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ABSTRACT: Infrastructure owners or governmental agencies need tools for rapid screening of assets 
in order to prioritize resources allocation for detailed risk assessment. This paper provides one such 
tool based on Bayesian Networks and aimed at replacing so-called generic/typological seismic fragility 
functions for reinforced concrete girder bridges. Resources for detailed assessments should be allocated 
to bridges with highest consequence of damage, for which site hazard, bridge fragility and traffic data 
are needed. The presented Bayesian Network predicts the seismic fragility of a bridge at a given site 
based on data that can be obtained by visual inspection at low cost. Results show that the predicted fra-
gilities are of sufficient accuracy for establishing relative ranking based on risk and assign priorities. 
While the actual data employed to train the network (establishing conditional probability tables) refer 
to the Italian bridge stock, the network structure and engineering judgment behind it can be easily 
transferred to other situations. 

 
The Italian national highway administration 
(ANAS) owns over 5,000 bridges and less than 
500 have been subject to detailed seismic as-
sessment. Rapid and reliable screening tools for 
highway bridges are of paramount importance 
for prioritizing detailed assessment and retrofit 
budget allocation. A risk-based approach, with 
consideration of site-specific hazard and typolog-
ical fragility functions (to quantify likelihood of 
failure), weighted with surveyed traffic data and 
network importance of the bridge (to quantify 
consequence of failure), can provide a first esti-
mate of prioritization. The reliability of typologi-
cal fragility functions, however, is questionable 
(Borzi et al., 2015). The purpose of this paper is 
thus to present a Bayesian belief network (BBN) 

based model developed to predict fragility of re-
inforced concrete (RC) girder bridges with con-
sideration of limited set of parameters (e.g. pro-
file of the bridge, pier height, hazard) that can be 
surveyed with minimum effort, by visual inspec-
tion or from prevalent design practices.  

The BBN captures believed relations be-
tween a set of input variables and output variable 
(attainment or exceedance of a limit state). The 
model has been developed employing engineer-
ing judgment to select the relevant random vari-
ables, and then iteratively draw and refine the 
BBN structure relying numerical simulation of 
response for a large bridge database (DB). The 
DB is used to support the training algorithm in 
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determining the conditional probability tables 
(CPTs). 

1. TRAINING DATA SET 
Numerical response data have been produced for 
485 bridges in the SOAWE dataset, owned by 
ANAS. Discarding single-span bridges, data 
from 390 bridges have been utilized to train the 
BBN. A description of the properties of these 
bridges can be found in Borzi et al. (2015): the 
most frequent characteristics are less than five 
spans, single-stem piers between 10 m and 20 m 
high with box-type section, piled foundation on 
B soil category (Eurocode 8 classification), and 
simply supported decks on thin non-seismically 
designed elastomeric pads. 

Finite element (FE) response history anal-
yses have been carried out on the 390 bridges in 
a consistent manner using purpose-made soft-
ware BR.I.T.NE.Y. The software queries the re-
lational DB for site, geometry and mechanical 
properties of each bridge, and sets up a 3D ine-
lastic FE model and analysis in OpenSees 
(McKenna et al. 2010). Detailed description of 
the modeling choices and the software design is 
provided in Borzi et al. (2015). 

Inelastic response-history analysis is em-
ployed to evaluate the seismic fragility curve of 
each bridge. It is stressed how fragility is not 
meaningful per se, being a non-transferrable 
bridge and site property. It is used as a conven-
ient intermediate result to obtain the mean annual 
frequency (MAF) of exceedance of the limit state 
(LS) of interest at a lower cost. Herein it is for-
mulated as: 

 
  
pLS a( ) = p YLS ≥1 A = a( )  (1) 

where A denotes the peak ground acceleration 
(PGA), and YLS is a global indicator of the at-
tainment or exceedance of the considered LS. 
The latter is formulated in such a way that the 
unit value marks the LS, and larger values corre-
spond to non-satisfactory states (Jalayer et al. 
2007). Girder bridges, due to their topology, can 
be described as serial systems (failure in any 

span implies system failure). Thus the following 
simple expression is used for YLS: 

 
  
YLS = max

piers
max

failure modes
D C( )⎡

⎣
⎤
⎦  (2) 

where the maximum of the (peak over time) de-
mand (D) to capacity (C) ratio is taken over all 
piers and considered failure modes. 

The same three failure modes have been 
considered for girder bridges as in Borzi et al. 
(2015): the ductile flexural mode, checked in 
terms of chord rotation in the piers, and the brit-
tle shear and unseating modes, checked in terms 
of pier shear force and bearings’ displacements, 
respectively. Abutments and foundation failure 
modes have not been considered, based on the 
traditionally conservative design of bridge foun-
dation in Italy (Calvi et al., 2013). 

From a functional point of view, two LSs 
suffice: light (LD) and severe damage (SD). 
When damage is light, the bridge can be open, at 
least to emergency traffic. It is thus available in 
network connectivity analysis (emergency opera-
tions), but excluded from traffic flow analysis 
(indirect loss). When damage is severe the risk of 
collapse in the event of an aftershock is high 
(Franchin and Pinto, 2009) and the bridge must 
be closed. In this respect SD and higher damage 
LSs, up to collapse, are equivalent in terms of 
traffic restriction decision-making. In this work, 
we focus on LD, due to its observed prevalence 
in past Italian earthquakes (Calvi et al., 2013). In 
terms of capacities, LD occurs when rotation 
θ  exceeds the yield value θy, the displacement is 
such that the deck loses support from the bearing 
seat (but remains on the pier cap), u>useat, or 
shear strength is exceeded, V>VR. 

Fragility curves are constructed by multiple-
stripe analysis (MSA) (Jalayer and Cornell, 
2009), i.e. parametrically increasing a chosen 
intensity measure (IM, the PGA in this study) 
and estimating the probability of exceedance at 
each level, based on the sample of responses ob-
tained from motions selected to match the cur-
rent IM level. This procedure represents the most 
rigorous application of total probability theorem 
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for the MAF evaluation, since it allows for 
changes in the motions used at each IM level.  

Recent availability of efficient algorithms 
(Bradley 2013; Lin et al. 2013) has greatly facili-
tated the selection of appropriate ground motions 
at each IM level. The generalized conditional 
intensity measure method (Bradley, 2013) has 
been used to select motions at each site and IM 
level. The method postulates a joint lognormal 
distribution f(IM) of a vector of IMs, based on 
their proven marginal lognormality and availabil-
ity of cross-IM correlation models. It then de-
rives, at each intensity level IM*=im*, the condi-
tional distributions f(IMn-1|IM*=im*) of the sub-
vector from which IM* employed for the hazard 
curve is removed (A in the case at hand). Mo-
tions are finally selected in the required number 
as those of minimum distance with those sam-
pled from each f(IMn-1|IM*=im*). 

The chosen vector of IMs includes, beside 
PGA, the spectral accelerations at ten periods: 
0.10s, 0.15s, 0.20s, 0.30s, 0.40s, 0.50s, 0.75s, 
1.00s, 1.50s and 2.00s. Marginal distributions 
(including PGA hazard) are obtained by the 
ground motion prediction equation by Boore and 
Atkinson (2008), and the Italian seismic source 
model ZS9 (INGV, 2004). Correlation between 
spectral ordinates is described with the model by 
Baker and Jayaram (2008). Sampling of motions 
has been carried out in an automatic manner, but 
caution has been put in not sampling different 
motions for bridges at the same site (such as e.g. 
parallel viaducts on the same highway). In such 
cases, only one set of motions has been sampled 
and used for the analysis of both bridges. 

In order to strike a balance between accura-
cy and computational cost, nine intensity levels 
and ten motions per level (totaling 90 inelastic 
response history analyses for each of the 390 
bridges, i.e. almost 40,000 runs) were kept as in 
(Borzi et al., 2015). Even with n = 10 natural 
motions, the empirical distribution falls within 
the Kolmogorov-Smirnov bounds of the target 
conditional ones, f(IMn-1|IM*=im*), for all IMs 
and intensity levels, and resulted in generally 
stable results in most cases. 

2. BN MODEL DEVELOPMENT 

2.1. BNs and general modeling issues 
BBN is a graphical model that describes a proba-
bilistic relationship among a set of variables 
(Pearl 1988). A BBN is represented with a di-
rected acyclic graph (DAG), where the nodes 
represent variables of interest (e.g., concrete 
strength, pier height, etc.), and the links between 
them indicate informational or causal dependen-
cies among the variables. The BBN B over a set 
of variables X = {x1,…, xk}, k > 1 is a network 
structure Bs, which denotes a DAG over X and a 
set of CPTs Bp (Figure 1). The relations between 
the variables in a BBN, as depicted in Figure 1, 
show variables x1,2 are said to be the parent of x3 
(x3 is the child of x1,2 if the link goes from x1,2 to 
x3). The CPT, 𝐵! = 𝑝 𝑥!|𝑝𝑎 𝑥! |𝑥! ∈ 𝑋 , 
gives the causal relation between parents pa(xi) 
and child xi. The joint distribution of the random 
variables in the BBN is given as the product of 
the conditional probability distributions (Bensi et 
al. 2014): 

 
   
p x1,…,xn( ) = p xi pa xi( )( )

i=1

n

∏  (3) 

With increasing number of parents and cor-
responding states, two problems arise. The first 
has to do with Bayesian inference, since the child 
CPT size increases exponentially with the asso-
ciated computational problems (Bensi et al. 
2014). The second has to do with the develop-
ment of the CPTs. Having data to support estab-
lishment of probabilities for all parents’ states 
combinations becomes increasingly unlikely. 
One modeling technique utilized in this paper is 
that of inverting arrows direction (Norsys Soft-
ware Corp., 2006), which preserves the statistical 
dependence (e.g. Figure 2). 

2.2. Expert-judgment leading to BN structure 
Tesfamariam and Liu (2013) have shown 

that a BBN structure generated through expert 
knowledge can furnish comparable results to 
those generated through learning algorithms, 
with the advantage, however, that the causal rela-
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tion between different parameters of engineering 
significance can be maintained. Thus, in this pa-
per an expert-driven BBN structure is developed. 

 

 
Figure 1: Basic BBN with probability tables.  

 

 
Figure 2: The BBN in Figure 1, with reversed arcs, 
and updated probability tables.  

 
Preliminary analysis of the numerical re-

sponse results (from BR.I.T.N.E.Y.) has shown 
that the three failure modes do not contribute in 
the same proportions to the exceedance of the 
LD LS (this is not the case for the SD LS, not 
dealt with here). Figure 3 shows the frequency 
histograms of failure modes over the numerical 
runs (each run being one bridge, at one intensity 
level A=a, with one of the chosen motions) 
where YLD>1, i.e. failure occurred. These results 

show that LD is dominated by the flexural mode. 
Thus the light damage indicator, YLD, is quanti-
fied only in terms of flexural failure mode. 

 

 
Figure 3: Contribution of each failure mode to the 
LD and SD limit states.  

 
The variables to be selected belong to the 

general categories of material properties, geome-
try including details, and site characteristics. The 
requirement to be satisfied is, to the extent possi-
ble, limit the selected variables to properties that 
can be easily obtained by visual inspection or 
from prevalent design practices. This require-
ment is dictated by the intended use of the mod-
els to predict bridge fragility without a detailed 
seismic assessment, i.e. in the absence of the as-
sociated tests and inspections data. Thus, data on 
materials and reinforcement are kept to a mini-
mum (concrete strength fc, steel yield strength fy 
and longitudinal steel area As). 

As far as geometry is concerned, girder 
bridges are made of one or more decks, support-
ed over a variable number of piers. A first prob-
lem to be solved is the characterization of bridg-
es with different number of piers with the same 
number of variables. Initial assessment of the 
flexural failure results indicated that in over 70% 
of cases system damage, as expressed by Eq.(2), 
is associated with either the SP, TP or the SP=TP 
(Figure 4). Consequently, beside global geomet-
rical variables, only variables pertaining the SP 
and TP have been considered in the BBN model. 
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Figure 4: Relative frequency of the height of the pier 
leading to failure, as a proportion of SP and TP 
heights: zero means the pier leading to failure is the 
shortest one, one means it is the tallest. 

 
Based on the previous considerations, the 

BBN shown in Figure 5 is formulated. Variables 
related to the TP and SP are shown on the left 
and right, respectively, while the central part of 
the BBN contains global variables that take on a 
single value for the entire bridge (material prop-
erties, which are spatially variable, have been 
modeled as constant in the numerical analyses in 
BRI.T.N.E.Y. and thus kept constant also in the 
BBN model). 
 

 
Figure 5: BBN structure for the LD limit state as-
sessment (input and output variables in white and 
black shading, respectively, grey arrows indicate re-
versal of causal relation, see Figure 2).  

The (flexural) light damage indicator 
YflexLD is related to TPYflexD and SPYflexD 
only. The observable engineering properties that 
affect piers flexural damage are: pierType and 
height (TPheight and SPheight), section area 
(TPsectionArea and SPsectionArea) and type 
(TPsectionType and SPsectionType), area of lon-
gitudinal steel (TP_As and SP_As) and material 
properties (concrete fc and steel fy). Pier height 
and section area are good proxies that correlate 
well with pier stiffness and yield deformation 
capacity, especially when complemented with 
pier and section types. The advantage over use of 
aspect ratio, which is also related to stiffness and 
θy, is that aspect ratio must be defined in both 
plan directions, unless the pier is circular or 
square. 

Among global variables, profile and connec-
tion are the geometrical parameters that contrib-
ute most to increase/decrease the de-
mand/capacity ratio in the piers. Further, given 
the serial system assumption, at parity of other 
factors the vulnerability of the bridge will in-
crease with the number of piers. As a result, the 
number of piers (nPiers) is directly linked to the 
global damage indicator, YflexLD. Global varia-
bles include also site-dependent properties: the 
average 30-meters shear wave velocity, soilVs 
and PGA475, the PGA with mean return period 
of 475 years. The latter, which has almost unit 
correlation with the area under the hazard curve, 
is meant to represent the effect of the site seis-
micity (whatever is not captured by IM*=A) on 
the fragility. 

Finally, all variables are either discrete in 
nature or discretized. The ranges are determined 
by sensitivity analysis and engineering judgment 
in order to maximize the effect on dependent var-
iables (and of course TPYflexLD, SPYflexLD and 
YflexLD have the last interval corresponding to 
values larger than one). In the software package 
used for this study (NETICA by Norsys Software 
Corp., 2006), three data training algorithms 
(Cooper and Herskovits, 1992) are provided: 
counting, expectation-maximization and gradient 
descent. The simple counting algorithm is used 
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herein, since results are available for all 
nodes/variables. During the counting process, 
where data is not available for a specific parents’ 
combination, equal probabilities are usually as-
signed to the corresponding child states in the 
CPT. In this work, however, the possibility of 
missing data is minimized by changing the direc-
tion of the arrows (grey arrows in Figure 5). 

3. MODEL PERFORMANCE 
The model performance is assessed by compar-
ing results, in terms of both fragility curves and 
associated risk values, obtained from numerical 
analysis with those produced by the model. Risk 
is computed with the closed-form proposed by 
Vamvatsikos (2013):  

  

λLS = pLS a( ) dλA a( )
0

∞

∫ =

= pk0
1− p λA exp µln A( )( )⎡

⎣
⎤
⎦

p
exp

1
2

pk1
2σ ln A

2⎛
⎝⎜

⎞
⎠⎟  (4) 

based on a quadratic fit of the PGA hazard in 
log-log space, λΑ =k0(-k1lna-k2ln2a), and on a 
lognormal fit (by maximum likelihood estima-
tion) to the fragility curve parameters µlnA and 
σlnA. The latter is available at nine discrete points 
(up to 0.3g), in the form of YLD values for the 
numerical analyses, and probability of YLD>1 for 
the BBN model (the value for state {0.99,∞} 
from the CPT of YflexLD, updated after observed 
values have been assigned as evidence to all oth-
er observable variables with the exception of 
PGA, which is varied parametrically). Parameter 
p=(1+2k2σ2

lnA)-1 in Eq.(4) is a measure of hazard 
curvature and when p=1 Eq.(4) collapses on the 
well-known risk closed-form based on linear 
hazard. Figure 6 shows the results for one sample 
bridge (for which the model performs quite 
well). 

Actually, the agreement between the BBN-
based and the numerical fragilities is remarkable 
for most bridges. When this is not the case, dif-
ferences can have both signs (underestimation or 
overestimation). BBN-based probabilities are 
monotonically increasing with PGA in a smooth 
manner, whereas the numerical results are show-
ing larger variability, due to the number of 

ground motions per IM* level used being limited 
with respect to the total variability (n=10). In 
many cases the BBN-based results are more sta-
ble and reflect the fact that two bridges are very 
similar (also in terms of site) and should there-
fore have almost the same fragility. Other cases, 
however, may point at the possibility that the 
model is missing some important parameter. This 
is the subject of ongoing further research on the 
BBN structure. 

 

 
Figure 6: BBN-based and numerical fragility curves 
for sample bridge 1023. Gray shade denotes intensi-
ties where FE analyses support the curves: every-
thing above 0.3g is an extrapolation of the LN fit. 

 
Figure 7 provides a first global assessment 

of model performance, in terms of statistics of 
the fragilities obtained from the BBN (red) and 
the numerical analyses (black). Mean and 16th – 
84th fractiles of all curves are computed at each 
PGA (i.e. 16th is the lowest one).  

 

 
Figure 7: Global comparison of BBN-based and nu-
merical fragilities for LD. 
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The model provides an excellent representation 
of the global variability of fragility curves over 
the considered DB (which is not minor, since the 
median PGA (PGA corresponding to 0.5 fragility 
value) varies between the 16th and the 84th frac-
tiles by more than 200%. 

Further proof of overall good performance 
(for the intended purpose) is given in Figure 8, 
which shows, for all bridges, the MAF of ex-
ceeding the LD limit state. The cloud of points 
gathers around the one-to-one line corresponding 
to the perfect match between the BBN-based and 
the numerical fragilities. 

 

 
Figure 8: Global comparison of BBN-based and nu-
merical fragilities in terms of normalized risk of LD.  

 
Finally, a major advantage of the BBN 

model is realized in its capability to deal with 
cases of incomplete information. Typically, 
amongst the selected input parameters for the 
BBN, the most expensive ones to acquire, not 
readily available, are fc, fy and As. If one or more 
of these parameters are unknown, the BBN mod-
el can be still used. One approach is to take min-
imum and maximum estimated values for each 
unknown parameter and compute the corre-
sponding fragility. Alternatively, evidence for 
the parameter is not provided to the model, and 
the uncertainty on the parameter, described by its 
unconditional distribution from the DB, will be 
propagated through the network to quantify YLD. 
Figure 9 shows an example, for bridge 1019, of 
the variability to be expected from lack of infor-

mation on one or combinations of the parameters 
fc, fy and As. Sensitivity analysis highlighted how 
the most influential parameters are TP_As and 
SP_As, and indeed this is reflected in the fragili-
ties of Figure 9.  

 
Figure 9. Sensitivity of BBN-based fragility to miss-
ing information. 

4. CONCLUSIONS 
This paper introduced a BBN model for the pre-
diction of the light damage seismic fragility 
curve of RC girder bridges. The network struc-
ture is expert-driven, while the CPTs are trained 
based on the seismic response of existing 390 
bridges, obtained by inelastic analysis with rec-
orded ground motions.  

The model is meant for use in prioritization 
of performance assessment and upgrade/retrofit 
interventions. Quality of prediction is considered 
already satisfactory for the intended purpose, 
even though improvements can be sought both in 
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more stable targets, and with a more balanced 
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An important advantage of the BBN model 
is that it can be used even with partial inputs, 
even though all parameters have been chosen to 
be easy and relatively cheap to obtain. Any input 
will constrain the predicted fragility bringing it 
closer to the fragility of the considered bridge. In 
the worst case of no information about a bridge, 
the model will attribute to it the mean fragility 
over the DB. 
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Future research will focus on the extension 
of this model to include higher states of damage, 
and the effects of deterioration. Furthermore, this 
will be integrated in transportation network anal-
ysis for seismic risk management. The model, 
proposed for bridges, is believed to provide an 
important stimulus for extension to other struc-
tural typologies. 
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