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ABSTRACT: A novel procedure is presented for the application of the PBE (performance-based engi-
neering) methodology to the seismic analysis and design of light secondary substructures. In the proposed
technique, uncertainty is conveniently represented in the reduced modal subspace rather than geometric
domain, which significantly reduces the number of uncertain parameters. The random response of a
primary structure under earthquake excitation is investigated, various cases of linear and nonlinear sec-
ondary subsystems are examined and the propagation of uncertainty from the dynamic properties of the
primary structure to the seismic performance of the secondary subsystems is quantified.

1. INTRODUCTION
Secondary subsystems are components or contents
of buildings that do not form part of the primary
load-bearing structure. Examples include architec-
tural, mechanical and electrical components, build-
ing equipment or furniture, which can be modelled
as single-degree-of-freedom (SDoF) oscillators or
multi-degree-of-freedom (MDoF) structures, either
linear or nonlinear, singly or multiply connected to
the primary structure. Their seismic analysis and
design is a topic of key engineering interest because
their damage can cause injuries or deaths, as well
as interruption of services, which in turn can lead
to further human and economic losses (e.g. Taghavi
and Miranda, 2003) .

The primary focus in earthquake engineering has
historically been on structural resistance, provid-
ing designers with guidance to ensure life safety.
This has mainly been addressed by specifying pre-
scriptive and inexplicit requirements, e.g. limiting
stresses and deformations determined from nomi-
nal design loads. Aimed at enabling a more pre-
dictable performance, as well as allowing di↵erent
targets to be achieved for building structures in dia-

logue with the relevant stakeholders, performance-
based engineering (PBE) philosophy has recently
emerged as a broad spectrum of design solutions
underpinned by well-defined case-specific perfor-
mance objectives.

Inherent uncertainties in the specification of
ground shaking and structural properties (e.g.
strength and sti↵ness of members and connec-
tions) induce variation in the seismic performance
of structures. While these uncertainties are im-
plicitly considered within a prescriptive design (i.e.
through partial safety factors and characteristic val-
ues), PBE allows a rational estimation of their ef-
fects in a probabilistic manner.

The implementation of PBE for secondary sub-
structures is limited within the technical literature.
Goulet et al. (2007) demonstrated the application of
the methodology to reinforced-concrete moment-
resisting frames, highlighting the impact of key
modelling assumptions on the accurate calculation
of damage and associated repair costs. Yang et al.
(2007) adopted a full probabilistic implementation
of PBE for the performance evaluation of facilities,
in which nonstructural components were classified

1



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12

Vancouver, Canada, July 12-15, 2015

into performance groups based on their sensitivity
to engineering demand parameters (EDPs).

In this paper, a simulation-based procedure is
presented for the application of the PBE method-
ology to the seismic analysis of light subsystems.
Rather than being directly defined in the geomet-
ric (physical) domain, in the proposed approach,
uncertainty is characterised in the modal subspace,
with modal shapes, modal frequencies and damp-
ing ratios constituting the random quantities, which
noticeably reduces the number of uncertain param-
eters and the size of the dynamic problem. Both
linear and nonlinear SDoF oscillators (attached to a
linear MDoF system) are considered, as represen-
tatives of a wider spectrum of nonstructural com-
ponents, and the propagation of uncertainty from
the primary structure to the secondary subsystems
is quantified.

2. GOVERNING EQUATIONS
If the secondary system is assumed to be "light"
(e.g. Muscolino and Palmeri, 2007), i.e. the sec-
ondary attachment’s mass mS is much less than
the mass of the primary structure MP (mS ⌧ MP),
a cascade-type approach is admissible, with the
two systems being decoupled and sequentially anal-
ysed. Initially, the seismic response of the primary
system is evaluated neglecting the feedback of the
secondary, with the response of the secondary suc-
cessively being computed at the points of attach-
ment. In this approach no primary-secondary inter-
action is taken into account.

2.1. Linear primary system

Let us consider the case of a MDoF primary system.
Within the linear-elastic range, its seismic motion is
ruled by:

M · ü(t)+C · u̇(t)+K ·u(t) = �M·⌧⌧⌧ · üg (t) , (1)

where M, C and K are matrices of mass, equivalent
viscous damping and elastic sti↵ness, respectively;
u(t) is the array collecting the degrees of freedom
(DoFs) of the system; ⌧⌧⌧ is a vector of seismic inci-
dence; üg (t) is the ground acceleration.

The equations of motion can be projected to the
modal space, reducing the size of the dynamic prob-
lem from n (system’s DoFs) to m (the number of
modes retained within the analysis). This requires
solving the real-valued eigenproblem:

M ·��� ·⌦⌦⌦2 =K ·���, (2)

where��� is the normalized modal matrix and⌦⌦⌦ the
diagonal spectral matrix.

It has been shown (Palmeri and Lombardo, 2011)
that the truncation error introduced by the reduced
modes can be corrected via a dynamic mode ac-
celeration method (DyMAM). Accordingly, the dy-
namic response can be expressed as the sum of
modal contributions and a corrective term:

u(t) =��� ·q(t)+�b!2
f

✓(t) , (3)

where q(t) is the array collecting the modal coordi-
nates, ruled by the equation of motion in the modal
space:

q̈(t)+2 ⇣⌦⌦⌦ · q̇(t)+⌦⌦⌦2 ·q(t) = p · üg(t) , (4)

in which:

p = ����> ·M ·⌧⌧⌧ , (5)

while �b is the static correction vector and ✓(t) is
the response of the oscillator satisfying:

✓̈(t)+2 ⇣
f

!
f

✓̇(t)+!2
f

✓(t) = üg (t) , (6)

in which !
f

and ⇣
f

are chosen as:

!
f

= 2min {⌦⌦⌦} ; ⇣f =
1p
2
. (7)

2.2. Uncertainty in the modal subspace

In the preceding subsection, the analysis procedure
to calculate the deterministic response of the pri-
mary structure was described, in which the equa-
tions of motion are conveniently projected to the
reduced modal subspace, reducing the size of the
dynamic problem (Falsone and Muscolino, 2004).
Likewise, e�cient analysis methods of combined
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primary-secondary systems (Biondi and Muscol-
ino, 2000) utilise modal analysis to predict the dy-
namic interaction between the two components. In
accordance with the PBE philosophy, the proba-
bilistic response is of interest, whereby uncertainty
consideration needs to be explicit (FIB, 2012).
Contrary to the existing methods where uncertainty
is treated in the full nodal space, the present study,
is motivated by the need to characterise uncertainty
in the reduced modal domain significantly reducing
the number of uncertain parameters. This can be
achieved by considering some random fluctuations
in the eigenvectors, such that the stochastic modal
matrix will read:

�̂�� =

2666666666664

���>1 +↵1,2���
>
2 +↵1,3���

>
3 + · · ·+↵1,m���

>
m

↵2,1���
>
1 +���

>
2 +↵2,3���

>
3 + · · ·+↵2,m���

>
m

...
↵

m,1���
>
1 +↵m,2���

>
2 +↵m,3���

>
3 + · · ·+���>m

3777777777775

>

,

(8)
��� being a modal shape, and ↵ an independent ran-
dom coe�cient for each mode.

It can be shown that by modifying the determin-
istic Eq. (4) in light of Eq. (8), and applying similar
considerations to the modal frequencies and the en-
ergy dissipation, the stochastic solution of the sys-
tem will be governed by a di↵erential equation of
the form:

m̂ · ¨̂q(t)+ ĉ · ˙̂q(t)+ k̂ · q̂(t) = p̂ · üg (t) , (9)

where m̂, ĉ and k̂ represent the stochastic mass,
damping and sti↵ness matrices in the reduced
modal space respectively, such that:

m̂ = Im+↵↵↵+↵↵↵
> ; (10)

ĉ = 2 ⇣
⇣ ⇥

Im+↵↵↵+ ���
⇤
⌦⌦⌦+⌦⌦⌦

⇥
↵↵↵+���

⇤>⌘ ; (11)

k̂ =
⇥
Im+↵↵↵+ ���

⇤
⌦⌦⌦2+⌦⌦⌦2 ⇥

↵↵↵+ ���
⇤> , (12)

while q̂(t) is the array collecting the random re-
sponse and p̂ the seismic incidence vector:

p̂ =
f
Im+↵↵↵+↵↵↵

>g p . (13)

It is worth emphasising here that, in the pro-
posed formulation, three sources of uncertainty are
considered, namely the mass (through the modal
shapes), modal frequencies and viscous damping
ratios, respectively, each associated with a zero
mean random matrix, namely,↵↵↵, ��� and ���, such that:

↵↵↵ =

2666666664

0 ↵1,2 . . . ↵1,m
↵2,1 0 . . . ↵2,m
...

...
. . .

...
↵

m,1 ↵m,2 . . . 0

3777777775
; (14)

��� =

26666664
�1
. . .

�
m

37777775
;��� =

26666664
�1
. . .
�

m

37777775
,

(15)

giving rise to a total of m

2+m statistically indepen-
dent random coe�cients.

2.2.1. Verification

It is possible to confirm the validity of the afore-
mentioned formulation for a SDoF case (m = 1) by
evaluating the stochastic quantities !̂ and ⇣̂ . Par-
ticularising Eqs. (10) to (12), imposing a Taylor ex-
pansion about ↵, �,� = 0, and dropping high order
terms, one gets:

!̂ =

s
k̂

m̂

= ! ·
r

1+2↵+2 �
1+2↵

� ! ·
 
1+ ��2↵ �� �

2

2
+ . . .

!
� !

�
1+ �

�

(16)

and:

⇣̂ =
ĉ

2!̂ m̂

= ⇣
1+2↵+ �+�

1+2↵+ �+2↵ �
= ⇣

�
1+��2↵ ��2↵�� � �+ . . . �

� ⇣
�
1+�

�
.

(17)
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It follows that the standard deviation of the dimen-
sionless random variables ↵, � and � is the coe�-
cient of variation (CoV) of the associated physical
quantity.

2.3. Nonlinear secondary oscillator

Both linear and nonlinear SDoF oscillators have
been considered as secondary subsystems. In the
first case the equation of motion reads:

üs(t)+2 ⇣s!s u̇s(t)+!2
s us(t) = �ü

(a)
p (t) , (18)

where ü

(a)
p (t) = üp(t)+ üg(t) is the absolute acceler-

ation of the primary structure at the position where
the secondary system is attached.

For the nonlinear case, the governing equation
can be posed in the form:

üs(t)+
1

ms
fs,nonlin(t) = �ü

(a)
p (t) , (19)

in which fs,nonlin(t) is the nonlinear restoring force
in the secondary SDoF oscillator, whose mathe-
matical definition depends on the particular type of
nonlinear behaviour.

For an elastic-perfectly plastic secondary subsys-
tem, the evolution in time of the restoring force is
ruled by:

ḟs,nonlin(t) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

Ks u̇s(t)
if �� fs,EPP(t)�� < fs,y
or �� fs,EPP(t)�� = fs,y and

fs,EPP(t) u̇s(t) < 0;

0
otherwise,

(20)

in which fs,y is the yielding force in the secondary
oscillator.

The case of a rigid-perfectly plastic SDoF system
can be considered as the limiting case of the above
restoring force, when Ks ! +1. As a result, the
equation of motion becomes:

üs(t) =

8>>>>>>>><>>>>>>>>:

�ü

(a)
p (t)+ µs g sgn

⇣
ü

(a)
p (t)

⌘

if ���ü(a)
p (t)��� > µs g ;

0
otherwise,

(21)

Figure 1: Structural frame model.

in which µs is the friction coe�cient for the sec-
ondary system and g is the acceleration due to grav-
ity.

3. NUMERICAL APPLICATION
The proposed formulation has been applied for the
analysis of two subsystems in cascade.

Fig. 1 shows a MDoF primary system comprising
of a 5-storey single-bay moment-resisting frame,
being irregular in plan, with position S denoting
the point of attachment of a light secondary SDoF
oscillator of unit mass, modelled as (i) linear, (ii)
elastoplastic and (iii) rigid-plastic. Floors are rigid
in plane, while the self-weight and super-dead load
constitute the mass source of the structure. The fun-
damental period of vibration is T

p

=0.498s for the
primary, and 0.9T

p

for the secondary (cases (i) and
(ii)). The total number of DoFs is n=15, with only
m=6 retained in the analysis, chosen such that at
least 90% of the modal mass participates in the seis-
mic motion, a criterion set by current codes of prac-
tice (e.g. Eurocode 8, 2004).

A range of recorded accelerograms are applied
in the x direction, chosen as representative of var-
ious scenarios (Cecini and Palmeri, 2015), namely
El Centro 1940, Erzincan 1992 and Irpinia 1980,
with peak ground accelerations (PGAs) of 0.313g,
0.515g and 0.177g, respectively.

3.1. Uncertainty characterisation

Uncertainty in the mass, modal frequencies and
viscous damping ratios of the primary system is
represented and propagated to the secondary sys-
tem, with CoVs chosen as 0.025, 0.05 and 0.15 re-
spectively, for two separate assumed distributions
namely, uniform and Gaussian.
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Although extendible to other methods, the re-
sults are presented only for a Monte-Carlo simu-
lation (MCS), which is used to generate the ran-
domised matrices, with a number of realisations
nsym = 1,000.

3.2. Performance measures

To quantify the response statistics and assess the
propagation of uncertainty from the primary to the
secondary subsystem, di↵erent performance mea-
sures (PMs) are defined. It is acknowledged that,
various components are sensitive to di↵erent struc-
tural response parameters and thus PMs are chosen
as: the maximum absolute acceleration and relative
displacement respectively, for both linear primary
and secondary systems; the total accumulated plas-
tic deformation for the elastoplastic nonlinear; and
maximum sliding distance for the rigid plastic.

3.3. Primary system response

A selection of results for the primary system is pre-
sented in this section. In a first stage, the frequency
response function (FRF) has been evaluated for the
primary system. Fig. 2(a) shows the exact FRF in
the geometric space, by retaining all modes (m=n);
by using the mode displacement method (MDM),
with m=6, where no correction is applied; by using
the MAM and DyMAM, which introduce a static
and dynamic correction, respectively. It is evident
that, while MAM produces an error in the high fre-
quency range, this is seen to be corrected by Dy-
MAM, which gives an improved approximation and
is thus exploited in the subsequent stages.

Fig. 2(b) compares the exact deterministic re-
sponse (black line) with the 1,000 realisations ob-
tained with the proposed randomisation of the
modal information, also corrected by DyMAM, for
the case of uniform distribution (light grey), and
Gaussian distribution (grey). For both cases, the
proposed randomisation seems to be satisfactory
in the frequency domain, with a higher fluctuation
caused by the Gaussian distribution attributed to its
unbounded nature.

Carrying out the dynamic analysis in the time do-
main (Fig. 3), one can observe that the oscillations
of the randomised response tend to show significant
fluctuations around the deterministic ones, with the

uncertainty propagating with time, in all accelera-
tion and displacement time histories.

Fig. 4 quantifies the statistics of the two PMs
of the primary system under Irpinia ground mo-
tion record and Gaussian distribution, with µ, � and
CoV denoting mean, standard deviation and coe�-
cient of variation of the stochastic output, and x be-
ing the deterministic (reported as a reference value).

Notably, the output CoV shows a 47% in-
crease from acceleration (CoV=0.09) to displace-
ment (CoV=0.132), suggesting that the choice of
the PM is significant. Furthermore, both CoVs
exceed the assumed input CoVs for mass and fre-
quency (0.025, 0.05 respectively), while displace-
ment PM lies close to the chosen input CoV for
damping.

3.4. Secondary system response

Following the seismic response of the primary
structure, our analyses proceed with the cascade re-
sponse of three secondary oscillators. Fig. 5 com-
pares the stochastic and deterministic force (top)
and displacement (bottom) time histories for the
linear (left), elastoplastic (middle) and rigid plastic
(right) secondary systems, respectively.

In all three cases, as expected, the proposed ran-
domisation seems satisfactory, with the time histo-
ries of the PMs fluctuating around the deterministic
response.

Fig. 6 illustrates the normalised frequency distri-
bution diagrams of the PM for the linear elastic,
elastoplastic and rigid-plastic subsystems, respec-
tively.

For the elastic case, the randomisation pre-
dicts a mean response of µ=0.179m, which is in
good agreement with the deterministic value of
x=0.182m. When compared to the corresponding
relative displacement of the primary structure, an
amplification of about 8 times is seen, which is at-
tributed to resonance (the two systems being almost
in-tune). The CoV=0.199 is higher than that of
the primary system (0.132) as well as of the three
sources of uncertainty of the input variables, sug-
gesting that uncertainty has been amplified in the
subsystem.

In the elastoplastic oscillator a value of
x=0.723m in the corresponding PM shows that the
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Figure 2: FRF for modal correction methods (a) and stochastic response (b).
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Figure 3: Acceleration time histories of Irpinia (left) and El Centro (middle); displacement time history of El

Centro (right), drawn from Gaussian distributions.
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Figure 4: Frequency diagrams for acceleration (a) and displacement (b) primary system PMs for Irpinia earth-

quake, drawn from Gaussian distributions.

mean total plastic deformation is slightly underes-
timated (µ=0.746m), while a CoV=0.395, being
much higher than the input parameters, suggests an

increased dispersion in the results.

When the rigid-plastic oscillator is considered,
a decrease of an order of magnitude in the corre-
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sponding PM is observed (when compared to the
previous cases). Again, the resulting CoV of 0.279
is significantly higher than in the input, showing ev-
idence of dispersion, which needs to be accounted
for.

It therefore appears that, depending on the dy-
namic behaviour of the secondary system and its
mechanical parameters, the seismic response can
be significantly amplified, and the dispersion of re-
sults increased, meaning that a simple prescriptive
approach to the design of such component can be
under- or over- conservative.

4. CONCLUSIONS
A simulation-based procedure was presented for
the application of the PBE methodology to the seis-
mic analysis of light SDoF subsystems attached to
a primary MDoF structure. A novel feature of the
proposed approach is the characterisation of un-
certainty in the reduced modal space, rather than
in the full geometric domain, and its application
in conjunction with a dynamic mode acceleration
method (DyMAM). As demonstrated with Monte
Carlo simulations, the proposed approach is capa-
ble of accurately representing the random dynamic
response, despite the fact that the number of un-
certain parameters is reduced to m

2+m statistically
independent coe�cients (m being the number of
modes retained in analysis). The resulting model
appears to be adequate for the purpose of assess-
ing how uncertainty in the primary structure prop-
agates to the seismic performance of the secondary
subsystems.

In a first stage, the response of a primary
structure subjected to di↵erent accelerograms was
quantified through relevant performance measures
(PMs), with uncertainty comprising the mass dis-
tribution, modal frequencies and damping. In a sec-
ond stage, uncertainty in the primary system was
propagated to i) linear, ii) elastoplastic and iii)
rigid-plastic secondary systems, and the response
statistics were quantified.

Future investigations will be carried out to assess
the sensitivity of the output to the chosen random
variation of the input parameters as well as their
probabilistic distribution. The case of the rocking
motion of a secondary subsystem will also be ex-

amined.
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Figure 5: Force (top) and displacement (bottom) time histories a linear (left), elastoplastic (middle) and rigid-

plastic (right) secondary system, for Irpinia earthquake, drawn from Gaussian distributions.

0.1 0.15 0.2 0.25 0.3 0.35

2

4

6

8

10

|umax | [m]

f

( |u
m

ax
|)

µ = 0.179, � = 0.035
CoV = 0.199, x = 0.182

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

u

p

[m]

f

⇣ u

p

⌘

µ = 0.746, � = 0.294
CoV = 0.395, x = 0.723

(b)

0.5 1 1.5 2 2.5

·10�2

20

40

60

80

100

120

umax [m]

f

( u
m

ax
)

µ = 0.012, � = 0.003
CoV = 0.279, x = 0.013

(c)

Figure 6: PM frequency diagram for a linear (a) elastoplastic (b) and rigid-plastic (c) secondary system due to

Irpinia earthquake, drawn from Gaussian distribution.
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