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ABSTRACT: Reliability-based serviceability limit state (SLS) models for foundation elements 
commonly employ a two-parameter load-displacement model to relate imposed displacements to a 
particular load or vice versa. Numerous studies have shown that the load-displacement model 
parameters tend to be correlated; subsequently, considerable effort is required to appropriately model 
the correlation structure for Monte Carlo-based reliability simulations. This paper uses copula theory, a 
database of high quality full-scale loading tests of spread footings on aggregate pier (i.e., stone column) 
reinforced clay, and a recently developed ultimate limit state (ULS) model to investigate the effect of 
various correlation structures on the probability of exceeding the SLS. “Lumped” load and resistance 
factors, which conveniently relate the portion of mobilized resistance to a given footing displacement, 
accounting for uncertainty in the applied load, ULS resistance of the clay subgrade, allowable 
displacement, and footing size, generated using various assumed correlation structure models are 
compared. Additionally, the penalty in reliability associated with ignoring the bivariate correlation is 
explored for comparison.  This study demonstrates that selection of the appropriate copula represents a 
critical task in the development of calibrated reliability-based geotechnical SLS design approaches. 

 

1. INTRODUCTION 
Geotechnical serviceability limit state (SLS) 
design for foundations is performed to limit 
displacements for a given structure to an 
acceptable level. Numerous SLS procedures have 
been recently developed that use a two-parameter 
load-displacement model to relate the imposed 
displacements to a particular load or vice versa. 
Such functions have been developed for both 
shallow foundations (e.g., Uzieli and Mayne 
2011, 2012; Huffman and Stuedlein 2014, 2015) 
and deep foundations (e.g., Phoon and Kulhawy 
2008, Dithinde et al. 2011, Li et al. 2013). Full-
scale foundation loading tests are preferably used 
to calibrate the load-displacement models, and 
the observed dispersion of the loading test data 
are then used to develop the reliability-based 
limit state function. Many of these recent studies 

have noted that the parameters characterizing the 
selected load-displacement model are correlated. 
Effort is therefore required to appropriately 
characterize and model the correlation structure 
and account for it in reliability-based design 
procedures. 

Where previous studies by Huffman and 
Stuedlein (2014, 2015) use selected bivariate 
load-displacement model parameter correlation 
structure to construct “packaged” SLS design 
methodology, this paper expands the previous 
work by investigating the impact of using several 
copula models of various degrees of fitting 
quality on reliability calibrations. The impact on 
reliability calibrations are evaluated using a 
database of full-scale loading tests of stone 
column- (or aggregate pier-) reinforced clay. 
First, an empirically-derived ultimate limit state 
(ULS) model is reviewed, followed by the 
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presentation of the selected SLS function. Next, 
the SLS calibration procedure is described within 
the Monte Carlo simulation framework, which 
allowed the back-calculation of a ‘lumped” load 
and resistance factor that conveniently relates the 
portion of mobilized resistance to a given footing 
displacement, accounting for uncertainty in the 
applied bearing pressure, ULS resistance of the 
clay subgrade, allowable displacement, and 
footing size. The effect of the correlation 
structure between the bearing pressure-
displacement model parameters is then 
investigated using well-known copula functions, 
namely, the Gaussian, Frank, Clayton, and 
Gumbel copulas. This study demonstrates that 
the selection of the appropriate copula represents 
a critical task in the development of 
appropriately calibrated reliability-based 
geotechnical SLS design approaches with 
significant impact to the allowable bearing 
pressure of shallow foundations. 

2. SELECTED LIMIT STATE MODELS 
This study uses a database of footing loading 
tests on aggregate pier-reinforced clay described 
by Stuedlein and Holtz (2013, 2014) and 
Huffman and Stuedlein (2014) to demonstrate 
the role of correlation structure model on the 
computed reliability for the SLS. Stuedlein and 
Holtz (2013) used the database to develop a 
bearing capacity (i.e., ULS) function.  
Subsequently, Huffman and Stuedlein (2014) 
developed an SLS model for allowable 
immediate displacement. Stuedlein and Holtz 
(2013) developed the ULS function using 
multiple nonlinear regression analyses to provide 
a predicted bearing capacity, qult,p, from the 
capacities interpreted, qult,i, from the loading 
tests. The predicted capacity of an isolated, rigid 
spread footing supported on aggregate pier 
improved clay is (in kPa; Stuedlein and Holtz 
2013): 

ln൫ݍ௨௟௧,௣൯ ൌ ܾ଴ ൅ ܾଵܵ௥ ൅ ܾଶܽ௥ ൅ ܾଷ݀௙ܵ௥ ൅
ܾସ߬௠ିଵ ൅ ܾହ߬௠  (1) 

where Sr is the slenderness ratio of the aggregate 
pier(s), equal to Sr = Lp/dp (i.e., ratio of pier 
length to pier diameter), ar is the area 
replacement, equal to the ratio of the pier area to 
the foundation footprint, df is the footing 
embedment depth (in meters), and m is the 
matrix soil shear mass participation factor, given 
as m = su/ar, where su is the undrained shear 
strength of the matrix soil (in kPa). The best-fit 
model coefficients are b0 = 4.756, b1 = 0.013, b2 
= 1.914, b3 = 0.070, b4 = 13.71, and b5 = 0.005.  
Equation (1) is characterized with a mean bias 
(i.e., average ratio of qult,i to qult,p) of 1.00 and 
coefficient of variation (COV) in point bias of 
13.1 percent (Stuedlein and Holtz 2013). 

Huffman and Stuedlein (2014) used Eq. (1) 
as a reference capacity, qref, to formulate a SLS 
power law describing immediate displacement, 
, of footings on aggregate pier-reinforced clay. 
The best-fit SLS model for the displacement-
dependent mobilized resistance, qmob, was 
determined equal to:  

௠௢௕ݍ ൌ 	 ܿଵቀߜ ᇱൗܤ ቁ
௖మ
 ௥௘௙                           (2)ݍ

where B’ = the equivalent footing diameter. For 
square footings, B’ is defined as the diameter that 
provides the same area as that of a square footing 
(Mayne and Poulos 1999).  Fitting coefficient c1, 
and exponent, c2, were determined for each of 
the loading tests in the database using least 
squares optimization. 

3. MONTE CARLO-BASED 
PERFORMANCE FUNCTION 
SIMULATION 

The performance function, P, equal to the margin 
of safety that limits the probability of failure, pf, 
to a pre-determined magnitude, was used to form 
the probabilistic framework for incorporating the 
observed or assumed uncertainty in the SLS 
function. The general framework is given by 
(Baecher and Christian 2003, Phoon 2008): 

௙݌ ൌ Prሺܴ െ ܳ ൏ 0ሻ ൌ Prሺܲ ൏ 0ሻ											(3) 

where R = the resistance, and Q = the load. 
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For the current study, the resistance, R, is 
estimated from Eq. (2) and can be incorporated 
as follows: 

௙݌ ൌ Pr൭ܿଵ ൭
௔ߜ

ᇱൗܤ ൱

௖మ

௨௟௧,௣ݍ െ ௔௣௣ݍ ൏ 0൱          

					ൌ Pr൭ܿଵ ൭
௔ߜ

ᇱൗܤ ൱

௖మ

൏
௔௣௣ݍ
௨௟௧,௣ݍ

൱						 				ሺ4ሻ 

where qapp = the applied bearing pressure, 
associated with an allowable displacement, a. 
The reference capacity, qref, was replaced with 
the predicted capacity, qult,p, in Eq. (4).  

Normalized unit mean random variables for 
qult,p and qapp, each associated with an observed 
or assumed distribution (e.g., Uzielli and Mayne 
2011), can be incorporated into Eq (4) for ease of 
simulation as: 

௙݌ ൌ Pr൭ܿଵ ൭
௔ߜ

ᇱൗܤ ൱

௖మ

൏
௔௣௣,௡ݍ ∗ ∗௔௣௣ݍ

௨௟௧,௡ݍ ∗ ௨௟௧ݍ
∗ ൱ 

ൌ Pr	൭ܿଵ ൭
௔ߜ

ᇱൗܤ ൱

௖మ

൏ ଵ

ట೜

௤ೌ೛೛∗

௤ೠ೗೟
∗ ൱           (5) 

where qapp,n and qult,n equal the nominal values of 
the applied bearing pressure and ultimate 
resistance, respectively, and q*

app and q*
ult 

represent the normalized random values. By 
dividing qapp,n by qult,n, Eq. (5) becomes unitless 
and allows the introduction of q, used to 

represent a combined (i.e., “lumped”) load and 
resistance factor. Thus, pf can then be solved in 
terms of q based on a predetermined allowable 
displacement and given footing size.   

Monte Carlo simulations (MCS) were used 
to solve pf and the associated reliability index, , 
using prescribed magnitudes of ψq ranging from 
1 to 20. Table 1 summarizes the pertinent 
characteristic distributions estimated or assumed 
for the MCS. Each simulation included 
approximately 5x106 randomly-generated load 
and resistance variables (c1, c2, a, B’, q*

ult and 
q*

app) to solve the performance function.  The 
MCS was repeated approximately 3,600 times in 
order to estimate  and pf for different 
combinations of a, B’, COV(q*

app), COV(a), 
and ψq for each correlation structure model.  

Once calibrated using the MCS, the 
allowable bearing pressure, qallow, satisfying the 
given serviceability limit state of immediate 
displacement for spread footings supported on 
aggregate pier reinforced clay may be computed 
using (Huffman and Stuedlein 2014): 

௔௟௟௢௪ݍ ൌ ଵ

ట೜
൭ܿଵ ൭

௔ߜ
ᇱൗܤ ൱

௖మ

൱  ௨௟௧,௣ (6)ݍ

The resistance parameters (q*
ult, c1 and c2) used 

for the MCS were established using the results of 
the loading test database as described earlier.  

 

Table 1. Summary of resistance, load, and displacement parameters used in the Monte Carlo Simulations 
(adapted from Huffman and Stuedlein 2014). 

Parameter Nominal Value COV (%) Distribution 
c1 3.088 40.7 lognormal 

c2 0.454 23.3 lognormal 

ultq  1.00 13.1 lognormal 

appq  1.00 10, 20 lognormal 

a  (mm) 
2.5, 5, 7.5, 10, 12.5, 15, 20, 25, 30, 37.5, 
50, 75, 100, 112.5, 125, 150, 187.5, 200, 

225, 250, 300, 400, 500, 600  
0, 20, 40, 60 lognormal 

'B  (m) 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 2 normal 
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Lognormal distributions were selected to 
represent each of the resistance parameters based 
on Anderson-Darling (1952) goodness-of-fit 
tests evaluated with a significance of 5 percent.  

The normalized applied bearing pressure 
parameter q*

app, used with the MCS was 
established based on accepted loading scenarios 
consistent with national codes (e.g., AASHTO 
2012) and similar reliability analyses performed 
by others (e.g., Phoon and Kuhawy 2008, Uzielli 
and Mayne 2011, and Li et al. 2011). 

The range in allowable displacement, a, 
and equivalent footing diameter, B’, were 
selected to provide a normalized allowable 
displacement (i.e., a/B’) between 0.005 and 
0.20, capturing the typical range in spread 
footing design.  However, it should be noted 
some values of a included herein are larger than 
typical design scenarios. A range in the COVs 
was assumed for a (see Table 1) owing to the 
lack of a clear consensus associated with 
allowable structure displacements, and provides 
user flexibility (Huffman and Stuedlein 2014).  

4. USE OF COPULA THOERY TO MODEL 
CORRELATION STRUCTURE 

The model parameters associated with the 
selected SLS power law model showed moderate 
to strong dependence, which must be accounted 
for to avoid biases that can influence the 
reliability simulations (e.g., Phoon and Kulhawy 
2008; Uzielli and Mayne 2011, 2012; Tang et al. 
2013). Such dependence was observed between 
the c1 and c2 parameters, as shown in Figure 1, 
and associated with a sample Kendall’s Tau 
correlation coefficient, , of 0.43. Dependence 
between other variables included in the reliability 
simulations were also investigated, but none 
were observed (Huffman and Stuedlein 2014).  

To evaluate the influence of correlation 
structure model on the reliability calibrations, 
bivariate Gaussian, Frank, Clayton and Gumbel 
copula functions were investigated. Copula 
functions can be used to describe the probable 
values of one variable given the values of 
another, and a full description of the distribution 

of the each variable is established by coupling 
the results of the copula analyses to the marginal 
distribution of each variable (Nelson 2006). 

 

Figure 1. Comparison of 1,000 c1-c2 pairs simulated 
using various copula models with the sample pairs 
derived from the load test database.  
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Copula functions, each with its own 
formulation for associating ranked variables, 
allow the description of different correlation 
structures. The bivariate Gaussian copula models 
an elliptical correlation (positive or negative 
correlation) between the two parameters being 
investigated, whereas the Frank copula models a 
uniform linear correlation (positive or negative). 
The Clayton and Gumbel copulas model positive 
correlation only, with the Clayton copula 
providing for greater tail dependence at small 
values and the Gumbel copula providing for 
greater tail dependence at larger values. Each of 
these copulas are calibrated with a copula 
parameter, , which is a function of the sample 
, to describe the relative strength of the 
correlation.   

Copula functions assume uniformly 
distributed marginal distributions in rank [0,1] 
space. Therefore, standardized rank values u1 and 
u2 of the power law model parameters (c1 and 
c2), were calculated by dividing the rank values 
by the total number of values in the dataset. The 
u1 and u2 values were used with  to establish 
the copula parameter, , and the copula 
probability functions. The relationship between 
two variables (e.g., c1 and c2) and a 
two-parameter copula probability function, Cc1,c2, 

is determined by fitting to  using (e.g., Nelson 
2006, Li et al. 2013): 

,ఛሺܿଵߩ ܿଶሻ ൌ
							4 ׬ ׬ ௖భ,௖మܥ

ଵ
଴

ሺݑଵ, ,ଵݑ௖భ,௖మሺܥଶሻ݀ݑ ଶሻݑ
ଵ
଴ െ 1		 (7) 

The best-fit copula was evaluated using the 
Akaike information criteria (AIC; Akaike 1974) 
and Bayesian information criteria (BIC; Schwarz 
1978). The probability functions for the different 
copulas investigated herein and the best-fit 
copula parameters determined from Eq. (7) are 
summarized in Table 2. 

The lowest AIC and BIC values were 
realized using the Gumbel copula, indicating that 
it provided the best fit among the selected copula 
types for modeling the correlation structure 
between bearing pressure-displacement model 
parameters. As a result, the Gumbel copula was 
used in the reliability calibrations reported by 
Huffman and Stuedlein (2014). The degree of fit 
between the sample c1-c2 and 1,000 simulations 
for each copula model is shown Figure 1. The 
simulated c1-c2 pairs appear to closely 
correspond to the observed values for each 
copula investigated as shown in Figure 1 and by 
comparison of . However, the selection of the 
copula model strongly impacts the reliability of 
the allowable bearing pressure, as described 
subsequently. 

5. EFFECT OF CORRELATION 
STRUCTURE ON THE CALIBRATED 
LOAD AND RESISTANCE FACTOR 

The MCS of the performance function resulted in 
smooth relationships between the lumped load 
and resistance factor, q, and the reliability  

Table 2. Selected copula functions, copula parameters, and goodness-of-fit outcomes. 

Copula Copula Function, C(u3, u4) 
Copula 

Parameter, θ 
AIC BIC 

Gaussian Φఏ൫Φିଵሺݑଵሻ,Φିଵሺݑଶሻ൯ 0.626 -12.9 -11.5 

Frank െ
1
ߠ
ln ቈ1 ൅

൫݁ିఏ௨భ െ 1൯൫݁ିఏ௨మ െ 1൯
݁ିఏ െ 1

቉ 4.593 -12.0 -10.6 

Clayton ൫ݑଵିఏ ൅ ଶିఏݑ െ 1൯
ିଵ

ఏൗ  1.510 -11.0 -9.6 

Gumbel exp ൜െൣሺെln	ݑଵሻఏ ൅ ሺെln ଶሻఏ൧ݑ
ଵ
ఏൗ ൠ 1.755 -14.4 -13.0 
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Table 3.  Summary of best-fit coefficients for Eq. (8),  
valid for  > 0 and ψq ≤ 10. 

COV  
( a ) 

COV     
( appq ) a  b  c  d  

0.0 0.10 0.100 2.549 0.996 2.543 

0.2 0.10 0.096 2.478 0.972 2.465 

0.4 0.10 0.064 2.212 0.935 2.359 

0.6 0.10 0.059 2.041 0.846 2.048 

0.0 0.20 0.079 2.365 0.946 2.408 

0.2 0.20 0.080 2.319 0.923 2.330 

0.4 0.20 0.066 2.153 0.879 2.183 

0.6 0.20 0.061 1.994 0.803 1.921 

 
index, , as a function of the allowable 
immediate displacement, a, and the equivalent 
footing diameter, B’. Thus, the calibrated q may 
be set equal to (Huffman and Stuedlein 2014): 

߰௤ ൌ exp ቈ
ఉି௖୪୬ቀఋೌ ஻ᇲൗ ቁିௗ

௔୪୬ቀఋೌ ஻ᇲൗ ቁା௕
቉   (8) 

where a, b, c, and d are fitting parameters that 
vary with the assumed COV(a) and COV(qa). 
Table 3 provides the fitting parameters for the 
best-fit Gumbel copula; similar parameters were 
generated for other copula models but were not 
presented so as to prevent their use, which would 
not be desirable as discussed subsequently.  

The correlation structure of the c1-c2 pairs is 
critical for reliability simulations as the larger the 
deviation in the simulated pairs from the sample 
pairs, the greater the dispersion in the normalized 
bearing pressure-displacement response, leading 
to overly-conservative results in the reliability 
analyses. The effect of copula model selection on 
the lumped load and resistance factor is 
evaluated by comparing q generated from the 
MCS for a given probability of exceeding the 
serviceability limit state.  

Consider for example a typical design 
scenario for a footing with an equivalent 
diameter of 1 m. The goal is to identify the 
appropriate q for a given  or pf with Eq. (8) 
and then use Eq. (6) to compute the bearing 

pressure associated with the allowable immediate 
displacement. For this example, it was assumed 
that COV(a) = 0 and COV(qapp) = 10 percent.  

Figure 2 presents the variation of the 
calibrated load and resistance factor simulated 
using each of the four copulas, and the case with 
an assumed zero correlation between model 
parameters, with the probability of exceeding the 
allowable immediate displacement for 
normalized allowable displacements of 0.010, 
0.025, and 0.050. This corresponds to allowable 
immediate displacements of 10, 25, and 50 mm. 
In general, the probability of exceeding the SLS 

 

Figure 2.  Impact of correlation structure model 
selection on the lumped load and resistance factor as 
a function of probability of exceeding the 
serviceability limit state. 
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decreases as the amount of allowable 
displacement increases for each correlation 
structure model due to the greater deviation in 
modeled bearing pressure-displacement response 
at smaller displacements than those at greater 
displacements. 

Figure 2 shows that the probability of 
exceeding the SLS at a given q depends 
strongly on the correlation structure model 
considered and that ignoring the bivariate 
dependence of the bearing pressure-displacement 
models results in the lowest probability. The 
difference between the q generated from the 
best-fit Gumbel copula and the less appropriate 
copulas increases with decreasing pf. Because the 
c1-c2 pairs simulated using poorly-fitted copulas 
result in a greater likelihood that extreme c1-c2 
pairs will be sampled, and the frequency of softer 
bearing pressure-displacement curves generated 
increases, the pf is greater using the most poorly-
fitted copulas than those simulated using the 
better-fitting copulas. For example, the Gaussian 
copula generally produced q in the same order 
of magnitude as those using the Gumbel copula. 
Nonetheless, differences between the pf can be 
significant for stringent performance cases; 
consider the 2.5- and 5-fold larger probabilities 
of exceeding the SLS using the Gumbel copula at 
q = 5 and 10, respectively, than those for the 
Gaussian copula. 

Figure 3 presents the variation of allowable 
bearing pressure associated with each copula 
model, computed using Eq. (6) and the mean 
(nominal) parameters c1 and c2 (Table 1), with 
the normalized bearing displacement at 
probabilities of exceeding the SLS of 10, 1, and 
0.1 percent  ( = 1.28, 2.33, 3.09, respectively). 
The allowable bearing pressure is presented as a 
percentage of the ultimate resistance, and 
corresponds to the case of COV(a) = 0 and 
COV(qapp) = 10 percent. Figure 3 shows that at 
high probabilities of exceeding the SLS, there is 
very little difference in the allowable bearing 
pressure given that a fitted copula was used to 
account for the bivariate bearing pressure-
displacement model parameters. Ignoring the 

bivariate relationship between c1 and c2 resulted 
in a reduction of bearing pressure ranging from 
about 20 to 25 percent. However, as the 
allowable probability of exceeding the SLS 
decreases, the selection of correlation structure 
model becomes more important. For example, at 
pf = 1 percent, the bearing pressures derived 
using the relatively well-fitting Gumbel copula 
are 10 to 20 percent greater than those using the 
less appropriate Frank and Clayton copulas, 
depending on the magnitude of allowable 
normalized displacement. Thus, use of an 
appropriately fitted copula to capture the 

 

Figure 3.  Impact of correlation structure model 
selection on the allowable bearing pressure 
considering allowable immediate displacement. 
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correlation structure of the bivariate bearing 
pressure-displacement model parameters is 
critical for the optimization of the allowable 
bearing pressure and cost-effective foundations. 

6. CONCLUDING REMARKS 
The recognition of the impact that modeling 
techniques and decisions have on the outcome of 
reliability-based design procedures is becoming 
more important and the profession moves to 
adopt new and harmonize existing codes. Part of 
the challenge lies with our understanding of 
correlated model parameters and the importance 
such correlation has on outcomes that control 
cost and efficacy, such as footing dimensions or 
use of ground improvement. This paper explored 
the sensitivity of a reliability-based serviceability 
limit state procedure to the selection of 
correlation structure model that captures the 
correlation of bivariate bearing pressure-
displacement model parameters. The correlation 
structure models investigated included four 
different copulas, as well as an assumed zero 
correlation. The findings developed herein show 
that the allowable bearing pressure is sensitive to 
the correlation structure model and that the 
magnitudes are larger (i.e., more cost-effective) 
when using the most appropriate copula. 
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