
12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

Nanomechanics Based Theory of Size Effect on Strength, Lifetime
and Residual Strength Distributions of Quasibrittle Failure: A Review

Marco Salviato
Post-doctoral associate, Dept. of Civil and Env. Engineering, Northwestern Univ,
Evanston, IL, USA

Kedar Kirane
Graduate research assistant, Dept. of Mechanical Engineering, Northwestern Univ,
Evanston, IL, USA
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ABSTRACT: The paper reviews a series of studies at Northwestern University which led to the establish-
ment of a theory of probability distributions of short-time strength, residual strength after static preload
and lifetime of structures made of quasibrittle materials such as concrete, fiber composites and tough
ceramics. The theory is based on the frequency of probability of interatomic bond breaks on the atomic
scale and on the multi-scale transition of power-law probability tail. The conclusion is that if the failure is
not perfectly brittle, the probability distribution of strength and lifetime is a graft of Gaussian and Weibull
distributions and varies from nearly Gaussian at the scale of one RVE to Weibullian for very large struc-
tures consisting of many RVEs. As a consequence, the safety factors should depend on structure size.
Numerous experimental comparisons and computational simulations are given.

1. INTRODUCTION

In most engineering applications such as bridges,
dams, ships, aircraft and microelectronic compo-
nents, it is essential for the design to ensure a very
low failure probability such as 10−6 throughout
the lifetime (Bazant and Pang (2006)). Therefore,
the cdf of the structure must be known up to the
very tail region, which must be established theo-
retically since such small probabilities are beyond
direct experimental verification. The type of cdf
of strength for perfectly ductile structures must be
Gaussian (from the central limit theorem), whereas
for perfectly brittle structures, it must be Weibullian
(from the weakest link model with infinite links).
However this is more complicated for quasibrittle
materials, which represent heterogeneous materi-
als characterized by brittle constituents that are not
negligible compared to structural dimensions e.g.
concrete, fiber composites, tough ceramics, rocks,

and many more (Bazant and Planas (1998)). These
behave as ductile when small and brittle when large,
thus making the type of cdf a function of the struc-
ture size.

The type of cdf of strength and of static life-
time for quasibrittle structures, was mathemati-
cally established from atomistic scale arguments
based on nano-scale cracks propagating by many
small, activation energy-controlled, random breaks
of atomic bonds in the nanostructure (Bazant and
Pang (2007); J.-L. Le and Bazant (2011)). It was
shown that a quasibrittle structure (of positive ge-
ometry) must be modeled by a finite (rather than in-
finite) weakest-link model, and that the cdf of struc-
tural strength as well as lifetime varies from nearly
Gaussian to Weibullian as a function of structure
size and shape. Excellent agreement with experi-
mentally obtained distributions was demonstrated.

In this paper, the theory is briefly reviewed and
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Figure 1: Schematic of various load histories

extended to the probabilistic distributions of resid-
ual strength after a period of sustained load. Know-
ing the statistics of residual strength is important
for meaningful estimates of safety factors by taking
into account the strength degradation of the struc-
ture depending on the load history and duration. It
is also important to better estimate the remaining
service life of structures, for which maintenance de-
sign is a primary concern such as modern large air-
craft made of load bearing quasibrittle composites.

2. THEORETICAL FORMULATION

The nano-mechanical derivation of the cdf of
RVE strength as well as lifetime under static and
cyclic loads is based on the fact that failure proba-
bility can be exactly predicted only on the atomic
scale because the bond breakage process is quasi-
stationary, which means that the probability must
be exactly equal to the frequency (Kramer’s rule).
To derive the statistics of residual strength of an
RVE, it is first noted that the crack growth rate on
the atomic scale must follow a power law of ap-
plied stress with the exponent of 2. Equating the
time rates of energy disssipations on the RVE and
on the atomic level explains why Evans’ law for
sub-critical macrocrack growth has a much higher
exponent, typically about 10 for concrete and 30 for
tough ceramics (Evans (1972); M. D. Thouless and
Evans (1983); Evans and Fu (1984)).

Using Evans’ law to integrate the failure proba-
bility contributions over time yielded a simple rela-
tion be-tween the strength and static lifetime statis-
tics (J.-L. Le and Bazant (2011)) – assuming the
mechanisms of crack growth in a strength test and

a static lifetime test are the same. The argument is
extended here to the statistics of residual strength.

2.1. Relation between structural strength, static
lifetime and static residual strength

Evans’s law for subcritical crack growth under
sus-tained load reads

ȧ = Ae−Q0/kT K1
n (1)

Where a is the crack length, ȧ = da/dt, t=time,
A=material constant, Q0 = activation energy,
k=Boltzmann constant and T = absolute tempera-
ture. The stress intensity factor is denoted as K1
where the subscript 1 indicates the RVE level. So,
we have K1 = σ

√
l0k1(α) where σ = F/l2

0 = nomi-
nal stress, l0 = RVE size, α = a1/l0 = relative crack
length and k1 = dimensionless stress intensity fac-
tor. Accordingly, the above equation becomes:

ȧ = Ae−Q0/kT
σ

nln/2
0 k1

n(α) (2)

Consider now the different load histories illustrated
in Fig. 1. The load history O-A corresponds to the
strength test, O-B-C to a static lifetime test and O-
B-D-E to a residual strength test. Integration over
load history O-B-D-E provides:
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2
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By a similar integration of load histories O-A and
O-B-C and appropriate substitution, one gets a very
simple correlation betweenσN ,λ , and σR as

σR = [σN
n+1−σ

n
0 (n+1)(rtR−σ0)]

1
n+1 (4)

This is the equation for the degradation of the resid-
ual strength as a function of two independent (de-
terministic) variables, applied load and time of sus-
tained load application. This equation also repre-
sents a link between the short-time strength and the
residual strength.
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Figure 2: Predicted degradation curves for various
values of static crack growth exponent n

2.2. Analysis of residual strength degradation for
one RVE

We now proceed to analyze the effect of the ex-
ponent of the crack propagation law (Eq. 1) on
the residual strength degradation. Fig. 2 shows
the degradation in strength of one RVE under static
load for various values of n for applied load σ0 =
0.5σN . The time of load application, normalized
with respect to the lifetime, is shown on the hor-
izontal axis. σN is assumed to be unity and the
loading rate is taken as 0.5 MPa/second. It is seen
that the rate of strength degradation is negligible
initially but progressively increases and the most
rapid degradation is seen in the end. This effect
is seen to be more pronounced for higher values of
n. Based on this observation, the degradation curve
could be roughly divided in two regions, one of rel-
atively slow degradation and one of rapid degrada-
tion – the distinction being more pronounced for
higher values of n. This study reveals the useful-
ness of Eq. 4 since for given load parameters and
crack growth exponent, one may determine the por-
tion of lifetime for which the strength degradation
is negligible.

2.3. Formulation of statistics of residual strength
for one RVE

The analysis of inter-atomic bond breaks and
multiscale transitions to the RVE has shown that
the strength of one RVE must have a Gaussian dis-
tribution transitioning to a power law in the tail of

probability within the range of 10−4 to 10−3 (J.-
L. Le and Bazant (2011)). Starting from the cdf of
strength, it is now possible to determine the cdf of
residual strength for one RVE by means of Eq. 4.
This yields (M. Salviato and Bazant (2014)) :

P(σR) = 1− exp[−(〈σn+1
R +σA〉/sR)

m] (5)

for σ0 ≤ σR < σR,gr, and

P1,R = Pgr +
r f√

2πδG

∫ (σn+1
R +σA)

1
n+1

σR,gr

e−(σ
′−µG)

2/2δ 2
Gdσ

′ (6)

for σR ≥ σR,gr > σ0
Note that in above eqs, σA =σn

0 (n+1)(rtR−σ0),
σR,gr = (σn+1

N,gr−σA)
1/(n+1), while for the parame-

ters sR = sn+1
0 , m = m/(n+ 1); P1,R represents the

probability of failure of one RVE under an over-
load, and P1,R(σ0) represents the probability of fail-
ure of one RVE before the overload is applied. Note
that only the part of the cdf where the residual
strength is defined, i.e. where σR ≥ σ0 is consid-
ered.

Unlike the strength distribution, the residual
strength cdf of one RVE does not have a pure
Weibull tail. It is noteworthy that Eq. 5 describes
a three parameter Weibull distribution in the vari-
able σ

n+1
R , which has a finite threshold. Although

it was proved that there can be no finite threshold
in the distribution of strength (J.-L. Le and Bazant
(2011)), the same does not hold true for the resid-
ual strength. The existence of a threshold value, σA
in the cdf stems from the fact that some specimens
could fail already during the period of sustained
preload, which excludes them from the statistics of
the overload. These are the specimens for which
λ < tR or σN < σ0 .

2.4. Formulation of residual strength cdf for
structures of any size

Once the cdf of residual strength related to one
RVE is found, the cdf of failure of a structure of
any size and geometry can be determined by means
of the weakest link theory. The general applicabil-
ity of this theory for brittle, ductile or quasi-brittle
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structures is guaranteed by the definition of RVE it-
self and the fact that failure is considered to occur at
macro-crack initiation. One RVE is defined as the
smallest part of the structure whose failure causes
the failure of the entire structure. Thus, the RVE
statistically represents a link (the failing RVE is the
weakest link) and the structure can be statistically
treated as a chain.

Similar to the definition of nominal strength, we
define the nominal applied stress, σ0 = cnP/bD
or cnP/D2 for two- or three-dimensional scaling,
where P = applied load. Then, by applying the
joint probability theorem to the survival probabil-
ities, the residual strength distribution of the struc-
ture can be expressed as:

Pf ,R = 1−
N

∏
i=1
{1−P1,R[〈σ0s(xi)〉, tR,σR]} (7)

where s(x) = dimensionless stress field and x is
the position vector. Similar to the chain model for
the cdf of structural strength, the residual strength
of the ith RVE is here assumed to be governed
by the maximum average principal stress σ0s(xi)
within the RVE, which is valid provided that the
other principal stresses are fully statistically corre-
lated.

3. RESULTS AND DISCUSSION
3.1. Optimum fits of strength and residual

strength histograms of borosilicate glass
In this section, we determine the parameters of

the distribution by fitting strength histograms and
then we use them to predict the cdf of residual
strength of borosilicate glasses. The predictions
are compared to experiments by (Sglavo and Renzi
(1999)). Figure 3a to 3d show the experimentally
observed strength and residual strength histograms
plotted in the Weibull scale. All the data considered
were determined by conducting, in deionized water,
four-point bend tests of borosilicate glass rods with
a nominal diameter of 3 mm and length of 100 mm.
The loading rate was set to about 60 MPa/s and dif-
ferent sustained load durations were used. Since
glass is a brittle material and its RVE size is very
small compared to the tested specimen size, the dis-
tribution of strength is virtually indistinguishable

from the Weibull distribution, as can be seen in Fig
3. By the optimum fitting of strength and resid-
ual strength, a Weibull modulus m of about 6 and a
value of n of about 30 have been estimated. The fit
predicted by the statistical formulation, shown by
the solid line curves, is seen to be in good agree-
ment with the experimental results. Except for the
one hour case, all the other plots show the devia-
tion of the residual strength distribution from the
strength distribution to reach the probability value.
It should be emphasized that, despite the scatter and
a low number of data, all the residual strength distri-
butions are predicted using the same set of parame-
ters.

3.2. Optimum fit of strength histograms and pre-
diction of lifetime and mean residual strength
for unidirectional glass/epoxy composites

The methodology of the previous section is now
pursued for the strength, lifetime and residual
strength data on unidirectional glass-epoxy com-
posites re-ported by (Hahn and Kim (1975)). Each
specimen analyzed consisted of 8 unidirectional
plies. 71 specimens were tested to obtain the
strength and lifetime distributions. A constant sus-
tained load 758 MPa was applied for all the lifetime
tests. Fig. 4a shows the fit of strength histograms
by means of the grafted Gauss-Weibull distribution
in the Weibull scale. This fit shows a kink in the
curve corresponding to the transition from Weibull
to Gaussian distribution. A value of m equal to
56 and a value of n equal to 27 are estimated by
least-square optimum fitting. Now that the required
parameters of the distribution have been identified,
the theory is applied to predict the mean residual
strength and compare it to the experimental data.
The comparison is made only for the mean since the
number of available data is not sufficient to study
the entire cdf. The resulting cdf of residual strength
is then used to compute the mean values. The re-
sults are shown in Figure 4b for the different initial
overloads and durations considered. Note that the
predictions agree with the experiments, the differ-
ence being always less than 7%. The agreement
provides another support for the present theory.
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Figure 3: Optimum fits of residual strength histograms
for borosilicate glass Hold times : (a) 1 hour (b) 1 day
(c) 10 days and (d) 20 days
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Figure 4: (a) Optimum Gauss Weibull fit of strength
histogram (b) Comparison of predicted mean resid-
ual strength for unidirectional glass/epoxy composite
(Hahn and Kim, 1975)

3.3. Size effect on mean residual strength
A more severe check on the theory would be to

test the size effect on the mean lifetime and resid-
ual strength. However, no such test data seem to be
available in the literature. It is nevertheless interest-
ing to predict the size effect on the mean residual
strength integrating Eq. 7. Figure 5 shows the cal-
culated size effect on the mean residual strength of
99.6% Al2O3 . The set of parameters of the distri-
bution is determined from the strength and lifetime
histograms reported in (Fett and Munz (1991)). An
applied load σ0 = 0.78σN is considered. Different
times of load application are used, as reported in the
figure, depending on the mean strength, i.e., rtR =
βσN . Note that, for a given tR, the mean residual
strength shows a similar trend as the strength and
lifetime for the large size limit. In fact, the means
tend to a straight line with the same slope as the
mean strength.

It is impossible to obtain closed-form analytical
expressions for the mean residual strength. How-
ever, sufficiently accurate analytical formulas can
be derived by asymptotic matching. The size effect
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Figure 5: Calculated size effect curves on the mean
strength residual strength at different hold times for
99.6% Al2O3

can reasonably be approximated by the equation:

σR =

[
Ma

D
+

(
Mb

D

)η/m
]1/η

(8)

where m is the Weibull modulus of the cdf of
strength and Ma,Mb and η can be derived by match-
ing three asymptotic conditions:

1. [σR]D→l0
2. [dσR/dD]D→l0 and
3. [σRD1/m]D→∞

As can be noted from Figure 5, the approxima-
tion given by Eq. 8 is rather good for all the differ-
ent times of load application. In deriving the fore-
going result, the two ratios, i.e., the applied load
to strength and the hold time to lifetime, were kept
constant across the sizes. It is trivial to note how-
ever that if the absolute value of the applied load or
the hold time, or both, are kept constant, the size
effect will of course be much stronger. However,
in this case, the mean residual strength does not re-
semble the strength curve and it cannot be described
by Eq. 8.

4. CONCLUSIONS
• A theory for predicting the probabilistic dis-

tributions of residual strength after a period of
static load has been developed and validated
against test data. An important practical merit
of the present theory combined with predeces-
sors (Bazant and Pang (2006, 2007); J.-L. Le
and Bazant (2011)) is that it provides a way to
determine the strength, residual strength and

lifetime distributions without any histogram
testing.
• The rate of degradation of strength under a

constant static load is not constant. Initially it
is very slow and in the end very rapid. This ef-
fect is more pronounced for higher static crack
growth exponents.
• The cdf of residual strength of quasibrittle ma-

terials may be closely approximated by a graft
of Gaussian and Weibull distributions. In the
left tail, the distribution is a three parameter
Weibull distribution in the variable . Unlike
the cdf’s of strength and lifetime, the cdf of
residual strength has a finite threshold, albeit
often very small.
• The finiteness of the threshold is explained by

the fact some specimens may fail during the
sustained static preload and are thus excluded
from the statistics of overload.
• An expression for the size effect on the

residual strength is derived using asymptotic
matching. It is shown that the size effect on
the residual strength is as strong as the size ef-
fect on strength.
• Good agreement with the existing test data

on glass-epoxy composites and on borosilicate
and soda-lime silicate glasses is demonstrated.
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