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ABSTRACT: In this study, an approximate method of estimating the exceedance probability of the
maximum ductility factor of an inelastic oscillator is proposed based on the equivalent linearization
technique using the capacity spectrum (CS) method. The CS method seeks to determine the first point at
which the demand spectrum crosses the CS. Because the auto-correlation function of the response
spectrum is only a function of the difference between the logarithms of two natural periods, the CS
method can be interpreted as the first passage problem of a stationary standard normal stochastic
process. Because the auto-correlation function is not continuous when the difference is equal to zero,
and because the crossing event cannot be modeled as a Poisson process when the CS is close to the
horizontal axis, the mean crossing rate is semi-theoretically estimated based on Monte Carlo simulation.
The results are further modified to create a general model. The accuracy of the proposed method is
demonstrated by using numerical examples.

1. INTRODUCTION
Predictors of seismic structural demands (such as
interstory drift ratios) that are faster than nonlin-
ear dynamic analysis (NDA) are useful for struc-
tural performance assessment and design. Several
techniques for realizing such predictors have been
proposed by using the results of a nonlinear static
pushover analysis (e.g., Luco 2002; Chopra & Goel
2002; Yamanaka et al. 2003; Mori et al. 2006).
These techniques often use the maximum response
of an inelastic oscillator (computed via NDA) that
is equivalent to the original frame.

In reliability-based seismic design of a structure,
it is necessary to probabilistically express the maxi-
mum response of the inelastic oscillator. This infor-
mation can be obtained via NDA, but requires thou-

sands of samples. In practice, the use of simpler
methods, such as an equivalent linearization tech-
nique (EqLT), using an elastic response spectrum
seems more reasonable; design spectra are being
developed on the basis of probabilistic approaches
such as uniform hazard spectrum (UHS) and con-
ditional mean spectrum (CMS, Baker & Jayaram
2008).

A UHS is obtained by plotting the response with
the same (i.e., uniform) exceedance probability for
a suite of elastic oscillators with different natural
periods; hence, a UHS represent no specific ground
motion (Abrahamson 2006). Although there exists
certain correlation among the spectral responses of
elastic oscillators to a ground motion (e.g., Baker
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& Jayaram 2008), perfect correlation is implicitly
assumed in the use of a UHS. In such a scenario,
the response may be overestimated via EqLT when
a very rare event is considered.

The correlation among spectral responses may
be considered by using a CMS, which is the mean
spectrum conditional to the event that the spectral
displacement of an elastic oscillator with a certain
period equals the displacement with, for example,
10% exceedance probability in 50 years. However,
the authors have shown that the EqLT using CMS
can provide fairly optimistic estimates (Mori et al
2011).

A new approximation method is proposed using
semi-theoretical solutions of the first passage prob-
lem by converting a probabilistic elastic displace-
ment response spectrum into a stationary standard
normal random process. The accuracy and applica-
bility of the method are discussed by using numer-
ical examples.

2. EQUIVALENT LINEARIZATION TECHNIQUES

2.1. Equivalent Linearization Technique
In an EqLT, the maximum displacement of an in-
elastic oscillator with the elastic natural period, T1,
and the damping factor, h1, is approximated by us-
ing the maximum displacement of an elastic oscil-
lator with the equivalent natural period, Teq, and the
equivalent damping factor, heq, as

SI
D(T1;h1)≈ SE

D(Teq;heq) (1)

where SD(T ;h) is the spectral displacement of an
oscillator with the natural period, T , and the damp-
ing factor, h; the superscripts E and I represent the
elastic and inelastic responses, respectively. OFten,
Teq and heq are expressed as functions of the max-
imum ductility factor of the inelastic oscillator, µ ,
which is defined as

µ = SI
D(T1;h1)/δy (2)

where δy is the yield displacement of the oscilla-
tor. Several linearization techniques have been pro-
posed (e.g., Iwan 1980, Shimazaki 1999); among
them, the following formulae proposed by Shi-
mazaki for an oscillator with a bilinear backbone
curve are used in this study.

Teq = T1 ·
√

µ
1− k2(1−µ)

(3)

heq = 0.25 · (1−1/
√

µ)+h1 (4)

where k2 is the second stiffness ratio of the back-
bone curve.

2.2. Capacity Spectrum Method
The capacity spectrum (CS) method (Freeman
1978) can be used to graphically estimate the in-
elastic displacement as the intersection of the ca-
pacity spectrum and the demand spectrum (DS). To
take into account the effect of heq, the demand spec-
trum must be adjusted by multiplying it with the
damping reduction factor, Fh(heq), defined as the
ratio of the spectral response of an elastic oscilla-
tor with a damping factor to that with the damping
factor, h1. Because heq is a function of the unknown
value µ , an iterative procedure is generally required
for its determination.

In contrast, the response can be estimated di-
rectly by considering the demand and capacity
spectra in an ordinal T -SD coordinate rather than
an SD-SA coordinate, as shown in Fig.1 (Mori &
Maruyama 2007). The SD axis can be transformed
linearly into the axis of the maximum ductility fac-
tor, µ , by dividing the SD axis by the yield displace-
ment of the inelastic oscillator. The T axis can also
be expressed in terms of µ because Teq is a function
of µ , as expressed by Eq.(3). Then, the capacity
spectrum can be obtained by connecting the corre-
sponding values in the linear (vertical) and nonlin-
ear (horizontal) µ coordinates.

On the basis of Eq.(3), the capacity spectrum,
CS(T ), of an inelastic oscillator with a bilinear
backbone curve and mass equal to unity can be ex-
pressed as,

CS(T ) = δy ·µ

=
9.8 ·Cy

k1
· (1− k2) ·T 2

T 2
1 − k2 ·T 2

=
9.8 ·Cy ·T 2

1
4π2 · (1− k2) ·T 2

T 2
1 − k2 ·T 2 ; T ≥ T1

(5)
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Figure 1: Capacity-Spectrum Method in T -SD Coordi-
nate)

where k1 and Cy are the elastic stiffness and yield
base shear coefficient of the oscillator, respectively;
the acceleration attributable to gravity is 9.8 (m/s2).

The following damping reduction factor (Kasai
et al 2003) is used in this research:

Fh(h) =


(D(h)−1) · (5 ·T )+1 ; 0 ≤ T ≤ 0.2

D(h) ; 0.2 ≤ T ≤ 2

D(h) ·
[√

h/h1 · (T −2)/40+1
]

; 2 ≤ T ≤ 8

(6)

where

D(h) =

√
1+25 ·h1

1+25 ·h
(7)

When the probability distribution and auto-
correlation function of the n-year maximum
SE

D(T ;h) are available, the exceedance probability
of the n-year maximum displacement response of
an inelastic oscillator can be estimated by Monte
Carlo simulation. This simulation finds the inter-
section of each sample of SE

D(T ;h), which is a de-
mand spectrum and CS(T )/Fh(heq), which is here-
after designated a factored CS, g(T ), (see Fig.1).
However, such a procedure requires extensive com-
putational effort, and thus, a more practical method
is investigated in the next section.

Figure 2: Schematic Illustration of CS and DS in Stan-
dard Normal Stochastic Process

3. CS METHOD AS FIRST PASSAGE PROBLEM

IN STANDARD NORMAL STOCHASTIC PRO-
CESS

In the CS method, the event that the equivalent nat-
ural period, Teq, is longer than teq corresponds to
the event that SE

D(T ;h) is always above the factored
CS in the range of (T1, teq) (the hatched area in
Fig.2(a)).

According to previous studies such as those by
Baker & Jayaram (2008), the auto-correlation func-
tion of SE

D(T ;h) is dependent only on the difference
between the logarithms of two natural periods as
shown in Eq.(8) and Fig.3 (Baker & Jayaram 2008).

KSD(ζ ) = 1− cos
(π

2
−0.366 · ln(10) · |ζ |

)
(8)

(ζ = log(T )− log(T1), T1 ≥ 0.109(s))

Therefore, SE
D(T ;h) can easily be transformed

into a stationary standard normal stochastic pro-
cess, X(τ) where τ = log(T ) + 1. Then, the CS
method can be interpreted as the first passage prob-
lem of a stationary standard normal stochastic pro-
cess crossing a factored CS, which is accordingly
transformed, downward as shown in Fig.2(b)(Mori
et al 2011). By this transformation, the DS is nor-
malized and the information regarding structural
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Figure 3: Auto-correlation Model of SE
D(T ;h)

characteristics and seismic hazard, except for the
auto-correlation function of SE

D(T ;h), is reflected to
the shape and position of the factored CS.

When SE
D(T,h) is lognormally distributed, it can

be transformed into a stationary standard normal
stochastic process by

X(τ) =
ln(SE

D(τ,h))−µln(SE
D(τ))

σln(SE
D(τ))

(9)

in which µln(SE
D(τ))

and σln(SE
D(τ))

are the mean and
standard deviation of ln(SE

D(τ)), respectively.

4. FIRST PASSAGE PROBLEM OF STATIONARY

STANDARD STOCHASTIC PROCESS
4.1. Theoretical Solution of Mean Crossing Rate
Consider an event that a stationary standard normal
stochastic process, X(τ), crosses a constant thresh-
old a downward. The mean crossing rate, νa, can
be expressed by

νa =
σV√
2π

ϕ(a) (10)

in which ϕ(•) is the standard normal probability
density function, and σV is the standard deviation
of V (τ) = dX(τ)/dτ , which can be expressed as

σV =

√
−d2KX(ζ )

dζ 2

∣∣∣∣
ζ=0

(11)

in which KX(ζ ) is the auto-correlation function of
X(τ), which depends only on the time difference,
ζ = τ1 − τ2.

If the events of crossing a threshold a are rare,
the occurrence of the events can be modeled by a
Poisson process, and the probability, P0(tL), that no
crossing occurs within time interval (0, tL) can be
approximately expressed as,

P0(τL) = P[X(τ)> a;0 < τ < τL]

= exp(−νa · τL) (12)

If the threshold varies with time, the mean cross-
ing rate can be expressed as,

νa(τ) =
[

A− ȧ
{

1−Φ
(

ȧ
σV

)}]
·ϕ{a(τ)} (13)

in which ȧ = da(τ)/dτ，Φ(•) is the standard nor-
mal probability distribution function, and

A =
σV√
2π

exp

{
−1

2

(
ȧ

σV

)2
}

(14)

Similar to Eq.(12), if the events of crossing
threshold a(τ) are rare, the occurrence of these
events can also be modeled by a nonstationary Pois-
son process, and the probability, P0(τL), that no
crossing occurs within time interval (0,τL) can be
approximately expressed as

P0(τL) = exp
(
−
∫ τL

0
νa(τ)dτ

)
(15)

4.2. Mean Crossing Rate Based on Simulation
To estimate a mean crossing rate by using Eqs.(12)
or (15), the second-order derivative of the auto-
correlation function of X(τ) must be available at
ζ = 0, as shown in Eq.(11). However, as shown
in Eq.(8) and Fig.3, the auto-correlation function of
SE

D(T ;h) is not continuous at ζ = 0; accordingly, it
is not differentiable.

Even if a mean crossing rate can be estimated ac-
curately, the exceedance probability cannot be ac-
curately estimated by using Eqs.(12) or (15) if the
threshold is close to the horizontal axis. Under such
circumstances, the crossing event would not be rare
and cannot be modeled by a Poisson process.

In this research, attempts are made to estimate
σV in Eq.(10) based on Monte Carlo simulation so
that the exceedance probability can be estimated by
using Eqs.(12) or (15).

The auto-correlation function expressed by
Eq.(8) is affected by the nonlinear transformation
of SE

D(T ;h) into a standard normal stochastic pro-
cess. If SE

D(T ;h) is lognormally distributed, the
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Figure 4: Auto-correlation Model of SE
D(T ;h)

auto-correlation function of X(τ) can be expressed
as (Der Kiureghian and Liu 1985)

KX(ζ ) =
ln
(
1+KS(ζ ) ·VSD(T1) ·VSD(T )

)√
ln
(

1+V 2
SD(T )

)
·
√

ln
(

1+V 2
SD(T )

) (16)

in which VSD(T ) and KS(ζ ) are the coefficient of
variation (c.o.v.) and the auto-correlation function
of SE

D(T ;h), respectively. Fig.4 illustrates examples
of KX(ζ ) when SE

D(T ;h) is lognormally distributed
with constant c.o.v. equal to 0.5, 1.0, 1.5, or 2.0
along with that expressed by Eq.(8).

4.2.1. σV for Crossing Constant Threshold
σV is determined iteratively for each constant
threshold within the range of a = −3 to 2.5 by
Monte Carlo simulation with 40,000 samples so
that the exceedance probability estimated by the
simulation agrees with that estimated by Eqs.(10)-
(12). Fig.5 shows examples of agreement and non-
agreement. The increment of τ in the simulation is
set to be 0.01.

During the course of research, it was found that
a constant value of σV cannot provide an accurate
estimate of the exceedance probability, particularly
when a is large (see Fig.5(b)). Thus, σV is modeled
here as a function of τ , expressed by Eqs.(17)-(19).

σV (a,τ,dK) = σV 0(a) ·{1− f (τ) ·g(a,dK)} (17)

in which

f (τ) = 0.68 ·Φ
(

ln(τ)− ln(0.06)
0.5

)
(18)
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Figure 5: Example of Satisfactory Agreement and Non-
agreement of Exceedance Probability between Simula-
tion and Semi-theoretical Result (a = 1)
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Figure 6: S(dK)andR(dK) Estimated by Simulation

g(a,dK) =

 1−Φ
(√

−a−R(dK)

S(dK)

)
(a < 0)

1 (a ≥ 0)
(19)

f (τ) in Eq.(17) considers that σV depends on τ ,
and g(a,dK) in the equation considers that the de-
pendency of σV on τ depends on threshold level a.
In Eq.(19), R(dK) and S(dK) are determined itera-
tively, as shown in Fig.6 and modelled by a linear
function of dK = (KX(0.01)−KX(0))/0.01 as

R(dK) = 0.503 ·dK +2.54 (20)
S(dK) = 0.162 ·dK +0.815 (21)

Then, σV 0(a) in Eq.(17) is determined for each
threshold based on the simulation.By expressing
the horizontal axis with log{1−Φ(a)} and the ver-
tical axis with log{σV 0(a)}, σV 0(a) is intriguingly
plotted on a straight line as shown in Fig.7. Accord-
ingly, σV 0(a) is modeled as

σV 0(a) = 10{k(dK)−1.034·log(1−Φ(a))} (22)
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in which

k(dK) =−0.42 ·dK +0.686 (23)

4.2.2. σV for Crossing Time-varying Threshold
When the threshold varies with time, further mod-
ification on the mean crossing rate is necessary.
Based on the iterative analysis, the mean cross-
ing rate is determined considering the instantaneous
slope of the threshold, ȧ, as

νa(τ, ȧ) = νa(τ) ·
(

1+ ȧ · 1
h(dK,τ)

)
(24)

in which νa(τ is estimated by using Eq.(13) with
σV estimated by Eqs.(10)-(12), and

h(dK,τ) = f1(dK,τ)
·(1 + f2(dK,τ) ·g1(τ) ·g2(dK,τ))(25)

where

g1(τ) =


−0.68 ·Φ

( τ
0.5

)
; ȧ ≤ 0

−0.68 ·Φ
(

τ −0.1 · ȧ
0.5

)
; ȧ > 0

(26)

g2(dK,τ) =


1−Φ

(√
a(τ)−(0.503·dK+2.54)

0.162·dK+0.815

)
;a(τ)≤ 0

1 ;a(τ)> 0
(27)

f1(dK,τ) =

{
f11 −1.5 · f12 ; ȧ ≤−1.5
f11 + ȧ · f12 ; ȧ >−1.5

(28)

f11 = 0.56−0.125 ·dK
+a(0) · (−0.139−0.054 ·dK) (29)

f12 = 0.493+0.384 ·dK
+a(0) · (−0.096−0.078 ·dK) (30)

f2(dK,τ) =

{
f21 + ȧ · f22 ; ȧ ≤ 0.5
f21 +0.5 · f22 ; ȧ > 0.5

(31)

f21 = 0.832+0.018 ·dK
+a(0) · (−0.06−0.009 ·dK) (32)

f22 = −0.489−0.276 ·dK
+a(0) · (−0.008−0.032 ·dK) (33)

5. NUMERICAL EXAMPLES

Fig.8 shows the maximum ductility factor of inelas-
tic oscillators with elasto-plastic backbone curves.
It is assumed that the oscillator is subjected to a
seismic hazard with the following characteristics:

- SE
D(T ;h) is lognormally distributed, with auto-

correlation function given by Eq.(8). The case
when SE

D(T ;h) is normally distributed is also
considered, simply for reference.

- The 90% non-exceedance probability of the
response spectrum is given by the design spec-
trum prescribed in the Japanese seismic pro-
visions as shown in Fig.9. The characteristic
period of the response spectrum, Tg, defined
as the boundary between the acceleration con-
stant domain and the velocity constant range,
is equal to 0.86 s.

- The c.o.v. of SE
D(T ;h), which is lognormally

distributed, is constant for any value of the
natural period and equal to 0.5, 1.0, 1.5, or
2.0. When SE

D(T ;h) is normally distributed,
the c.o.v. is constant and equal to 0.5.

The following characteristics of the oscillator are
considered:
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Figure 8: Exceedance probability of maximum ductility factor

- Yield base shear, Cy =0.3 or 0.5.

- Natural period, T1 = α ·Tg with α =0.25, 0.5,
or 1.0.

- Damping factor, h=0.05

The CS transformed into the standard normal
stochastic process is illustrated in Fig.10.

In Fig.8, the maximum ductility factors esti-
mated by Monte Carlo simulation as rigorous esti-
mates, and those by EqLT using UHS, are presented
by red and yellow lines, respectively. As shown in
the figure that EqLT using UHS provides an erro-
neous estimate, particularly when the c.o.v. of the
Cy is large and α is small. On the contrary, the pro-
posed method provides a fairly accurate estimate in
most cases.

6. CONCLUSIONS

In this study, an approximate method of estimating
the exceedance probability of the maximum duc-
tility factor of an inelastic oscillator is proposed
based on the equivalent linearization technique us-
ing a capacity spectrum (CS) method. The CS
method seeks to determine the first point at which
demand spectrum (DS) crosses the CS. Because the
auto-correlation function of response spectrum is
only a function of the difference between the log-
arithms of two natural periods, the response spec-
trum, which is DS in the CS method, can easily
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Figure 9: Design Spectrum in Japanese Seismic Provi-
sion
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Figure 10: CS in Standard Normal Stochastic Process

be transformed into a stationary standard normal
stochastic process. Thus, the CS method can be in-
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terpreted as a first passage problem of a stationary
standard normal stochastic process. Because the
auto-correlation function is not continuous when
the difference is equal to zero, and because the
crossing event cannot be modeled as a Poisson pro-
cess when CS is close to the horizontal axis, the
mean crossing rate is estimated semi-theoretically
based on Monte Carlo simulation. The results are
further modified to create a general model. The ac-
curacy of the proposed method is demonstrated by
using numerical examples.

In this study, only a single spectral displacement
is considered. Because the preceding conclusions
may be dependent on the shape of the displacement
spectrum, further investigation is necessary, along
with possible improvement and simplification of
the proposed method.
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