SWAPPING CARBON DIOXIDE FOR COMPLEX GAS HYDRATE STRUCTURES Youngjune Park, Minjun Cha, Jong-Ho Cha, Kyuchul Shin, and Huen Lee* Department of Chemical & Biomolecular Engineering Korea Advanced Institute of Science and Technology 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 REPUBLIC OF KOREA Keun-Pil Park, Dae-Gee Huh, Ho-Young Lee, Se-Joon Kim, and Jaehyoung Lee Korea Institute of Geoscience and Mineral Resources 30 Gajeong-dong, Yuseong-gu, Daejeon 305-350 REPUBLIC OF KOREA ### **ABSTRACT** Large amounts of CH₄ in the form of solid hydrates are stored on continental margins and in permafrost regions. If these CH₄ hydrates could be converted into CO₂ hydrates, they would serve double duty as CH₄ sources and CO₂ storage sites. Herein, we report the swapping phenomena between global warming gas and various structures of natural gas hydrate including sI, sII, and sH through ¹³C solid-state nuclear magnetic resonance, and FT-Raman spectrometer. The present outcome of 85% CH₄ recovery rate in sI CH₄ hydrate achieved by the direct use of binary N₂ + CO₂ guests is quite surprising when compared with the rate of 64 % for a pure CO₂ guest attained in the previous approach. The direct use of a mixture of N₂ + CO₂ eliminates the requirement of a CO₂ separation/purification process. In addition, the simultaneously-occurring dual mechanism of CO₂ sequestration and CH₄ recovery is expected to provide the physicochemical background required for developing a promising large-scale approach with economic feasibility. In the case of sII and sH CH₄ hydrates, we observe a spontaneous structure transition to sI during the replacement and a cage-specific distribution of guest molecules. A significant change of the lattice dimension due to structure transformation induces a relative number of small cage sites to reduce, resulting in the considerable increase of CH₄ recovery rate. The mutually interactive pattern of targeted guest-cage conjugates possesses important implications on the diverse hydratebased inclusion phenomena as clearly illustrated in the swapping process between CO₂ stream and complex CH₄ hydrate structure. Keywords: gas hydrate, clathrate, CO₂ sequestration, methane, swapping phenomenon, NMR ### INTRODUCTION There are currently two urgent global issues that should be resolved, global warming effects and future energy sources. In order to effectively control atmospheric CO₂ levels, CO₂ needs to be sequestered to appropriate sites on a large scale. Several suggested methods that entail injecting CO₂ into the ocean involve producing relatively ^{*} Corresponding author: Phone: +82 42 869 3917 Fax +82 42 869 3910 E-mail: h_lee@kaist.ac.kr pure CO_2 at its source and transporting it to the injection point [1]. In particular, when CO_2 is injected in seawater below a certain depth, a solid CO_2 hydrate can be formed according to the stability regime [2]. On the other hand, naturally-occurring gas hydrates are deposited on the continental margin and its permafrost regions and are scattered all over the world [3]. The total amount of natural gas hydrate over the world is estimated to be about twice as much as the energy contained in fossil fuel reserves [4, 5]. In order to recover CH₄ efficiently, several strategies such as thermal treatment, depressurization, and inhibitor addition into the hydrate layer have been proposed [6]. However, all these methods are based on the decomposition of CH₄ hydrate by external could stimulation and potentially trigger catastrophic slope failures [7]. It thus needs to be recognized that the present natural gas production technologies have inherent limitations in terms of their adoption for the effective recovery of natural gas hydrates. As such, the safest and most economically feasible means should be developed with full consideration of environmental impacts. Recently, the replacement technique recovering CH₄ from CH₄ hydrate by using CO₂ has been suggested as an alternative option for recovering CH₄ gas [8, 9]. This swapping process between two gaseous guests is considered to be a favorable approach toward long-term storage of CO₂. It also enables the ocean floor to remain stabilized even after recovering the CH₄ gas, because CH₄ hydrate maintains the same crystalline structure directly after its replacement with CO₂. If the CH₄ hydrates could be converted into CO₂ hydrates, they would serve double duty as CH₄ sources and CO₂ storage sites. Here, we further extend our investigations to consider the occurrence of CO₂ replacement phenomena on sII, and sH hydrate. In this point of view, we present an interesting conclusion reached by inducing a structure transition. A microscopic analysis is conducted in order to examine the real swapping phenomena occurring between CO₂ guest molecules and various types of hydrate through spectroscopic identification, including solid-state Nuclear Magnetic Resonance (NMR) spectrometry and FT-Raman spectrometry. More importantly, we also investigate the possibility of direct use of binary N₂ and CO₂ gas mixture for recovering CH₄ from the hydrate phase, which shows a remarkably enhanced recovery rate by means of the cage-specific occupation of guest molecules due to their molecular properties. ### RESULTS AND DISCUSSION The recoverable amount of CH₄ by replacing sI CH₄ hydrate with CO₂ could reach around 64% of hydrate composition because CO₂ molecules only preferably replace CH₄ in large cages, while CH₄ molecules in small cages remain almost intact [8]. This swapping process between two gaseous guests is considered to be a favorable way as a long-term storage of CO2 and enables the ocean floor to remain stabilized even after recovering the CH₄ gas because sI CH₄ hydrate maintains the same crystalline structure directly after its replacement with CO2. We first attempted to examine real swapping phenomenon occurring between binary guest molecules of N₂ and CO₂ crystalline sI CH_4 hydrate through spectroscopic identification. For CO₂ its molecular diameter is the same as the small cage diameter of sI hydrate, and thus only a little degree of distortion in small cages exists to accommodate CO₂ molecules. Accordingly, we sufficiently expect that CO₂ molecules can be more stably encaged in sI-L under favorable host-guest interaction. On the other hand, N_2 is known as one of the smallest hydrate formers and its molecular size almost coincides with CH₄. Although N_2 itself forms pure sII hydrate with water, the relatively small size of N_2 molecules leads to the preference of sI-S over other cages and moreover the stabilization of overall sI hydrate structure when N_2 directly participates in forming hydrate. Figure 1 ¹³C cross-polarization NMR spectra for identifying replaced CO₂ molecules in sI CH₄ hydrate. Accordingly, CH_4 and N_2 are expected to compete for better occupancy to sI-S, while CO_2 preferentially occupies only sI-L without any challenge of other guests. Thus, the successful role of these two external guests of N_2 and CO_2 in extracting original CH_4 molecules makes it possible for diverse flue gases to be directly sequestrated into natural gas hydrate deposits. Figure 2 *In-situ* Raman spectra of sI CH_4 hydrate replaced with $N_2 + CO_2$ (80 mol% N_2 and 20 mol% CO_2) mixture. (a) C-H stretching vibrational modes of CH_4 molecules, (b) N-N stretching modes of N_2 molecules, (c) C=O stretching and bending vibrational modes of CO_2 in clathrate hydrate cages. To verify several key premises mentioned above we first identified ternary guest distribution in cages through the ¹³C NMR and Raman spectra. As shown in Figure 1. the NMR spectra provide a clear evidence such that CO₂ molecules are distributed only in sI-L. For qualitative description of cage occupancy enforced by N₂ molecules, we measured the Raman spectra of the sI CH₄ hydrates replaced with $N_2 + CO_2$ mixture. Two peaks in Figure 2a representing CH₄ in sI-S (2914 cm⁻¹) and CH₄ in sI-L (2904 cm⁻¹) continuously decreased during the replacing period of 750 min, but after that no noticeable change occurred in peak intensity. This kinetic pattern can be also confirmed by crosschecking them with the corresponding Raman peaks of N₂ and CO₂ (Figures 2b and 2c). The quantitative Raman analysis revealed that, 23% of CH₄ in hydrate is replaced with N₂, while 62% of CH₄ is replaced with CO₂. Accordingly, approximately 85% of CH₄ encaged in saturated CH₄ hydrate is recovered and, of course, this recovery rate might be expected to more or less change with variations of external variables such as pressure, temperature and hydrate particle size. The overall kinetic results lead us to make a clear conclusion that the replacement of sI CH₄ hydrate with N₂ + CO₂ mixture proceeds more effectively in crystalline hydrate than using only pure CO₂ because N₂ molecules is confirmed to possess the excellent cage-guest interaction in an unusual configuration. Even for simple hydrate systems focused in the present work the unique cage dynamics drawn from spectroscopic evidences might be expected to offer the new insight for better understanding of inclusion phenomena, particularly, host latticeguest molecule interaction as well as guest-guest replacement mechanism. However, sII and sH hydrates, which are known to be formed by the influence of thermogenic hydrocarbon and mainly includes oil-related C₁-C₇ hydrocarbons, were discovered at shallow depth in sea floor sediment in a few sites such as the Gulf of Mexico or Cascadian margin [10-12]. Thus, it is also required to verify the swapping phenomena occurring on sII or sH type clathrate hydrate. For sII hydrate, C₂H₆ is specially selected to form the hydrate with CH₄. We note that both CH₄ and C₂H₆ form simple crystalline sI hydrates with water. But, when they are mixed within the limits of specific concentrations, they act as binary guests causing to form the stable sII double hydrate [13]. Figure 3 shows the ¹³C HPDEC MAS NMR spectra of mixed $CH_4 + C_2H_6$ hydrates that are replaced with CO_2 molecules. Three peaks representing the CH_4 in sII-S, CH_4 in sII-L and C_2H_6 in sII-L appeared at chemical shifts of -3.95, -7.7 and 6.4 ppm, respectively. Interestingly, during swapping process the external guest CO_2 molecules attack both small and large cages for better occupancy, which causes the structure transition of sII to sI to continuously proceed. Within 24 hours the sII peaks almost disappeared and instead only a very small amount of CH_4 in sI-S and sI-L and C_2H_6 in sI-L was detected at chemical shifts of -4.0, -6.1 and 7.7 ppm, respectively. Figure 3. The 13 C HPDEC MAS NMR spectra of sII CH₄ +C₂H₆ hydrate replaced with CO₂. Figure 4. Relative moles in the sII $CH_4 + C_2H_6$ hydrate replaced with CO_2 measured by gas chromatography. From structural viewpoint we think that the hydrate lattices are slightly adjusted to accommodate three guests of CH_4 , C_2H_6 and CO_2 in the highly stabilized hydrate networks. The cage-specific behavior revealed by CO_2 can be sufficiently expected according to its molecular dimension over a small cage. Thus, the approaching CO₂ competes only with CH₄ and C₂H₆ in sII-L at the initial stage of swapping. CH₄ and C₂H₆ expelled from sII-L provoke losing sustainability of sII phase by getting out of the of critical guest concentration. reestablishment process of guest molecule distribution in the hydrate network causes to alter and ultimately adjust the lattice dimension for structure transition to occur. The effect of a substantial small-cage reduction on CH₄ recovery rate was checked by the GC analysis and the results are shown in Figure 4. During the swapping process, the CH₄ and C₂H₆ molecules in hydrate phase continuously decrease until reaching the recovery rate of 92% for CH₄ and 99% for C₂H₆. Both the NMR and GC results imply that most of CH₄ molecules in sI-L as well as sI-S were displaced by CO₂ molecules. The externally approaching CO₂ guests attack and occupy most of the sII-S and sII-L cages accompanying structure transition of sII to sI. We note again that CO₂ molecules possess a sufficient enclathration power to be entrapped in sI-S during change of sII to sI, while the CO2 occupancy to sI-S of pure CH4 hydrate is very difficult to occur. The 30% or more CH₄ recovery enhancement in sII over 64% in sI is caused by structure transition totally altering the host-guest interactions during swapping. Furthermore, the naturally-occurring sII hydrates contain more amount of CH₄ than the laboratorymade sII hydrates used in these experiments and thus the actual limitation of recoverable CH₄ in sII hydrate would be higher than the present outcome of 92%. We also examined the swapping capacity of the $N_2 + CO_2$ mixture occurring in the mixed sII $CH_4 + C_2H_6$ hydrate and found that the recovery rates are 95% for CH₄ and 93% for C₂H₆. Figure 5. The ¹³C HPDEC MAS NMR spectra of sH CH₄ + isopentane hydrate replaced with CO₂. In case of sH CH₄ hydrate, structure transition was also occurred during the swapping process as shown in Figure 5. Before replacement, isopentane was entrapped in large cages of sH hydrate with CH₄ in both small and middle cages. However, external CO_2 gas provokes structure transition to sI type hydrate and finally sH phase disappeared. During the replacement, 92% of CH₄ was recovered. In addition, by using $N_2 + CO_2$ mixture exceeding 90% of recovered CH₄ readily achieved. | Туре | Replaced with | Replaced with | |---|---------------------|------------------| | | CO ₂ (%) | $N_2 + CO_2$ (%) | | sI (CH ₄) | 64% | 85% | | sII (CH ₄ +C ₂ H ₆) | 92% | 95% | | sH (isopentane+CH ₄) | 92% | 90% | Table. 1. Recoverable CH₄ (mol%) in various types of gas hydrates #### **CONCLUSION** In this study, we investigated the swapping phenomena through flue gas mixtures of N2 and CO₂ for efficiently developing gas hydrate in the deep ocean floor. The direct use of $N_2 + CO_2$ mixture enhanced CH₄ recovery as well as eliminated the CO₂ separation/purification process for sequestering CO₂. In addition, a spectroscopic analysis reveals that the external N₂ molecules attack CH₄ molecules already entrapped in sI-S and play a significant role in substantially increasing the CH₄ recovery rate. In particular, we performed the replacement experiment for naturally occurring sI, sII, sH hydrate. During the swapping the sII and sH CH₄ hydrate, structure transition to sI were observed. The utilization of this natural swapping phenomenon might greatly contribute to realizing both ocean storage of CO₂ and CH₄ recovery from marine deposits in a large scale. ## **ACKNOWLEDGMENTS** This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab. Program funded by the Ministry of Science and Technology (No. R0A-2005-000-10074-0(2007)), and Gas Hydrate Research and Development Project funded by the Ministry of Commerce, Industry, and Energy of Korea, also partially supported by the Brain Korea 21 Project. ## REFERENCES - [1] Haugan, P. M., Drange, H. Disposal of SO₂ in sea water. Nature 1992;357:318-320 - [2] Brewer, P. G., Friederich, G., Peltzer, E. T., Orr, Jr. F. M. *Direct experiments on the ocean disposal of fossil fuel CO*₂. Science 1999;284:943-945 - [3] Milkov, A. V., Sassen, R. *Economic geology of offshore gas hydrate accumulations, and provinces.* Mar. Petrol. Geol. 2002;19:1-11. - [4] Makogon, Y. F. *Natural Gas Hydrate: the State of Study in the USSR and Perspectives for Its Use.* The 3rd International Chemical Congress of North America, Toronto, Canada, 1998. - [5] Collett, T. S., Kuuskraa, V. A. *Hydrates Contain Vast Store of World Gas Resources*. Oil Gas J. 1998;96:90-95. - [6] Gunn, D. A., Nelder, L. M., Rochelle, C. A., Bateman, K., Jackson, P. D, Lovell, M. A. Hobbs, P. R. N., Long, D., Rees, J. G., Schultheiss, P., Robers, J., Francis, T. Towards improved ground models for slope instability evaluations through better characterization of sediment-hosted gashydrates. Terra Nova 2002;14:443-450. - [7] Lelieveld, J., Crutzen, P. J. *Indirect chemical effects of methane on climate warming*. Nature 1992;355:339-342. - [8] Lee, H., Seo, Y., Seo, Y.-T., Moudrakovski, I. L., Ripmeester, J. A. *Recovering Methane from Solid Methane Hydrate with Carbon Dioxide*. Angew. Chem. Int. Ed. 2003; 42:5048-5051. - [9] Park, Y., Kim, D.-Y., Lee, J.-w., Huh, D.-G., Park, K.-P., Lee, J., Lee, H. *Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates.* Proc. Natl. Acad. Sci. USA. 2006:12690-12694. - [10] Yousuf, M., Qadri, S. B., Knies, D. I., Grabowski, K. S., Coffin, R. B., Pohlman, J. W. *Novel Results on Structural Investigations of Natural Minerals of Clathrate Hydrates.* Appl. Phys. A. 2004;78:925-939. - [11] Sassen, R., Sweet, S. T., DeFreitas, D. A., Milkov, A. V. Exclusion of 2-methylbutane (isopentane) during crystallization of structure II gas hydrate in sea-floor sediment, Gulf of Mexico. Organic Geochemistry 2000;31:1257-1262. - [12] Lu, H., Seo, Y.-t., Lee, J.-w., Moudrakovski, I., Ripmeester, J. A., Chapman, N. R., Coffin, R. B., Gardner, G., Pohlman, J. *Complex gas hydrate from the Cascadian margin*. Nature 2007;445: 303-306. - [13] Subramanian, S., Kini, R. A., Dec, S. F., Sloan Jr. E. D. Evidence of structure II hydrate formation from methane plus ethane mixtures. Chem. Eng. Sci. 2000;55:1981-1999.