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ABSTRACT: A non-intrusive uncertainty quantification scheme based on Polynomial Chaos (PC) basis
constructed from available data is introduced. The method uses properly parametrized basis functions
in order to let them adapt to the given input-output data instead of predefining them based on the prob-
ability density function of the uncertain input variable. Model parameter estimation is effectively dealt
with through a Separable Non-linear Least Squares (SNLS) procedure that allows the simultaneous es-
timation of both the PC basis and the corresponding coefficients of projection. Method’s effectiveness
is demonstrated through its application to the uncertainty propagation modelling in two examples: a
nonlinear differential equation with uncertain initial conditions and a nonlinear single degree-of-freedom
system with an uncertain parameter. Comparisons with classical PC expansion modelling based on the
Wiener-Askey scheme are used to illustrate the method’s performance and potential advantages.

Polynomial Chaos (PC) expansion has been
demonstrated to effectively model uncertainty
propagation in a number of engineering problems.
The main advantage of the PC representation is its
low computational cost, compared to that of tra-
ditional approaches such as the classical Monte-
Carlo, and its ease of use for model-based analysis,
e.g. for the purposes of statistical characterization
of the output, reliability and global sensitivity anal-
ysis.

Nevertheless, PC expansion for uncertainty
quantification in real applications remains challeng-
ing mainly due to problems arising from the sta-
tistical characterization of the input variables, as
well as the process of determining a sparse PC ba-
sis, in the sense of including only a small num-
ber of basis functions which may still provide
high approximation accuracy. With regard to the
first problem, although Xiu and Karniadakis (2002)
have extended the initially proposed PC of Gaus-
sian processes on Hermite polynomials proposed
by Wiener, to a number of common continuous
and discrete Probability Density Functions (PDFs)
through the Wiener-Askey scheme, estimating the

statistical distribution of input variables may be a
nontrivial task since bounded, multi-modal, or dis-
continuous PDFs may be found to best fit given
measured data (Oladyshkin and Nowak (2012)). In
such cases, fitting the given data to a common PDF
may significantly reduce the accuracy of the expan-
sion, while on the other hand transformations to
standard PDFs normally lead to slower convergence
rates.

The crucial problem of selecting specific PC sub-
spaces is also an open problem that has been treated
in a number of recent studies (for example see Blat-
man and Sudret (2011)), with a common approach
being the forward selection procedure which builds
up the PC model by adding bases till no further
improvement is achieved, according to a predeter-
mined criterion. In most cases however, such ap-
proaches require the estimation of a large number
of candidate models.

Moreover, potential limitations of the Wiener-
Askey expansion scheme arise in situations where
discontinuities or complex relationships character-
ize the dependency of the output variable on the
random input data (Le Maître et al. (2004)).
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The aim of the present study is to circumvent the
aforementioned difficulties associated with PC ba-
sis construction. Toward this end, the PC is not
based on basis functions of a fixed form, but in-
stead we use orthogonal B-splines functions with
a-priori unknown properties that may be adapted
to the specific random input variable characteris-
tics. This is accomplished through appropriate ba-
sis function parametrization which allows for di-
rect estimation of the splines knots, and a Sepa-
rable Nonlinear Least Squares (SNLS) type proce-
dure (Golub and Pereyra (2003)) that achieves si-
multaneous estimation of the basis functions and
the coefficients of projection through a reduced di-
mensionality, constrained non-quadratic optimiza-
tion problem. The method’s effectiveness is exam-
ined via a Monte Carlo study and comparisons with
the classical PC method based on the Wiener-Askey
scheme are made.

1. POLYNOMIAL CHAOS EXPANSION
PCE based on the Wiener-Askey scheme concerns
the expansion of a random output variable on poly-
nomial chaos basis functions which are orthonor-
mal to the probability space of the system’s ran-
dom inputs. More specifically, let us consider a
system S which has M random input parame-
ters represented by independent random variables
{Ξ1, . . . ,ΞM}, gathered in a random vector Ξ of
prescribed joint PDF pΞ(ξ ) (Blatman and Sudret
(2011)).

The system output, denoted by Y = S (Ξ) will
also be random. Provided that Y has finite variance,
it can be expressed as follows:

Y = S (Ξ) = ∑
j∈N

c jφd( j)(Ξ) (1)

where c j are unknown deterministic coefficients of
projection, d is the multivariate index of the PC
basis, and φd( j)(Ξ) are the PC functions orthonor-
mal to pΞ(ξ ). These basis functions φd( j)(Ξ) may
be constructed through tensor products of the cor-
responding univariate functions associated through
the corresponding probability distributions (Xiu
and Karniadakis (2002)).

As already mentioned, the main drawback of the
classic PC expansion, especially for real-data appli-

cations, is the statistical characterization of the in-
put variables and the selection problem related with
the choice of an appropriate functional subspace.
Even if this is only a small price to pay for ren-
dering the estimation of an uncertainty propagation
model into a deterministic estimation problem, this
selection is of crucial importance for accurate mod-
elling. Indeed, despite the fact that theoretically any
“extended” (of high dimensionality) PC subspace
may achieve good tracking of the parameter evolu-
tion, this is not true when we have to select only a
small number of functions due to reasons of statis-
tical efficiency and model parsimony (economy of
representation).

On the contrary, the use of PC basis adapted on
the selected input variables data is proposed in this
study. Toward this end, the basis functions are de-
termined by an a-priori unknown vector of param-
eters δ which has also to be estimated along with
the coefficients of projection θ . In this way, the
basis may be automatically adapted on the data in
order to achieve higher accuracy in the case the un-
certainty propagation is highly nonlinear, leading to
an output which does not follow the distribution of
the input. In the sequel, a data-driven PC basis es-
timation framework based on B-spline functions is
described. Based on the attractive properties of the
B-splines functions, both smooth or abrupt uncer-
tainty propagation relationships may be efficiently
expanded on the constructed basis.

1.1. Adaptable B-spline functions
The values of the input variable Ξ are considered
to be samples drawn from a PDF which may be
approximated by a continuous piecewise polyno-
mial function of order k (de Boor, 2001, Chs. 7-
8). Then, according to the theorem of Curry and
Schoenberg (de Boor, 2001, pp. 97-98), a basis of
splines (B-splines) may be constructed for the cor-
responding piecewise polynomial space. By con-
sidering, for the purposes of simplicity, a bounded
PDF and the univariate case, the B-splines are fully
defined by an appropriate nondecreasing sequence
of points (knots) τ = [τ1, . . . ,τp+k] ∈ [α,β ] ⊂ ℜ

(where p is the basis dimensionality). The afore-
mentioned theorem leaves open the selection of the
first k and last k knots. However, imposing no conti-
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nuity conditions at the endpoints, τ1 = . . .= τk = α

and τp+1 = . . . = τp+k = β may be selected. This
choice is also consistent with the fact that the con-
structed basis provides a valid representation only
for the interval [τk,τp+1], that is [α,β ].

Thus, in terms of the above quantities the
B-splines of order k may be described by
the functional subspace parameter vector δ

∆
=

[τk+1, . . . ,τp]
T of dimension dim(δ ) = p− k con-

sisting of the non-decreasing sequence of the free
internal knots. The variable Y = S (Ξ) is then ex-
pressed as:

Y =
p

∑
j=1

c j ·φ k
j (Ξ,δ ) (2)

where φ k
j (Ξ,δ ) denotes the sequence of B-splines

of order k. There are several ways to define the
B-spline functions φ k

j (ξ ,δ ) for a given realization
ξ . A convenient one is by the means of the Cox-
de Boor recursion formula for the normalized B-
splines (de Boor, 2001, p. 90):

φ
1
j (ξ ,δ ) =

{
1 if τ j ≤ ξ < τ j+1

0 otherwise
(3a)

φ
i
j(ξ ,δ ) = w j,i(ξ ) ·φ i−1

j (ξ ,δ )+

+(1−w j,i(ξ )) ·φ i−1
j+1(ξ ,δ ), for 1 < i≤ k

(3b)

where

w j,i(ξ ) =

{
ξ−τ j

τ j+i−1−τ j
if τ j < τ j+i−1,

0 otherwise.
(3c)

B-splines are characterized by a number of prop-
erties which make them particularly attractive for
data-driven PC expansion applications. A signif-
icant property of B-splines is their local support,
that is φ k

j [ξ ,δ ] 6= 0 only for ξ ∈ [τ j,τ j+k). Due to
this local support, the resulting basis may consist
of splines with various characteristics and therefore
may be capable of tracking parameters with mixed
type of evolution, that is alternating patterns of
smooth and abrupt changes of the PDF. Moreover,

B-splines are locally linearly independent, that is
they provide a basis for the piecewise polynomial
space even for an interval [α,β ] ⊆ [τ1,τp+k]. Fi-
nally, by selecting the proper B-splines order k, var-
ious degrees of smoothness may be achieved. For
example, for k = 1 the basis consists of piecewise
constant functions, for k = 2 linear B-splines, for
k = 3 quadratic, for k = 4 cubic, and so on. Yet,
smoothness may also be controlled by the proxim-
ity of knots (de Boor, 2001, Ch. 9). A thorough
analysis of B-splines and their properties may be
found in de Boor (2001).

Constraints on δ . The internal knots τk+1, . . . ,τp
form a nondecreasing sequence of real numbers de-
fined in the open set (α,β ). Thus, they have to sat-
isfy proper constraints related with their bounds and
their order relation.

Simple constraints may be defined for the case of
internal knots with multiplicity one. This is not re-
strictive in view of the fact that a B-spline with an
internal knot of multiplicity m > 1 may be approx-
imated by replacing this knot by m simple knots
nearby (de Boor, 2001, p. 106).

Thus, an appropriate order relation constraint,
suitable for numerical purposes (as it prevents the
knots from coalescing when their distance becomes
practically equal to zero) is:

τ j− τ j−1 > ε, j = k+1, . . . , p+1, (4)

where 0 < ε � (β −α) is a selected, sufficiently
small separation parameter.

Therefore, the following p−k+1 inequality con-
straints are imposed on the parameter vector δ :

τk+1− τk = τk+1−α ≥ ε

τk+2− τk+1 ≥ ε

...
τp− τp−1 ≥ ε

τp+1− τp = β − τp ≥ ε


=⇒


−1 0 . . . 0 0

1 −1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 −1
0 0 . . . 0 1

 ·


τk+1
τk+2

...
τp−1
τp


︸ ︷︷ ︸

δ

−


−α− ε

−ε

...
−ε

β − ε

≤ 0

(5)
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which are also depicted schematically in Fig. 1.

α                                                           β

=.
..==.
..=

Figure 1: Constraints imposed on δ . The distance be-
tween two internal knots has to be larger than ε . The
first and last internal knots have also to be ε away from
the endpoints α and β , respectively.

1.2. PCE model parameter estimation
The proposed data-driven PCE model estimation
problem involves the estimation of the parame-
ter vector δ consisting of the B-splines internal
knots and the coefficients of projection vector c
from the available N-samples long set of data ξ =
[ξ1, . . . ,ξN ]

T and y = [y1, . . . ,yN ]
T . Using the B-

spline functions of Eq. (3) (for given k and p), the
PCE model may be re-written in the following non-
linear regression form:

yn =
p

∑
j=1

c j ·φ k
j (ξn,δ )+ en(δ ,c)⇒

⇒ yn =


φ k

1 (ξn,δ )
φ k

2 (ξn,δ )
...

φ k
p(ξn,δ )


︸ ︷︷ ︸

φ (ξn,δ )(p×1)

T

·


c1
c2
...

cp


︸ ︷︷ ︸

c(p×1)

+en(δ ,c)

(6)

or equivalently by using the stacked signal and in-
novations sequence vectors y =

[
y1, . . .yN

]T and
e(δ ,c) =

[
e1(δ ,c), . . . ,eN(δ ,c)

]T :

y = Φ(ξ ,δ ) · c+ e(δ ,c) (7)

where Φ(ξ ,δ ) =
[
φ

k
1(ξ1,δ ), . . . ,φ

k
p(ξN ,δ )

]T .
The estimation of the model parameter vectors

δ and c may be based on the minimization of the
Prediction Error (PE) criterion V (δ ,c) = ‖e(δ ,c)‖2

consisting of the sum of squares of the model’s er-
rors, subject to the constraints discussed in the pre-
vious section which guarantee the linear indepen-
dence of the basis functions, that is:

[δ̂
T
, ĉT ]T = argmin

δ ,c
V (δ ,c) = argmin

δ ,c
‖e(δ ,c)‖2

subject to H(δ )≤ 0
(8)

In this relation, argmin stand for “argument mini-
mizing”, ‖ · ‖ indicates Euclidean norm, and e(δ ,c)
the model error being provided by the model ex-
pression of Eq. (6). A hat designates estima-
tor/estimate of the indicated quantity.

The nonlinear dependence of the basis functions
φ k

j (ξ ,δ ) on the parameter vector δ renders the PE-
based estimation problem a nonlinear optimization
problem with linear inequality constraints. This
problem may be solved through common iterative
constrained nonlinear optimization methods with
respect to the dim(c)+dim(δ ) = p+ p− k param-
eters and by utilizing the gradient of the objective
function V (δ ,c).

However, by taking into consideration the fact
that the parameters c and δ form two completely
disjoint sets more efficient estimation methods may
be derived. Such problems are referred to as
Separable Nonlinear Least Squares (SNLS) prob-
lems and an efficient method for their solution is
the Variable Projection (VP) method introduced
in early seventies by Golub and Pereyra (1973),
which is based on the fact that c appears linearly
in the model function Φ(ξ ,δ ) · c. Thus, if we as-
sume known nonlinear parameters δ , the ĉ estimate
may be readily obtained through the ordinary least
squares equation:

ĉ =
(
Φ

T (ξ ,δ ) ·Φ(ξ ,δ )
)−1

Φ
T (ξ ,δ ) · y⇒

⇒ ĉ = Φ
†(ξ ,δ ) · y (9)

with † denoting pseudo-inverse. Hence, the model
errors may be obtained as

e(δ ,c) = y−Φ(ξ ,δ ) · c ⇒
⇒ eVP(δ ) = y−Φ(ξ ,δ ) ·Φ†(ξ ,δ ) · y⇒
⇒ eVP(δ ) =

(
I−Φ(ξ ,δ ) ·Φ†(ξ ,δ )

)
· y (10)
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and as a consequence the optimization problem of
Eq. (8) takes the variable projection functional
form:

δ̂ = argmin
δ
‖
(
I−Φ(ξ ,δ ) ·Φ†(ξ ,δ )

)
· y‖2

subject to H(δ )≤ 0
(11)

with H(δ ) denoting the linear constraint functional.
In this way, the nonlinear parameters δ may be esti-
mated through Eq. (11) by the means of constrained
nonlinear optimization techniques with only p− k
unknown parameters, while c may be subsequently
estimated through linear least square optimization
(Eq. (9)). The method is referred to as VP method
as the matrix

(
I −Φ(ξ ,δ ) ·Φ†(ξ ,δ )

)
is the pro-

jector on the orthogonal complement of the column
space of Φ(ξ ,δ ) (Golub and Pereyra (2003)).

The minimization of the VP functional entails
a number of advantages compared to the original
minimization problem. The most important is the
dimensionality reduction of the nonlinear optimiza-
tion problem – while this reduction does not imply
changes to the stationary points (minima and max-
ima) of the original problem. This holds under the
rather mild condition of constant (not necessarily
maximum) rank of the regression matrix Φ(ξ ,δ )
over the whole parameter search space of δ . How-
ever, in our case the constraints described in the pre-
vious section define an appropriate parameter space
in which the constant full rank of Φ(ξ ,δ ) is guar-
anteed.

Nonetheless, the cost for reducing the dimen-
sion of the nonlinear optimization problem is the
increased complexity of the VP objective function
VVP(δ ) gradient computation. Golub and Pereyra
in their aforementioned study derived the necessary
relationships for the differentiation of a pseudoin-
verse matrix and concluded to the required gradi-
ent with respect to the nonlinear parameter vector.
Approximate solutions which aim at computational
time reduction have also been proposed in the liter-
ature. A comparison and asymptotic analysis study
for the three most frequently used algorithms may
be found in Ruhe and Wedin (1980). In the present
study we follow the Golub and Pereyra exact ap-
proach.

2. NUMERICAL CASE STUDY
2.1. Test case I
For this first example we consider the following dif-
ferential equation governing the movement of a par-
ticle being under the influence of a potential field
and a friction force (Le Maître et al. (2004)):

d2X
dt2 +2

dX
dt

=−35
2

X3 +
15
2

X (12a)

with uncertain initial initial position

X(t = 0,ξ )= 0.05+0.2ξ , ξ ∼U (−1,1) (12b)

and vanishing velocity

dX
dt

∣∣∣∣
t=0

= 0 (12c)

The analytical prediction of the steady state po-
sition of the particle is given by{

X(t→ ∞,ξ ) =−
√

15/35, ξ <−0.25,
X(t→ ∞,ξ ) =

√
15/35, ξ >−0.25,

(13)

This uncertainty propagation problem was solved
in Le Maître et al. (2004) through the Galerkin ap-
proach and the proposed therein Wiener-Haar ex-
pansion model. Nonetheless, in the present study
the non-intrusive regression problem of the initial
conditions uncertainty propagation to the steady
state solution (for t = 10 s) is considered, that is Y =
X(t = 10s,ξ ). For this reason Eq. (12) is simulated
for N = 100 times, with the corresponding sam-
ples of the uncertain parameter ξ being drawn from
the standard uniform distribution through the Latin
Hypercube Sampling (LHS) method (Helton and
Davis (2003)). A Runge-Kutta scheme is utilized
for performing time integration with a time step
∆t = 0.001 s. The output yn(n = 1, . . . ,100) ver-
sus the corresponding input variables ξn are shown
in Fig. 2.

The criterion of the normalized sum of squared
errors:

NSE =
∑

N
n=1 e2

n

∑
N
n=1 y2

n
(%) (14)

is utilized for evaluating the performance of the dif-
ferent expansion schemes. The calculated NSE val-
ues of the data-driven expansion based on adapt-
able B-spline basis of various orders k = 1, . . . ,4 is
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Figure 2: Steady-state position of the moving particle
Y = X(t = 10s,ξ ) versus the corresponding input
variable ξ for the 100 simulations conducted.

shown in Fig. 3 along with those obtained by the
classical PC expansion based on Legendre polyno-
mials. For all cases, the maximum number of bases
has been limited to 10. It is noted that a constraint
parameter ε equal to 0.02 is selected for the data-
driven approach while the SNLS optimization is
initialized by values estimated through a gradient-
free Particle Swarm Optimization (PSO) algorithm
(Engelbrecht (2006)) . This extra step is taken in or-
der to reduce the possibility of wrong convergence
of the optimization procedure to local minima due
to arbitrary initialization.

The results of Fig. 3 reveal superior performance
of the proposed method since the discontinuity of
the input-output relationship is correctly captured,
as expected, by the B-splines with k = 1 and only
two bases, that is a single internal knot estimated
to be at ξ = −0.2678. On the other hand, a large
number of Legendre polynomials are necessary to
achieve similar accuracy.

2.2. Test case II
In this second example the test case of a hysteretic
dissipative SDOF system is examined. The SDOF
system is actually a mass-damper systems with an
additional element producing a nonlinear restoring
force F(t) described by the Bouc-Wen model (Fig.
4):

m
dX2

dt
+ c

dX
dt

+F(t) =U(t) (15a)

F(t) = λk`X(t)+(1−λ )k`Z(t) (15b)
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−8
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−6
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−4
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0
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N
S

E
 (

%
)

 

 

B−splines (k = 1) B−splines (k = 2) B−splines (k = 3) B−splines (k = 4) Legendre

Figure 3: Test case I: NSE criterion values for the ex-
pansion models based on classical PC (Legendre poly-
nomials) and the introduced data-driven method (B-
splines of order k = 1, . . . ,4).

u

x

Figure 4: Single degree of freedom system with hys-
teretic restoring force.

with

Ż(t) = AẊ(t)+β

∣∣∣∣dX
dt

∣∣∣∣ |Z(t)|n−1Z(t)− γ
dX
dt
|Z(t)|n

(15c)
λ designating the post- to pre-yield stiffness k` ra-
tio, and A, β > 0, γ and n the dimensionless quanti-
ties controlling the shape of the hysteresis loop (Is-
mail et al. (2009)).

The nonlinear SDOF system is considered to be
subject to a static random force equal to 100 N,
while it is characterized by uncertainty of the pa-
rameter λ ≡ ξ ∼ U (0,1). The properties of the
system are summarized in Table 1.

Again the regression problem of the uncertainty
propagation to the steady-state displacement (for
t = 20 s) of the SDOF hysteretic system is con-
sidered, that is Y = X(t = 20s,ξ ). The system is
simulated N = 100 times, with the equations of mo-
tion describing the system being integrated through
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Table 1: Properties of the SDOF system with hysteretic
restoring force.

mass m = 1 kg
damping coefficient c = 1 N/ (m/s)
linear stiffness coefficient k` = 100 N/m
post- to preyield stiffness ratio λ ∼U (0,1)
hysteretic loop shape parameters A = 1,n = 3

β = 1,γ = 1

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

ξ

Y

Figure 5: Steady-state displacement of the hysteretic
SDOF system Y = X(t = 20s,ξ ) versus the correspond-
ing input variable ξ for the 100 simulations conducted.

a Runge-Kutta scheme with a time step ∆t = 0.01
s. The values of the output variable versus those of
the uncertain input variable are shown in Fig. 5.

The normalized sum of squared errors criterion
achieved by the classical PCE based on Legendre
polynomials for various degrees p = 1, . . . ,10 is
contrasted to those of a data-driven expansion based
on B-splines of various orders k = 1, . . . ,4 in Fig. 6.
As clearly shown the data-driven expansion outper-
forms the classical PC model for B-splines order of
k = 3 and k = 4, yet with a much larger convergence
rate.

3. CONCLUSIONS
A data-driven uncertainty quantification scheme
has been introduced. The method is based on
proper basis function parametrizations and an
SNLS type procedure which allows the efficient so-
lution of the parameter estimation problem. The
method’s effectiveness has been assessed through
two uncertainty propagation representation test
case studies. Comparisons with classical PCE
based on the Wiener-Askey scheme, demonstrated

1 2 3 4 5 6 7 8 9 10
10

−2

10
−1

10
0

10
1

10
2

Number of bases

N
S

E
 (

%
)

 

 

B−splines (k = 1) B−splines (k = 2) B−splines (k = 3) B−splines (k = 4) Legendre

Figure 6: Test case II: NSE criterion values for the
expansion models based on classical PC (Legendre
polynomials) and the introduced data-driven method
(B-splines of order k = 1, . . . ,4).

the method’s advanced capabilities and superior
performance characteristics. Future work will in-
clude the comparison of the method with other data
driven methods such as the arbitrary PC (aPC) in-
troduced in Oladyshkin and Nowak (2012), and the
extension of the method for the intrusive PC ap-
proach.
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