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ABSTRACT: This paper compares the results from a Monte Carlo simulation (MCS) of crack 
propagation in cyclically loaded as-received and impact treated welds to similar results obtained using 
the much more computationally efficient multiplicative dimensional reduction method (M-DRM). The 
basis of both analyses is a 17-variable strain-based fracture mechanics (SBFM) model, which considers 
nonlinear material effects as the crack propagates over time. One of the challenges in applying M-DRM 
to this problem is that difficulties arise as the constant amplitude fatigue limit (CAFL) is approached. A 
practical approach for dealing with this situation is discussed. In the presented results, it is shown that 
M-DRM is a viable tool for probabilistic fatigue analysis, producing in normal situations results within 
a percent of those obtained using MCS in a fraction of the computation time. 

 

1. INTRODUCTION 
Accurately predicting the fatigue deterioration of 
welded components can be a computationally 
expensive undertaking – in particular, in cases 
where nonlinear material and variable amplitude 
(VA) loading effects are significant. For 
example, recent efforts have been undertaken 
(e.g. [Walbridge et al. 2012]) to model the 
fatigue behaviour of welds modified by impact 
treatment using a strain-based fracture mechanics 
(SBFM) model that employs up to 17 input 
parameters. This models cycles the material at 
various points along the crack path, generating 
non-linear hysteresis loops. The strain peaks are 
then used to calculate the crack propagation with 
each load cycle. When analyses are performed 
for complex VA loading histories, even a single 
deterministic analysis can be tedious. 

Determining the statistical properties of 
fatigue performance is important for fatigue 
design. However, to determine these properties 
experimentally takes many tests, which is both 

expensive and time-consuming. Deterministic 
models, such as SBFM models, can be calibrated 
to experimental results, but they fail to include 
the variability of the material properties, 
geometry, defects, loading, etc., of the physical 
experiments. This variability is important when 
dealing with reliability in design.  

If a probabilistic analysis is performed using 
Monte Carlo simulation (MCS), then hundreds of 
thousands of repetitions of the deterministic 
analysis may be required. In addition, if an entire 
structure is analyzed, separate simulations may 
be required for each potential crack initiation 
site. If the goal is to compare alternative 
maintenance strategies for the structure (e.g. 
sequences of inspection and impact treatment 
retrofitting at various stages during the service 
life), then the use of the SBFM model ceases to 
be a feasible option, despite its advantages in 
terms of accuracy and sophistication. 

The multiplicative dimensional reduction 
method (M-DRM) is a recently-developed 
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statistical method [Zhang 2013], which varies the 
input variables using Gaussian weights as initial 
guesses, while holding the other variables 
constant. Based on an analysis of the results of a 
limited number of trials, not only are statistical 
properties, such as mean and standard deviation, 
calculated, but primary and global sensitivity 
analysis can also be performed. The main benefit 
to this method is a reduction in the number of 
trials required, For example, for a 3-variable 
problem, instead of the thousands of trials 
required for MCS, only 16 are required.  

Against this background, the main purpose 
of this paper is to apply M-DRM to a much more 
complex practical problem than the simple case 
studies that were employed in the development 
of this method – namely, the SBFM analysis of 
impact treated welds under constant amplitude 
(CA) fatigue loading. In the following sections, 
the employed SBFM model and M-DRM method 
are briefly reviewed. Following this, the results 
of simulations made using MCS and M-DRM are 
compared, the challenge of dealing with the 
constant amplitude fatigue limit (CAFL) is 
addressed, and the suitability of M-DRM for 
application to complex problems such as the one 
studied herein is critically assessed. 

2. IMPACT TREATMENT OF WELDS 
Impact treatments for improving the fatigue 
performance of welds, including needle peening 
(see Figure 1), hammer peening, and high 
frequency mechanical impact (HFMI) or 
ultrasonic impact treatment (UIT) work by 
introducing compressive residual stresses near 
the surface of the treated weld toe, which slow or 
arrest crack growth at smaller crack depths.  

These treatments can be used on new welds, 
or for retrofitting existing welds, so long as they 
do not already have large cracks. Various studies 
(e.g. [Ghahremani & Walbridge 2011]) have 
shown that the effects of impact treatments on 
fatigue performance can be predicted using 
fracture mechanics models, wherein the residual 
stresses along the crack path are modified to 
simulate the effect of the treatment. 

 
Figure 1: Needle peened weld toe (top) and measured 

residual stresses due to treatment (bottom). 

3. DETERMINISTIC SBFM MODEL 
A detailed description of the SBFM model used 
in this study in its deterministic form is provided 
in [Ghahremani & Walbridge 2011]. A 
probabilistic version of the model is described in 
[Walbridge et al. 2012]. For reasons of brevity, 
only an overview of the model is provided 
herein. The basis for the model is the Paris-
Erdogan crack growth law, modified to consider 
crack closure and the presence of a threshold 
stress intensity factor (SIF) range:  
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where ai and ac are the initial and critical crack 
depths and C and m are constants. For the 
analysis of welds retrofitted using residual stress-
based impact treatments, the SBFM model offers 
advantages over linear elastic fracture mechanics 
(LEFM) in terms of its ability to model the 
evolution of the residual stresses under variable 
amplitude (VA) loading conditions [Ghahremani 
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& Walbridge 2011]. The main difference 
between LEFM and SBFM is in the calculation 
of the SIFs, K. For the SBFM model: 

K Y E a         (2) 
where ε is the local strain at crack depth, a, and Y 
is a correction factor to account for the crack 
shape, free surface, and the finite thickness of the 
plate. To calculate the stresses and strains for 
each load cycle, a Ramberg-Osgood material 
model is used, which requires the cyclic 
parameters: K’ and n’. Strain histories at various 
depths below the surface of the weld toe and 
crack closure are considered using established 
models [Newman 1984, Dowling 2007]. 

In the probabilistic version of the SBFM 
model, the input parameters are replaced with 
statistical variables. This approach has been used 
previously to perform probabilistic LEFM 
analysis of as-received and needle peened welds 
[Walbridge & Nussbaumer 2008]. In the SBFM 
model, the additional parameters required to 
model nonlinear material effects include: the 
elastic modulus, E, the static yield and ultimate 
strength, σy and σu, the cyclic material 
parameters, K’ and n’, and a parameter, μ, which 
models the recovery of the crack opening stress 
following overloads under VA loading. 

Given the deterministic model and statistical 
distributions for the input parameters, MCS can 
be used to generate a histogram of the number of 
load cycles to failure, N, for different stress 
ranges, ΔS. This was done in [Walbridge et al. 
2012] for the analysis of a transverse stiffener 
weld in plate made of generic mild steel.  

For the current study, this analysis was 
repeated for various stress ranges to generate 
probabilistic S-N curves for as-received and 
treated welds. CA loading with a stress ratio, R = 
σmin / σmax, of 0.1 was simulated. The effect of the 
impact treatment was modelled using the 
“assumed” nominal residual stress distribution 
for needle peening in Figure 1. The analysis was 
performed assuming that the nominal plate 
thickness and material yield strength are known 
(T = 25 mm and σy = 350 MPa). The assumed 
statistical variables are described in Table 1. 

Table 1: Probabilistic SBFM analysis variables. 
Var. μ σ Units Dist. Description 

ai 0.15 0.045 mm LN initial crack depth 

(a/c)i 0.50 0.16 - LN initial crack aspect ratio 

VAR(T) 1.02 0.012 - N T = plate thickness 

θw 39.8 6.9 º LN weld toe angle 

ρw 0.65 0.3 mm LN weld toe radius 

LN(C) -29.13 0.55 N, mm N Paris law constant 

ΔKth 80.0 15.0 N, mm LN SIF range threshold 

μ 0.002 0.001 - LN crack closure parameter 

VAR(E) 1.04 0.026 - N E = elastic modulus 

VAR(σy) 1.07 0.053 - LN σy = yield strength 

VAR(σu) 1.0 0.077 - LN σu = ultimate strength 

VAR(K’) 1.04 0.35 - LN K’ = Ramberg-Osgood constant 

VAR(n’) 0.92 0.15 - LN n’ = Ramberg-Osgood constant 

VAR(σweld) 1.0 0.25 - N σweld = welding residual stress 

VAR(σpwt) 1.0 0.20 - N σpwt = peening residual stress 

VAR(∆S) 1.0 0.15 - N ∆S = nominal stress range 

VAR(SCF) 0.93 0.12 - LN SCF = stress concentration factor 

Note: VAR() denotes multiplier applied to the nominal value. 

4. OVERVIEW OF M-DRM  
There have been several methods derived for 
dealing with statistical analysis of multivariate 
problems, the most common being Monte Carlo 
simulation (MCS). However, MCS requires 
significant computational effort. MCS can be 
optimized using importance sampling, but this 
still requires many iterations. The first-order 
reliability method (FORM) [Hasofer & Lind 
1974] is an alternative approximate method, but 
this approach lacks generality when dealing with 
the response of many variables [Schueller & 
Pradlwarter 2007]. Similar problems occur for 
variations of FORM, including the second-order 
reliability method (SORM), the first-order third-
moment reliability method, and the response 
surface approach [Zhao & Ono 2001]. 

The method of moments can be used to find 
an approximate solution to a multivariate 
problem [Taguchi 1978]. By calculating the first 
four moments of the response, mean, variance, 
skewness and kurtosis, the parameters of that 
distribution can be back-calculated. However, 
the calculation of moments involves multi-
dimensional integrals, which are very complex. 
Research in the past has looked at efficient 
evaluation of these integrals using point estimate 
methods [Taguchi 1978], [Rosenblueth 1981], 
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Taylor series approximation and non-classical 
orthogonal polynomial approximations [Kennedy 
& Lennox 2001]. More recently, high-
dimensional model representation [Li et al. 2001] 
and the dimensional reduction method [Rahman 
& Xu 2004], [Xu & Rahman 2004] have been 
used, in which the multivariate function is 
decomposed into orthogonal component 
functions. The principle of maximum entropy 
[Jaynes 1957] was introduced to deal with the 
issue of sensitivity of tail probabilities, but this 
required significant computational effort in the 
moment calculations when dealing with a large 
number of constraints. The recent emergence of 
fractional moments [Inverardi & Tagliani 2003], 
[Milev et al. 2012] has made these calculations 
easier. A fractional moment is a moment of order 
of real as opposed to whole numbers, which can 
be combined together to determine information 
about the resultant distribution.  

M-DRM [Zhang 2013] is a combination of 
fractional moments and the maximum entropy 
principle, and is a much more efficient method of 
performing statistical analysis than MCS. The 
main benefit this method has over MCS is the 
massive reduction in number of trials needed. 
Given a problem with three variables, for 
example, instead of the thousands of iterations 
required for Monte Carlo, only 16 calculations 
are required for M-DRM. A second benefit is the 
additional analysis outputs possible. While MCS 
only provides the output histogram, M-DRM 
provides output moments as well as a sensitivity 
analysis, both primary and global.  

M-DRM uses Gaussian quadratures, which 
are commonly used for multi-dimensional 
integration. The type of Gaussian quadrature 
varies depending on the type of distribution, with 
Gauss-Hermite used for Normal and Lognormal 
distributions, and Gauss-Laguerre used for 
Exponential and Weibull. These quadratures are 
based on the approximation of integrations 
evaluated at known Gauss points, and the 
number of points corresponds to the number of 
orders desired, with five being the most common 
and the number used in this study. 

Table 2 summarizes the Gauss points (zj) 
and the Gauss weights (wj) required by M-DRM. 
	

Table 2: Weights (wj) and Points (zj) for 5th order 
Gaussian quadrature [Balomenos & Pandey 2013] 

Gaussian 
Rule 

N 1 2 3 4 5 

Gauss-
Legendre 

wj 0.24 0.48 0.57 0.48 0.24 

zj -0.91 -0.54 0 0.54 0.91 

Gauss-
Hermite 

wj 0.01 0.22 0.53 0.22 0.01 

zj -2.86 -1.36 0 1.36 2.86 

Gauss-
Laguerre 

wj 0.52 0.40 0.08 0.004 2.3E-5 

zj 0.26 1.41 3.60 7.09 12.64 

 
Similar to how a normal random variable X 

can be related to the standard normal random 
variable Z using the following expression: 

X Z          (3) 
with μ equaling the mean value and σ equaling 
the standard deviation, the Gauss-Hermite points 
can be obtained as follows: 

j jX z        (4) 

where zj is taken from Table 2. 	
 To perform M-DRM, all variables except 
one are held at their mean value while each 
variable is varied one at a time according to the 
five Gaussian quadratures using Equation (4). 
For example with three variables, denoted as α, 
β, λ, a total of 16 calculations will need to be 
performed, five for each of the three variables, 
and one final calculation with all variables held 
at the mean value. The first moment for each 
variable is then calculated as follows: 

 
5
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where wj are the Gaussian weights according to 
Table 2, and R(αi, β0, λ0) is the resultant value 
achieved by varying α by each Gaussian point 
according to Equation (4), and holding β and λ at 
their mean values.  

The second moment for each variable is 
then calculated similarly as follows:  
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Equations (4)-(6) are explained in Figure 4. 

 
Figure 2: Graphical explanation of M-DRM. 
 
The mean of the result can then be 

calculated using the following expression: 
 1 n
avg              (7) 

where n is the number of variables, three in this 
case, and ρavg is the result of holding all three 
variables at their mean. The second moment of 
the result is calculated by: 

 2 1 n
avg               (8) 

These are then used to calculate the standard 
deviation of the result as follows: 

2        (9) 

A sensitivity analysis can also be 
performed. The primary sensitivity, S, can be 
calculated for each variable using: 
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The global sensitivity, Sg, is calculated as:
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In simple terms, global sensitivity means the 
contribution of variability (or variance) of one 
particular random variable to the overall (or 
global) variance of the model output. The way it 
is calculated is that we evaluate the conditional 
variance of the output by keeping all other 
variables fixed but the one which is in question. 
This conditional variance is normalized by the 
global variance of the model output. 

5. HANDLING OF INFINITE LIVES 
One of the challenges encountered in applying 
M-DRM to a probabilistic fracture mechanics 
problem is that infinite fatigue lives are possible 
when the stress intensity factor range, ∆Keff, 
drops below the threshold, ∆Kth. When the 
results are shown on an S-N plot (stress range vs. 
life), the corresponding stress range is the CAFL. 
When applying M-DRM, if the analyses at any 
of the Gauss points results in an infinite fatigue 
life, this can complicate the calculation of the 
moments of the fatigue life distribution. At 
higher stress ranges, this is not a problem. 
However, this issue becomes increasingly 
significant as the CAFL is approached.   

5.1. Infinite fatigue lives in MCS 
To analyze the MCS results for any stress range, 
the 10,000 simulation results were ordered from 
least to greatest, and the 5,000th result was used 
to determine the fatigue life associated with a 
50% survival probability. Similarly the 95th 
percentile was determined based on the 500th 
result. This approach enabled the plotting of 
characteristic S-N curves even when some of the 
simulations led to infinite fatigue lives.  

5.2. Infinite fatigue lives in M-DRM 
As the M-DRM input grid points vary by as 
much as several times the standard deviation 
around the mean, the problem of infinite lives 
occurs at much higher stress ranges than for 
MCS. However, once the problem occurs it is 
not as easily handled, as every grid point is 
needed to determine the moments of the fatigue 
life distribution at a given stress range. 	
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Figure 3 graphs the first variable whose 
variation results in infinite lives, ΔKth, vs. the 
number of cycles to failure for each ΔKth, for two 
nominal stress ranges, ∆S: 80 MPa and 90 MPa. 
The dark vertical lines are the input grid points 
for ΔKth. For ∆S = 90 MPa all grid points result 
in finite life estimates, but at ∆S = 80 MPa, the 
last grid point returns an infinite value. Since it is 
the lower tail of the life distribution that we are 
most interested in, one possible solution would 
be to make an estimation for the grid point with 
an infinite life by extrapolation using the four 
known points, as shown in Figure 3, accepting 
that the result will not be accurate for the upper 
tail. However, eventually so many of the grid 
points yield infinite lives that the error resulting 
from this approximation is excessive. 
 

 
Figure 3: M-DRM results vs. ∆Kth. 

 
An alternative solution to this problem is to 

recast the deterministic SBFM model, so that 
rather than using it to simulate crack growth until 
failure, it is used to calculate the CAFL for a 
given set of input parameters (i.e. the stress range 
below which there is no crack propagation). 

In Figure 4, it is shown how the two 
analysis types, namely, the finite life analysis, 
where the SBFM model is used to perform the 
integration in Equation (1), and finite life 
analysis, where the stress range, ΔS, is increased 
until ∆Keff = ∆Kth, can be used to generate 
probabilistic (50 and 95% survival probability) 
S-N curves, suitable for fatigue design. 

 

 
Figure 4: M-DRM finite and infinite life analysis. 

6. RESULTS 

6.1. Sensitivity Analysis 
Using Equation (11), a global sensitivity analysis 
of the input variables can be performed, as 
shown in Figure 5. The global sensitivities in this 
figure are for an as-received weld. 

 

Figure 5: Sensitivity analysis. 
 
The higher the sensitivity, the more 

significant are the variations in the parameter on 
the predicted fatigue life, based on a finite life 
analysis. The sensitivities of the variables not 
shown in Figure 5 were all negligible. The most 
sensitive variable at high stress levels, at almost 
0.5, is the Paris law constant, LN(C). The reason 
for the unevenness at low stress ranges is that the 
extrapolation procedure shown in Figure 3 was 
used for parameters whose variations resulted in 
infinite life predictions, starting at 135 MPa.  

VAR(ΔS) 
LN(C) 
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6.2. Results Comparison 
The effect of treatment by needle peening on the 
fatigue performance of the weld is shown in 
Figure 6, which compares a weld under constant 
amplitude (CA) loading in the as-received and 
needle peened conditions. 50 and 95% survival 
probability curves are plotted. The results in this 
figure were obtained by MCS. At high stress 
ranges (400 MPa) there is little difference in the 
results, but at lower stress ranges, the benefit of 
the treatment can be significant.  

A comparison between M-DRM and MCS 
is shown in Figures 7 and 8 for as-received and 
needle peened welds, respectively. At high stress 
ranges, M-DRM was found to be accurate in 
predicting the MCS result within 1%. As the M-
DRM starts to result in infinite life grid points, 
the accuracy decreases slightly, but is still well 
within 5%. Eventually there are too many infinite 
grid points, at which point, the finite life analysis 
is halted. The infinite life analysis is then 
performed using M-DRM, and the remainder of 
the curve can be approximated for design by 
simply extending both lines until they meet.  
 

 
Figure 6: Constant amplitude (CA) loading, as 

welded (AW) vs. needle peened (NP). 
 

The computational benefits of M-DRM 
were very obvious when obtaining the data for 
these figures. The run-time to generate a single 
S-N curve using MCS several hours to several 
days, depending on the length of the repeating 
loading history segment, whereas the M-DRM 
line could be plotted in several minutes.  

 

 
Figure 7: MCS vs. M-DRM (as-welded). 

 

 
Figure 8: MCS vs. M-DRM (needle peened). 

7. CONCLUSIONS 
Based on the probabilistic MCS and M-DRM 
analyses presented in the previous sections, the 
following conclusions are drawn: 
 M-DRM is a viable tool for probabilistic 

analysis of complex problems, such as the 
nonlinear fracture mechanics problem 
studied herein, and requires a fraction of the 
computational time required for MCS.  

 In addition to providing rapid estimates of 
the output distribution moments, M-DRM 
enables sensitivity analysis to determine the 
most significant input parameters. 

 While M-DRM analysis does not require 
trial and error or iteration and can handle a 
relatively complex nonlinear problem with a 
large number of statistical variables without 
difficult, special attention needs to be paid 
when the output distribution changes 
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suddenly, as seen in the analyses performed 
for the current study near the CAFL. 
Further research on how to handle 

discontinuous output distributions in M-DRM is 
recommended. With regards to the further study 
of the impact treatments investigated herein, 
further work is planned to extend the results to 
VA loading analysis, since the effectiveness of 
impact treatments such has needle peening has 
been shown to be dependent on characteristics of 
the VA loading history, and it is expected that 
M-DRM will result in even greater time savings 
for very long VA loading histories.  
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