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ABSTRACT: Conditional simulation of spatially variable earthquake ground motion is required to 
incorporate kinematic interaction effects within response history analysis of structures. We present an 
approach that takes as input a seed motion and models for Fourier amplitude and phase variability that 
are functions of frequency and separation distance. The conditional simulation outputs are ground 
motions modified from the seed on a 2D grid having appropriate non-stationary characteristics while 
maintaining compatibility with the amplitude and phase variability models. The method applies the 
Fourier Integral Method to simulate random fields and extends short time Fourier transform analysis 
and synthesis to account for time and frequency nonstationary characteristics of earthquake time series.   

 
We introduce a method to generate 1D, 2D, or 
even 3D fields of spatially variable ground 
motions (SVGM) conditioned on one or more 
input seed motions. Our approach merges short-
time Fourier transform (STFT) analysis and 
synthesis (Allen and Rabiner, 1977) for non-
stationary time series with the Fourier Integral 
Method (FIM) (Pardo-Iguzquiza and Chica-
Olmo, 1993) for generating spatially correlated 
random fields. Issues addressed in the 
development of the method include selection of 
appropriate analysis and synthesis windows, 
selection of appropriate time-frequency bands, 
providing adequate scaling and zero padding of 
windows to ensure time domain weighting of 
unity, and translation of user-specified Fourier 
amplitude and phase variability models into 
covariance functions.  

The proposed procedure overcomes 
limitations of previous conditional simulation 
methods. Methods proposed by Hao et al. 
(1989), Vanmarcke and Fenton (1991) and 
Vanmarcke et al. (1993) do not model Fourier 
amplitude and phase variability separately. The 
Abrahamson (1992a) method requires a penalty 
function to ensure a match to the target 
coherency function as it assumed the incorrect 

probability density function for the random 
phase and a high pass filter to remove high 
frequency noise incorporated during improper 
short time segment synthesis.  The method 
describe here can model both components of 
SVGM separately, match the target correlation 
structures with a single step, and incorporate the 
non-stationary character of the ground motion 
without post processing. These improvements 
come with computation cost and a restriction on 
simulation locations to a uniformly space grid.  

The following sections describe components 
of SVGM, introduce the proposed method, 
provide a simulation example, and discuss 
further development requirements. 

1. COMPONENTS OF SVGM 
In the absence of substantial changes in site 
condition across an observation (or application) 
region, SVGMs in the context of this paper 
include stochastic and deterministic components. 
The deterministic (or constant in space and time) 
component is called the wave passage effect, 
which is expressed as time delays in wave 
arrivals due to inclined vertically propagating 
plane waves or horizontally propagating surface 
waves. Wave passage introduces a shift in the 
Fourier phase (or delay in time) dependent on the 



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 
Vancouver, Canada, July 12-15, 2015 

 2 

wave speed and the separation distance between 
locations. Stochastic variations of Fourier 
amplitude and phase unrelated to wave passage 
occur due to wave scattering and interference 
along the source-to-site ray paths. Random 
variations in the Fourier phase are represented 
through lagged coherency functions (e.g., 
Harichandran and Vanmarcke, 1986; Luco and 
Wong, 1986; Abrahamson, 1992b, Ancheta et 
al., 2011). Random variations of Fourier 
amplitudes are represented with standard 
deviation functions derived from Fourier 
amplitude differences (Abrahamson, 1992b, 
2005; Ancheta et al., 2011).  

Random variations of the wave passage 
effect are called arrival time perturbations by 
Zerva and Zervas (2002) and are caused by 
horizontal variations in the geologic structure 
encountered along the seismic ray paths. Arrival 
time perturbations can be measured as time 
differences from the expected and actual time 
delay (essentially, taking time delay as a random 
variable with deterministic mean and data-
derived standard deviation) (Boissieres and 
Vanmarcke, 1995; Ancheta et al., 2011). 
Alternatively, both sources of random phase 
variations may be represented together in plane 
wave coherency (Abrahamson, 1992b). 

2. CONDITIONAL SIMULATION OF 
GROUND MOTION 

We represent earthquake ground motions in a 
space-time field as a combination of coherent 
signals plus noise. Two cases of conditional 
simulation are considered: when given a single 
time series as the seed motion or when given 
time series at all simulation locations. When 
given a single time series, the simulation creates 
the coherent and noise signal at all simulated 
locations. For the later case, the coherent and 
noise signal is given and the simulation must 
create a new instance of the space-time field by 
adding a new noise field. For the case that the 
original noise field does not match the selected 
SVGM functions, the simulation will create a 
matching field. Only the first case (single seed) 
is considered here. 

The stationary (entire time series) notation 
is introduced first followed by the non-stationary 
(short time series) notation. We denote 𝑎 𝑟, 𝑡  as 
a ground motion field recorded at the surface that 
consists of a coherent signal (represented by a 
sum of sinusoids) and noise. This field can be 
represented as:   

𝑎 𝑟, 𝑡 = 𝑅! 𝑟, 𝑡 𝑐𝑜𝑠 𝜃! 𝑟, 𝑡! + 𝑒 𝑟, 𝑡  (1) 

where 𝑅! 𝑟, 𝑡  and 𝜃! 𝑟, 𝑡  are the amplitude 
and phase of the nth sinusoid at location 𝑟 and 
time 𝑡 , while 𝑒 𝑟, 𝑡  is noise at location 𝑟  and 
time 𝑡. Using 𝑋 and 𝐸 as the Fourier transform 
of the coherent and noise signals, we separate the 
contributions of various SVGM sources. Eqs. (2) 
and (3) show the Fourier amplitude and phase 
components of the signal and noise between two 
locations k and l for all frequencies considered, 

   𝑎! 𝑡 = 𝑋! 𝑒!!!! + 𝐸!" 𝑒!!!!  (2) 

𝑎! 𝑡 = 𝑅!,!𝑒!!!,! 𝑒!!!! + 𝑅!,!"𝑒!!!,!" 𝑒!!!!
 (3) 

where 𝜔! is the frequency at index 𝑛, 𝑅!,!  and 
𝜃!,!   is the coherent signal Fourier amplitude and 
phase at location k, 𝑅!,!" and 𝜃!,!" is the noise of 
the Fourier amplitude and phase between 
location k and l. The noise components represent 
the stochastic sources discussed in Section 1. The 
statistics of the noise Fourier amplitude and 
phase between earthquake recordings is 
described by Ancheta et al. (2011), which 
enables both to be modeled as Gaussian random 
numbers. The model for the Gaussian random 
numbers is described in Sections 3.1-3.2.  

The stochastic spectral modifications in Eq. 
(2) and (3) assume a stationary time series. 
However, earthquake ground motions are non-
stationary because of the sequencing of P-, S-, 
and surface waves having different frequency 
contents.  The stationary signal and noise Fourier 
components can be replaced with their short-time 
Fourier transforms (Allen and Rabiner, 1977; 
Serra and Smith, 1990): 

𝑋!,! 𝑒!!! = 𝑤 𝑡!!!
!!! 𝑎! 𝑡 +𝑚𝐻 𝑒!!"# (4) 



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 
Vancouver, Canada, July 12-15, 2015 

 3 

𝐸!,!" 𝑒!!! = 𝑤 𝑡!!!
!!! 𝑒!" 𝑡 +𝑚𝐻 𝑒!!!!! (5) 

where 𝑤 𝑡  is the window that selectively 
determines and weights the portion of 𝑎! 𝑡  
being analyzed, 𝑡 is the time index within the 
window, m is the index of the segment, and 𝐻 is 
the hop size or number of time increments 
between segments. Suitable windows, hop size, 
and criteria for window selection are discussed in 
Section 4. The window width or as per Allen and 
Rabiner (1977) window duration, 𝑇 , are 
discussed within this section.  

The STFT calculation is the analysis phase. 
The synthesis phase combines the STFTs to 
recreate a time series. The consequence of the 
two stages on the selected window is discussed 
in Section 4. The synthesis method selected is 
called Overlap Addition (Allen and Rabiner, 
1977). Overlap addition between the signal and 
noise is computed as: 

𝑎! 𝑡 = 𝑋!,! 𝑒!!! + 𝐸!,!" 𝑒!!! 𝑒!!!!!!  (6) 

where the STFT consisting of the signal plus 
noise is first inversed to form a number of short 
time segments. Depending on the window 
selected in Eqs. (4) and (5) the short time 
segments may or may not overlap but are aligned 
by their individual absolute start times and 
summed.  

We alter the STFT analysis and Overlap 
Addition synthesis from Allen and Rabiner 
(1977) to account for the non-stationarity of 
earthquake ground motions. Whereas Eq (6) uses 
a single segment width, 𝑇, we allow for multiple 
segment widths as follows:  
𝑎! 𝑡 =

𝑋!,!,! 𝑒!!! + 𝐸!,!,!" 𝑒!!! 𝑒!!!!!_!""#$
!_!"#$%  !!  (7) 

where 𝑓 is the index for the different segment 
widths used and 𝑛_𝑙𝑜𝑤𝑒𝑟 and 𝑛_𝑢𝑝𝑝𝑒𝑟 are the 
upper and lower frequency indices associated 
with each segment width. The frequencies 
between the upper and lower indices are 
modified with the addition of the noise 
component while frequencies outside are not. 
The use of the multiple segment widths is 
motivated by different frequency bands being 

approximately stationary over different window 
lengths. For example, a low frequency or large 
wavelength ground motion will be stationary 
over a long duration or long segment width. A 
high frequency or short wavelength ground 
motion will be stationary over a short duration. 
Therefore, each segment width is associated with 
a frequency band for which the Fourier 
components are assumed to be stationary. Table 
1 give example pairings of segment durations 
and frequency bands.  

The number of segment durations used will 
determine the number of time series created with 
Eq. (7). To create a single time series in which 
ground motion components at all frequencies are 
modified, the modified time series from Eq. (7) 
are transformed into the frequency domain and 
combined. Only the modified frequencies of each 
time series are combined to create a full modified 
spectra. The modified spectra are inversed into 
the time domain to create a single time series 
with the full frequency range modified. 
 
Table 1: Segment duration and frequency bands used 
in the Abrahamson (1992a) routine. T is the duration 
of the seed series. 

 
Now expanding back out to the 2D plane 

(field) for which ground motions are to be 
simulated, the signal plus noise at simulation 
locations can be constructed with Eq (7) using a 
random field instead of single random number 
for the noise Fourier amplitude and phase. The 
random field for the amplitude and phase are 
created independently using the Fourier Integral 
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Method (FIM) (Pardo-Iguzquiza and Chica-
Olmo, 1993), as discussed in Section 6.   

3. STOCHASTIC AMPLITUDE AND PHASE 

3.1. Phase 
Stochastic phase has two components: stochastic 
phase unrelated to the wave passage effect and 
arrival time perturbations. This section only 
discusses the statistics of the stochastic phase for 
the generation of the random phase component 
of the noise in Eq. (3). The stochastic phase 
determined by Ancheta et al. (2011) can be 
modeled as Gaussian with a standard deviation, 
𝜎! 𝜔!, 𝜉 , as a function of frequency and 
separation distance, 𝜉 , between two locations.  
However, stochastic phase is modeled with 
coherency functions rather than functions 
directly describing the phase differences. 
Coherency is the measure of similarity between 
two time series. Lagged coherency is defined as 
the amplitude of coherency while plane wave 
coherency is defined as the real value of 
coherency when the time series are aligned using 
a single wave speed. A more complete definition 
of coherency, plane wave, and lagged coherency 
can be found in Abrahamson (1992b).  

As coherency functions cannot be used in the 
forward simulation of random phase a coherency 
function is translated into a power spectral 
density matrix by Hao et al. (1989) or into a 
scale factor (𝛼) representing the fraction of the 
Fourier phase that is deterministic by 
Abrahamson (1992b). Alternatively a coherency 
function may be translated into an equivalent 
standard deviation of phase, 𝜎! 𝜔!, 𝜉  (Ancheta, 
2010): 

 𝐸 𝛾!" 𝜔!, 𝜉 = 𝐸 𝛾 𝜔!, 𝜉 = 𝑒 !!.!!!
! !!,!  (8) 

 When 𝜎! 𝜔!, 𝜉  is related to plane wave 
coherency, 𝛾!" 𝜔!, 𝜉 , arrival time perturbations 
and the stochastic phase are combined. When 
𝜎! 𝜔!, 𝜉  is related to lagged coherency, 
𝛾 𝜔!, 𝜉 , arrival time perturbations must be 

added separately. The wave passage effect is not 
discussed further in this paper.  

To create simulations over a 2D grid using the 
Fourier Integral Method, a coherency function 
must be translated into a covariance function. 
The covariance function, 𝐶! 𝜔!, 𝜉 , for the 
stochastic phase is simply the variance between 
Fourier phase differences binned by separation 
distance (or lag). Beginning with the relationship 
between coherency and 𝜎! 𝜔!, 𝜉  from Eq. (8), 
the covariance function can be created by 
isolating 𝜎!! as follows: 

 𝑙𝑛 𝐸 𝛾!" 𝜔!, 𝜉 = 𝑙𝑛 𝑒 !!.!!!
! !!,!  (9) 

 𝑙𝑛 𝐸 𝛾!" 𝜔!, 𝜉 = −0.5𝜎!! 𝜔!, 𝜉  (10) 

 𝐶! 𝜔!, 𝜉 = −2𝑙𝑛 𝐸 𝛾!" 𝜔!, 𝜉  (11) 

The covariance function above is strongly 
frequency-dependent. Figure 1 shows example 
covariance functions for various frequencies.   
 

 
Figure 1: Covariance functions derived from lagged 
coherency model by Ancheta et al. (2011).  
 

3.2. Amplitude 
Stochastic amplitude has been studied by 
examining differences between Fourier 
amplitude spectra from paired recordings. As 
Fourier amplitude is assumed to be Gaussian 
their difference should be Gaussian. Empirical 
models of stochastic amplitude developed by 
Abrahamson (1992b, 2005) and Ancheta et al. 
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(2011) are based on the difference of log Fourier 
amplitudes from dense array recordings. The 
models express the standard deviation of the 
difference, 𝜎∆! 𝜔!, 𝜉 , as a function of 
frequency and separation distance. The standard 
deviation for stochastic amplitude at single 
station is not measureable, but can be estimated 
by scaling 𝜎∆! 𝜔!, 𝜉  by 1 2 . To create 
simulations over a 2D grid, the single station 
standard deviation function is translated into a 
covariance function as:  

 𝐶∆! 𝜔!, 𝜉 = 1 2𝜎∆! 𝜔!, 𝜉
!
 (12) 

4. ANALYSIS-SYNTHESIS WINDOW 
SELECTION 

In the STFT analysis and synthesis step, the short 
time segments of the signal are weighted with an 
appropriate analysis and synthesis window 
before they are transformed into the frequency 
domain. The requirements of an appropriate 
window are: (1) constant unity weighting of all 
time increments and (2) during the frequency 
domain convolution (as the analysis and 
synthesis requires time domain weighting), all 
sampled frequencies must fall on the window 
spectrum nulls. For brevity only the time domain 
requirement is discussed here while the 
frequency domain requirement is described by 
Ancheta (2010). The window tapers the 
beginning and end of the time series to prevent 
discontinuities during the Fourier transform. 
When time series are weighted or tapered some 
of the signal is lost. However, if the short time 
segments are overlapped the weighting within 
the overlapping section can be selected to add up 
to 1 (avoiding signal loss) by using an 
appropriate window.  

We select a 2M+1 point Hamming window 
(modified from Harris, 1978):  

 𝑤 𝑡 = 0.54+ 0.45𝑐𝑜𝑠 !
!
𝑡  (13) 

The hop size for application of the Hamming 
window is (Smith, 2010):  

 𝑅 = 0.25 2𝑀 + 1  (14) 

where 𝑅 is expressed as the number of time steps 
and 𝑀 is related to window duration as: 

 𝑀 ≈ 𝐿 2∆𝑡  (15) 

where 𝐿 is the window duration (e.g., Table 1) 
and ∆𝑡 is the time step. Eq. (15) is exact if the 
right side is an odd number. Hop size R from Eq. 
(14) produces a 75% overlap of the short time 
segments. Within the 75% overlap region of the 
Hamming window, the sum of window weights 
is greater than one, which necessitates a down-
scaling of the weights in Eq. (13). The window is 
used in both the analysis and synthesis, which 
effectively squares the weight applied by the 
window. Accordingly, after taking the square 
root, the window weights are divided by scaling 
factor 𝐹! to create the overlap weighting equal to 
one: 

 𝐹! = 1.47− !.!!!∆!
!

 (16) 

Available appropriate windows cannot be 
used without scaling as in Eq. (16) nor do they 
satisfy the frequency domain requirement 
perfectly, causing some degree of spectral 
leakage. Any selected windows must have their 
hop size and scaling factors determined 
separately. Eqs. (14-16) apply uniquely to the 
Hamming window with a 75% overlap. 

5. ZERO PADDING 
The STFT uses an overlapped but scaled window 
to ensure unity weighting for all overlapped time 
indices. However, non-overlapped time indices 
near the beginning and end of the time series will 
not be weighted to unity. Additionally, the short 
time segment at the end of the record is typically 
not a duration 𝐿 . Therefore, zero padding is 
added in two phases: 
1. Zero padding is added to the beginning 
and end of the time series before segmenting. 
Using a Hamming window with 75% overlap, 
the number of time steps in the zero padded zone 
is equal to the window length (2M+1).  
2. Zero padding is added to the final 
segment (as needed) to increase its duration to 𝐿.  



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 
Vancouver, Canada, July 12-15, 2015 

 6 

6. FIM SIMULATION 
The Fourier Integral Method is referred to as a 
spectral simulation approach in that it utilizes the 
spectrum of the covariance function to generate a 
compatible spatially correlated random field. In 
this application the FIM is utilized to simulate 
the random fields of the noise Fourier amplitude 
and phase independently at each frequency. This 
section briefly discusses the FIM methodology 
adapted from Pardo-Iguzquiza and Chica-Olmo 
(1993). FIM utilizes the relationship between the 
stochastic process and its covariance function 
and their Fourier transforms.  

Beginning with a stochastic process z(u), the 
covariance function for a given frequency is:  

 𝐶 𝜉 = !
! !

𝑧 𝑢!
! !
!!! ∙ 𝑧 𝑢! + 𝜉 −𝑚!𝑚!!

 (17) 

where 𝑚! and 𝑚!!  are the mean of the head and 
tail values, 

𝑚! =
1

𝑁 𝜉 𝑧 𝑢!
! !

!!!
 

 

𝑚!! =
1

𝑁 𝜉 𝑧 𝑢! + 𝜉
! !

!!!
 

and 𝑁 𝜉  is the number of pairs with a 
separation distance 𝜉.The Fourier transformation 
of z(u) [with amplitude 𝑍 𝜔  and phase, 𝜃 𝜔 ] 
is given by:   

 𝑍 𝜔 = 𝑧 𝑢!
!! 𝑒!!"#𝑑𝑢 (18) 

 𝑍 𝜔 = 𝑍 𝜔 𝑒!!" !  (19) 
Using the Wiener-Khintchine theorem the 
covariance is the Fourier transform of the 
stochastic process spectral density function, 
𝑆 𝜔 : 

 𝐶 𝜉 = 𝑆 𝜔!
!! 𝑒!"#𝑑𝜔 (20) 

Using the fact that the square of the unsmoothed 
Fourier amplitude is the spectral density 
function, the following steps will generate a 
stochastic process compatible with z(u) starting 
from the covariance function: 

1. Obtain the spectral density function by 
taking the Fourier transform of a 
covariance function. 

2. Calculate the Fourier amplitude 
component of a Fourier series by taking 
the square root of the spectral density. 

3. Add a random phase bounded between 0 
and 2𝜋  to the Fourier amplitude 
component to create complex Fourier 
series. 

4. Perform an inverse Fourier transform on 
the new series to produce a compatible 
stochastic process. 

A number of implementation steps required 
including shifting and scaling of the covariance 
function, creating 2D hermitian Fourier 
components, and minimum length of field, are 
discussed in Pardo-Iguzquiza and Chica-Olmo 
(1993) and Yao (2004).  

7. VALIDATION 
In Figures 2a-c, we compare a seed motion (Fig 
2a) to a single simulated motion in the time and 
frequency domains. The coherency and 
amplitude variability functions used in the 
procedure were taken from Ancheta et al. (2011). 
Figures 2b-c compare coherencies and amplitude 
variabilities derived from 25 simulated motions 
on a 25 m by 25 m grid with 5 meter spacing. To 
be consistent with the original models, the 
coherency and amplitude variability for the 
record pairs are calculated from the S-windows. 
Each dot in the amplitude variability figure 
(Figure 2b) represents the standard deviation of 
the log Fourier amplitude differences between 
unique pairs of the simulated motions (under the 
assumption that Fourier amplitudes are log-
normal). Each dot in the coherency figure 
(Figure 2c) represents coherency between a 
station pair (in tanh-1 space, where coherency is 
approximately normally distributed). The median 
values of the standard deviation and the 
coherency are compared to their median models. 
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Figure 2a (top): Time series of input in black and 25 
simulated stations in various colors. 2b(middle): 
Lagged coherency of simulated motions in blue dots 
and their median in solid black line compared to the 
target in solid red line. 2c(bottom): 𝜎∆! of the 
simulated motions in red dots compared to the target 
in solid blue line. 

 
The results in Figure 2a show that the 

simulations produce non-stationary ground 
motions with general characteristics similar to 
those of the seed record.  There are no frequency 
bands where the simulated Fourier amplitudes 
are biased from the seed (indicating minimal 
spectral aliasing). Figure 2b shows that mean 
lagged coherencies of the simulations 
(comparing all possible record pairs) are 
practically unbiased relative to the target model. 
Figure 2c shows that amplitude variability is 

under-predicted, which results from removal of 
segment means (details in Ancheta, 2010). If 
these means were not removed, the 𝜎∆!  terms 
would match the target model, but at the expense 
of simulated waveforms in which some time 
increments have unrealistically rich high 
frequency energy. 
 

8. CONCLUSIONS 
We present a methodology for conditional 
simulation of spatially variable ground motion in 
a 2D plane. The method takes as input user-
specified functions for Fourier amplitude 
variability and coherency, along with a seed 
record. The method produces spatially variable 
ground motions that in aggregate match the 
characteristics of the target functions while 
maintaining the non-stationary characteristics of 
the seed record.  

Implementation details that remain under 
development pertain to (1) selection of segment 
duration and frequency bands that improve the 
analysis and synthesis window and (2) improved 
fit of the target amplitude variability model.  
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