dimensional grid shown in Fig. 1. 

The innermost position of the aqueous film 

corresponds to the radius r = 1 is assigned with the 

node m = 1, each node spans the radius with a 

fixed radial length ∆r. At radius R the 

corresponding node is M. The duration of time of 

the cooling experiment is also discretized by 

constant time steps ∆t. The cooling experiments 

begin at t = 0 that corresponds in the time grid to   

i = 1, the final instant of the experiment tend in the 

finite difference representation corresponds to        

i = I. Hereafter we denote the temperature and the 

crystallized fraction in node m and time i as Θim 

and ϕim respectively. The explicit forward scheme 

means that Θi+1 m for each m can be calculated 

explicitly from the quantities that are already 

known. The requirement of stability to maintain 

convergence is: 

 

( ) 






















λλ

⋅ρ
≤

∆

∆

s,l4

psC,plC

2 max

min

r

t       (12) 

The solution of the nonlinear second order partial 

differential equation (10) is carried out by means 

of the explicit finite difference approach. The 

resultant equations are as follows:  

 

1M2

R2

−
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⋅
⋅
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(15) 
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The numerical calculations were performed using 

a Fortran programming. The step size in time is   

∆t = 0.0125 s and 40 radial positions are 

considered for ∆r = 0.0005125 m.  

 

 

RESULTS OF THE SIMULATION 
 

The evolution of the temperature T (r, t) of the 

cylindrilcal annulus of aqueous solution is 

obtained from the numerical solution of equations 

(15) and (16). The parameters used in the 

modeling are listed in Table 1. The thermo-

physical properties of the dissolved methane are 

listed in Table 2. The aqueous solution contains Φ 

= 0.00305 mol fraction of dissolved methane (P = 

19.0 MPa). The melting temperature of the 

aqueous hydrate solution is Tm < 293 K. 

 

 

 

 

 

Symbol Value Units 

β 10 K / hr 

T∞(0) 298 K 

Tend 236 K 

∆t 0.0125 s 

∆r 0.0005125 m 

M 40 Number 

of radial 

positions 

R 0.0205 m 

 

 

Table 1. Parameters used in the modeling of the 

cooling of the aqueous film of methane solution. 

 

 

 

 

 

 

 

 

Symbol Value Units 

Φ 62.4 wt  % 

ρ 194.6748 Kg / m
3
 

A 1.6755×10
34

 s
-1

 

B 4×10
6
  K

3
 

λs 2.6973 W / m K 

λl 0.46022 W / m K 

Cps 1.6628 KJ / Kg K 

Cpl 4.029855 KJ / Kg K 

L 129.32 KJ / Kg 

TF 293 K 

 

Table2. Thermochemical properties of the 

dissolved methane in the aqueous solution. 

 

 

Before starting the cooling experiments, the 

temperature of the sample is homogeneous inside 

the boundary volume and equal to T∞(0) = 298 K. 

Then, from t = 0 a constant steady cooling process 

is imposed on the external surface of the boundary 

volume. The temperature of the cooling fluid 

decreases linearly at a constant cooling rate of β = 

10 K·hr
−1

. The lower limit of temperature reached 

in the cooling simulation is Tend = T (r, t) = 236 

K. 

 

The result of a simulation of the cooling process 

for the radial position r = 1 is shown in Fig. 2. 
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Figure 2. Thermal evolution of the innermost 

position of the aqueous film. 

 

The evolution of the curve T (r, t) reveals two 

different behaviours. The first one in the time 

interval 0 < t < 8 hr presents the profile of a 

continuous cooling. During this first stage the 



fraction of solidified droplets is zero, ϕ(r, t) = 0. 

The second time interval between 8 hr < t < 14 hr 

presents a different slope of the curve T (r, t). The 

sudden change of slope at t = 8.5 hr indicates the 

onset time of hydrate crystallization. From the 

beginning of the second stage t = 8 hr the fraction 

of solidified micro-domains starts to increase   

ϕ(r, t) > 0. This implies that formation of solid 

hydrate is occurring in the aqueous solution. The 

fraction ϕ(r, t) shall vary until it reaches the 

magnitude ϕ = 1. Correspondingly, an amount of 

heat is released as hydrate crystallization 

progresses in the large population of liquid micro-

domains. The heat balance between the imposed 

steady cooling and the exothermic heat of 

crystallization results in the change of slope of      

T (r, t) which is almost horizontal.  

 

From Fig. 2 it can be seen that for the innermost 

position r = 1 the stabilizing effect disappears at t 
> 14.5 hr. From this moment the cooling tendency 

becomes once again more important than the heat 

released. The behaviour of T (r, t) for the external 

position r = R is nearly constant due to the 

proximity with the cooling fluid. We can also 

identify the onset time of hydrate crystallization at 

t = 8.5 hr. The constant coefficients A and B in the 

function J(T) define the influence of the volume of 

crystal and the interfacial tension liquid–crystal on 

the process of hydrate crystallization respectively.  
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