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ABSTRACT: This paper presents an efficient method to compute the failure probability of a 

geotechnical system, which is based upon numerical integration of the cumulative distribution function 

(CDF) of the performance function. This new method is inspired by the concept of the vertex method 

often used in conjunction with fuzzy sets theory; however, new approach is taken to account for the 

probabilistic feature of the uncertain input parameters. In the new method, only the deterministic 

analysis of the system performance and the evaluation of the joint probability of the uncertain input 

parameters are required. The proposed new method is a deterministic approach, easy to follow and 

apply; no Monte Carlo simulation is required. Through an example study of a shallow strip foundation, 

the effectiveness and the efficiency of the proposed new method, in terms of the accuracy and the 

computational effort, respectively, are demonstrated. 

 

1. INTRODUCTION 

The failure probability of a geotechnical system 

(Pf) may be computed as a multi-fold probability 

integral, expressed as follows: 

 
( ) 0

Pr ( ) 0 ( )f
g

P g f d


    X
X X X                    (1) 

where X = [X1, X2, , Xn]
T
, is a vector of the 

uncertain input parameters X1, X2, , and Xn, in 

which the subscript n is the number of the 

uncertain input parameters; f(X) is the joint 

probability density function (PDF) of the 

uncertain parameters X; g(X) is the performance 

function, which is formulated such that g(X)  0 

denotes the failure of the geotechnical system; 

and,  Pr ( ) 0g X  is the conditional probability 

of g(X)  0.  

Difficulty in evaluating the multi-fold 

probability integral in Eq. (1) has led to many 

approximation methods, such as mean value first 

order second moment method (Ang and Tang 

2007), advanced first order second moment 

method or first order reliability method (Hasofer 

and Lind 1974; Melchers 1987; Lee and Kwak 

1987), and point estimate-based moment method 

(Zhao and Ono 2000). Although these methods 

have been widely applied in engineering 

practices, there is room for improvement in a few 

aspects. First, the accuracy of these approximate 

methods may be a problem if the performance 

function is highly nonlinear and/or high-

dimensional. Second, the computation of the 

partial derivative of the performance function 

may be a challenge, especially in the situations 

where the system performance can only be 

evaluated using the numerical methods such as 

finite element method (FEM). Third, since the 

distribution of the performance function is 

approximated with its moments of finite order, 

the evaluation of the moments may introduce 
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errors. Fourth, in search for the minimum 

reliability index (), a local minimum, rather 

than the global minimum, may be possible. The 

failure probability is related to the reliability 

index as follows: 

( )fP                                                          (2) 

where () is the cumulative distribution 

function (CDF) of the standard normal variable. 

To avoid the shortcomings of these methods, 

the sampling method such as Monte Carlo 

simulation (MCS) may be used alternatively. 

Although MCS could yield a more accurate 

determination of the failure probability of the 

geotechnical system, the required number of 

simulations of the system performance may be 

too large, especially for a system of low failure 

probability. In many cases, the application of 

MCS may be limited due to its prohibitive 

computational demand. The low computational 

efficiency of MCS becomes more profound when 

it is applied to a system, the performance of 

which can only be analyzed using numerical 

methods. In order to improve the computational 

efficiency of MCS, various sampling techniques 

have been studied, such as Latin hypercube 

sampling (Florian 1992), importance sampling 

(Grooteman 2011), and subset simulation (Au 

and Beck 2001; Ching et al. 2005). It is noted 

that while the computational efficiency of MCS 

can be greatly improved through the use of these 

sampling techniques, the knowledge of advanced 

probability theory and programing skills can be a 

barrier to the practicing engineer. 

In this paper, a new method, based upon the 

numerical integration of the CDF of the 

performance function, is created for computing 

the failure probability of a geotechnical system. 

Here, the performance function and the joint 

probabilities of the integration grids, through the 

vertex combinations of the uncertain input 

parameters, are computed to construct the CDF 

of the performance function. The new method is 

formulated in a deterministic manner, which 

does not require the computation of the partial 

derivative and the moments of the performance 

function, and nor does it require an iterative 

process to minimize the reliability index. Thus, 

the proposed new method is easy to apply. As 

will be shown later, the new method can produce 

results that agree very well with those obtained 

from MCS, and yet, it is much more efficient.  

2. NEW METHOD TO COMPUTE THE 

FAILURE PROBABILITY 

Based upon the CDF of the performance function, 

the failure probability of a system is expressed as 

follows: 

 ( ) 0fP F g X                                               (3) 

where F[g(X)] is the CDF of the performance 

function g(X), the detailed construction of which 

is formulated later. 

2.1. Numerical integration of the CDF of the 

performance function 

The analytical (or direct) integration of the CDF 

of the performance function, F[g(X)], can be a 

challenge if the performance function is highly 

nonlinear and/or high dimensional. Thus, the 

numerical integration method is employed herein 

to construct the CDF of the performance function. 

Here, each and every uncertain input parameter 

is first discretized into a set of discrete vertices 

using the -cut concept of fuzzy sets theory (e.g., 

Dong and Wong 1987; Juang et al. 1998; Gong 

et al. 2014&2015). The obtained vertices are 

then combined to represent the domain of the 

uncertain input parameters. Finally, the CDF of 

the performance function is constructed with the 

computed performance function and joint 

probabilities of the vertex combinations of the 

uncertain input parameters. In short, the CDF of 

the performance function may be established 

with following steps: 

1. Discretize the truncated standard normal 

variable of [-5, 5] into a set of discrete 

vertices using the -cut concept of fuzzy sets 

theory. For example, a set of discrete vertices, 

denoted as {x0, x1
-
, x1

+
, x2

-
, x2

+
, , x(m-1)

-
, x(m-

1)
+
}, is obtained if the number of -cut levels 

is m. Plotted in Figure 1 are the resulting 

vertices of the standard normal variable x1. 

As such, the distribution of the uncertain 
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parameter x1 is represented with a set of 

discrete vertices: [x10, f(x10)], [x11
-
, f(x11

-
)], 

and [x11
+
, f(x11

+
)] for m = 2; [x10, f(x10)], [x11

-
, 

f(x11
-
)], [x11

+
, f(x11

+
)], [x12

-
, f(x12

-
)], and [x12

+
, 

f(x12
+
)] for m = 3; or, [x10, f(x10)], [x11

-
, f(x11

-
)], 

[x11
+
, f(x11

+
)], [x13

-
, f(x13

-
)], [x13

+
, f(x13

+
)], [x14

-
, 

f(x14
-
)], and [x14

+
, f(x14

+
)] for m = 4, as shown 

in Figure 1. Here, the truncated range is set at 

[-5, 5] so that the probability of the uncertain 

input parameters falling outside of this range 

is less than 5.73310
-7

, a relatively low 

probability that can be ignored.  
 

 
Figure 1: -cut concept of the uncertain input 
parameter.  
 

2. At each -cut level, compute the vertices of 

the uncertain input parameters in the original 

distribution spaces of the uncertain input 

parameters, denoted as {Xi0, Xi1
-
, Xi1

+
, Xi2

-
, 

Xi2
+
, , Xi(m-1)

-
, Xi(m-1)

+
}, using the 

transformation that was suggested in Low 

and Tang (2007). 

3. Combine the vertices of the uncertain input 

parameters that obtained in Step 2. Note that 

the number of the vertex combinations is 

(2m-1)
n
, where m is the number of -cut 

levels and n is the number of uncertain 

parameters.  

4. Calculate the performance function, g(Xi), 

and the joint probability, f(Xi), of each vertex 

combination of the uncertain parameters, Xi. 

This process is repeated for all (2m-1)
n
 vertex 

combinations of the uncertain parameters. 

5. Construct the CDF of the performance 

function, F[g(X)], which is expressed as: 

 
( ) ( )

( ) ( )
g g

F g f d


  Y X
X Y Y                        (4) 

where Y = [X1, X2, , Xn]
T
. Given the (2m-

1)
n
 pairs of g(Xi) and f(Xi) values obtained in 

Step 4, the integral in Eq. (4) can be 

approximated with: 

  ( ) ( )

( )

( )
( )

i

i

g g

i

f

F g
f







X X

X

X
X

                         (5) 

Then, the failure probability of the system, Pf, 

is obtained using linear interpolation. 

Note that in the evaluation of the joint 

probability, f(Xi), of the vertex combination of 

the uncertain input parameters, Xi, the standard 

normal space and the standard normal variables, 

in terms of {x0, x1
-
, x1

+
, x2

-
, x2

+
, , x(m-1)

-
, x(m-1)

+
}, 

should be used. Further, the correlation between 

(or among) the uncertain input parameters should 

be considered, in which the original correlation 

coefficient should be modified in line with the 

equivalent normal transformation, as suggested 

in Der Kiureghian and Liu (1986). 

2.2. Optimization of the number of cut levels of 

the uncertain input parameters 

It is noted with the increase of the number of cut 

levels (m), the CDF of the performance function 

can be more accurately constructed and thus the 

failure probability. The CDF of the performance 

function and the failure probability of the system 

would converge to the true value (or analytical 

solution) if the selected number of cut levels (m) 

is sufficiently large. However, an increase in m 

beyond some certain level can lead to a drastic 

increase in the computational effort. Here, the 

optimal number of the cut levels (m) can be 

determined with following procedures: 

1. Set the initial m as 2, denoted m0 = 2, and 

compute the initial failure probability of the 

system, denoted as Pf0, using the procedures 

in Section 2.1. 

2. Set a new m as (m0 + 1), denoted as m1 = 

m0+1, and compute the corresponding failure 

probability of the system, denoted as Pf1.  

3. Set a new m of (m1 + 1), denoted as m2 = 

m1+1, and compute the corresponding failure 

Standard normal variable,x1

P
D

F

5/3 5/3 5/3 5/3 5/3 5/3

5/2 5/2 5/2 5/2

5 5

 x11
-  x10  x11

+ x13
- x12

- x14
-  x14

+ x12
+ x13

+

(i.e., -5) (i.e., 5)(i.e., 0)
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probability of the system, denoted as Pf2. 

Then, the relative variation (or error) of the 

computed failure probability is computed as 

follows: 

0 1

1

1

100%
f f

f

P P

P



                                      (6) 

1 2

2

2

100%
f f

f

P P

P



                                     (7) 

where 1 and 2 are the relative variation of 

the computed failure probability with respect 

to the number of cut levels m1 and m2, 

respectively.  

4. Determine whether the number of cut levels 

m2 is acceptable with the following 

acceptance rule: if 1 < 1.0% and 2 < 1.0%, 

then m2 is acceptable and the failure 

probability of the system is Pf2, denoted as m 

= m2 and Pf = Pf2; otherwise, set m1 = m2, Pf0 

= Pf1, and Pf1 = Pf2, and then go back to Step 

3. The convergence criterion, in terms of 1 < 

1.0% and 2 < 1.0%, is used herein only for 

illustration purposes. The selection of 

convergence criterion is problem-specific; for 

example, 5.0% may be acceptable in other 

problems.  

Note that in the construction of the CDF of 

the performance function, F[g(X)], at a given 

number of cut levels m (m > 2), the results  

obtained at the number of cut levels of (m -1) 

should be utilized. In other words, only the new 

vertex combinations of the uncertain input 

parameters that are formed at the current number 

of cut levels need to be analyzed, while the 

vertex combinations that has been analyzed 

previously are not required to be studied. In 

reference to Figure 2, for a system with 2 

uncertain parameters, 9 vertex combinations of 

these parameters need to be studied at the level 

of m = 2; 16 new vertex combinations need to be 

analyzed at the level of m = 3; and, 40 new 

vertex combinations need to be studied at the 

level of m = 4. However, 25 pairs of the 

performance function and joint probability 

values are utilized to establish the CDF of the 

performance function for m = 3; and, 65 pairs of 

the performance function and joint probability 

values are utilized to establish the CDF of the 

performance function for m = 4.  
 

 
Figure 2: Vertex combinations of the uncertain input 

parameters. 
 

3. ILLUSTRATIVE EXAMPLE  

To illustrate the effectiveness and the efficiency 

of the proposed new method in computing the 

failure probability of a geotechnical system, a 

shallow strip foundation is examined.  

3.1. Bearing capacity of the shallow strip 

foundation 

The ultimate bearing capacity of the shallow 

strip foundation is evaluated with the following 

expression: 

ult 1 20.5 c qq BN cN DN                                 (8) 

where B is the width of the foundation; D is the 

depth of the foundation relative to the ground 

level; 1 is the unit weight of the soil under the 

foundation base; 2 is unit weight of the soil 

above the foundation base; c is the effective 

cohesion; and, Nc, Nq, and N are the bearing 

capacity factors, which are estimated as follows: 

 1.8 1 tanqN N                                            (9) 

2 tantan
4 2

qN e   
  

 
                                    (10) 

 1 cotc qN N                                               (11) 

where  is the effective friction angle. No ground 

water table is considered herein for simplicity. 

X1

X 2

Vertex combination at m = 2

New combination at m = 3

New combination at m = 4
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The performance function of this geotechnical 

problem is formulated as follows: 

load ultg q q                                                    (12) 

where qload is the load effect. 

In this example, the geometry of the 

foundation, the load on the foundation, and the 

unit weight of the soil are treated as deterministic 

input parameters: qload = 300 kPa, B = 1.5 m, D = 

1.2 m, and 1 = 2 = 17.3 kN/m
3
. The effective 

cohesion and friction angle are taken as uncertain 

input parameters. The mean and the standard 

deviation of the effective cohesion are 14.4 kPa 

and 1.7 kPa, respectively (i.e., c = 14.4 kPa and 

c = 1.7 kPa). The mean and the standard 

deviation of the effective friction angle are 20 

and 1.2, respectively (i.e.,  = 20 and  = 

1.2). The effective cohesion and the effective 

friction are negatively correlated, c, = -0.5. 

Note that the parameters setting of this example 

is based upon Cherubini (2000). 

3.2. Reliability analysis of the bearing capacity 

using the proposed new method 

Following the procedures of the proposed new 

method that outlined in Section 2.2, the failure 

probability and the reliability index of the 

shallow foundation are readily computed. The 

obtained failure probability is Pf = 1.66110
-3

 

and the corresponding reliability index is  = 

2.936, whereas, the “exact” failure probability 

obtained with 1,000,000MCS runs is PfMCS = 

1.66610
-3

 and the corresponding reliability 

index is MCS = 2.935. Here, the relative error of 

the reliability (), defined below, is only 0.03%. 

MCS

MCS

100%


 
 




                                        (13) 

Figure 3 shows the convergence of the 

analysis results, in terms of failure probability 

(Pf), and the relative variation of the failure 

probability using the proposed new method with 

the adopted number of cut levels (m) and the 

number of trials. As can be seen, the relative 

variation of the computed failure probability 

decreases with the number of cut levels of the 

uncertain input parameters (Figure 3a) and the 

number of trials (or simulations) of the system 

performance (Figure 3b). As such, the computed  

 
(a) Relative variation versus number of cut levels 
 

 
(b) Relative variation versus number of trials 
 

 
(c) Failure probability versus number of cut levels 
 

 
(d) Failure probability versus number of trials 
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Figure 3: Convergence of the analysis results using 

the proposed new method. 

failure probability converges with the number of 

cut levels (Figure 3c) and the number of trials for 

the system performance (Figure 3d). 

For this example, the optimal number of cut 

levels for the set of uncertain input parameters is 

19 and the number of trials for the system 

performance is 7,321. Actually, the variation of 

the computed failure probability is relatively low  

when the number of cut levels is greater than 10 

(i.e., m > 10) and the number of trials 

(simulations) for the system performance is 

greater than 1,073, as demonstrated in Figure 3. 
 

 
(a) CDF of the performance function obtained with 
different number of trials 
 

 
(b) CDF of the performance function obtained 

with 1,000,000 MCSs 
 

Figure 4: CDF of the performance function using the 
proposed new method. 
 

Further plotted in Figure 4(a) are the CDFs 

of the performance function that are obtained 

with different numbers of cut levels of the 

uncertain input parameters (indicated herein by 

the number of trials for the system performance). 

It shows that with the increase of the number of 

cut levels, the obtained CDF of the performance 

function converges. As noted, there is little 

difference between the CDF of the performance 

function obtained with 10 cut levels  (represented 

with the number of trials of 1,073) and that 

obtained with 19 cut levels (represented with the 

number of trials of 7,321). Further, the CDF of 

the performance function obtained with 19 cut 

levels agrees well with that obtained using 

1,000,000 samples of MCS (Figure 4b). 

Therefore, the effectiveness and efficiency of the 

proposed new method are clearly demonstrated.  
 

 
(a) Pf is lognormally distributed 
 

 
(b) Pf is truncated normally distributed 
 

Figure 5. Comparison of the failure probability 
between the proposed new method and MCS. 

 

Note that in this paper, the sample number 

of 1,000,000 is selected such that the coefficient 

variation of the failure probability obtained with 

MCS, defined below (Eq. 14), is deemed low and 

negligible.  

MCS

1
COV

f

f

P

f

P

n P


                                            (14) 
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where COV
fP

 is the coefficient of variation of 

the failure probability obtained with MCS, and 

nMCS is the sample number required in the MCS 

analysis. 
 

Table 1: Reliability analysis results with different 

parameters setting 
 

Scenario 1: c = 1.7 kPa and  = 1.2 

c, 

New method 
1,000,000 

MCSs 
Relative 

error, 

  Number 

of trials 
 MCS 

0.0 7,321 2.135 2.145 0.47% 

-0.25 7,321 2.442 2.450 0.32% 

-0.5 7,321 2.936 2.935 0.03% 

-0.75 5,217 3.935 3.895 1.01% 
 

Scenario 2: c = 1.7 kPa and  = 1.2 

0.0 2,297 1.181 1.201 1.61% 

-0.25 7,321 1.349 1.350 0.11% 

-0.5 7,321 1.571 1.574 0.16% 

-0.75 7,321 1.955 1.964 0.47% 
 

Scenario 3: c = 2.2 kPa and  = 1.5 

0.0 4,417 1.683 1.696 0.72% 

-0.25 4,417 1.932 1.934 0.13% 

-0.5 5,217 2.333 2.340 0.30% 

-0.75 10,017 3.154 3.148 0.17% 
 

Scenario 4: c = 3.4 kPa and  = 3.1 

0.0 1,377 0.863 0.889 2.87% 

-0.25 3,017 0.978 1.000 2.18% 

-0.5 2,297 1.141 1.162 1.85% 

-0.75 2,297 1.423 1.454 2.10% 
 

Additional series of analyses is carried out 

to compare the proposed method with MCS, and 

the results are presented in the following. It is 

well recognized that some variation of the failure 

probability obtained with MCS is expected. Thus 

1,000 repeats of MCS are carried out herein to 

derive a 95% confidence level of the failure 

probability. Figure 5 shows the comparison 

between the failure probability obtained with the 

proposed new method and the 95% confidence 

level of the failure probability obtained with 

1,000 repeats of MCS. The failure probability is 

assumed to be lognormally distributed in Figure 

5(a), while the truncated normal distribution is 

assumed in Figure 5(b).  

Figure 5 shows that the variation of the 

failure probability obtained with MCS (indicated 

by the bars of the 95% confidence intervals) 

decreases with the number of MCS samples; 

while the mean of the failure probability 

obtained with MCS agrees well with that 

obtained with the new method. Therefore, 

compared with MCS, the proposed method is 

more effective (i.e., little variation/uncertainty) 

in evaluating the failure probability. The new 

method also converges quicker.  

3.3. Further assessment of the proposed new 

method 

In order to investigate the influence of the 

variation of the uncertain input parameters and 

the correlation between (or among) the uncertain 

input parameters, different parameters settings 

are adopted for this geotechnical problem and the 

analysis results are listed in Table 1. This 

parameters setting is based on Cherubini (2000). 

The results show that while the two methods 

yield approximately the same reliability index 

values for the shallow strip foundation examined 

in different parameters settings, the proposed 

method requires much less number of trials than 

does the MCS. Thus, the effectiveness (i.e., 

accuracy) and the efficiency (i.e., computational 

saving) of the new method in evaluating the 

failure probability are not influenced by different 

parameter settings. Therefore, the conclusions 

reached previously about the proposed method 

are further confirmed.    

In fact, the effectiveness and the efficiency 

of the proposed new method are also not affected 

by the distribution of the uncertain input 

parameters, the nonlinearity of the performance 

function, and the form of the performance 

function. These features are addressed in an 

ongoing study at Clemson University.  
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4. CONCLUSIONS 

Based upon the results presented, the 

effectiveness (i.e., accuracy) and the efficiency 

(i.e., computational effort) of the proposed new 

method are established. This finding is not 

influenced by the variation of the uncertain input 

parameters and the correlation between (or 

among) the uncertain input parameters. Apart 

from the failure probability of the system, the 

CDF of the performance function can also be 

effectively and efficiently constructed using the 

proposed new method.  

Obviously, the proposed new method is not 

perfect. A potential limitation of the proposed 

method is that the computational efficiency may 

be reduced when the problem involves a large 

number of uncertain input parameters, which is 

the nature of the vertex methods. Indeed, the new 

method needs further investigations but it shows 

a potential. 
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