
12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

Sensor Network Optimization using Bayesian Networks, Decision
Graphs, and Value of Information

Carl Malings
Graduate Student, Dept. of Civil and Environmental Engineering, Carnegie Mellon
University, Pittsburgh, USA

Matteo Pozzi
Assistant Professor, Dept. of Civil and Environmental Engineering, Carnegie Mellon
University, Pittsburgh, USA

ABSTRACT: Bayesian Networks (BNs) and decision graphs provide a useful framework for modeling
the uncertain behavior of civil engineering infrastructures subjected to various risks, as well as the po-
tential outcomes of risk mitigation actions undertaken by managing agents. These graphs can also guide
optimal sensing and inspection of infrastructure by maximizing the value of information of sensing ef-
forts. This paper presents a general framework for modeling infrastructure systems using BNs and for
evaluating sensor placement metrics within this model. An example application of the use of the value
of information metric in guiding optimal sensing in a system of infrastructure assets in the San Francisco
Bay area subjected to seismic risk is then presented. A parametric study also investigates the sensitivity
of the value of information metric to various parameters of the BN system model.

1. INTRODUCTION

Effective management of infrastructure requires in-
formation about the status of the infrastructure sys-
tem so that managers may make informed decisions
to minimize potential losses, in terms of lost rev-
enues or potential harm to the public. In order
to cost-effectively collect this information, an op-
timization strategy should be used, where the ben-
efits of additional information should be weighed
against their costs. This paper presents such a strat-
egy, in which a probabilistic model of an infrastruc-
ture system is used to optimize the value of infor-
mation of a sensor network monitoring the system.

Analyzing the benefits of a sensor network be-
fore it is put in place is a form of pre-posterior
analysis. Such analysis requires a model of the
sensed system, such that potential sensor measure-
ments may be predicted and their consequences as-
sessed. We propose a Bayesian Network model
for this purpose. Bayesian Networks (BNs) are
a type of probabilistic graphical model (PGM).
PGMs represent physical systems using random

variables with a joint probabilistic distribution. Re-
lationships between variables are encoded graphi-
cally. The reader is referred to Koller and Friedman
(2009) for further background on PGMs. BNs have
applications in the modeling of infrastructure sys-
tems; Bensi et al. (2014) present a BN model of a
transportation system subjected to seismic risk. By
modeling outputs of sensors as observable variables
within a BN, pre-posterior analysis can also be per-
formed. In an infrastructure system BN, similari-
ties between components are encoded in the model,
allowing observations of one sensor to provide in-
formation about multiple components.

Within this model for pre-posterior analysis,
the usefulness of potential measurements must
be quantified, such that optimization can be per-
formed. A common metric for this purpose is the
conditional entropy metric, which quantifies uncer-
tainty in one set of random variables conditioned on
observations of another set. The reader is referred
to Cover and Thomas (2006) for further informa-
tion on conditional entropy. If the goal of a sensor
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network is characterized as reducing uncertainty in
the system, this metric can be used to quantify this
goal and perform sensor network optimization, as
discussed by Krause (2008).

In the case of infrastructure management, how-
ever, uncertainty reduction is not necessarily the
goal of sensing. Infrastructure managers use in-
formation from sensors to guide decision-making
about which actions to take to reduce long-term
management costs for the system. Potential ac-
tions might include closing an unsafe component
to prevent injury to the public or leaving the com-
ponent in operation until it fails. Each action comes
with certain costs or losses, such as lost revenues or
potential injuries. To assess the benefits of infor-
mation in such decision-making problems, we use
the value of information metric, which quantifies
the reduction in expected loss in a decision-making
problem due to the availability of the information.
An introduction to value of information is presented
in this paper, and a more complete background is
provided by Raiffa and Schlaifer (1961).

The decisions of managers, as well as the poten-
tial costs of different outcomes, can be included ex-
plicitly into a BN model of an infrastructure sys-
tem. Such a model is referred to as a decision graph
or influence diagram. Pre-posterior analysis can
then be conducted in the decision graph using the
value of information metric, and an optimal sensor
network can be designed for the monitoring of the
modeled system. In this paper, we present a general
method for creating such a model and performing
this optimization. We demonstrate this method on
an example infrastructure system in the San Fran-
sisco Bay area subjected to seismic risk, as well as
on a simple system to perform a parametric analysis
on the value of information metric.

2. PROBLEM FORMULATION
We now present a BN model of a civil infrastructure
system, extend this model to a decision graph, and
use this graph to define a metric for optimal sensor
placement for management of the system. Consider
an infrastructure system made of n binary compo-
nents, which can either be operational or not. The
system is subjected to a random risk scenario pa-
rameterized by S. Although this scenario is uncer-

tain a priori, we assume that, after the occurrence
of the scenario, information about the scenario is
available to infrastructure managers. The func-
tioning of component i is governed by (potentially
multi-dimensional) variable Wi. From this variable,
a binary random variable Xi ∈ {0,1} can be defined
as the state variable of component i, i.e., component
i is operational if Xi = 1 and has failed if Xi = 0.
Together, the set of variables X = {X1, . . . ,Xn} de-
scribes the state of every component of the system.

For component i, the manager of this infrastruc-
ture system must select an action ai ∈ Ai for the
management of this component. Depending on the
chosen action ai and the state of the component xi,
the manager incurs some loss (or reward) Li(xi,ai),
a deterministic outcome of the action and state. Fi-
nally, the total loss incurred by the manager for the
entire system, LG(X ,A), is a function of the joint
state of all system components, as well as all se-
lected actions. Here, we assume that this system
loss is the sum of the losses incurred in the man-
agement of each component:

LG(X ,A) =
n

∑
i=1

Li(xi,ai) (1)

In selecting which actions to take, an infrastruc-
ture system manager may have the ability to ob-
serve certain variables, from which he or she may
infer the states of components within the system.
We denote with Z = {Z1, . . . ,Zn} the set of all ob-
servations which might be made by the manager,
where Zi is the set of observations related to com-
ponent i, that is, Zi ⊆Wi. Due to limited time and
resources, the manager may not be able to make all
possible observations; therefore, he or she must se-
lect a subset Y = {Y1, . . . ,Yn} of these variables to
measure, where Yi ⊆ Zi, and base their decision on
the specific outcome Y = y of these measurements.
Note that Yi may be an empty set if no observations
relating to component i are selected.

A graphical representation of the infrastructure
model described above is shown in Figure 1. The
symbols used follow a common convention, de-
scribed by Koller and Friedman (2009); circles rep-
resent random variables, squares indicate agent ac-
tions, and rhombi denote utilities or losses. Ar-
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rows or lines indicate relationships between vari-
ables. Dashed arrows indicate temporal prece-
dence. Shaded circles indicate observed variables.

Figure 1: A decision graph for an infrastructure system
with n components. Variable S describes the risk sce-
nario, variable Wi describes component i, Xi describes
its state, and observation Yi is made on certain observ-
able features of the component Zi ⊆Wi. Action Ai is
chosen by the manager of the infrastructure system,
who incurs loss Li for component i, and global loss LG

for the whole system.

Within the decision graph of Figure 1, we define
an optimal sensor network as follows:

Y ∗ = argmaxY⊆Z mX(Y ) subject to C(Y )≤ B (2)

where Y ∗ is the optimal set of sensed variables,
C(Y ) is the cost of measuring Y , B is a fixed bud-
get constraint, and mX(Y ) is a metric which quan-
tifies how observing Y will improve the managing
agent’s ability to effectively and efficiently manage
the infrastructure system. We denote this metric as
mX(Y ) since X describes the functionality of each
component, and is therefore of primary interest for
the management of the system. Our metric should
therefore depend on how well sensor placement Y
improves the manager’s knowledge about X .

It is necessary that the optimal sensor placement
Y ∗ be robust under uncertainty in the risk scenario
S. Since S is not known a priori, we must compute
our metric for specific values of s ∈ S; we denote
these scenario-specific metric values with mX |s(Y ).
We then compute mX(Y ) by taking the expected
value over potential scenarios:

mX(Y ) = ES[mX |s(Y )] =
∫

s
mX |s(Y )p(s)ds (3)

where ES [·] represents the statistical expectation
under the distribution p(S) of S. To evaluate (3),
we adopt a Monte Carlo sampling approach:

mX(Y )≈
1
ns

ns

∑
i=1

mX |si(Y ) (4)

where ns is the number of scenarios s1, . . . ,sns sam-
pled independently from p(S).

3. VALUE OF INFORMATION FOR SEN-
SOR PLACEMENT

Value of information quantifies the explicit benefit,
in terms of a reduction in expected losses, that an
infrastructure manager would see after implement-
ing a sensor network to measure Y . For component
i, the expected loss for this component under sce-
nario s ∈ S, without any observations of Y , is:

ELi,s( /0) = min
Ai

EXi|s [Li(xi,ai)] (5)

That is, a manager should choose an action ai ∈ Ai
which minimizes his or her expected loss under the
possible outcomes of Xi in scenario s. Note that,
with binary components, there are only two out-
comes for Xi: 0 (a failure) or 1 (no failure).

Given an observation y of Y , the managing agent
can update the probability distribution of the state
of Xi based on the conditional distribution p(Xi|y,s).
Taking this into account, the expected loss given
that an observation of Y will be available before an
action is chosen is given in Eq. (6):

ELi,s(Y ) = EY |s

[
min

Ai
EXi|y,s [Li(xi,ai)]

]
(6)

where the inner expectation is taken over the condi-
tional distribution of Xi given a specific observation
of Y = y, and the outer expectation is taken over the
distribution for these observations in scenario S= s.
The outer expectation accounts for the fact that the
observation y is not known a priori, but the opti-
mal action will depend on this observation (thus,
the minimization over Ai is within this expectation).

For component i, the value of information of ob-
serving Y before choosing an action is the differ-
ence between the expected loss for this component
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given this information and the expected loss with-
out information:

VoIi,s(Y ) = ELi,s( /0)−ELi,s(Y ) (7)

That is, the value of information of Y is the decrease
in expected loss due to the availability of an obser-
vation of Y prior to making a decision.

For the entire system, since the system loss
is equivalent to the sum of individual component
losses, by Eq. (1), and since the expectation is lin-
ear, the value of information of Y for the system is:

VoIs(Y ) = ELG
s ( /0)−ELG

s (Y ) =
n

∑
i=1

VoIi,s(Y ) (8)

To maximize the net benefit of a sensor network,
the difference of the value provided by this sen-
sor network, quantified as VoIs(Y ), and the cost of
implementing this network, C(Y ), should be max-
imized. We can use this difference as a metric to
assess sensor network Y under scenario s:

mX |s(Y ) = VoIs(Y )−C(Y ) (9)

where the dependence of the metric on X is implicit
in the formulation of the value of information.

4. METHODOLOGY
In section 4.1, a general method for computing
mX(Y ) in a PGM as outlined in Figure 1 is de-
scribed. In section 4.2, details for implement-
ing this method in a Gaussian graphical model are
briefly presented. The reader is referred to Malings
and Pozzi (2014) for details. In section 4.3, an algo-
rithm is given for efficiently approximating Eq. (2).

4.1. General metric evaluation
The evaluation of a generic metric mX(Y ) for some
proposed sensor network measuring Y in an infras-
tructure system PGM as outlined in section 2 can
be performed by the following steps:

1. Begin with the distributions p(S), p(W |s),
p(X |w,s), and p(Y |w,s) which parameterize
the PGM.

2. Marginalize over W to obtain distributions
p(X |s) and p(Y |s).

3. For any observation Y = y, perform inference
within the PGM to obtain the updated distribu-
tion p(W |y,s).

4. Use this distribution to obtain an updated dis-
tribution p(X |y,s).

5. Define a mapping mX |y,s(Y ) from the proba-
bility distributions p(X |s) and p(X |y,s) to the
metric to be evaluated. Note that we have as-
sumed in section 2 that the value of metric
mX |s(Y ) depends on how an observation y of
Y allows for updating knowledge about X un-
der scenario s, from p(X |s) to p(X |y,s).

6. Take the expectation of mX |y,s(Y ) over p(Y |s)
to compute mX |s(Y ). This accounts for the fact
that observation y is not known a priori.

7. Take the expectation of mX |s(Y ) over p(S) to
compute mX(Y ), as in Eq. (3), following the
approach of Eq. (4).

Details on marginalization and inference in PGMs
are given by Koller and Friedman (2009).

Note that for the value of information met-
ric, mX |y,s(Y ) = ∑

n
i=1 {νi,s( /0)−νi,s(y)} − C(Y ),

where νi,s( /0) = minAi EXi|s [Li(xi,ai)] and νi,s(y) =
minAi EXi|y,s [Li(xi,ai)]. Evaluation of the value
of information metric therefore only involves the
marginal distributions p(Xi|y,s) and p(Xi|s), rather
than the joint distributions p(X |y,s) and p(X |s).
The ability to evaluate value of information in
this way is due to the decomposition of system-
level loss into the sum of component-level losses
in Eq. (1). Computation of the value of in-
formation is therefore relatively efficient, since
p(X1|y,s), . . . ,p(Xn|y,s) only require the computa-
tion of n values, i.e., the probability of failure
for each component, to parameterize them while
p(X |y,s) requires 2n−1 values to parameterize.

4.2. Gaussian linear models
Following the approach of Ditlevsen and Madsen
(1996), we assume that component i is fully char-
acterized by the demand (di) and the capacity to
resist this demand (ci), i.e., Wi = {ci,di}. Fur-
thermore, we assume that under scenario s, these
variables, via an appropriate transformation, can be
represented by joint Gaussian distributions:

w =

[
c
d

]
∼N

([
µC
µD

]
,

[
ΣC 0
0 ΣD

])
(10)
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where d = [d1, . . . ,dn]
T and c = [c1, . . . ,cn]

T, µD
and µC are the corresponding means, ΣD and ΣC
the covariance matrices, and 0 is an n by n matrix
of zeros. A multivariate Gaussian distribution is de-
noted by N (·, ·), with the mean vector as the first
argument and the covariance matrix as the second.
This model assumes capacities are marginally inde-
pendent of demands. We also assume that candidate
observation variables Z are noisy measurements of
the capacity and demand for each component, i.e.
z = w + ε , where ε represents the random error
of these observations, assumed to be a zero mean
Gaussian random vector independent of w with a
diagonal covariance matrix.

To encode the proposed sensor network Y , we
use the matrix A. For m observed variables selected
from 2n potentially observed variables, A is an m by
2n matrix. Each row of A has all entries zero, ex-
cept for an entry of one in the position correspond-
ing to the selected observable variable. We model
the observations of sensors as:

y = Az = A(w+ ε) (11)

The relationship between X and W is given by:

x = I(c−d≥ 0) = I
(
[ I −I ]w≥ 0

)
(12)

where I[·] is an indicator function, taking on value
1 when its argument is true and 0 otherwise, and I
represents and n by n identity matrix. Under this
model, a component fails when the demand placed
on it exceeds its capacity.

Equations (10), (11), and (12) define the distri-
butions for p(W |s), p(Y |w,s), and p(X |w,s) respec-
tively, where the latter is a deterministic function of
w. These distributions, together with p(S), which
gives a distribution on the parameters µD, µC, ΣD,
and ΣC (which may differ for different scenarios),
are all that are needed for the general procedure
outlined in section 4.1. Inference and marginaliza-
tion for Gaussian random variables are outlined by
Koller and Friedman (2009).

4.3. Greedy sensor placement
An exact solution of the optimal sensor placement
problem of Eq. (2) would require the enumeration

of all subsets Y of Z, which is computationally pro-
hibitive in all but the smallest problems. An al-
ternative, approximate solution approach involves
a heuristic known as the greedy algorithm, as dis-
cussed by Krause (2008). In this method, single
elements of Z are iteratively added to the set Y ,
where these elements most improve the objective
to be optimized. Pseudo-code for implementation
of the greedy algorithm is given in Algorithm 1.

Input: Z; mX(·); C(·); B
Y ← /0 ;
while C(Y )< B, |Z|> 0 do

y∗← argmaxy∈Z mX(y∪Y ) ;
Y ← Y ∪ y∗ ;
Z← Z\y∗ ;
foreach z ∈ Z do

if C(Y ∪ z)> B then
Z← Z\z ;

end
end

end
return Y ;

Algorithm 1: Pseudo-code for the greedy algo-
rithm. mX(·) is evaluated as outlined in sec-
tion 4.1. Based on algorithms of Krause (2008).

5. EXAMPLE APPLICATION TO SEISMIC
RISK IN SAN FRANCISCO

As an illustrative application of sensor placement
optimization to a practical infrastructure manage-
ment problem, we examine an infrastructure sys-
tem consisting of 18 bridges and 9 tunnels in the
San Francisco Bay area subjected to seismic risk. It
should be noted that this system will merely serve
to illustrate the application of the metric and tech-
niques discussed above, and is not meant to be a
practical recommendation. Seismic risk scenarios
are modeled using a homogeneous Poisson process
for earthquake occurrence, based on the model out-
lined by Anagnos and Kiremidjian (1988), with em-
pirical data for the San Francisco Bay area pre-
sented by Field et al. (2009) and USGS (2008). Us-
ing this generative model, for the evaluation of (4),
ns = 1000 sample seismic scenarios are generated,
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with each scenario s consisting of an earthquake
with magnitude M and epicenter location E.

Earthquake demands are defined in terms of peak
ground acceleration, using attenuation equations
presented by Douglas (2011). Ground accelerations
are modeled as lognormal random variables; under
the logarithm transformation, these become Gaus-
sian random variables, as in section 4.2. Correla-
tions between demands are modeled by a squared-
exponential kernel function, as in Bensi et al.
(2014). Capacities of components are also mod-
eled as lognormal random variables using fragility
curves presented in Hazus (2012). Correlations be-
tween capacity variables are assumed to be higher
for components with a similar overall typology.
These lognormal variables are collected in the vec-
tor w′, such that log(w′) = w is Gaussian.

It is assumed that a binary decision must be un-
dertaken as to whether or not to close each poten-
tially damaged bridge or tunnel in the wake of the
event. The option to close down the component
comes with a certain cost in terms of lost toll rev-
enues and service loss, which is roughly estimated
for each component considered. If the component
is not closed, no costs would be incurred, but if the
component is severely damaged and fails while in
use, a high cost of failure is incurred.

Detailed measurements of the capacities of each
component and/or the ground acceleration at each
location would potentially be available, at a certain
cost. These costs are assumed to consist of an in-
stallation cost for sensors as well as ongoing main-
tenance costs for the sensor network which are dis-
counted to their present value using a discount rate
of 5%. Sensor noise is modeled as a multiplicative
lognormal error ε ′ with median 1, such that under a
logarithm transformation, this noise would be zero
mean additive Gaussian noise ε , as in Eq. (11):

log(w′ε ′) = log(w′)+ log(ε ′) = w+ ε (13)

Further details of the model outlined above are pro-
vided in Malings and Pozzi (2014).

Figure 2 shows the optimal measurement selec-
tions for the management of this infrastructure sys-
tem based on the value of information metric of
Eq. (9). Capacity measurements for the Golden

Gate Bridge and the Caldecott tunnel, as well as
demand measurements at both locations and at the
San Francisco-Oakland Bay Bridge, are indicated
as the optimal measurement set for the management
of this example infrastructure system.

Figure 2: Optimal measure selections based on the
value of information metric. Background image from
www.maps.google.com.

6. PARAMETRIC ANALYSIS
A parametric study is presented to provide insight
into the sensitivity of the value of information met-
ric to some of the parameters of the BN used to rep-
resent an infrastructure system. This study is per-
formed on an example system with 12 components
subjected to a single magnitude 7 earthquake sce-
nario, as shown in Figure 3. Demands on all com-
ponents are computed for this scenario as discussed
in section 5. Component capacities are defined us-
ing lognormal distributions, with median capacities
for each type as listed in Table 1 and coefficient of
variation of 0.6 for all types. Components of the
same type have correlated capacities, with the cor-
relation coefficient listed in Table 1 between any
pair of components of the same type. The binary
decision described in section 5 is again used, with
closure cost set at $10 million for all components
and failure cost set as shown in Table 1. Sensors are
modeled as having multiplicative lognormal noise
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Table 1: BN model parameters for the system of Fig-
ure 3. The parameters to be varied are C f , µ II

C , and ρ .

Component Cost of Median Correlation
Type Failure Capacity Coefficient

[$M] [g]
I C f 1 0.1
II 100 µ II

C 0.1
III 100 1 ρ

with median 1 and coefficient of variation 0.2. All
sensors are assigned a cost of $1 million, and a bud-
get constraint of $1 million is used, such that only 1
sensor will be selected. For this parametric study,

Figure 3: Example system for this parametric study.
Example measures Y1, Y2, Y3, and Y4 are shown.

we track the value of information for four proposed
measurements, Y1, Y2, Y3, and Y4, each of which are
selected as the most optimal measurement for the
system under a specific setting of the parameters
C f , µC(II), and ρ .

We begin by studying the effect of varying failure
cost parameter C f from 100 to 10 for components
of type I. At C f = 100, demand measurement Y1 on
component 2 has the highest value of information.
As C f is lowered, the relative value of information
for Y2 compared to Y1 grows as C f is decreased.
This is due to the lower expected costs for com-
ponents of type I compared to components of other
types as C f decreases. It eventually becomes more
worthwhile to directly monitor a component with

Figure 4: Parametric study on C f , with µ II
C = 1 and

ρ = 0.1.

higher expected costs. The two sharp bends in each
curve of Figure 4 are due to the choice of optimal
management action for components 1 and 2 chang-
ing as the relative costs of these actions change.

Figure 5: Parametric study on µ II
C , with C f = 10 and

ρ = 0.1. Probability of failure for component 4 is plot-
ted on the horizontal axis.

Next, the median capacity of type II components,
µ II

C , is varied from 1 to 0.1, increasing the probabil-
ity of failure for these components. The probabil-
ity of failure of component 4, where measure Y2 is
taken, is used as the axis of Figure 5. As this prob-
ability of failure increases, the value of measuring
Y2 declines, as this component is more likely to fail,
and therefore the optimal action, to close the com-
ponent, is no longer in question. It soon becomes
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more valuable to take measure Y3 instead, as the op-
timal management action for the component where
this measure is taken is still unclear.

Figure 6: Parametric study on ρ , with C f = 10 and
µ II

C = 0.1.

Finally, the correlation coefficient for compo-
nents of type III, ρ , is varied from 0.1 to 0.9, as
shown in Figure 6. As this coefficient increases, the
value of information for measuring Y4, the capacity
of a component of type III, also increases, since in-
formation about the capacities of many components
in the system will be gained from this single mea-
surement. Note that VoIs(Y3) remains constant.

7. CONCLUSIONS
This paper presents a general framework for mod-
eling systems of infrastructure using BNs and de-
cision graphs. Within such a model, methods for
computing sensor placement metrics in general,
and the value of information metric in particular,
are presented. These methods are then demon-
strated using an example system of infrastructure
assets in the San Francisco Bay area subjected to
seismic risk. A parametric analysis is also con-
ducted to demonstrate the sensitivity of the value of
information metric to various BN parameters. The
ability to directly trade off value of information and
sensor system cost using the metric demonstrated
above can allow for senor network selections which
maximize the net benefit of the information pro-
vided by these networks in terms of minimizing ex-
pected losses for decision-making problems in in-
frastructure management.
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