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ABSTRACT: The paper presents a systematic formulation of the life cycle cost and utility analysis
based on the theory of stochastic renewal processes. The paper derives integral equations for expected
cost and net present value, variance and expected utility over a given period. The proposed formulation
can be used to optimize the design and rehabilitation activities to improve the life cycle performance of
structures that are vulnerable to external hazards, such as earthquakes, winds storms and floods.

1. INTRODUCTION
The life-cycle cost analysis focuses on the estima-
tion of the total cost of construction, operation,
maintenance, decommissioning, and many other
activities, over a given time horizon or service pe-
riod of a structure or facility. In this analysis, one
of the most uncertain elements is the cost of repair-
ing and restoring the structural damage caused by
external hazards, such as earthquakes, wind storms
and floods. Uncertainty in the estimation of re-
pair cost arises from intrinsic uncertainty associ-
ated with the occurrence frequency and intensity of
a given type of hazard.

As the focus of the performance-based design
has shifted to life-cycle cost analysis (LCCA), this
topic has become an important area of research
(Koduru and Haukaas, 2010). LCCA is also in-
tended to support the decision making regarding
improvements in design and retrofitting of struc-
ture. For this purpose, a suitable metric of cost is
used, such as the expected cost and expected dis-
counted cost (or Net Present Value - NPV). The ex-
pected utility approach is also finding application

with the purpose of incorporating the risk aversion
of the decision maker (Cha and Ellingwood, 2013).

In a technical sense, LCC estimation problem
should be analyzed using the theory of compound
renewal processes. In structural engineering, a
special case of renewal process, the homogeneous
Poisson process (HPP), has been traditionally used
LCCA. A most notable example is the seismic risk
analysis. Although the HPP model greatly simpli-
fies the analytical formulation, it has a downside
that it completely masks the real probabilistic struc-
ture of the solution. What it means is that the results
obtained under the HPP assumption cannot be read-
ily extended to other situations without understand-
ing the theory of the stochastic renewal processes.

The main objective of this paper is to provide
a clear exposition of key ideas of the theory of
stochastic renewal processes and illustrate their ap-
plications to the life-cycle cost analysis. In partic-
ular, derivations of the expected value and the vari-
ance of the cost, expected NPV, and expected util-
ity are presented for a stochastic renewal process
model. Results for HPP model are obtained as a
special case of the renewal process. The example
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of seismic risk analysis is discussed in more detail.
An ulterior motive of this study is to help new gen-
eration of engineers understand the key concepts of
stochastic models for life-cycle cost analysis.

2. STOCHASTIC RENEWAL PROCESS
2.1. Stochastic Point Process

0 tS1 S2 Sn−1 Sn Sn+1

T1 T2 Tn Tn+1

Figure 1: A schematic of the renewal process.

Mathematically, a point process is a strictly increas-
ing sequence of real numbers,S1 < S2 < ∙ ∙ ∙ , with-
out a finite limit point, i.e., asi → ∞, lim Si → ∞
andS0 = 0. In an engineering sense however,Si de-
notes the time of arrival of anith event (or hazard),
as shown in Figure 1.

A point process can be equivalently represented
by a sequence of inter-arrival times,T1,T2, ∙ ∙ ∙ , with
Tn = Sn+1 − Sn. An ordinary renewal processis
defined as a sequence of non-negative, indepen-
dent and identically distributed random variables
T1,T2, ∙ ∙ ∙ ,Tn with a distributionFT(t).

The arrival time of annth event,Sn, can be written
as a partial sum,Sn = T1 + T2 ∙ ∙ ∙+ Tn. The proba-
bility distribution of Sn can be derived in principle
from ann-fold convolution of distribution,FT(t), as

FSn(x) = P [T1 +T2 ∙ ∙ ∙+Tn ≤ x] = F(n)
T (x) (1)

This convolution can be evaluated in a sequential
manner as

F(n)
T (x) =

∫ t

0
F(n−1)

T (x−y)dFT(y), (n≥ 2) (2)

Note that dFT(y) = fT(y) dy when the probability
density ofT, fT(y), exists.

The number of events,N(t), in the time interval
(0, t] is referred to as acounting (or renewal) pro-
cessassociated with the partial sumsSn, n≥ 1, and
formally defined as

N(t) = max{n,Sn ≤ t} (3)

Note that N(t) = n is equivalent to the event
Sn ≤ t < Sn+1. This analogy is very useful in an-
alyzing functions of the renewal process, as shown
later in the paper.

The probability distribution ofN(t) can be writ-
ten as

P [N(t) = n] = P [Sn ≤ t < Sn+1] = FSn(t)−FSn+1(t)
(4)

The distribution ofN(t) is not easy to derive in a
general setting. Instead, the expected number of
failures is used to characterize the renewal process.

2.1.1. Renewal Function
The renewal function,Λ(t), is defined as the ex-
pected number of renewals in(0, t], which is com-
puted using an integral equation (Tijms, 2003). The
derivation of the integral equation is based on the
renewal argument that is extremely useful in ana-
lyzing a variety of problems.

The use of a binary indicator function makes it
easier to write concise mathematical statements. It
is used to test a logical condition in the following
way:

1{A} =

{
1 only if A is true
0 otherwise.

(5)

From probability theory, it is known thatE
[
1{A}

]
=

P [A]. Using the indicator function, the counting
process can be written as

N(t) =
∞

∑
i=1

1{Si≤t} and

E [N(t)] = Λ(t) =
∞

∑
i=1
P [Si ≤ t] (6)

Eq (6) and Eq. (1) implies that the renewal function
can be written as a sum of convolutions:

Λ(t) =
∞

∑
i=1

F(n)
T (t) (7)

However, this approach is not fruitful, as the com-
putation of higher order convolutions is not an easy
task. Therefore, the computation relies on the re-
newal property of the process.
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The analysis starts with breaking the sum given
in Eq (6) as

Λ(t) = P [S1 ≤ t]+
∞

∑
i=2
P [Si ≤ t] or

= P [S1 ≤ t]+
∞

∑
i=1
P [Si+1 ≤ t] (8)

The essence of the renewal argument is that after
a renewal a (probabilistic) replica of the original re-
newal process starts again. Noting thatS1 = T1 and
Si+1 = T1 +Si, Eq. (8) can be rewritten as

Λ(t) = P [T1 ≤ t]+
∞

∑
i=1
P [T1 +Si ≤ t] (9)

Any ith term in the sum in Eq. (9) can be simplified
as

P [T1 +Si ≤ t] =
∫ t

0
P [Si ≤ t −x]dFT(x) (10)

Substituting this in Eq. (9) and inter-changing the
order of summation and integration leads to

Λ(t) = P [T1 ≤ t]+
∫ t

0

(
∞

∑
i=1
P [Si ≤ t −x]

)

dFT(x)(11)

Comparing the summation term inside the paren-
theses with Eq. (6), it is nothing but the expected
number of renewals in time interval(0, t−x], which
is equal toΛ(t − x) by virtue of the renewal argu-
ment. This leads to the final result known as the
renewal equation (Tijms, 2003):

Λ(t) == FT(t)+
∫ t

0
Λ(t −x)dFT(x). (12)

The renewal rate is defined as the expected num-
ber of renewals per unit time given as:

λ (t) =
dΛ(t)

dt
(13)

2.1.2. Marked and Compound Renewal Processes
In addition to the time of occurrence of a hazard,
its severity (or intensity) tends to be highly uncer-
tain. Variability in the intensity can be modelled
by a random variable, which is referred to as the

0 t

X1

X2

Xn−1

Xn

S1 S2 Sn−1 Sn

T1 T2 Tn

Figure 2: An example of a marked renewal process.

mark of the renewal process. If a random mark
Xi is assigned to the arrival timeSi , then the se-
quence{(S1,X1),(S2,X2), ∙ ∙ ∙} is called amarked
point process, as shown in Figure 2. This model
is useful to evaluate the probability of intensity ex-
ceeding a critical limit in a time interval(0, t).

The compound process refers to the cumulative
effect of a renewal process. For example, each oc-
currence of a hazard results in damage costing $C
to repair the structure. Suppose the repair cost is
modelled as a random variable, then total (cumula-
tive) repair cost in the interval(0, t) is given as a
random sum:

K(t) =
N(t)

∑
i=1

Ci (14)

K(t) is technically referred to as the compound pro-
cess. Note thatK(t) = 0 for t < S1. The mean and
variance of the compound process are useful in the
life cycle cost analysis, as shown later in the paper.

2.2. Homogeneous Poisson Process
This is the simplest and most widely used renewal
process model in which the time between the occur-
rence of events is an exponentially distributed ran-
dom variable with the distributionFT(x) = 1−e−λx

and the mean ofμT = 1/λ . The distribution ofN(t)
is explicitly given by the Poisson probability mass
function as

P [N(t)) = k] = pk =
(λ t)k e−λ t

k!
(15)

The probability of no renewal in(0, t] (e.g., no oc-
currence of failure) is synonymous with the relia-
bility in time interval,(0, t] as

P [N(t)) = 0] = P [T1 > t] = R(t) = e−λ t , (16)
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which is essentially the complementary distribution
of T. The renewal function of HPP is given as

Λ(t) = λ t (17)

Here,λ is referred to as the failure rate. In sum-
mary, the probabilistic structure of the homoge-
neous Poisson process is completely defined by
simple analytical formulas.

2.2.1. Decomposition and Superposition
The two most useful properties of the Poisson pro-
cess are related to the decomposition and superpo-
sition defined as follows.

Suppose the seismic events occur with a rateλ ,
but the probability of structural failure given an
event isp, then the structural failure is also a Pois-
son process with the rateλ p. This assumes that the
structure is renewed to the original state after each
failure, and the repair time is negligible. In fact, a
Poisson process can be randomly decomposed into
n sub-processes, each with the rate parameters as
λ pi , i = 1, ∙ ∙ ∙ ,n andp1 + ∙ ∙ ∙+ pn = 1.

The superposition is related to the merger of
Poisson processes. Suppose there aren seismic
sources (faults) andλi is earthquake occurrence rate
from an ith source. The occurrence of earthquakes
from any of n sources is also a Poisson process
with rate being the sum of rates of all the seismic
sources, i.e.,

λ = λ1 +λ2 + ∙ ∙ ∙+λn (18)

This property is extensively used in probabilistic
seismic hazard assessment (PSHA).

2.2.2. Marked and Compound Poisson Processes
Randomness in the intensity and occurrence of an
external hazard can be modelled as a marked Pois-
son process. For example the peak ground acceler-
ation (pga) associated with an earthquake event is
modelled as a random variable. The marked pro-
cess is useful in structural reliability analysis over a
time interval (or life-cycle).

Given the distribution of the pga,FS(s), earth-
quake events exceeding certain level, says1, also
constitute a Poisson process with the rateλ p1,

wherep1 = 1−FS(s1) This is based on the decom-
position property of the Poisson process. Based on
Eq. (16), the structural reliability is given ase−tλ p1.

The compound Poisson process also has a simple
analytical structures, which will be discussed in the
next Section.

3. LIFE-CYCLE COST ANALYSIS (LCCA)
3.1. Expected Life-Cycle Cost
Suppose the occurrence of a hazard costs the owner
of a facilityC $, in repairing and restoring the struc-
ture. The repair cost is uncertain due to uncertainty
associated with the intensity of hazard and other
design features. The repair cost has a meanμC

and standard deviationσC. The total cost,K(t),
in a time interval(0, t] is a random sum given by
Eq. (14). The evaluation of expected cost begins
with rewriting it as

K(t) =
∞

∑
i=1

Ci1{Si≤t} (19)

If the cost is assumed to be independent of inter-
occurrence time (T) of hazards, then the evaluation
of expected cost becomes rather simple as shown
below.

E [K(t)] =
∞

∑
i=1
E [Ci ]E

[
1{Si≤t}

]

= E [C]
∞)

∑
i=1
P [Si ≤ t]

E [K(t)] = μC Λ(t) (from Eq. (6)) (20)

Eq. (20) is a standard result of the compound re-
newal process (Gallager, 2013).

3.2. Variance of Life-Cycle Cost
The evaluation of the variance of LCC begins in
a much more systematic way (Cheng and Pandey,
2012). Firstly, second moment of the cost is written
using the law of total expectation as

E
[
K2(t)

]
= E

[
K2(t)1{T1≤t}

]
+E

[
K2(t)1{T1>t}

]

(21)
In case ofT1 > t, i.e., the first occurrence of hazard
is beyond the time interval of interest, no cost will
accrue, i.e.,K(t) = K2(t) = 0.
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On the other handT1 ≤ t means that at least one
hazard would occur in the time interval. Therefore,
the total cost will be the sum of damage cost due to
the first hazard,C1 at timeT1, and the cost,K(T1, t),
in the remaining time interval. Thus,K(t) = C1 +
K(T1, t). Using these result,

E
[
K2(t)

]
= E

[
(C1 +K(T1, t))

21{T1≤t}

]
(22)

In the spirit of the renewal argument that the re-
newal process starts again after the first renewal at
time T1, the damage cost in the remaining interval
can be written asK(t −T1) which has the same dis-
tribution asK(t). Using this argument and expand-
ing the square term in Eq. (22) lead to

E
[
K2(t)

]
= E

[
C2

11{T1≤t}
]
+

E
[
2C1K(t −T1)1{T1≤t}

]
+

E
[
K2(t −T1))21{T1≤t}

]
(23)

Assuming that theC is independent ofT, these ex-
pectations can be evaluated in the following man-
ner.

E
[
C2

11{T1≤t}
]
= E

[
C2]FT(t), (24)

E
[
2C1K(t −T1)1{T1≤t}

]

= 2 μC
∫ t

0E [K(t −x)]dFT(x) (25)

and lastly

E
[
K2(t −T1))

21{T1≤t}
]
=
∫ t

0
E
[
K2(t −x)

]
dFT(x)

(26)
Substituting all these simplified terms in Eq.(23)
leads to the following renewal equation:

E
[
K2(t)

]
= g(t)+

∫ t

0
E
[
K2(t −x)

]
dFT(x) (27)

where

g(t) = μ2CFT(t)+2μC

∫ t

0
E [K(t −x)]dFT(x)

(28)
Note thatμ2C is the second moment of the damage
cost, andE [K(t −x)] is already given by Eq.(20).

In fact, the expected cost can also be derived us-
ing the renewal argument in form of the following
integral equation:

E [K(t)] = μCFT(t)+
∫ t

0
E [K(t −x)]dFT(x) (29)

Using this result, a simpler expression forg(t) is
obtained as

g(t) = (μ2C−2μ2
C) FT(t)+2μC E [K(t)] (30)

Sinceg(t) is a bounded and integrable function, the
renewal equation, Eq.(27) has the following solu-
tion:

E
[
K2(t)

]
= g(t)+

∫ t

0
g(t −x)dΛ(x)

which can also be written as

E
[
K2(t)

]
= g(t)+

∫ t

0
g(t −x)λ (x)dx (31)

In summary, given the renewal function and
the expected life cycle cost, the second mo-
ment of the life-cycle cost can be calculated us-
ing the above equation. Then the variance can
be calculated using the standard relationship as[
E
[
K2(t)

]
− (E [K(t)])2

]
.

3.3. Discounted Life Cycle Cost
The expected value of the discounted life-cycle cost
or (NPV) can be obtained using the renewal argu-
ment. Here, the damage costCi incurring at time
Si is discounted back to present time,S0 = 0, as
Cie−ρSi , whereρ is the interest rate. Thus,the total
discounted life-cycle cost can be written as

KD(t) =
∞

∑
i=1

Ci e−ρSi 1{Si≤t} (32)

Its expected value is then written as

E [KD(t)] = E [Ci ]
∞

∑
i=1
E
[
e−ρSi 1{Si≤t}

]

= μC

∞

∑
i=1

∫ t

0
e−ρxdFSi (x) (33)

Recall thatFSi(x) = F(i)
T (x) and substituting it in

above equation leads to

E [KD(t)] = μC

∞

∑
i=1

∫ t

0
e−ρxdF(i)

T (x)

= μC

∫ t

0
e−ρx∑dF(i)

T (x) (34)
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Based on Eq. (7), the final result is obtained as

E [KD(t)] = μC

∫ t

0
e−ρx dΛ(x) (35)

It is interesting to note that even for a general re-
newal process the expected discounted cost has a
fairly simple analytical form.

3.4. Expected Utility Analysis
A renewal type integral equation can be derived for
a restricted family of the utility function, such as
an exponential function of the following form (Cha
and Ellingwood, 2013):

U(K(t)) = −a e−αK(t) (36)

For sake of notational simplicity, define the ex-
pected utility without any multiplicative constants
as

E [U(K(t)))] = φ(t) = E
[
e−αK(t)

]
(37)

The formulation proceeds in the same way as that
for the second moment in Section 3.2.

E [U(K(t)] = E
[
U(K(t)1{T1≤t}

]

+ E
[
U(K(t)1{T1>t}

]
(38)

The first term can be simplified by invoking the re-
newal argument as (Cheng et al., 2012)

E
[
U(K(t)1{T1≤t}

]
= E

[
e−α(C1+K(t−T1))1{T1≤t}

]

=
∫ t

0E
[
e−αK(t−x)

]
E
[
e−αC1

]
dFT(x) (39)

The second expectation term in Eq.(38) simply
turns out tobeFT(t), sinceK(t) = 0 whenT1 > t.
The final solution can be written as an integral
equation

φ(t) = FT(t)+
∫ t

0
φ(t −x) fφ (x) d(x) (40)

where
fφ (x) = E

[
e−αC1

]
fT(x) (41)

is a defective density.
Eq.(40) is also referred to as a defective renewal

equation, and its solution will depend on the proba-
bility density of the renewal interval,fT(x), as well

as the density of the cost,C, which is needed to
evaluateE

[
e−αC1

]
.

Since the solution of a defective renewal equa-
tion is a more involved task, further analysis of this
problem is pursued in a separate investigation.

3.5. Life-Cycle Cost Analysis: HPP Model
If the occurrence of a hazard is modelled as an HPP,
then the life-cycle cost is equivalent to a compound
Poisson process. Using Eq.(20) and noting that the
renewal function of HPP is simplyΛ(t) = λ t, the
expected cost can be easily obtained as

E [K(t)] = μC λ t (42)

The second moment (or mean square) of the cost
can be obtained from Eq.(31) withλ (x) = λ and
FT(t) = 1−e−λ t :

E
[
K2(t)

]
= μ2C λ t +(μCλ t)2 (43)

The variance of cost is simply

σ2
K(t) = μ2C λ t (44)

The expected discounted cost can be obtained
from Eq.(34) as

E [KD(t)] = μC

∫ t

0
e−ρx λdx =

μCλ
ρ

(1−e−ρt)(45)

This standard formula is commonly used in seismic
risk analysis (Liu et al., 2004; Porter et al., 2004).

4. SEISMIC RISK ANALYSIS: DISCUS-
SION

4.1. Seismic Hazard Analysis
Consider a hypothetical site that is vulnerable to
damage from earthquakes originating from three
seismic sources shown in Figure 3. This Figure also
provides occurrence rates, magnitude and depth of
seismic sources. Here, the earthquake intensity is
quantified as the spectral accelerationSa at 1 sec-
ond period of the structure situated at the site.

For details of the probabilistic seismic hazard
analysis (PSHA), readers are referred to McGuire
(2004). The ground motion prediction equation, a
function of earthquake magnitude (M) and distance
(R), given by Abrahamson and Silva (1997) is used.

6



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

Figure 3: Seismic sources near the site.

PSHA leads to the complementary distribution of
Sa from anith sourceas

Fi(si) = P [Sai > si ]

=
∫

M

∫

R
P [Sai > si |m, r] fR(r) fM(m)drdm (46)

Since the earthquake occurrence is modelled as
an HPP with rateλi per year, earthquakes exceeding
an intensitysi is also an HPP with rateλiFi(si). This
result is based on the decomposition property of the
Poisson process.

From the superposition principle, the combined
earthquake hazard from all the three sources is also
a Poisson process with an overall rate ofλ = λ1 +
λ2+λ3 = 0.1 per year. In particular, the occurrence
rate of earthquakes exceeding a magnitudes is also
given by the superposition principle as

λ (s) = λ1F1(s)+λ2F2(s)+λ3F3(s) (47)

A plot of λ (s) versuss, referred to as the hazard
curve, is shown in Figure 4.

The probability of no occurrence of earthquake
exceeding the intensitys in (0, t] is equivalent to
the cumulative probability that the earthquake in-
tensity does not exceeds in (0, t], which is given as
FSa,t(s) = e−λ (s)t . On an annual basis, i.e.,t = 1,
this distribution is given as

FSa(s) = e−λ (s) (48)

×

×

×

×

×

×

×

Figure 4: Seismic hazard curves resulting from three
sources.

Figure 5: Probability distribution (CDF) of the spectral
acceleration (Sa at 1 sec period).

In summary, the earthquake hazard at the site in
question is described as a marked Poisson process
with the rate ofλ = 0.1 per year and the distribution
of mark (Sa) is shown in Figure 5.

4.2. Life-Cycle Damage Cost
The damage cost,C, given the occurrence of an
earthquake tends to be a function of the extent of
structural damage, which in turn depends on the
earthquake intensity,Sa. The seismic damage to
structure is typically quantified in terms of drift (D),
which is related withSa by a simple empirical rela-
tionship, such as the following logarithmic relation
(Cornell et al., 2002):

lnD = a+blnSa + ε (49)

7



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

whereε is a normally distributed random variable
with mean 0 and standard deviation ofβD.

The damage cost is then related to drift by a sim-
ilar simple, empirical relation. The overall aim is
to derive a conditional distribution of damage cost
givenSa, i.e.,FC|Sa

(c). However, the estimation of
the moments of life-cycle cost,K(t), requires only
the first two moments ofC, as shown by the results
given in Section 3.5. This simplification is a result
of two assumptions, namely, (1) damage cost is in-
dependent of inter-occurrence time, and (2) earth-
quake occurrences follow the homogeneous Pois-
son process. What it means is that conditional re-
lationships between the cost, damage and intensity
are needed to estimate only the conditional mo-
ments of the cost,E [Cn|s]. Given these conditional
moments, annth order moment can be calculated as
(Porter et al., 2004):

E [Cn] =
∫

Sa

E [Cn|s] dFSa(s)ds (50)

whereFSa(s) is given by Eq.(48). Using the mo-
ments of the cost and occurrence rate, formulas
given in Section 3.5 can be used to calculate var-
ious estimates related to the expected cost

5. CONCLUSIONS

In the life-cycle cost estimation, damage caused
by external hazards introduces a great deal of un-
certainty due to random nature of the occurrence
and intensity of hazards. The marked renewal pro-
cess serves as a conceptual model of occurrence
and intensity of a hazard, whereas the cumulative
cost of repairing and restoring the structure can be
treated as a compound renewal process. This paper
presents systematic derivations of various measures
of the life-cycle cost, such as the expected value,
variance, expected NPV and expected utility.

In structural engineering, the homogeneous Pois-
son process model is widely used which has such
a simple probabilistic structure that it completely
by passes the use of formal theory of renewal pro-
cess. The paper emphasizes that the understanding
of the renewal theory is necessary to analyze life-
cycle cost measures in a general setting.
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