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ABSTRACT: The damages of tunnels under earthquakes showed that soil/rock deposits around a 
tunnel have significant effects on its response to earthquake excitations, including the effects of the 
spatial variability and correlation of the soil properties which may properly be modeled as a random 
field. This paper studied these effects through modeling the surrounding soil as a random field on the 
dynamic response of a tunnel. A 2D finite element model of the tunnel-soil system was examined and 
the corresponding random field was simulated by the stochastic harmonic function of the first kind. The 
results revealed that under the design earthquake, the static load effect will initially dominate but as the  
earthquake intensity increases, the earthquake influence will dominate. The reliabilities of a tunnel for 
the design limit-state function was considered. The equivalent extreme events were formulated for the 
limit-state function, from which the tunnel system reliability can be evaluated. The probability density 
evolution method (PDEM) was employed to calculate the reliability of the tunnel under its design limit-
state when subjected to a strong earthquake. This shows that the tunnel is adequately designed by the 
existing Chinese code under the design earthquake. 

 
The construction of underground tunnels is an 
essential component in the development of major 
infrastructure systems. In this regard, the 
nonlinear response analyses and reliability 
evaluations of tunnels under design and severe 
earthquakes are becoming significant problems 
in many parts of the world. During the Kobe 
earthquake of Japan in 1995, underground 
structures, such as the Daika subway station, 
were destroyed severely (Nishiyama et al., 2004), 
and in 1999, during the Chichi earthquake in 
Taiwan, 49 out of 57 mountain tunnels were 
destroyed to some extent (Wang et al., 2001). In 
2008, during the Wenchuan earthquake in China, 
56 tunnels were damaged and required 
retrofitting (Wang et al., 2009). Subsequent 
investigations and analyses revealed that the 
damages of the pertinent tunnels related closely 
to the geotechnical conditions of the surrounding 
soil/rock deposits. 
       In conventional tunnel response analyses, the 
soil properties are assumed to be the 

characterized values (usually the mean values) 
that were determined from laboratory tests of soil 
samples or on-site measurements. An analysis 
then proceed with these values in a deterministic 
manner yielding a solution that is dependent on 
the quality of the characteristic values. However, 
the soil or rock deposit around a tunnel is 
invariably non-homogeneous in properties due to 
its composition and deposition. These properties 
vary from point to point, and thus possess spatial 
correlations. The incorporation of random fields 
into engineering analysis allows the modeling of 
the spatially random soil, taking into account the 
correlation structures of the properties. 
Vanmarcke (1977) studied the two dimensional 
random soil profile and the scale of fluctuation 
was adopted to represent the spatial correlation; 
this study formed an important progress in 
random field model simulation of soil profiles. 
The present study models the soil around a tunnel 
as a random field and determines the response of 
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the tunnel and its reliability for the design limit-
state under a specified strong earthquake.  

1. RANDOM FIELD MODEL SIMULATION 
The random field simulation usually requires 
field data processing to evaluate the spatial 
correlation function and adopt a numerical 
simulation procedure. The process is briefly 
introduced below, in which only the elastic 
modulus was assumed to be spatially correlated 
and random. 

1.1. Site/laboratory Data Processing 
The spatial variation of a soil property is 
conveniently expressed as the sum of a trend and 
a residual (De Groot and Baecher, 1993) 

( ) ( ) ( )Y X E X X                    (1)                   

in which )X(Y  is the soil property at location X ; 
)X(E  is the trend function at X ; and )X( is the 

residual at X . The residual is assumed as a zero-
mean stationary random field. 

1.2. Elastic Modulus in Random Field 
In the current study, the soil around a tunnel has 
been treated as a plasticity model with a spatially 
random elastic modulus and a constant Poisson’s 
ratio.  

The lognormal distribution was adopted for 
the generation of the elastic modulus field. The 
use of this distribution being constant with the 
knowledge that the elastic modulus should not 
have a negative value (Fenton and Griffiths, 
2005). Accepting the use of this distribution, the 
elastic modulus field can be obtained through the 
transformation. 

ln lnexp( g )i E E iE                     (2) 

where iE is the elastic modulus of the thi element; 

ig is the corresponding standard Gaussian 
random field; and Eln and Eln  are the mean and 
standard deviation of lognormal E , which can be 
obtained using the following formula 

2 2 2
ln ln(1 / )E E E                    (3a) 
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Assume the correlation coefficient along 
depth z as 
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where  is the spatial interval in the direction 
z and  is the scale of fluctuation, which reflects 
the spatial correlation of the soil properties.  

Assuming separable and independent 
correlation coefficients in the horizontal and 
vertical directions, the two dimensional 
correlation coefficient can be expressed as 

         1 2 1 2( , ) ( ) ( )           
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The correlation function is then, 
2

1 2 ln 1 2( , ) ( , )ER                      (6) 

and the power spectral density can be obtained 
using the Wiener-Khinchine theorem as follows:  
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where 21, kk are the wave numbers and 21, are 
the scales of fluctuations in the two directions, 
respectively. The correlation function or the 
power spectral density establishes the spatial 
probability structure of a Gaussian random field.  

1.3. Generation of Elastic Modulus Field 
There are various methods for generating the 
realizations of a random field, although the 
spectral method (Shinozuka and Deodatis, 1991) 
is the most widely used; however, the random 
variables are too many for any reliability analysis. 
In order to solve the problem, Chen et al.(2013) 
proposed the stochastic harmonic function of the 
first kind (SHF-Ⅰ) and second kind (SHF-Ⅱ) 
resulting in the random process being modeled 
with less weighted linear combinations of terms 
of the form cos( )j jk x  . This reduces the 
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dimension of the random variables, which is 
adopted in this paper for the reliability analysis.  

For two dimensional problems, assume 
1 2( , )Y x x is the simulated random field. 

According to Chen et al. (2013), using the 
stochastic harmonic function of the first kind 
(SHI-I) , 1 2( , )E x x  can be expressed as 

1 2 ,1 ,2 ,1 1 ,2 2
1

( , ) ( , )cos( )
N

j j j j j
j

E x x A k k k x k x 


        (8) 

where the jk  and j are random wave numbers 

and random phase angles, respectively, the 

amplitudes ,1 ,2( , )j jA k k   are functions of jk  and N 

is the number of  components. In this case, the  

j  are independent and uniformly distributed 

random variables over [0, 2π ]. Suppose the 
support of 

j
k

 
is ( ) ( )

1[ , ]p p
i ik k , where the ( )p

ik  are 

different inner points over [ , ]L uk k , 

1, 2,...,i N , ( )
0

p
Lk k , ( )p

N uk k  and Lk and uk are, 

respectively, the lower and upper cut-off 
frequency. Denote the PDF of 

j
k

 
following the 

distribution of the standardized shape of PSD. 
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where  ( )
jk
f

 
is the PDF of  , {}I  is the 

indicator function with the value 1 if the 
bracketed event is true and otherwise zero. 

 ( )E
G  is the one-sided spectral density function 

of 1 2( , )E x x .  

2. FINITE ELEMENT MODEL OF TUNNEL 

2.1. Tunnel Information 
The tunnel under consideration is a typical road 
tunnel for highways, located in Shandong 
province, China. The tunnel consisted of two 

lines that are 24m apart; the length of one line is 
800m and the other line is 825m. Figure 1(a) 
shows the longitudinal geological conditions of 
one tunnel, with 5 boreholes for measuring the 
site data of the soil. The tunnel is shallow buried, 
with the maximum depth of 40m. For the sake of 
simplicity, a horizontal ground surface was 
assumed, with the average depth of 30m to the 
center of the tunnel. The detailed section is 
shown in Figure 1(b), with height and width of 
10.01m and 11.50m, respectively. The lining is 
assumed to be 0.45m thick of shot-crete. Figure 1 
(c) is the simplified model sketch. 

 

 
(a) The longitudinal section 

 
(b) Cross section of the tunnel (cm) 

 
(c) Simplified calculation model 

Fig.1 Tunnel information  
 

2.2. Finite Element Model of Tunnel System 
Plane strain condition is assumed for a 2D 

section of the tunnel. And as illustrated in Figure 
2, the soil mass around the tunnel is modeled 
with a 2D finite element model consisting of 
four-node quadrilateral elements and the beam 
elements are adopted for the tunnel; the mesh 
size of the near field soil and the tunnel is about 
1m and the far field soil is 2m. The separation 
and slip between the soil and tunnel are ignored 
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at present. In order to reduce or eliminate 
reflections of earthquake waves from the 
boundaries of the finite model, the infinite 
elements are added to the finite element model 
on the three sides of the model, as shown in 
Figure 2. 
 

 
Fig. 2 The finite element model 

 

2.3. Material Parameters 
The Drucker-Prager constitutive model is 
adopted to simulate the plasticity of the soil, and 
the lining of the tunnel is assumed as elastic. The 
material parameters of the soil and lining are 
presented in Table 1. The elastic modulus of the 
soil is simulated as a random field.  

 
Table 1 Material parameters of the soil and structure 

parameters soil tunnel 

Unit weight(kN/m3) 19.6 24 
Poisson’s ratio 0.30 0.15 

Young’s modulus E 
(MPa) 

2200(mean) 200000

friction angel(degree) 50  
dilation angel(degree) 5  

*k  1  

Coherence   1.76  

yielding stress(MPa) 20000  
* k is the ratio of the flow stress in tri-axial tension to the flow 
stress in tri-axial compression 
 

The scale of fluctuation   is important to 
describe the spatial variability. In this study, 
combining the site measured data and research 
results of Zhu and Zhang (2013) , the vertical and 
horizontal values of  are 1m and 10m, 
respectively. The SHF- Ⅰ (Eq. (8)) was then 
adopted in the numerical generation of the 
random field. One sample of the elastic modulus 

random field of the soil deposit, with dimensions 
of 120m by 55m in the horizontal and vertical 
directions, respectively, is shown in Figure 3 
with a uniform finite element mesh size. 
                      

 
Fig. 3 One random field sample (×109 MPa) 

 

2.4. Dynamic Input 
In the present study, the acceleration time history 
recorded at Qingping station during the 
Wenchuan earthquake in 2008 was considered. 
The original seismic signal was characterized by 
a duration of 160 seconds with a maximum 
acceleration of 8.24m/s2. For the sake of 
computational efficiency, the record between 30 
and 65 sec, which is the strong vibration duration 
of the earthquake, was selected in the dynamic 
analysis. The horizontal component of the 
acceleration time history is presented in Figure 4. 
And the amplitude is adjusted to different 
fortification intensities according to China code 
for seismic design of buildings and the analysis 
cases are shown in Table 2. This seismic 
acceleration is the input from the base of the 
finite element model.  

 
Table 2 Amplitudes of the earthquake acceleration 
Case 
No. 

Seismic 
intensity 

Acceleration 
amplitude 

(m/s2) 

Scale 
factor 

(1) Ⅶ frequently 0.35 0.0436
(2) Ⅶ seldom 2.2 0.274 
(3) Ⅶ seldom 3.1 0.3892
(4) Ⅷ seldom 4.0 0.4983
(5) Wunchuan  8.24 1.0 
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Fig.4 Acceleration time history of Qingping EW 
components (30-65s duration) 

 

3. SEISMIC ANALYSIS RESULTS OF THE 
TUNNEL SYSTEM 

3.1. Random Field Results 
The actual tunnel located in the area of the 
seismic fortification intensity is Ⅶ . So the 
earthquake with Ⅶ  frequently occurred was 
taken as an example, i.e. case (1) in Table 2. 
These results were obtained using the finite 
element software ABAQUS for the static and 
dynamic analyses shown in Figures 5 through 6.  

Figure 5 is the axial stress of the tunnel. 
From the figure, it can be seen that the stresses at 
the  corners of the tunnel are in tension at the top 
(inside) and in compression at the bottom 
(outside) of the tunnel lining.  

 

 
Fig. 5 The axial stresses in the tunnel 

 
The distributions of the maximum and 

minimum envelops of the axial force N  and 
bending moment M  of one tunnel during the 
seismic event are shown in Figure 6. The results 
are presented as a function of the arc angle   
(also shown in Figure 6) and defined positive in 
the counter-wise direction of the arc. 

From Figure 6, it can be seen that under the 
design earthquake, the gravity effects are the 
main effect. Maybe this is one reason for not 
considering the earthquake effects during the 
design of the tunnel. As a compression, the 
response of the tunnel under the Wenchuan 

earthquake amplitude, i.e. case (5) is illustrated 
in Figure 7.  

 

 
(a) Axial force along arc angle, θ 

 
 (b) Bending moment along arc angle, θ 
Fig.6 Axial force and bending moment envelops 
around the tunnel (case(1)) 

 

 
(a) Axial force along arc angle, θ 

 
 (b) Bending moment along arc angle, θ 
Fig.7 Axial force and bending moment envelops 
around the tunnel (case (5)) 

 
From Figure7, it can be seen that as the 

earthquake intensity increases, the effects of the 
earthquake increase greatly and may become the 
dominant effects. It also showed that at the arc 
angle of about 60 degree and 300 degree, near 
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the corners of the tunnel, the axial force and 
bending moment are higher than elsewhere in the 
tunnel.  

4. RELIABILITY EVALUATION OF THE 
TUNNEL 

In the analysis of the reliability, the stochastic 
harmonic function proposed by Chen et al. (2013) 
was adopted for the simulation of the random 
field, with the advantage of using only a few 
terms (usually 6-10 cosine terms). 

With the same tunnel system model as 
described above, and incorporating the recently 
developed probability evolution method (PDEM) 
(Li and Chen, 2004), the corresponding 
reliability is obtained with the equivalent extreme 
value events (Li et al., 2007a).  

4.1. The Probability Density Evolution Method 
(PDEM) 

To provide a brief synopsis of the probability 
density evolution method, the main formulas of 
the method are briefly outlined below.  

According to Li and Chen (2008), the 
probability density evolution function equation is 

( , , ) ( , , )
( , ) 0X Xp x t p x t

X t
t x

   
 

 


    
 (11) 

where ),,( txpX  is the joint PDF of ),( xX ; 

( , )X t is the velocity of the structural response. 
The initial condition of Eq.(11) is 

00
( , , ) ( ) ( )X t

p x t x x p   
 

       
(12) 

Eq.(11) can be solved with the initial 
condition of Eq.(12) using finite-difference 
method. The solution procedure may be 
described as follows: 

(1) Select the representative points of the 
random variables. The selected points are 

( 1,2,..., )q selq N  ,where selN  is the total number 

of the representative points. 

(2) Perform the response simulations based 
on the proposed random field model of the 
tunnel-soil system for each of the representative 
points. 

(3) The finite-difference computation 
method (Chen and Li, 2005) is used to obtain the 
joint probability density function. 

(4) Apply a numerical integration with 
respect to q  to obtain the numerical values of 

the PDF.  
In the present paper, the number method (Li 

and Chen, 2007b) was adopted to generate the 
representative points, and 97 representative 
points of wave numbers ,1jk  and ,2jk , respectively, 

were generated with corresponding assigned 
probabilities. The phase angle j is a random 

variable which is uniformly distributed in [0, 2
π].  

4.2. PDEM-based Evaluation of the Extreme-
value Distribution and System  

4.2.1. Limit-state Functions 
The limit-state function considered here is the 
design limit-state which is defined according to 
the Code for Design of Road Tunnel (JTG D70-
2004) of China. For this limit-state, the cross 
section strength of the tunnel, as designed, can be 
divided into two types: (1) large eccentricity 
compression and (2) small eccentricity 
compression, in accordance with the relative 
compression height of the cross section, x , which 
is calculated as follows: 

syc

sysy

Afbhf

hAfhAfNh
x

4

2.3

0

00
'

0






                (13) 

When 055.0 hx  , where 0h  is the effective height 
of the tunnel, it is defined as the large 
eccentricity compression, then the dimensionless 
design limit-state function is  

1
w

KN
Z

R bx
                             (14) 

or 

0 0

1
( / 2) ( )w y s

KM
Z

R bx h x f A h a


    
      (15) 
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Whereas, when 055.0 hx  , it is defined as small 
eccentricity compression. In this case, the 
dimensionless design limit-state function is 

2 2
0 00.5 ( )a y S

KM
Z

R bh f A h a


  
           

 (16) 

where K is the safety factor; wR and aR  are the 

bending and axial strength of concrete; yf  , sA  , 

a and yf  , sA , a , respectively, are the 

compression and tension reinforcement  strength, 
the corresponding area and the distance of the bar 
to the bottom or top boundary of the section.  

Based on the concept of the equivalent 
extreme-value event, the corresponding  extreme-
value event for the design limit-state can be 
formulated as  

)),(max(max 21
01

max ZZZ
Ttmj 


             

 (17) 

where j is the element number and T is the 
duration of the earthquake. 

The dynamic reliability can then be obtained 
through one dimensional integration; namely, 

   dzzpZPTR Z )(1)(
maxmax

          
(18)  

4.3. Reliability Evaluation of the Tunnel 
The reliability under the design limit-state, 
defined as not exceeding the design code-
specified strength, is shown in Table 3. It can be 
seen that under case No.(1), which is the design 
earthquake condition, and the safety factor is also 
as  required in the design code, the tunnel is 
adequately designed. As the amplitude of the 
earthquake increases, the reliability will decrease 
as expected. Also, when the amplitude of the 
earthquake is low,  the large eccentricity 
compression limit-state, Eq. (15), will prevail 
and as the earthquake amplitude increases, the 
small eccentricity compression limit-state, Eq. 16, 
may dominate. Figure 8 is the PDF and CDF 
(cumulative probability density function) of the 
equivalent extreme-value event maxZ . 

 

 
Fig. 8 The PDF and CDF of the ultimate limit-state 
function(case (4)) 
  
Table 3: Reliability of tunnel for design limit-state 
Case 
No. 

thickn
ess /m

Concrete
/rebar 

Safety 
factor 

K 

Reliability 
Pr  

(1) 0.45 C30/4  25 1.7 1.0 
(2) 0.45 C30/4   25 1.0 0.9296 
(3) 0.50 C30/5  25 1.0 0.9682 
(4) 0.54 C30/5  25 1.0 0.9236 
(5) 0.85 C40/5  25 1.0 0.8746 

5. CONCLUDING REMARKS 
The soil/rock deposits around a tunnel clearly 
have spatial correlation and should be considered 
in the response analyses of the tunnel and in its 
reliability evaluations. This paper focused on the 
analysis of the tunnel-soil system with a random 
field model using the finite element method and 
determining the effects of the random field on the 
response and reliability of a specific tunnel 
subjected to a scenario earthquake. Based on this 
analysis, the following concluding remarks may 
be deduced. 

(1)Soil and rock deposits invariably show 
spatial correlations -- for the accurate simulation 
of the random field, the site measurement or 
laboratory test of the soils/rocks should be used 
to define the soil/rock parameters.  

(2) The analysis results show that the axial 
forces and bending moments around the tunnel 
arc angles are not uniformly distributed, and 
when the earthquake is not severe, the static load 
effect will have the main influence; whereas for 
severe earthquakes the effects of high intensity 
motions may dominate.  
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 (3) Using the PDEM, the reliability 
evaluation of the tunnel can be obtained 
effectively.  

(4) For the actual tunnel under consideration, 
its design against a design-specified earthquake 
is adequate and satisfy the design requirement. 
But as the amplitude of the earthquake increases, 
the reliability will decrease. Therefore, the tunnel 
may not be safe against collapse under strong 
earthquakes such as the Wenchuan event; the 
reliability against collapse is reported in a 
separate paper (Yue and Ang, 2015, accepted). 

(5)The present study is based on a 2D 
approximation of the real tunnel problem. The 
authors recognize that the results obtained on this 
basis are approximate. To evaluate the degree of 
this approximation will require a 3D model of the 
tunnel-soil system; such a 3D study is currently 
in progress.  
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