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ABSTRACT: In this paper the solution of the Fokker Planck (FPK) equation in terms of (complex) 

fractional moments is presented. It is shown that by using concepts coming from fractional calculus, 

complex Mellin transform and related ones the probability density function response of nonlinear 

systems may be written in discretized form in terms of complex fractional moment not requiring a 

closure scheme. 

 

Excitations such as ground motion, wind 

turbulence, sea waves, surface roughness, blasts 

and impacts loads being stochastic processes 

induce that structural responses are stochastic 

processes too. Thus, the analyst is concerned 

with the problem of the response statistical 

characterization. However, to consider a model 

closer to reality a nonlinear system has to be 

considered, then a complete statistical 

characterization of the response may be 

performed by solving the Fokker–Planck–

Kolmogorov (FPK) equation, a partial 

differential equation whose solution is the joint 

probability density function (PDF) of the 

response variables (Lin and Cai, 1995). 

Unfortunately, the FPK equation admits 

analytical solution in very few cases, for this 

reason we resort to numerical methods. Among 

the numerical approaches, more attractive, from 

a computational point of view, is the moment 

equation (ME) approach, in which the response 

statistical characterization is given by the 

response moments or by other quantities related 

to the former such as cumulants or quasi-

moments (Stratanovich, 1997; Ibrahim, 1985). 

This method consists of writing differential 

equations for the response statistical moments of 

any order. However, when dealing with 

nonlinear systems, a serious problem arises in the 

ME approach, the entire system is hierarchic in 

the sense that the equations for the moments of a 

fixed order, say K, contain moments of order 

higher than K. In this way, the ME form an 

infinite hierarchy. In order to overcome this 

difficulty, the so-called closure methods were 

born. The key idea is to express the response 

PDF as a Edgeworth or Gram-Charlier series, 

truncating it at a certain term. The coefficients of 

the above mentioned series can be written as 

functions of the response central moments or of 

the response cumulants or of the response quasi-

moments. Thus, neglecting the terms beyond a 
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given order is equivalent to make central 

moments or cumulants or quasi-moments zero, 

which makes the ME solvable. The moments of 

order larger than K are expressed in terms of 

moments of order equal or lower to K by means 

of the relationships that are obtained by putting 

the above cited quantities equal to zero.  

Recently in Di Paola (2014) it has been 

introduced the complex fractional moments 

(CFM) through which the FPK equation has been 

converted, returning a simple method to perform 

a PDF response function; in Di Matteo et al. 

(2014) and in Alotta and Di Paola (2015) the 

method has been applied successfully also for the 

case of Kolmogorov-Feller equation (Poissonian 

white noises) and for fractional FPK equation (α-

stable white noises), respectively. In this paper it 

will be explored the useful tool of the complex 

fractional moments to overcome this moment 

closure procedure. 

1. SERIES FORM OF PDF THROUGH 

COMPLEX FRACTIONAL MOMENTS 

Starting from the equation of motion of a 

nonlinear half oscillator in the form, consider the 

scalar stochastic process ( )X t  satisfying the 

stochastic differential equation 

 
( ) ( )

( ) 0

,

0

X f X t W t

X X

 = +


=

ɺ

 (1) 

Where ( )W t  is a Gaussian white noise with zero 

mean and correlation function 

( ) ( ) ( ) ( )0[ ] 2τ π δ δ+ = =E W t W t S t q t  with 
0S

being the spectral density of ( )W t . Moreover 

( ),f X t  is a nonlinear function of the process 

( )X t  and 
0X  is the random variable with 

assigned PDF in zero ( ) ( ),0Xp x p x= . 

The equation ruling the evolution of the PDF of 

the response process ( )X t  is the so-called 

Fokker-Planck (FP) equation that may be written 

as 
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( ) ( )( ) ( )( )

( ) ( )
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X X
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p x t
f x t p x t p x t
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∂ ∂ ∂
=− +

∂ ∂ ∂
 =

 (2) 

For simplicity sake’s, assume that 

( ) ( ), ,f x t f x t= − − , and the initial condition 

( )0X  has a symmetric PDF. In these conditions 

the PDF of ( )X t  is symmetric at every time 

instant t . The case of non-symmetric PDF of the 

response may be solved following Di Paola and 

Pinnola (2012). 

Introducing the Mellin transform of the PDF 

( ),Xp x t , labeled as ( ){ }, ;Xp x t γM  or 

( )1,
Xp tγ −M  defined in the form 

 
( ){ } ( ) ( )1

0

, ; 1, ;M M
XX pp x t p x x dx t

i

γγ γ

γ ρ η

∞
−= = −

= +

∫  (3) 

where i  is the imaginary unit, ( ),Xp x t  is 

defined in the range 0 x≤ < ∞  as aforementioned 

and ,ρ η ∈ℝ . Further, ρ  belongs to the 

Fundamental Strip (FS) of the Mellin transform 

(Di Paola, 2014) that is p qρ− < < −  where ,p q  

are the order of zeros at 0x =  and x = ∞ , 

respectively. 

From formula (3) two salient observations come 

out: 

i) The ( )1,
Xp tγ −M  is related to moments 

of the type ( )
1

[ ]E X t
γ −

, ( [ ]E i  means 

ensemble average) called complex 

fractional moments (CFM) as well, in 

particular  

 ( ) ( ) ( )
11

0

1
1, [ ]

2Xp t p x x dx E X t
γγγ

∞
−−− = =∫M  (4) 

ii) The PDF ( ),Xp x t
 
is returned by the 

inverse Mellin transform as 
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 ( ) ( )
1

, 1,
2 X

X pp x t t x dγ

η

γ η
π

∞
−

=−∞

= −∫ M  (5) 

It is worth underscoring that the integration is 

performed along the imaginary axis, while ρ  

remains fixed.  

The latter consideration is of fundamental 

importance because, since ( )1,M
X

p tγ −  is 

holomorphic in the FS going to zero as η  

diverges, it follows that Eq. (5) may be 

discretized in the form 

 ( ) ( ), 1,
2 X

m
ik b

X p k

k m

p x t x t x
ρ πη

γ
π

− −

=−

∆
≅ −∑ M  (6) 

where b
π

η
=

∆
, 

k
ikγ ρ η= + ∆ , η∆  is the 

discretization step along the imaginary axis, 

m η η∆ =  is a cut-off value selected in such a 

way that terms of higher order than η  do not 

produce sensible variations on ( ),Xp x t . 

Notice that the presence of the factor x
ρ−  in Eq. 

(6) ensures us that the trend of the approximation 

in Eq. (6) as x → ∞  goes to zero, no matter the 

type of distribution.  

From Eq. (6) we realize that by knowing the 

CFMs the whole PDF is performed (unless the 

value in zero). To aim at this, it needs to write 

the evolution equation in terms of CFMs 

obtained by multiplying the FP equation by 1
x

γ −

and integrating in the range 0 ÷ ∞ : 
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If ( )X t  is stable in distribution and moments up 

to the third order are stable, by selecting 2ρ > , 

he first, the third and the fourth term in Eq. (7), 

coming from integration by part, vanish the 

Eq. (7) reverts to 
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 (8.a,b) 

Being Eq.(8b) the known initial condition. 

Particularizing this equation for 
k

ikγ ρ η= + ∆  

with k m m= − ÷  we get a system of (2m+1) 

equations in terms of (2m+1) variables say 

( )1,
X

p k tγ −M  useful to find out the PDF in 

series form through Eq.(6). 

A close observation of system (8a) reveals the 

need of evaluation of CFM with respect different 

values of ρ , in fact, at least for linear system we 

have both CFMs ( )1,
Xp tγ −M  and 

( )3,
Xp tγ −M . 

Recently Di Paola (2014) showed that, because 

the PDF representation given in Eq. (6) does not 

depend on the value of the selected ρ  (provided 

that ρ  belongs to the fundamental strip), then 

there is a relationship between ( )1 1
Xp iρ η− +M  

and ( )2 1
Xp iρ η− +M . That is if we know the 

fractional moments of ( )Xp x  for a certain value 

of ρ  say 2ρ , then we may evaluate any other 

CFM in a different value of ρ  say 1ρ , provided 

that both 1ρ  and 2ρ  belong to the fundamental 

strip of the Mellin transform. 

Such a relationship is 

 
( ) ( ) ( )(1) (2)1 1 ;

, ,0, ,

M M

m

p s p k ks

k m

a

s m m

γ γ ρ
=−

− = − ∆

= −

∑

… …

 (9) 

where ( )2 1 2 1ρ ρ ρ ρ ρ∆ = − > , and 

 ( )
( )

( )

sin
ks

k s ib
a

k s ib

π ρ
ρ

η ρ

− − ∆  ∆ =
∆ − − ∆

 (10) 
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It is worth underscoring that the evaluation of 

CFMs in different values of ρ  does not require a 

closure leading to neglecting statistics of higher 

order, but from Eq. (9) it is apparent that once 

the Mellin transform of a given function is 

evaluated for a given value of ρ , say 2ρ , we 

may evaluate the Mellin transform of the given 

function for any other value of ρ  inside the 

fundamental strip.  

2. PDF THROUGH CFMS VS INTEGER 

MOMENTS 

The expression of PDF in terms of CFMs 

reminds that one in terms of cumulants of integer 

order j j
K  in the form at steady state condition 

as (Ibrahim, 1985) 

2

2 2
3

( 1)1 ( )
( ) exp 1

2 !2

jm
j

x jj
j

Kx x
p x H

j

µ µ

σ σ σπσ =

 − − − 
≅ − +        

∑  (11) 

being σ  the standard deviation, µ  the mean, 

( )jH x  the probabilistic Hermite polynomials 

and j
K  the cumulants of order j which are 

related to the integer moments through the 

following relation 

 
1

1

( 1)!
[ ] [ ]

!( 1 )!

j
j k

j k j

k

r
E X K K E X

j r j

−

−
=

−
= +

− −
∑  (12) 

With the above expression the PDF of the system 

response is approximated with the Gram-Charlier 

series. However as it is well known, such a series 

can be inconsistent with probability theory, e.g. 

negative probabilities may result. Moreover 

another problem related to this expression is the 

jth-order hierarchy truncation method. 

In fact the cumulants j
K  are written once all 

integer moments ( )
j

E X t 
 

 are known solving 

the following system of differential equation  

 
( ) ( ) ( ) ( )

( )( ) ( )

1

0

2

, ,

1
2

j k

X

j

E X t j x f x t p x t dx

q
j j E X t

∞
−

−

  = +
 

 + −
 

∫ɺ

 (13) 

Such a strategy belongs to the moment equation 

(ME) approach, proposed in 1980 (Dover, 1980) 

as an alternative method to Monte Carlo 

approach. If on one hand the ME method 

requires much less computation involving the 

solution of a system of coupled deterministic 

ordinary differential equations, on the other hand 

the disadvantage of the ME is that, unless for 

linear systems or special case of nonlinear ones, 

the differential equations for moments of a given 

order will contain terms involving higher-order 

moments leading to an infinite hierarchy of 

coupled equations requiring a closure scheme-

procedure. Then, the jth-order hierarchy 

truncation will require approximations for the 

(j+1)th- and (j+2)th- order moments.  

At this point, some important remarks come out: 

i) Although the system equation (12) is 

very similar to system (8a) (setting 

( )1γ − =j) the hierarchy problem is 

not arisen in the latter case. 

ii) At first glance the fact that it requires 

the evaluation of CFMs in different  

values of ρ  may mislead, but if one 

thinks that the same requirement 

occurs for linear systems it will be 

clear that this is not a closure scheme 

procedure. 

3. NUMERICAL APPLICATION 

Let the nonlinear function ( ),f X t  in Eq. (1) be 

given in the form 

( ) ( )1 2, sgnf X t c X c X X
β

= − −  with 0β > . 

Further let the assigned PDF in zero be 

( ) ( )p x xδ= , that is the system is quiescent in 

0t = . In order to show the accuracy of the 

proposed approach, the case of a bimodal PDF is 

considered. Thus, let 
1 0c < , 

2 0c >  and 3β =  
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(quartic oscillator). Note that in this case the 

steady state PDF is known in closed form as 

 
4

21
( , ) exp

2 2
X

x
p x x

q
υ

  
∞ = −  

  
 (14) 

in which υ  is a normalization constant such that 

0

( , ) 1 2Xp x dx

∞

∞ =∫ . 

As far as the Gram-Charlier series expansion in 

Eq. (11) is concerned, the equation of integers 

moments for the steady state case can be 

particularized as 

1 2

1 2[ ] [ ] ( 1) [ ] 0
2

k k kq
kc E X kc E X k k E Xβ− + −− − + − =  (14) 

Note that this equation cannot be solved since an 

infinite order hierarchy problem appears. 

However the aforementioned issue can be 

circumvented expressing integer moments in 

terms of cumulants through Eq. (12) and 

considering equal to zero cumulants of order 

n m> ɶ  with mɶ  arbitrary. 

In Fig. 1 comparison among the exact steady 

state PDF and the PDF obtained through Eq. (11) 

is reported, for the case 
1 0.5c = −  and 

2 0.5c = , 

considering two different values of mɶ . 

 

 

Figure 1: Comparison among the Exact steady state 

PDF (black line) and Gram-Charlier series 

expansion with 8 cumulants (red dotted line) and 10 

cumulants (blue dashed line). 

 

As it can be observed from this figure, as the 

number of cumulants increases, the Gram-

Charlier expansion does not lead to the exact 

solution and even considering 10 cumulants the 

approximated PDF is rather different from the 

exact steady state solution ( , )
X

p x ∞ . 

On the other hand, as far as the series form of the 

PDF through CFMs is concerned, for the system 

under consideration the equation ruling the 

evolution of the CFMs is explicitly given as 

 

( ) ( ) ( )

( ) ( )

( )( ) ( )

1

2

1, 1 1,

1 2,

1 2 3,
2

M M

M

M

X X

X

X

p p

p

p

t c t

c t

q
t

γ γ γ

γ γ β

γ γ γ

− = − − − +

− − + − +

+ − − −

ɺ

 (15) 

in which CFMs ( )2,M
Xp tγ β+ −  and 

( )3,M
Xp tγ −  can be easily evaluated through 

the following relations 

 ( ) ( ) ( )2, 1 1M M
X

m

p p k ks

k m

t aγ β γ β
=−

+ − = − −∑  (16) 

 ( ) ( ) ( )3, 1 2M M
X

m

p p k ks

k m

t aγ γ
=−

− = −∑  (17) 

By inserting these equations in Eq. (15) 

particularized for ( ), ,0, ,s s m mγ γ= = − ⋯ …  

we get a set of complex ordinary differential 

equations in the unknown ( )1,M
Xp s tγ − . Note 

that if the system of differential equations is 

directly implemented into a computer program 

the solution is incorrect because additional 

information is needed, that is the area of the PDF 

in the interval 0 ÷∞  is 1 2 . This constraint may 

be easily enforced taking into account Eq. (6), 

leading to 

 ( )
0

1 1
1,

2 2
M k

X

m

p k

k m

t x dx
b

γγ
∞

−

=−

− =∑ ∫  (18) 

which yields 

 ( ) ( )0

0

1, 1,M M
X

m

p p k

k m
k

t b tγ γ
=−
≠

− = − −∑  (19) 
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By inserting this condition into Eq. (15) and 

taking into account Eqs. (16) and (17) 

particularized for , , 1,1, ,s m m= − −⋯ …  we get a 

set of 2m+1 differential equations ruling the 

evolution of the CFM. Eq. (15), particularized 

for 
s isγ ρ η= + ∆  is rewritten in the form 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

1, 1 1,

1 1 1

1 2 1 2 ;
2

, , 1,1, ,

M M

M

M

X X

X

X

p s s p s

m

s p k ks

k m

m

s s p k ks

k m

t c t

c a

q
a

s m m

γ γ γ

γ γ β

γ γ γ

=−

=−

− = − − − +

− − − − +

+ − − −

= − −

∑

∑

ɺ

⋯ …

 (20) 

Equations (19) and (20) constitute a set of linear 

coupled ordinary differential equations in the 

unknown ( )1,M
Xp s tγ −  that may be easily 

solved considering the initial condition. 

Once solution of the previous equation is 

obtained, the evolution of the PDF can be 

restored through Eq. (6). 

In Fig. 2 the evolution of the system response 

PDF is reported for various time instants vis-à-

vis the exact steady state solution. In this case a 

value of 0.5η∆ =  and 140m =  have been 

chosen for solution in terms of CFMs. Note that, 

even if the value m of CFMs is much bigger than 

the number of cumulants chosen mɶ , 

computational time is comparable for the two 

approaches. 

 

 

Figure 2: Evolution of the response PDF. 

 

Finally, in order to show the accuracy of the 

proposed approach with respect to the closure 

method, in Fig. 3 solution obtained through 

CFMs is contrasted with the Gram-Charlier 

expansion for the steady state case in Eq. (14) 

 

 

Figure 3: Comparison among Exact steady state 

solution (Black line), CFMs (Red dashed line) and 

Gram-Charlier Expansion for 10 cumulants (Blue 

dashed line). 

 

4. CONCLUSIONS 

It is apparent that dealing with nonlinear systems 

that is considering, for instance, the entire system 

is hierarchic in the sense that the equations for 

the moments of a fixed order, say j, contain 

moments of order higher than j, or simply the 

MEs form an infinite hierarchy. 

In order to overcome this difficulty, the so called 

closure methods were born. The key idea is to 

express the response PDF as a Edgeworth or 

Gram-Charlier series, truncating it at a certain 

term. The coefficients of the above mentioned 

series can be written as functions of the response 

central moments or of the response cumulants or 

of the response quasi-moments. Thus, neglecting 

the terms beyond a given order is equivalent to 

make central moments or cumulants or quasi-

moments zero, which makes the ME solvable. 

The moments of order higher than j are 

expressed in terms of moments of order equal or 

lower to j by means of the relationships that are 

obtained by putting the above cited quantities 

equal to zero. But, as aforementioned this 

implies an approximation of the (j+1)th- and 

(j+2)th- order moments, while by expressing the 

PDF in terms of fractional moments no closure 
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scheme is required leading to accurate results as 

shown in the numerical application. 
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