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ABSTRACT: The dynamic analysis of a deepwater floating production systems has many complexities, 

such as the dynamic coupling between the vessel and the riser, the coupling between the first-order and 

second-order wave forces, several sources of nonlinearities. These complexities can be captured by fully 

coupled time domain analyses. Moreover, the sea state is random, hence the need of stochastic dynamic 

analysis. In this paper the non-Gaussian responses of the system are obtained through the well-known 

First-Order Reliability Method (FORM) of the structural reliability analysis. The application to a 

simplified 2 degrees-of-freedom model shows the accuracy and effectiveness of the presented procedure. 

 

1. INTRODUCTION 

Floating production systems (FPSs) have become 

an integral part of deepwater development in oil 

and gas exploration and production. Risers, 

mooring system and floater represent an 

integrated dynamic system responding to 

environmental loading due to waves, current and 

wind in a complex way. The general principles for 

a dynamic analysis of risers are provided in the 

design code (DNV 2001). Recent research efforts 

(Ward et al. 1999) have shown that the mooring 

lines and risers can have a significant dynamic 

influence on the platform. Therefore, in full rigor, 

a “coupled analysis” of the vessel and of all the 

collected lines in the time domain should be held 

to take into account all the dynamic interactions 

within the system. 

Moreover, the environmental loads are 

random, see DNV (2007), hence the need of 

stochastic dynamic analysis. The aim of the 

stochastic dynamic analysis is the evaluation of 

the response statistics of dynamic systems 

subjected to stochastic excitations. Unfortunately, 

their evaluation is a task relatively easy to be 

accomplished only when the input is Gaussian and 

the dynamic system is linear. This is not the case 

in FPS, since some forces follow a non-Gaussian 

distribution and the dynamic system is inherently 

nonlinear. Moreover, the computational cost 

becomes more and more demanding, especially in 

the context of reliability analyses (Ditlevsen and 

Madsen 1996, Melchers 1999) of the FPS. Indeed, 

we are interested in the design of structures with 

high reliability, which implies very small failure 

probabilities.  

Define the tail probability as the probability 

that the response of the system is greater than a 

chosen threshold. The most robust approach is 

represented by the Monte Carlo Simulation 

(MCS), but it is too demanding for practical 

engineering purposes. Actually, it is known that 

for estimating failure probabilities Pf = 10-4, we 

need to run roughly 1,000,000 analyses, to obtain 

an estimate of Pf  with a coefficient of variation  

= 10%. To reduce the computational cost, some 

techniques of smart sampling have been recently 

proposed (Au and Beck 2001, Pradlwarter et al. 

2007, Bucher 2009).  

The First Order Reliability Method (FORM) 

gives a good tradeoff between accuracy and 

efficiency. Most applications of FORM in 
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stochastic dynamic analysis have been quite 

promising (Der Kiureghian 2000, Koo et al. 2005, 

Alibrandi and Der Kiureghian 2012), including 

some applications in offshore engineering, like 

jack-up units, ship responses, offshore wind 

turbines (Jensen & Kapul 2006, Jensen 2007, 

2011, Jensen et al. 2011).  

In this paper, FORM is applied to a 

simplified model of FPS with 2 degrees of 

freedom (Low & Langley 2008) able to collect the 

main aspects of the dynamic interactions existing 

between the vessel and the lines. The presented 

numerical example allows to detect the main 

features of the method. Although the method is 

applied in this paper to a simplified model, of 

course it can be applied easily to a system with 

any number of finite elements and degrees of 

freedom as well. The main difference between the 

simplified model here presented and a more 

sophisticated one is simply the computational cost 

of each analysis of the complicated model.  

2. DESCRIPTION OF THE SIMPLIFIED 

MODEL 

The simplified model, presented by Low and 

Langley (2008), has been previously described in 

Alibrandi et al. (2014). In this paper the 

formulation is modified to adopt the FORM 

approach. The FPS is modeled as a system with 2 

degrees of freedom, shown in Figure 1. 

It comprises two effective lumped masses of 

the vessel mV and of the lines mL, with generalized 

displacements xV(t) and xL(t), where the effective 

masses include added masses contributions. The 

model does not consider the coupling between 

different rigid body motions of the vessel. 

Without loss of generality, xV(t) and xL(t) can be 

seen as the surge motion of the vessel, and the first 

mode of vibration of the lines, respectively. The 

restoring force given by the lines is in general 

nonlinear due to the geometrical changes of the 

lines, and it is well approximated through a 

geometric nonlinearity   3

1 3NLF x k x k x 

(Roberts and Spanos 1990). 

 

 
 
Figure 1: 2-dof simplified model of the marine riser 

 

The lines are connected to a fixed boundary 

with an identical spring. The equations of motion 

of the system are: 

 

   

V V V V NL VL V

L L L L NL L NL VL L

m x c x F x F

m x c x F x F x F

  


   

  (1) 

where VL V Lx x x  , Vc  and Lc  are the damping 

of the vessel and lines respectively, 1k  and 3k  are 

the linear and non-linear contribution of the 

stiffnesses, respectively, ( )VF t  and ( )LF t  are the 

loads acting on the vessel and the lines, 

respectively. The structural damping of the lines 

is assumed equal to zero, 0Lc   N sec/m, while 

the viscous damping is given by the drag term in 

the wave force, as described in section 2.2. The 

damping of the vessel Vc  comes from several 

sources, such as viscous drag, radiation, 

aerodynamic, and so on. However, in presence of 

Vm

Lm
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second-order surge motions, the wave drift 

damping is the most dominant and it can be 

evaluated using the formulation proposed by 

Aranha (1994). The other damping contributions 

are neglected because they are small.  

2.1. Forces on the vessel 

The time varying force on the vessel ( )VF t  is 

the sum of the following components: 

          1 2
, , ,V w w wind currF t F t F t F F   u u u (2) 

where u  is a vector of N normal standard random 

variables, 
 1

( , )wF t u  and 
 2

( , )wF t u  represent the 

first- and second-order wave force, respectively, 

windF  is the wind force, and currF  is the force of 

the currents. Wind and current are assumed to be 

constant and collinear.  

2.1.1. Random seastate 

The random sea state ( , )t u  is modelled as 

   ,

1

, ,

1

( , ) cos sin

( ) ( ) ( )

n
c s

i i i i i

i

n
c c s s

i i i i

i

t t u t u

s t u s t u t



  

   




   

   





u

s u

 (3) 

where n is the number of harmonic components, 

1 2, , ,c c c

nu u u  and 1 2, , ,s s s

nu u u  are normal 

standard random variables, while the correlation 

structure of ( , )t u  is given in terms of the 

underlying one-sided wave spectrum ( )G  , 

through the deterministic shape functions 

, ,( ) cos( )c

i i is t t    and , ,( ) sin( )s

i i is t t   , 

being , ( )i iG      and   the frequency 

step. In the last term of Eq. (3) we have 

collected the 2N n  normal standard random 

variables in the 2n-vector { }c su u u , where 

1{ }c c c

nu uu  and 1{ }s s s

nu uu  and 

the corresponding shape functions in the 2n-

vector ( ) { ( ) ( )}c st t t  s s s . Thus, the simulation 

of a time history of ( , )t u  requires simply the 

simulation of the 2n  normal standard random 

variables collected in u . Moreover, from Eq.(3) it 

follows that mean and variance of ( , )t u  are 

( ) 0t   and  
2

2 ( )t t   s . 

2.1.2. First-Order Wave Forces 

The first-order wave forces 
 1

( , )wF t u  acting on 

the vessel may be expressed as 

 

       

1 1 1

1 1

1

, ,

1

( , ) ,

( ) ( ) ( )

n

w i i

i

n
c c s s

F i i F i i F

i

F t T

s t u s t u t

  




 

   





u u

s u

(4) 

where 
 1

( )iT   are the first-order transfer 

functions and they are given by a linear diffraction 

analysis. From Eq.(4) it follows that the forces 
 1

( , )wF t u  are a Gaussian stochastic process, 

whose mean and variance are given as 
1
( ) 0F t   

and  
1 1

2
2 ( )F Ft t  s . 

2.1.3. Second-Order Wave Forces 
In addition to the first-order forces, the vessel is 

subjected to the second-order forces coming from 

nonlinear hydrodynamic effects (Faltinsen 1990). 

These forces are determined from a second order 

diffraction analysis, and typically only the slowly 

varying forces caused by difference frequencies 

are of interest 

   

        

2

, ,

1 1

,

cos sin

n n

w i j

i j

c s

ij i j ij i j

F t

h t h t

  

   

 

 

   

u

u u

(5) 

where  

     

     

c c c c s s s c s s c

ij ij i j i j ij i j i j

s c c s s c s c c s s

ij ij i j i j ij i j i j

h T u u u u T u u u u

h T u u u u T u u u u

    


    

u

u
(6) 

being  ,c c

ij i jT T    and  ,s s

ij i jT T    the 

Quadratic Transfer Function (QTF). Typically 

they satisfy the symmetry conditions 
c c

ij jiT T  and 

s s

ij jiT T  . From (5) and (6) it is seen that the 
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simulation of a sample of a slow-drift force 

require a very time-consuming double 

summation; in this work, the computational cost 

has been reduced adopting the Newman 

hypothesis (1974). 

2.2. Forces on the lines 

As proposed in Low and Langley (2008), the lines 

are modeled as LN  identical vertical cylinders, 

each of effective depth ed  and diameter D . 

Using the deep water approximation of classical 

linear wave theory (Faltinsen 1990), at a chosen 

depth z , the horizontal wave particle velocity 

( , , )wv z t u  and acceleration ( , , )wa z t u  are given 

as 

  , ,

1

, , ( , ) ( , )

               ( , )

n
c c s s

w v i i v i i

i

v

v z t s z t u s z t u

z t



  

 

u

s u

 (7) 

  , ,

1

, , ( , ) ( , )

               ( , )

n
c c s s

w a i i a i i

i

a

a z t s z t u s z t u

z t



  

 

u

s u

 (8) 

where the 2n vectors ( , )v z ts  and ( , )a z ts  

collect the deterministic shape functions 

, ,( ) cos( )c

v i v i is t t   and , ,( ) sin( )s

v i v i is t t  , 

, ,( ) cos( )c

a i a i is t t   and , ,( ) sin( )s

a i a i is t t  ,  

being ,
ik z

v i ie   and 
2

,
ik z

a i i e   while 

2( )i ik g  is the i  th component of the wave 

number. A uniform current of velocity cv  is 

assumed to act at all the depths. The fluid force 

acting on the lines, ( , )LF t u , is then calculated 

using Morison’s equation 

     , , ,L D MF t F t F t u u u  (9) 

where ( , )DF t u  and ( , )MF t u  are the drag and the 

inertia terms, respectively, and they are given as 

     
1

,  ,  ,
2

D w D L EF t C DN d r t r tu u u  (10) 

and  

   2,  , ,
4

M w M L E w LF t D C N d a z t


u u  (11) 

with 

      , , , ,c w L Lr t v v z t x t  u u u  (12) 

In (10) and  (11) w  is the density of the water, 

DC  and MC  are the drag and the inertia 

coefficient, respectively,while  , ,w Lv z t u  and 

 , ,w La z t u  are the velocity and the acceleration 

of the water particle at Lz z , corresponding to 

the lumped mass of the lines. For further details 

about the choice of the mass Lm , the effective 

depth Ed  and the depth Lz , the reader is referred 

to Low and Langley (2008). 

3. FORM FOR STOCHASTIC DYNAMIC 

ANALYSIS 

Consider the response of the FPS to the stochastic 

excitation. Owing to the random variables u , the 

response is stochastic and we denote it as ( , )X t u

, where it can mean ( , )VX t u  or ( , )LX t u  for the 

vessel and the lines, respectively. For a specified 

threshold 0x  and time t , we define the tail 

probability as 0 0( , ) Prob[ ( , ) ]fP t x X t x u . To 

apply the tools of the structural reliability theory, 

we define the limit state function 

0 0( , , ) ( , )g t x x X t u u  so that the failure 

probability with respect to the limit state 

 0 0, Prob[ ( , , ) 0]fP t x g t x u  is equal to the tail 

probability (Der Kiureghian 2000). For 

engineering design, we are interested in the first-

passage probability over a duration  0,T , 

defined as 0P ( , )=Prob[max ( , ) ]f t Tx T X t x  u . 

A good approximation to the first passage 

probability is given by 0Prob[ { ( , ) }]m

i iX t x u , 

(0, )it T  (Au & Beck 2001, Koo & Der 

Kiureghian 2003, Fujimura & Der Kiureghian 

2005). The union event represents a series-system 

reliability problem where the components of 

system are the tail probabilities evaluated for any 
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set of discrete time points 1 2, , , mt t t . The union 

event shows that the evaluation of the tail 

probability is a crucial step for obtaining other 

reliability measures of interest for stochastic 

dynamic analysis, and only the tail probability 

will be analyzed in detail in this paper. 

In our case, we have a clearly nonlinear 

dynamic system: (i) the nonlinear behavior of the 

vessel and riser is modelled through a cubic 

geometric nonlinearity ( )NLF x , (ii) the second-

order wave forces 
   2

,wF t u are a non-Gaussian 

stochastic process, (iii) the drag forces  ,DF t u  

are a non-Gaussian stochastic process depending 

on the non-Gaussian response of the riser ( , )Lx t u

Consequently, the limit state is not linear, and the 

design point is given as the solution of the 

following constrained optimization problem 

*

0 0( , ) arg min{ : ( , , ) 0}t x g t x u u u  (13) 

being the design point the point belonging to the 

limit state closest to the origin of the standard 

normal space. The reliability index is given as 
*

0 0( , ) ( , )t x t x  u  and the FORM solution 

, 0 0( , ) [ ( , )]f FORMP t x t x    gives a first-order 

approximation of the tail probability. 

The FORM solution has equation 

0 0 0( , , ) ( , ) 0FORMg t x x t x   u a u , where 

0( , )t xa  gives the slope of the FORM hyperplane 

and it is related in correspondence one-to-one to 

the design point *

0( , )t xu  through the relationship 
2

* *

0 0 0 0( , ) ( , ) ( , )t x x t x t x a u u (Fujimura and 

Der Kiureghian 2007). It is also noted that with 

FORM the response is modeled for each threshold 

0x  as  Gaussian 0 0( , , ) ( , )X t x t x u a u  whose 

variance is 
2

0( , )t xa . Consequently, FORM 

gives a Non-Gaussian approximation of the 

system response, giving rise to an improved 

solution with respect to any Gaussian 

linearization technique, especially at the tails of 

the distribution. 

4. NUMERICAL APPLICATION 

The representative vessel used in this work is a 

large moored FPSO whose input parameters are 

represented in Table 1. The random sea state is 

described by a JONSWAP spectrum of 

parameters sH , zT  and  .  

 
Table 1: Input parameters for the numerical 

application 

Parameter 

 

Value Parameter Value 

Significant 

wave 

height Hs 

15.7 m Drag 

coefficient 

CD 

 

2.0 

Average 

crossing 

period Tz 

13.5 s Inertia 

Coefficient 

CM 

 

1.1 

Peakness 

parameter 

γ 

2  

Depth zL 

 

-100 m 

Fcurr + 

Fwind 

1.5×106  

N 

Mass  

of vessel 

mV 

1.17×108 

kg 

Effective 

depth de 

667 m Mass of 

lines mL 

5.00×106 

kg 

Current 

velocity vc 

0.5 m/s  k1 2.8×106 

N/m 

No. of 

cylinders 

NL 

15 k3 2,240 

N/m 

Diameter 

of cylinder 

D 

0.13 m Structural 

line 

damping 

BL 

 

0 N s/m 

Vessel 

damping 

BV 

2.68×105 

N s/m 

  

 

It is seen that the system achieves the 

stationarity after 1,400t   sec. The spectrum has 

been discretized from 0   rad/sec to 0.8   

rad/sec, with a frequency step 

(2 ) / 0.00488t     rad/sec, leading to 

180n   harmonic components and 

2 360N n   normal standard random variables. 
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At first we applied Monte Carlo Simulation 

(MCS) with 50,000 samples, which is adopted to 

benchmark the results of the FORM approach. 

The main challenge with FORM is the 

evaluation of the design point. Indeed the 

gradient-based procedures (Liu and Der 

Kiureghian 1991) are not very efficient in high 

dimensions. Typically, the finite elements codes 

do not provide these gradients, which can be 

approximated by the finite differences method. 

This implies that each iteration of the iterative 

procedure require 1 361N    dynamic 

computations, so that the computational cost may 

be excessive. Moreover, in high-dimensional 

spaces the accuracy of the numerical response 

gradient is generally poor. These shortcomings 

may be overcome by using the Direct 

Differentiation Method (Zhang and Der 

Kiureghian 1993, Haukaas and Der Kiureghian 

2004, 2006) which is implemented in some finite 

element codes such as OpenSees (McKenna et al. 

2003). Here we determine the design point with a 

relatively low computational effort using a 

suitable free-derivative algorithm developed to 

this aim (Alibrandi 2014), which requires only 

100 analyses per threshold. In Figures 2 and 3 we 

represent the tail probabilities of the vessel and the 

lines, respectively. 

The response thresholds are normalized with 

respect to the standard deviation of the 

corresponding displacement. It is noted that the 

first threshold, corresponding to a reliability index 

0   and 0.5fP  , is greater than zero, because 

the system response is not zero-mean. In Figures 

2 and 3 we represent the FORM solution 

(continuous line) together with MCS with 50,000 

samples (circle markers) and a Gaussian 

approximation whose variance is evaluated 

through MCS (dotted line).  

It is seen that the both displacement of the 

vessel and of the riser are markedly non-Gaussian; 

for the riser it is also noted that the Gaussian 

solution is from the unsafe side, so that for the 

example can be considered questionable the 

application of a classical equivalent linearization 

method for the highest thresholds. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Tail Probability of the displacement of the 

vessel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Tail Probability of the displacement of the 
riser 

 

Conversely, FORM fits quite well, especially 

for the displacement of the lines. It is moreover 

underlined that FORM is very effective especially 

in the range of the very small small probabilities 
4 510 10fP    , which are the most crucial in a 

reliability analysis, where FORM requires 100 

dynamic computations while MCS would require 

on average more than 
6 710 10  analyses. 

5. CONCLUSIONS 

In this paper we applied the FORM approximation 

for Stochastic Dynamic Analysis of Floating 

Production Systems, including risers. All the 

stochastic quantities have been formulated in 

Gaussian

FORM

FORM

Gaussian
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terms of normal standard random variables, so 

that the implementation of FORM is 

straightforward. The developed numerical 

application has shown that FORM allows to 

obtain with a reduced computational cost (of 

several orders of magnitude compared to MCS) 

very good approximations of the tail probability 

especially in the range of the very small 

probabilities, which are the most crucial for a 

reliability analysis. Although the method has been 

applied to a simplified 2 DOF model of the riser, 

it can be easily applied to an industry-size system 

modelled with finite elements or lumped masses 

as well. The only difference between the 

complicated model and the simplified one 

presented in this paper is the computational cost 

of each analysis. For design engineering purposes, 

a quantity of great interest is represented from the 

first passage probability, however starting from 

FORM solution it can be easily determined 

without no further dynamic computation 

(Fujimura & Der Kiureghian 2005, 2007). 

However, FORM has some known 

drawbacks. As it is known, it does not good give 

good approximations in presence of multiple 

design points. Moreover, it has been recognized 

that in presence of a Duffing-type cubic geometric 

nonlinearity the failure domain may be disjoint 

(Katafygiotis & Zuev 2008, Valdebenito et al. 

2010, Koduru & Der Kiureghian 2012), and in 

such cases the evaluation of the design point may 

be very challenging. This shortcoming has not 

been detected with the numerical application 

presented in this paper, where realistic data have 

been chosen. However, extended numerical 

experimentation applied to real-world 

engineering risers have to be developed before 

applying FORM as a black-box for this important 

class of systems. 
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