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ABSTRACT: A stochastic averaging approach is used in conjunction with non-stationary response 
spectrum compatible random processes to derive time-varying effective linear properties (ELPs), 
namely damping ratio and natural frequency, for bilinear hysteretic oscillators subject to seismic 
excitation specified by an elastic response spectrum. It is shown numerically that the peak response of 
linear oscillators defined by these ELPs at the time instant for which the variance of either the 
excitation process or the estimated non-linear response process approximates well the peak inelastic 
response of a given bilinear oscillator. This is demonstrated by considering a uniformly modulated 
random process compatible with the Eurocode 8 (EC8) elastic response spectrum to derive ELPs from 
bilinear oscillators of various properties, and an ensemble of 40 artificial EC8 compatible non-
stationary accelerograms to obtain peak responses of the same oscillators in a Monte Carlo based 
analysis. The reported numerical data suggest that peak response of bilinear hysteretic systems can be 
reliably estimated by the peak response of surrogate linear systems without the need to undertake non-
linear response history analysis for seismic excitation represented by appropriate non-stationary 
random processes. 

1. INTRODUCTION 
For over six decades, various statistical 
linearization formulations have been considered 
to determine the probabilistic attributes of the 
response of stochastically excited non-linear 
structural systems (e.g., Roberts and Spanos 
2003). These techniques consider surrogate 
(equivalent) linear oscillators whose effective 
linear properties (ELPs), are derived by 
enforcing appropriate response statistics criteria 
of equivalency alongside with linear random 
vibrations input-output relationships to 
approximate the response of non-linear systems. 
From a structural dynamics viewpoint, these 
ELPs offer intuitive insights to the non-linear 
dynamic behaviour of structures since they are 
related to the concepts of “stiffness” and 
“damping” which are amenable to a clear 

physical interpretation. From a practical 
viewpoint, statistical linearization techniques are 
widely used as an alternative to computationally 
demanding Monte Carlo simulations involving 
non-linear response history analyses (NLRHA), 
for large ensembles of time-histories compatible 
with a given stochastic excitation model.  

In this regard, Giaralis and Spanos (2010) 
introduced a statistical linearization-based 
framework to estimate the peak inelastic 
response of non-linear systems exposed to 
earthquake excitations defined by a linear elastic 
seismic response spectrum without performing 
NLRHA. This is achieved by considering a 
stochastic process compatible with a given 
seismic response spectrum (e.g., a uniform-
hazard spectrum) to derive ELPs which depend 
on both the characteristics of the non-linear 
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structural system and on the response spectrum 
compatible stochastic process. Next, these ELPs 
are used together with the given response 
spectrum for different damping ratios to provide 
estimates of the peak inelastic response of the 
non-linear structure. In Giaralis and Spanos 
(2010) the early statistical linearization 
formulation of Caughey (1960) has been utilized 
to derive ELPs defining effective damped linear 
single-degree-of-freedom (SDOF) oscillators 
from inelastic oscillators following a bilinear 
hysteretic restoring force. Further, Giaralis et al. 
(2011) and Spanos and Giaralis (2013) 
considered a “dimension reduction” step (see 
also Kougioumtzoglou and Spanos 2013) in 
conjunction with higher-order statistical 
linearization schemes to derive ELPs 
corresponding to SDOF linear oscillators 
approximating the displacement and velocity 
variance of the response of stochastically excited 
bilinear hysteretic oscillators.  

All the above studies considered response-
spectrum compatible quasi-stationary stochastic 
processes compatible with a given seismic 
response spectrum in the mean sense which does 
not account for the time-varying amplitude and 
frequency content of strong ground motions. 
Further, the linearization techniques yielded 
deterministically defined scalar ELPs and, 
therefore, only the average (mean) value of the 
peak inelastic response could be estimated. 
Herein, the potential of incorporating a recently 
developed stochastic averaging-based 
formulation to derive time-dependent ELPs of 
bilinear hysteretic oscillators exposed to non-
stationary stochastic processes 
(Kougioumtzoglou and Spanos 2009, Tubaldi 
and Kougioumatzoglou 2015) to the framework 
of Giaralis and Spanos (2010) is studied. This 
consideration enables the use of stochastic 
models which account for the evolutionary (time-
dependent) intensity and frequency content of the 
input seismic action. Further, it renders possible 
the estimation of second-order statistics of the 
peak inelastic values using a given seismic 
response spectrum since the ELPs derived from 

the adopted formulation are random variables 
with known statistical attributes in time (i.e., 
mean value and standard deviation). The latter 
can be achieved by representing the seismic 
input action via non-stationary response 
spectrum compatible processes. In this work, a 
uniformly modulated non-stationary process 
compatible with the elastic response spectrum of 
the European Sesimic EC8 derived by Giaralis 
and Spanos (2012) is utilized to exemplify 
numerically the applicability and the accuracy of 
the considered formulation within the adopted 
response-spectrum based framework in a Monte 
Carlo based context.  

2. STOCHASTIC AVERAGING 
TREATMENT OF BILINEAR 
HYSTERETIC OSCILLATORS 

Consider a viscously damped quiescent bilinear 
hysteretic single-degree-of-freedom (SDOF) 
oscillator with mass m, viscous damping constant 
c, yielding deformation uy, pre-yield stiffness k, 
and post-yield over pre-yield stiffness ratio a. Its 
response to a zero-mean non-stationary seismic 
ground acceleration stochastic process ag(t) is 
governed by the stochastic differential equation 
given as 

!!u t( )+ 2ξoωo
!u t( )+

fh u t( ), !u t( )( )
m

= −ag t( ) . (1) 

In the above equation, u(t) denotes the 
displacement response of the oscillator relative to 
the ground motion, ωο= (k/m)1/2 is the pre-yield 
natural frequency, ξο= c/2ωοm is the pre-yield 
critical damping ratio and a dot over a symbol 
represents differentiation with respect to time t. 
Further, the function fh represents the oscillator 
restoring force, sketched in Figure 1, which 
controls the evolution of the inelastic behavior of 
the oscillator. The latter function can be 
mathematically written as  

 fh u t( ), !u t( )( ) = aku t( )+ 1− a( )kz t( ),  (2) 

where z(t) is an auxiliary state variable governed 
by the differential equation 
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!z t( ) = uy !u t( ) 1−H !u t( )( )H z t( )−1( )"

# −

H − !u t( )( )H −z t( )−1( )$%,
 (3) 

in which H(ν) is the Heaviside step function, 
assuming the values H(ν)=1 for ν≥0 and H(ν)=1 
for ν<0.  

 
Figure 1:Bilinear hysteretic restoring force and 
definitions of the strength reduction factor R and 
ductility µ. 

 
Focusing on lightly damped bilinear 

oscillators (e.g. ξ<0.10), it can be assumed that 
the response process u(t) in Eq. (1) exhibits a 
pseudo-harmonic behavior described by the 
system of equations (Caughey 1960) 

u t( ) = A t( )cos ω A( ) t +ϕ t( )!
"

#
$

!u t( ) = −ω A( )A t( )sin ω A( ) t +ϕ t( )!
"

#
$

, (4) 

where the response amplitude process, A(t), and 
the phase, φ(t), are slowly varying functions in 
time and, thus, they can be treated as constant 
over one cycle of oscillation. Next, manipulating 
the system of Eqs. (4) yields 

A2 t( ) = u2 t( )+
!u2 t( )
ω 2 A( )

. (5) 

Further, it is viable to define an equivalent linear 
system (ELS) governed by the equation  

!!y t( )+ωeq
2 A( ) y t( )+βeq A( ) !y t( ) = −ag t( ) , (6) 

which corresponds to a linear SDOF oscillator 
with effective natural frequency and viscous 
damping properties (ELPs) ωeq(A) and βeq(A), 
respectively. The above ELPs are functions of 
the time-dependent non-linear response 
amplitude A(t) of Eqs. (4) and are expressed as 

( )
( )2 2 eq

eq o

k A
A a

m
ω ω= + , (7) 

and 

( )
( )

2 eq
eq o o

c A
A

m
β ξ ω= + . (8) 

The terms keq(A) and ceq(A) appearing in Eqs. (7) 
and (8), respectively, correspond to the 
contributions of the hysteretic part of the 
response expressed by the function fh in Eq.(2) to 
the effective stiffness and viscous damping 
properties of the ELS of Eq.(6). They are  given 
by (Caughey 1960, Roberts and Spanos 2003) 

keq A( ) =
1− a( )k
A

Ch A( )  (9)     

and 

ceq A( ) =
1− a( )k
Aω A( )

Sh A( ) , (10) 

respectively, where Ch(A) and Sh(A) are obtained 
by the closed-form expressions  

( )
( )( )0.5sin 2 ;  

                             ;  

y
h

y

A A u
C A

A A u
π
⎧ Λ − Λ >⎪

= ⎨
⎪ ≤⎩

, (11) 

and 

( )
4

1 ;

0                  ;  

y y
y

h

y

u u
A u

AS A
A u

π

⎧ ⎛ ⎞
− >⎪ ⎜ ⎟

= ⎨ ⎝ ⎠
⎪ ≤⎩

, (12) 

in which cos(Λ)=1-2uy/A. Note that in deriving 
Eqs. (9) to (12) an error function (difference) 
between Eqs. (4) and (6), that is, between the 
governing equations of the hysteretic oscillator 
and of the ELS, has been defined and minimized 
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in the mean square sense [see Caughey (1960) 
and Roberts and Spanos (2003) for detailed 
derivations].  

To this end, it is important to emphasize that 
the herein considered ELPs, ωeq(A) and βeq(A), 
can be treated as stochastic processes, since they 
depend on the response amplitude non-stationary 
stochastic process A(t) of Eq. (6). In this regard, 
their time-varying statistics such as the mean 
value and standard deviation can be obtained by 
applying the mathematical expectation operator 
EA[·] with respect to the process A(t). For 
instance, the time-varying mean values of the 
ELPs in Eqs. (7) and (8) are given by the 
expressions 

ωeq t( ) = EA ωeq A( )!
"

#
$, (13) 

and 

βeq t( ) = EA βeq A( )!
"

#
$, (14) 

respectively. The evaluation of the expectations 
appearing in Eqs. (13) and (14) necessitates the 
consideration of an underlying time-varying 
probability density function (PDF), f(A,t), 
characterizing the evolutionary statistical 
attributes of the amplitude process A(t). To this 
aim, following Kougioumtzoglou and Spanos 
(2009), it is assumed that A(t) has the time-
dependent Rayleigh distribution 

 ( ) ( )
( )

( )
( )

2

2 2, exp
2u u

A t A t
f A t

t tσ σ

⎛ ⎞
= −⎜ ⎟

⎜ ⎟
⎝ ⎠

, (15) 

where ( )2
u tσ  is the non-stationary variance of the 

hysteretic system response process u(t). The 
choice of the above PDF f(A,t) is motivated by 
the fact that the non-stationary PDF of the 
response amplitude of a linear lightly damped 
SDOF oscillator subject to Gaussian white noise 
excitation is a time-dependent Rayleigh one of 
the form of Eq. (15), observing the property 

( )
2

2 2lim , exp
2t

A Af A t
ς ς→∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, where 2ς  is the 

stationary response variance of the SDOF 

oscillator (Spanos 1979). Furthermore, 
Kougioumtzoglou and Spanos (2009) showed 
that the PDF of Eq. (15) is applicable to non-
linear oscillators under evolutionary stochastic 
excitations, as well.  

Making use of the PDF of Eq. (15), the 
time-varying ELPs in Eqs. (7) and (8) become 
functions of the non-stationary variance of the 
bilinear oscillator ( )2

u tσ , and, therefore, the 
governing equation of motion of the ELS in Eq. 
(6) becomes 

!!y t( )+βeq σ u
2 t( )( ) !y t( )+ωeq

2 σ u
2 t( )( ) y t( ) =

−ag t( ).
 (16) 

Next, a combination of deterministic and 
stochastic averaging yields the following first 
order stochastic differential equation for the 
bilinear hysteretic response amplitude (e.g. 
Kougioumtzoglou and Spanos, 2009) 

!A t( ) = K1 A,t( )+ K2 A,t( )w t( ) , (17) 

where  

( )

( )( ) ( )
( )( )( )
( )( )

1

2
2

2 2

,

,1 ,
2 2

eq u
eq u

eq u

K A t

G t t
t A t

A t

π ω σ
β σ

ω σ

=

− +
 (18) 

( )
( )( )( )
( )( )

2

2 2 2

,
, u

eq u

G t t
K A t

t

π ω σ

ω σ
= − , (19) 

and w(t) is a zero mean white noise process of 
intensity one. In Eqs. (18) and (19), G(ω,t) is the 
evolutionary power spectral density function 
(EPSD) characterizing the acceleration strong 
ground motion process ag(t)  in the domain of 
frequencies ω. Further details on the selection of 
this EPSD for the purposes of this work are 
discussed in subsequent sections. 

The Fokker-Planck equation associated with 
the stochastic differential equation in Eq. (17) 
which governs the evolution of the displacement 
response amplitude PDF f(A,t) is written as (e.g. 
Soong 1973) 



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 
Vancouver, Canada, July 12-15, 2015 

 5 

∂
∂t
f A,t +Δt A ',t( ) =

−
∂
∂A

K1 A,t( ) f A,t +Δt A ',t( )$
%

&
'+ ...

1
2
∂2

∂A2
K2
2 A,t( ) f A,t +Δt A ',t( )$

%
&
'

 (20) 

Substituting the Rayleigh PDF of Eq. (15) into 
Eq. (21) and manipulating yields the following 
equation for the evolution of the non-linear 
system response variance (see also 
Kougioumtzoglou and Spanos (2009) for a 
detailed derivation) 

!σ u
2 t( ) = −βeq σ u

2 t( )( )σ u
2 t( )+

πG ωeq σ u
2 t( )( ),t( )

ωeq
2 σ u

2 t( )( )
. (21) 

The latter equation is a first-order non-linear 
ordinary differential equation, which can be 
solved by standard numerical schemes such as 
the Runge-Kutta. Once the evolution of the non-
linear response variance ( )2

u tσ  is numerically 
determined, the non-linear response amplitude 
PDF of Eq. (15) can be readily determined as 
well as the statistics of the time-varying ELPs of 
Eqs. (7) and (8), such as their average value 
given by Eqs. (13) and (14). These time-
dependent ELPs can be used within the response 
spectrum based probabilistic framework 
reviewed in the following section to estimate the 
peak inelastic response of bilinear hysteretic 
oscillators exposed to a given response spectrum 
without the need to consider response spectrum 
compatible accelerograms.   

3. RESPONSE SPECTRUM FRAMEWORK 
FOR PEAK INELASTIC RESPONSE 
ESTIMATION  

Consider a bilinear hysteretic oscillator with 
known properties subject to seismic excitation 
represented by a given (elastic) response 
spectrum. It is herein proposed to utilize the 
stochastic averaging based technique reviewed in 
the previous section to estimate the peak 
response of the above oscillator without the need 
for non-linear response history analyses for 

ensembles of response spectrum compatible 
ground motions. This is accomplished by 
incorporating the aforementioned technique in 
the probabilistic response spectrum-based 
framework of Giaralis and Spanos (2010) (see 
also Spanos and Giaralis 2013). To this aim, a 
non-stationary stochastic process αg(t) in Eq. (1) 
characterized by an EPSD G(ω,t) in Eqs. (17)-
(19) compatible with the given response 
spectrum is first employed. Next, the statistics of 
the time-varying ELPs in Eqs. (7) and (8), 
evaluated at a judicially selected time instant, can 
be used in conjunction with the considered 
response spectrum to approximate the peak 
response of the bilinear hysteretic oscillator. The 
steps involved in the above framework are 
delineated in the flowchart of Figure 2. The 
accuracy of the proposed approach is 
numerically assessed in the following section.   

 

 
Figure 2: Proposed probabilistic response 
spectrum framework for estimating the peak 
response of bilinear hysteretic oscillators. 

4. NUMERICAL ASSESSMENT FOR THE 
EUROCODE 8 RESPONSE SPECTRUM 

The elastic response spectrum of the Eurocode 8 
(EC8) seismic code (CEN 2004) is taken as a 
paradigm to assess the applicability and accuracy 
of the adopted stochastic averaging approach 
within the framework of Figure 2. Specifically, 
the EC8 pseudo-acceleration response spectrum 
for peak ground acceleration 0.36g 
(g=981cm/s2), ground type “B” and damping 
ratio ξ= 5% (gray thick curve in Figure 3(a)), is 
assumed to represent the seismic action. A 
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uniformly modulated non-stationary stochastic 
process compatible, in the mean sense, with the 
above EC8 spectrum is used as the ground 
excitation ag(t) in Eq. (1). The considered 
process has been derived as detailed in Giaralis 
and Spanos (2012) and is defined by means of 
the EPSD  

( ) ( )

( ) ( )

2 2

4 2 2 2 4

2 22 2 2 2 2 2 2 2 2 2

, exp

4

4 4
g g g

g g g f f f

G t C t btω

ω ζ ω ω ω

ω ω ζ ω ω ω ω ζ ω ω

= − ×

+

− + − +

,(22) 

with ωg=10.73 rad/s, ζg=0.78, ωf= 2.33 rad/s, 
ζf=0.90, C= 17.76	   cm/s2.5, and b=0.58 s-1. The 
above EPSD is plotted in Figure 3(b) on the 
time-frequency plane. Further, the median 
response spectrum of an ensemble of 100 
realizations (i.e., non-stationary artificial 
accelerograms) compatible with the EPSD of 
Eq.(22) is plotted in Figure 3(a) to illustrate the 
good level of mean sense compatibility achieved 
by the underlying stochastic process with the 
considered EC8 spectrum.  
 

 
Figure 3: (a) Considered EC8 response spectrum and 
median response spectrum of 100 realizations 
compatible with the EPSD of Eq.(23) plotted in (b).  
 

Next, the EC8 compatible EPSD of Eq. (22) 
enters Eq. (21) and the latter is numerically 
solved in conjunction with Eqs. (7), (8), and (15) 
for bilinear oscillators of various different 
properties to obtain the variance of the response 

deflection ( )2
u tσ , and the time-varying ELPs 

ωeq(A) and βeq(A). For illustration, Figure 4(a) 
plots the input/excitation (acceleration) and 
output/deflection variances normalized by their 
peak values attained at two different time 
instants: tin and tout, respectively, for a bilinear 
oscillator with a= 0.5, ωο= 2π rad/s, ξo= 5%  and 
uy= 6cm. Further, Figure panels 4(b) and (c) plot 
the mean and the mean ± one standard deviation 
of the time-varying ELPs for the same bilinear 
oscillator. As expected, tout> tin indicating the 
existence of an output/input lag. It is also noted 
that ELPs at time instants close to tout correspond 
to “softer” equivalent linear systems with higher 
damping ratios which is in alignment with 
engineering intuition. 
 

 
Figure 4: (a) Excitation (acceleration) and response 
(deflection) variances normalized to their peak 
values; (b) and (c) ELPs for bilinear oscillator with 
a= 0.5, ωο= 2πrad/s, ξo= 5%, and uy= 6cm.  

 
Moreover, the mean and the mean ± one 

standard deviation (σ) of ELP values attained at 
tin and at tout time instants for bilinear oscillator 
with α= 0.5 and ωο= 2π rad/s are plotted in 
Figure 5 as functions of the strength reduction 
factor R defined in Figure 1. As R increases, i.e., 
as bilinear oscillators with lower yielding 
strength are considered, the effective natural 
frequency decreases monotonically yielding 
softer equivalent linear oscillators, while the 
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effective damping ratio increases to account for 
the increased energy dissipation through more 
severe plastic/ hysteretic behaviour of the 
corresponding nonlinear oscillators. However, 
the effective damping ratios tend to saturate and 
even to slightly decrease as the level of yielding 
increases and more flexible oscillators are 
considered. Such trends have been observed in 
the literature in the context of standard statistical 
linearization techniques assuming stationary 
input excitation and yielding deterministically 
defined ELPs (e.g. Giaralis and Spanos 2010 and 
Spanos and Giaralis 2013). Interestingly, the 
difference between ELP statistics attained at tin 
and tout is negligible and, therefore, they can be 
used interchangeably. 

 

 
Figure 5: ELPs for bilinear oscillator with a= 0.5, 
ωο= 2π rad/s, and various yielding displacement uy   
 

Lastly, the peak absolute ductility µ, defined 
in Figure 1, is plotted versus the strength 
reduction factor R (dots of various shapes) for 
different bilinear hysteretic oscillators obtained 
from standard NRHA (Monte Carlo-MC results). 
The analysis uses the standard constant 
acceleration Newmark algorithm and is 
undertaken for an ensemble of 40 artificial non-
stationary accelerograms compatible with the 
EC8 spectrum of Figure 3(a). These 
accelerograms have been generated by the 
wavelet-based stochastic approach of Giaralis 
and Spanos (2009). Superposed in Figure 6, is 

the peak response normalized by the yielding 
deformation uy of equivalent linear oscillators 
(curves of various types) whose properties 
(ELPs) are derived as previously discussed.  
 

 

 
Figure 6: Peak response of various bilinear 
hysteretic oscillators and of the corresponding 
equivalent linear oscillators for 40 EC8 compatible 
accelerograms.  

 
It is seen that the average of the peak 

nonlinear responses is approximated well by the 
peak responses of the corresponding equivalent 
linear oscillators. Further, it is observed that the 
peak response of linear oscillators with ELPs 
equal to the mean ± one σ (see Fig. 5) 
approximate reasonably well the mean ± two σ 
of the peak non-linear response of the bilinear 
oscillators for the considered suite of spectrum 
compatible accelerograms. Overall, these results 
suggest that the adopted stochastic dynamics 
technique may provide useful estimates of the 
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peak response statistics of bilinear oscillators 
within the framework of Figure 2. 

5. CONCLUDING REMARKS  
A stochastic averaging approach has been used 
in conjunction with non-stationary response 
spectrum compatible random processes to derive 
time-varying ELPs, for bilinear hysteretic 
oscillators subject to seismic excitation specified 
by an elastic response spectrum. It has been 
numerically demonstrated, by considering a 
uniformly modulated random process compatible 
with the EC8 elastic response spectrum, that 
peak response statistics of the bilinear oscillators 
can be well approximated by the peak response 
of equivalent linear oscillators defined by the 
ELPs evaluated at the time instant when the 
variance of the input process is maximized. 
Therefore, the adopted stochastic dynamics 
approach circumvents the need for considering 
response spectrum compatible accelerograms, 
while it allows for the representation of the 
seismic input action by means of realistic non-
stationary stochastic processes. Future extensions 
of this work will involve the consideration of 
stochastic processes representing pulse-like 
ground motions (Lungu and Giaralis 2013) and 
of multi-degree-of-freedom bilinear structures 
represented by surrogate linear oscillators, one 
for each dynamic degree of freedom. 
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