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ABSTRACT: Probability density evolution method (PDEM) provides a feasible approach for dynamic 

responses analysis of nonlinear stochastic structures. The key issue of PDEM is to solve a generalized 

density evolution equation (GDEE). Previously, finite difference method (FDM) is resorted to solve 

GDEE, thus getting the probability density function (PDF) result directly. In this paper, a two-step 

method that improves the result of FDM by means of nonlinear wavelet density estimation is proposed. 

By taking advantage of the property of multi-resolution of wavelet, the proposed method tends to give 

a more accurate result. An 8-story reinforced concrete shear frame with Bouc-Wen hysteretic restoring 

forces subjected to seismic excitation is investigated. The result shows that the proposed method 

performs better than FDM. 

 

1. INTRODUCTION 

Deterministic finite element method has been 

studied in depth, and is widely applied in 

practical engineering problems to date. On the 

other hand, there are a lot of inevitable 

randomness in many aspects of structural 

analysis, such as material properties, geometric 

sizes, boundary conditions and applied loads. 

Variability of these parameters may lead to 

considerable fluctuation in structural response, 

and may even result in structural failure. In order 

to trace the propagation of randomness and 

measure its influence on structural response, it is 

necessary to resort to stochastic finite element 

method (SFEM). 

Study on SFEM was initiated in 1970’s. 

Over the past four decades, great developments 

have been achieved in this field. Available 

approaches by far can be broadly divided into 

Monte Carlo method (MCM), Perturbation 

stochastic finite element method (PSFEM), and 

orthogonal polynomial expansion method 

(OPEM). Pioneering work to introduce MCM 

into stochastic structural analysis was conducted 

by Shinozuka and Jan (1972). Despite its 

versatility, MCM is seldom applied to complex 

structures due to its prohibitive computational 

consumption. In order to increase the efficiency 

of MCM, Shinozuka and Deodatis (1988) and 

Yamazaki et al. (1988) introduced the Neumann 

expansion technique so that the time-consuming 

matrix inversion operation in each random 

sampling is avoided. Hisada and Nakagiri (1981) 

proposed PSFEM by using stochastic 

perturbation technique to deal with fluctuation of 

random parameters. Frangopol et al. (1996) 

carried out nonlinear static analysis of concrete 

frame structures and concrete plates by 

combining PSFEM with concrete constitutive 

law. First order PSFEM is rather effective on 

condition that the random parameters are of very 

small variability. Second order PSFEM has 

looser limit on the variability of the random 

parameters, but is of very low efficiency and thus 

not suitable for practical engineering applications. 

Moreover, the secular terms problem (Liu et al. 

(1988)) will result in large error when applied to 

dynamic problems. Sun (1979) proposed a new 

class of numerical algorithm to expand the 

structural response by Hermit orthogonal 

polynomial when trying to solve random 

differential equations with random coefficients. 
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Enlightened by Sun’s work, Jensen and Iwan 

(1991,1992) applied OPEM into structural 

seismic response analysis. Ghanem and Spanos 

(1991) suggested to use chaos polynomial as 

orthogonal basis. By applying the sequential 

orthogonal decomposition principle in random 

space, Li (1995a, 1995b) independently derived 

an extended system method. OPEM is not 

troubled by the limit on the variability of random 

parameters and the secular terms problem. 

However, when the number of random 

parameters is large, order of the extended system 

will be extremely higher than that of the original 

one, thus making the computational consumption 

almost unbearable.  

Recently, Li and Chen (2004,2005) 

developed a new class of PDEM, where they 

derived a GDEE based on the principle of 

preservation of probability. FDM was adopted to 

obtain the evolution of PDF of the specific 

dynamic response. In this paper, a two-step 

density estimation method that improves the 

result of FDM by means of wavelet density 

estimation is proposed. An 8-story reinforced 

concrete shear frame with Bouc-Wen hysteretic 

restoring forces subjected to seismic excitation is 

investigated. 

2. PROBABILITY DENSITY EVOLUTION 

METHOD FOR STOCHASTIC 

STRUCTURAL RESPONSE ANALYSIS 

For a general nonlinear multi-degree-of-freedom 

(MDOF) system, its equation of motion is 

       , ,t  M X C X f X F     (1) 

where M , C  are mass and damping matrix of 

order n, respectively; f is a n-dimensional 

nonlinear restoring force vector; F is a n-

dimensional external excitation vector;

 1, , s  is a s-dimensional random vector 

that contains all the random factors in both the 

structural parameters and the external excitation 

whose joint probability density function is 

 p  . Its initial condition is 

    0 0 0 0,t t X x X x  (2) 

It is obvious that Eq. (1) has a formal 

solution 

    ,t tX H   (3) 

To consider a state space spanned by  ,X  , 

according to the principle of preservation of 

probability, a first order linear partial differential 

equation can be derived(Li and Chen 

(2004,2005)) 
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By integrating both sides of Eq. (4) with respect 

to 1 1, , , , ,l l nx x x x , we can get a one-

dimensional partial differential equation 
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where
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Note that in the above integration procedure, the 

following boundary condition is used 

  lim , , 0; 1,2, ,
jx

p t j n


 X x   (7) 

For notational convenience, omit the subscript l 

and we can get 
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with the initial condition 

      0 0, ,Xp x t x x p     (9) 

In order to get the final result  ,Xp x t , it is 

necessary to partition the whole random space   

uniformly (Li and Chen (2007)) and integrate 

both sides of Eq. (8) with respect of   in each 

subspace 
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 (10) 
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where  1, ,q selq N   are mutually disjoint and 

complementary subspaces of  ;  1, ,q selq N  

are corresponding representative points. In the 

same way, Eq. (9) turns to be 
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where  1, ,q selP q N  are called assigned 

probabilities. As long as     , 1, ,
q

X selp x t q N  

are obtained, it is easy to further get the final 

result  ,Xp x t  by summation 
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3. WAVELET DENSITY ESTIMATION 

Wavelets are a new family of localized basis 

functions with a combination of powerful 

features, such as orthonormality, locality in time 

and frequency domains, multi-resolution, 

different degrees of smoothness and fast 

implementations. These basis functions can be 

used to approximate a large class of functions. 

Let  
1

n

i i
X


 be a stationary process and  f x  

the probability density function. By invoking 

wavelet multi-resolution analysis,  f x  can be 

expanded as follows 
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where  x  and  x are Daubechies scaling 

function and wavelet function, respectively. 

According to the orthogonality of Daubechies 

basis functions, we have 
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Since  f x  is unknown, the unbiased estimation 

of each coefficient can be computed as follows 

 

 

 

0 0, ,

1

, ,

1

1
ˆ

1ˆ

n

j k j k i

i

n

j k j k i

i

c x
n

d x
n

















 (15) 

It is worth noting that only a small number of 

coefficients are nonzero since the Daubechies 

wavelets are compactly supported. A simple 

approach to estimate  f x  is to determine an 

appropriate cutoff resolution 0j  and ignore the 

wavelet terms in Eq. (13) 

    
0 0, ,

ˆ ˆ
l j k j k

k

f x c x  (16) 

where the subscript l  denotes a linear wavelet 

density estimator. In order to increase the 

accuracy of the estimator as well as ensure 

sufficient smoothness, Donoho et al. (1995) 

proposed a nonlinear wavelet density estimator 
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where 1j  is a cutoff resolution,     is a 

threshold criterion, and   is a threshold value. 

Analytical expressions of hard threshold and soft 

threshold are as follows, respectively 

    , , 0,
h d d d d      I R  (18) 

      , sgn , 0,
s d d d d d        I R  (19) 

where  I  is an indicator function and  sgn   is 

a sign function. Eq. (19) is adopted in this paper 

due to the fact that soft threshold performs better 

than hard threshold from the perspective of 

smoothness. It is proved that theoretically a 

nonlinear wavelet density estimator has an 

optimal convergence rate provided that 1j  and   

are properly chosen. Limited to space of the 

paper, these details are not described here, and 

interested readers can refer to Vannucci and 

Vidakovic (1997). 

In essence, wavelet density estimators can 

be classified into orthogonal series estimators. 

However, since usual orthogonal basis functions 

(e.g. Fourier series) are global basis functions, it 
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is quite difficult for their corresponding 

estimators to adapt to the local behavior of the 

underlying density function. On the contrary, 

wavelet density estimators can easily describe 

the local information of the density function 

without sacrificing the merit of orthogonal 

estimators. Although kernel density estimators 

can give satisfactory results for a wide range of 

problems by choosing appropriate kernel 

functions and bandwidths, they fail to deal with 

density functions that contain high-frequency 

oscillations or discontinuities. Wavelet density 

estimators, however, show distinct advantage in 

this respect due to their two independent levels 

of smoothing. To be specific, the scaling terms 

provide a global approximation of the density 

function and the wavelet terms provide a local 

adjustment. From this point of view, a linear 

wavelet density estimator is similar to a kernel 

density estimator with the resolution analogous 

to the bandwidth, while a nonlinear estimator is 

to some extent an enhancement. 

4. A TWO-STEP DENSITY ESTIMATION 

METHOD 

Since Eq. (10) is a simple first order linear partial 

differential equation, it is natural to solve it by 

FDM, which is usually done previously. 

Computation experiences indicate that, in general, 

satisfactory results can be obtained in this way. 

Despite its feasibility and effectiveness, FDM 

still exposes an obvious shortcoming which 

results from its fixed finite difference grid. In 

fact, as for the problem concerned in this paper, 

the grid size of FDM plays an important role in 

striking a balance between the accuracy and 

smoothness of the finite difference result. To be 

specific, the smaller the grid size, the more 

accurate the result while the larger the grid size, 

the smoother the result. Hence, when a grid size 

is determined beforehand, it is probable that it is 

appropriate for some instants while larger or 

smaller for others. In other words, it is almost 

impossible to determine a grid size that is 

optimal for all instants. On the other hand, even 

at a specific instant, a fixed grid size may, in 

some cases, fail to give a satisfactory result since 

there may be high-frequency oscillations or 

discontinuities that cannot be reflected by fixed 

grid FDM. It is worth noting that nonlinear 

wavelet density estimation method can to some 

extent overcome these two difficulties. For one 

thing, at any instant, it is easy to find an optimal 

resolution which plays the same role as grid size 

in FDM; for the other, at a specific instant, the 

scaling terms in Eq. (17) provide a global 

approximation of the density function and the 

wavelet terms provide a local adjustment.  

Based on the points discussed above, it is 

beneficial to further improve the result of FDM 

by nonlinear wavelet density estimation method. 

In other words, a two-step density estimation 

method is suggested, which is to determine a 

small enough grid size beforehand and solve 

GDEE by FDM followed by nonlinear wavelet 

density estimation. It is worth noting that the 

proposed method is in essence a kind of 

predictor-corrector algorithm. The specific 

solving procedure is listed below 

1. Select representative points  1, ,q selq N  

that are uniformly distributed in   and 

calculate the corresponding assigned 

probabilities qP ; 

2. For each representative point, solve Eq. (1) to 

obtain the corresponding velocity time 

history of interest  ,qH t ; 

3. For each  ,qH t , solve Eq. (10) by FDM 

and get the numerical solution    ,
q

X j mp x t , 

where jx j x   0, 1,j   , mt m t 

 0,1,m  , x  and t  are grid size along x-

axis and t-axis, respectively; 

4. Sum     , 1, ,
q

X j m selp x t q N  together 

      
1

, ,
selN

q

X j m X j m

q

p x t p x t


   (20) 

5. Substitute  ,Xp x t  into Eq. (14) to get the 

scaling coefficients and wavelet coefficients; 
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6. Substitute the scaling coefficients and 

wavelet coefficients into Eq. (17) to get the 

final result. 

It should be noted that since FDM has given a 

preliminary PDF, Eq. (14) instead of Eq. (15) is 

used to calculate the coefficients.  

5. NUMERICAL EXAMPLE 

In order to demonstrate the feasibility and 

accuracy of the proposed method, an 8-story 

reinforced concrete shear frame (see Figure 1) 

subjected to seismic excitation (see Figure 2) is 

studied here.  

Structural parameters are as follows: the 

height and cross section dimensions of the 

columns of the first floor are 1 4mh   and 

600mm 600mm  while those of the columns of 

other floors are 2 3mh   and 500mm 500mm ; 

the mass of each floor is 51.1 10 kgm  ; the 

elastic modulus of concrete E  is assumed to be a 

normal random variable with mean value 
103 10 Pa  and coefficient of variation 0.1; the 

Bouc-Wen model is adopted as the nonlinear 

shear hysteretic model with parameters 0.01  , 

1A  , 1n  , 15   and 0.15  . El Centro E-W 

wave with the peak acceleration tuned to
24.9m / spA   is taken as the excitation.  
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Figure 1: An 8-story stochastic structure 

 

 
Figure 2: Exciting ground motion 

The inter-story displacement of the first 

floor is selected as the target response. 128 

representative points are selected, and both FDM 

and the proposed method are carried out. In order 

to compare the results of FDM and the proposed 

method, MCM with 10,000 simulations is also 

conducted and its result is used as reference. For 

notational convenience, the proposed method is 

abbreviated as DWM. 

 

 
Figure 3: Comparison of PDFs at 3 sec and 10 sec 

among results evaluated by FDM, DWM and MCM 

 

In Figure 3, PDFs at two different instants 

evaluated by FDM, DWM and MCM are given. 

At instant 3sect  , the PDF is a unimodal 

function. Although both PDFs fit well with the 

MCM result on the whole, the DWM result is 

obviously superior to the FDM result in terms of 

peak value and right tail. In order to measure the 

goodness of fit quantitatively, relative entropy is 

used here. The smaller the relative entropy is, the 

better the corresponding PDF fits with the 

reference. The relative entropy between the FDM 

result and the MCM result is 0.1052, while that 

between the DWM result and the MCM result is 

only 0.0582. It is no surprise that this result is 

consistent with the intuitive judgment. At instant 
10sect  , the PDF turns into a bimodal function. 
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Similarly, both PDFs fit well with the MCM 

result on the whole, but the DWM result is better 

than the FDM result in terms of right peak value 

and right tail. Besides, the DWM result is less 

oscillatory than the FDM result in the middle 

part. Consistently, two relative entropies are 

0.0488 and 0.0713, respectively. 

6. CONCLUSIONS 

GDEE is a governing equation that determines 

the probability density evolution process of a 

general stochastic dynamic system. A predictor-

corrector strategy that amends the preliminary 

GDEE result by nonlinear wavelet density 

estimation method is proposed in this paper. An 

8-story reinforced concrete shear frame is studied. 

The result indicates that the proposed two-step 

method outperforms FDM. More specifically, the 

proposed method tends to give PDF result that 

fits better to the underlying real solution near the 

peak(s) and in the tail than that by FDM.  
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