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ABSTRACT: This paper presents a framework to assess the random vibration response of single-span 

beams. The beams are arbitrarily supported and subject to a single random moving load of constant 

velocity. A General Modal Precise Integration Method (GMPIM) is proposed to carry out numerical 

integration of the problem. This method is extremely efficient and accurate. It is coupled with the 

Pseduo-Excitation Method (PEM) to arrive at the statistical description of the random vibration 

response. The approach uses the power spectral density (PSD) of the moving load to arrive at the PSD 

and root mean square of the response. The approach is far more computationally efficient than the 

alternative Monte Carlo simulation using Newmark- integration (for example). As such, this work 

should find value for those estimating the random vibration of beams subject to random moving loads. 

1. INTRODUCTION 

1.1. Background 

The vibration of beams under moving loads is a 

common problem in many engineering fields. 

From bridges to computer hard drives, it is vital 

to assess the level of vibrations expected so that 

adequate performance can be assured. 

Recently, the research in the area has 

evolved significantly. From consideration of the 

deterministic problem, attention has moved to 

the random vibration response under random 

moving loads. Frýba (1976) considered the 

vibration response of a simply-supported beam 

under constant velocity moving random load of 

various closed-form power spectral densities. 

Zibdeh et al. (1995) also considered a simply-

supported beam but under varying velocity 

moving Poissonian loads. Zibdeh and Rachwitz 

(1996) extend this to consider arbitrarily 

supported beams. Abu-Hilal (2003) considers the 

vibration of an arbitrarily supported beam under 

a varying-velocity load with white noise spectral 

density, which is a reasonable approximation to 

broadband type excitation. However, in many 

fields of application, excitation can be arbitrary 

and narrow-banded. 

1.2. Contribution 

It is clear from the literature that there is a need 

for a method that addresses the random vibration 

of arbitrarily supported beams under moving 

loads with narrowband, or arbitrary spectral 

density. While Monte Carlo simulation of the 

problem is feasible, due to the computational 

intensity an alternative method is desirable. 

In this work, a numerical procedure is 

introduced which can determine the vibration 

response at an arbitrary point on arbitrarily 

supported single span beam when subject to a 

moving random point load of constant velocity 

but with arbitrary spectral density. A numerical 

procedure is adopted, since the achievement of 

closed-form solutions for arbitrary load spectral 

densities is difficult. 

The numerical procedure developed is a fast 

and computationally efficient alternative to 

Monte Carlo simulation. The pseudo-excitation 

method (PEM) is used to determine the response 

statistics. As part of the method, many time-

domain calculations of the vibration response to 

a single harmonic moving force are required. 

Therefore a very efficient means of computing 

such response is adopted, namely a development 

of the precise integration method (PIM). 
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2. PSEDUO-EXCITATION METHOD 

2.1. Background 

The Pseudo Excitation Method (PEM) was 

introduced by Lin (1992) and others (Lin et al. 

1994) and is explained in a number of 

publications (Lin 2004; Lin et al. 1997; Zhong 

2004). It has strong computational advantages in 

comparison to other methods and is very well 

suited to systems with a large number of degrees 

of freedom that may have closely spaced 

frequencies. This is typical of real bridges. PIM 

and PEM have been used together as an accurate 

and efficient means of establishing stochastic 

response to stationary and non-stationary loads 

(Lin et al. 1997). 

Caprani (2014c) explains the theoretical 

background to the PEM, and this is not repeated 

here for brevity. Instead, the application of the 

method is explained in relation to the problem of 

footbridge vibration. 

2.2. Application of PEM 

The procedure to calculate the non-stationary 

response due to a moving load with arbitrary 

spectral density using PEM is illustrated in 

Figure 1, and explained below: 

1. Establish the spectral density of the 

pedestrian forcing function. 

2. Divide the force spectrum into N frequency 

points of width f . For broadband excitation 

100N   is reported to be satisfactory (Lin 

2004). For the narrowband excitation studied 

here a dense discretization of 100 steps per 

unit frequency is used here. 

3. For each of the 0, , 1j N   frequencies:. 

 Determine the spectral density  XXS j f  

 Apply the pseudo excitation 

     , expXXx t j f S j f ij ft     to the 

beam as a moving point load of constant 

velocity v. The real and imaginary parts 

of the pseudo excitation ( R Ix x ix  ) are 

applied separately to obtain the real and 

imaginary pseudo responses, which are 

then combined to find the complex 

pseudo response ( R Iy y iy  ). In this 

work, the very efficient GMPIM is used 

to get the response at 0, , 1k M   

time or distance steps, though any 

suitable integration can be used. 

 The spectrum  ,YY kS t j f  of response 

when the load is at point k kx vt  is found 

from: 

      *, , ,YYS t y t y t    (1) 

 in which the asterisk denotes the complex 

 conjugate. 

 

 
Figure 1: Illustration of the algorithm for footbridge 

vibration response from an arbitrary footfall force 

spectrum. 

 

4. The mean-square of the response is found at 

each position of the load, k, or time, t, by 

integration of the response spectrum, for 

example: 
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This is repeated for all time steps. For a zero 

mean process, such as acceleration at mid-span, 

the mean square and variance are equal, and so 

the root-mean-square (RMS) or standard 

deviation is: 

    2

Y t E Y t      (3) 

This methodology relates to single moving load 

only, where a constant velocity is assumed 

during the traverse. 

3. GENERAL MODAL PRECISE 

INTEGRATION METHOD 

3.1. Precise Integration Method (PIM) 

Zhong and Williams (1994) introduced the 

Precise Integration Method which allows 

calculation of vibration response to extreme 

accuracy, even for very long time steps, which 

can be multiples of the structure’s first period, 

making the method extremely efficient. The 

accuracy comes from precise calculation of a 

transition matrix by iteration and closed-form 

solutions to loads that vary during the time step 

according to a known expression. 

The basic equations for a multi-degree of 

freedom model of a structure are: 

        t t t t  Mx Cx Kx F  (4) 

with initial conditions:    0 00 ; 0 x x x x .  

Writing this is state-space form we have: 

  v Hv r  (5) 

Where: 

-1 -1 -1
; ;

     
      

      

x 0 I 0
v H r

x M K M C M F
 (6) 

The general solution to (4) is: 

 

   

     

0

0

exp

exp exp

t

t t

t d  



 

v H v

H H r
 (7) 

For calculation, the time is divided into steps of 

length t . The kth time step occurs at kt k t  . 

Re-writing (7) for the time period between steps 

k and k+1, and introducing notation for the 

transition matrix     expt tT H  gives: 

         
1

1 1

k

k

t

k k k

t

t t t t d  


    v T v T r  (8) 

The second term on the right hand side is the 

particular integral and depends on the loading 

through the time step. 

3.2. Modal PIM 

Recently Caprani (2013) developed a Modal PIM 

(MPIM) in which the particular solution for (8) 

is found in closed form for the modal force 

caused by a moving load on a simply-supported 

beam. Each mode in this system can be written in 

the form of (5) as follows: 

 
 2

00 1

2

q q

Q tq q 

      
       

        
 (9) 

In which q  is the modal coordinate,   its 

damping ratio and   its natural frequency. In the 

case of a moving varying point load  F t  with 

constant velocity, v, The modal force,  Q t , is 

given by: 

 
   F t vt

Q
M


  (10) 

where M is the modal mass and  x  is the 

mode shape. Hence, the particular solution in (5) 

is given by: 

      
0

1
t

d

t d d    


  T r B  (11) 
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Where, writing  d t     and the damped 

natural frequency, 21d    : 

     
sin

cos sin

t

i

d

e Q t
  


   

   
  

 
B  (12) 

In (10), if  F t  is described by a Fourier series 

of frequencies 
j  and phases 

j , and we 

consider mode i of a simply-supported beam 

where   sinx i x L   and 
j  is the amplitude 

of the jth force component, then: 

  
0

sin cos
n

i j i j j

j

Q t t   


   (13) 

where i iv  . Caprani (2014a) gives the 

particular solution for (11) with (13). 

3.3. General Modal PIM (GMPIM) 

One of the contributions of this work is to extend 

the MPIM method beyond simply-supported 

beams to consider arbitrarily-supported beams. 

For such beams, the mode shape is described by 

(Weaver et al. 1990): 

 
  1 2

3 4

cos sin

cosh sinh

x C x C x

C x C x

  

 

 

 
 (14) 

then the modal force (for mode i) for each force 

harmonic, j, at time t is: 
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in which: 

 ; 1, ,4
jij

k k

i

C C k
M


   (16) 

For this problem, the particular solution is 

expressed as: 

          
1

1 1

k

k

t

k p k p k

t

t d t t t  


     T r v T v

 (17) 

where  p tv  accounts for all forces acting and 

so for mode i is given by: 

    
4

,

0 1

, , ,
N

ij

p k p k

j k

t i C t i j
 

v v  (18) 

and where the particular solutions for each term 

are: 
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In these, for the circular terms (19) and (20): 
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where: 

        
221 2 2 2

1 2 1i i i           (25) 



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 

Vancouver, Canada, July 12-15, 2015 

 5 

and 

 ;j i j i           (26) 

And for the hyperbolic terms, (21) and (22): 
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Once the modal responses have been determined 

using the above procedure, the physical 

acceleration response, u , at a point of interest on 

the beam, x*, can be found from: 

      
1

*, *
m

i i

i

u x t x q t


  (34) 

4. EXAMPLE APPLICATION 

For this work, an example application of the 

proposed GMPIM-PEM methodology is made. 

The random vibration response of a bridge 

subject to moving human walking force with a 

prescribed spectral density is determined. 

4.1. Bridge 

A 50 m long beam with 500 kg/m linear mass is 

used (Caprani et al. 2012). It has natural 

frequency of 2.00 Hz and a representative 

damping ratio for all modes of 0.5% 

(Heinemeyer et al. 2009). The pedestrian 

traverses the bridge at a constant velocity of 

1.25 m/s with fundamental pacing frequency of 

2 Hzpf  , matching the bridge as an example 

of a critical case. The pedestrian weight is taken 

to be 800 N. A moving force model is used, and 

the structure response is found using the GMPIM 

as described above in the PEM algorithm. 

The bridge support conditions are shown in 

Figure 2. The rotational stiffness at the supports 

varies from simply-supported to fully-fixed. Ten 

such support stiffnesses, k, are considered, 

logarithmically evenly spaced. The normalized 

support stiffness, k’, used are given by: 

 ' 10 1, ,3pkL
k p

EI
     (35) 

Since the increasingly stiff rotational 

restraints alter the natural frequency of the 

bridge, it is not reasonable to compare vibration 

responses, since only those bridges with 

frequencies nearest the force, 2 Hzpf  , will be 

most excited. Therefore, for each support 

stiffness considered, the flexural rigidity (EI) of 

the beam is altered so that the fundamental 

frequency remains at 2.0 Hz, giving results that 

are directly comparable. The mass is not altered 

so as to maintain the same energy dissipation in 

each simulation. 

 

 
 

Figure 2: Considered beam with rotational spring 

supports. 

4.2. Modal Properties 

The modal properties for the arbitrarily 

supported beam are determined using the 

 

EI, l, m k 

 

k 
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dynamic stiffness matrix and Wittrick-Williams 

algorithm (Wittrick and Williams 1971). The 

modal mass is estimated using a closed form 

solution, and the mode shapes are mass 

normalized so that the integral  
1

2

0
1i d    . 

This process will be further explained in a 

coming paper. In this work, all computations are 

carried out using the first 5 modes of all the 

beams considered. 

4.3. Pedestrian Walking Force Spectrum 

The dynamic load factors (DLFs) of Brownjohn 

et al. (2004) are used as the basis of the spectral 

model. The simple spectral model proposed by 

Caprani (2014b) is used here and is given by: 

    
2

1

; ,
2

n
j

XX j j

i

S f f


  


  (36) 

where  f  is the normal probability density 

function with mean of the jth harmonic j = jfp 

and the standard deviation found from an 

assumed coefficient of variation (CoV), 

j = j×CoV. The model is illustrated in Figure 

3. Numerically, a discrete number of frequency 

intervals are used of width f. The force 

spectrum from a single pedestrian, or a 

population of pedestrians, can be matched by 

calibrating the CoV (Caprani 2014b). A CoV of 

1.0% gives similar results to Brownjohn et al. 

(2004) and this is the value adopted here. 

4.4. Results 

The root mean square (RMS) response of the 

bridges (of different rotational support 

stiffnesses) are determined at midspan. Figure 4 

shows the results for the extreme cases of no 

rotational stiffness (simply-supported) and full 

rotational stiffness (fixed-fixed beam), along 

with two intermediate cases of partial fixity. 

The complete range of results obtained for 

the 10 increments of support rotational restraint 

are presented in Figure 5. An alternative view of 

this surface is given as a contour plot in Figure 6. 

 

 
Figure 3: Simple spectral model for fp = 2 Hz 

showing a 5% CoV for clarity (note that 1% is used 
in this paper): (a) idealized walking and normally-

distributed discrete spectral densities of equal 

energy; (b) idealized and distributed discrete DLF 

spectrum, transformed from (a). 

 

 
Figure 4: Vibration response of 2 Hz beams of 

varying rotational support fixities, subject to a 
constant velocity pedestrian walking force spectrum. 
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Figure 5: Complete suite of responses obtained for 

the RMS vibration response of the 2 Hz beams. 

 

 
Figure 6: Alternative contour plot of the RMS 

vibration responses obtained for the 2 Hz beams. 

4.5. Discussion 

It is interesting to note from the presented results 

that, once it is ensured that all the beams, 

regardless of stiffness, have a natural frequency 

of 2 Hz, the mid-span vibration response 

increases for increasing rotational restraint. This 

is due to the higher mode ordinates towards the 

centre of the beam, once the mode shapes have 

been mass-normalized. To illustrate this point, 

Figure 7 shows the first two mode shapes for the 

extreme cases of simply-supported and fixed-

fixed beams. From this figure it can be seen that 

the mode shape ordinates lead to the increasing 

response as the rotational fixity at the supports 

increases. It must be recalled here that the beam 

first natural frequencies are the same for both 

cases. 

5. CONCLUSIONS 

This work outlines a means of establishing the 

response spectrum of arbitrarily supported beams 

loaded by a moving force of arbitrary spectrum 

without recourse to computationally expensive 

Monte Carlo simulations. This vastly improved 

speed is due to a new general modal precise 

integration method when coupled with the 

pseudo excitation method. Problems that were 

computationally difficult previously, can now be 

addressed in short time. Consequently, the 

method may have application in structural 

control situations, where  close to real-time 

evaluation of potential response spectra may be 

required. 
 

 
Figure 7: Mass normalized mode shapes for simply-
supported (SS) and fixed-fixed (FF) beams. 
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