12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

Stochastic Renewal Process Models for Life Cycle Cost and Utility
Analysis

Mahesh D. Pandey and Z. Wang
Department of Civil and Environmental Engineering, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada

T. Cheng
Technology and Engineering Center for Space Utilization, Chinese Academy of Science,
Beijing, China

ABSTRACT: The paper presents a systematic formulation of the life cycle cost and utility analysis
based on the theory of stochastic renewal processes. The paper derives integral equations for expected
cost and net present value, variance and expected utility over a given period. The proposed formulation
can be used to optimize the design and rehabilitation activities to improve the life cycle performance of
structures that are vulnerable to external hazards, such as earthquakes, winds storms and floods.

with the purpose of incorporating the risk aversion
of the decision maker (Cha and Ellingwood, 2013).

1. INTRODUCTION . . .
In a technical sense, LCC estimation problem

The life-cycle cost analysis focuses on the es“msaﬁould be analyzed using the theory of compound

tion of the total cost of construction, operation : .
. N renewal processes. In structural engineering, a
maintenance, decommissioning, and many othér

activities, over a given time horizon or service pspecial case of renewal process, the homogeneous
: ’ . : . Poisson process (HPP), has been traditionally used
riod of a structure or facility. In this analysis, on

. . CCA. A most notable example is the seismic risk
of the most uncertain elements is the cost of repair-

. . nalysis. Although the HPP model greatly simpli-
Ing and restoring the structural damage CaUSEdfle% the analytical formulation, it has a downside

external hazards, such as earthquakes, wind sto . e
g {H?ﬁ it completely masks the real probabilistic struc-

anq ﬂOOdS'. Uncertalr_lty n _the estlmgtlon of r?l]re of the solution. What it means is that the results
pair cost arises from intrinsic uncertainty assocr:_, . .
: : . ok?talned under the HPP assumption cannot be read-
ated with the occurrence frequency and |ntenS|ty.P o .
. ily extended to other situations without understand-
a given type of hazard. ing the theory of the stochastic renewal processes
As the focus of the performance-based desigrcl’ y P '
has shifted to life-cycle cost analysis (LCCA), this The main objective of this paper is to provide
topic has become an important area of reseagcltlear exposition of key ideas of the theory of
(Koduru and Haukaas, 2010). LCCA is also irstochastic renewal processes and illustrate their ap-
tended to support the decision making regardiptications to the life-cycle cost analysis. In partic-
improvements in design and retrofitting of struedar, derivations of the expected value and the vari-
ture. For this purpose, a suitable metric of costasice of the cost, expected NPV, and expected util-
used, such as the expected cost and expected itiisare presented for a stochastic renewal process
counted cost (or Net Present Value - NPV). The extodel. Results for HPP model are obtained as a

pected utility approach is also finding applicatiospecial case of the renewal process. The example
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of seismic risk analysis is discussed in more detdilote that N(t) = n is equivalent to the event
An ulterior motive of this study is to help new genS, < t < S,;1. This analogy is very useful in an-
eration of engineers understand the key conceptalyizing functions of the renewal process, as shown
stochastic models for life-cycle cost analysis.  later in the paper.
The probability distribution oN(t) can be writ-

2. STOCHASTIC RENEWAL PROCESS tenas
2.1. Stochastic Point Process

PIN(t) = n] =P[S <t < Sya] = Fs,(t) —Fs,4 (1)

: % Se—4f— e—t----- x 4)
? ‘;’l j’z S“k*l i‘ t S‘;l The distribution ofN(t) is not easy to derive in a
T T2 Tn Tt general setting. Instead, the expected number of
failures is used to characterize the renewal process.
Figure 1: A schematic of the renewal process. 21.1. Renewal Function

: : , o The renewal function/\(t), is defined as the ex-
Mathematlcally, a point process is a strictly mcrea&-ected number of renewals {6,t], which is com-
ing sequence of real numMbegs, < S < ---, With- ) 40 ising an integral equation (Tijms, 2003). The

out a finite limit pom_t, €., as — °°'h“ms' — ® derivation of the integral equation is based on the
andSp = 0'_'” an engineering sense owevgide- renewal argument that is extremely useful in ana-
notes the time of arrival of aif" event (or hazard),lyzing a variety of problems

as shown in Figure 1. The use of a binary indicator function makes it

b A point procesfs can be_ eqlu_lvalently represﬁntggsier to write concise mathematical statements. It
y asequence of inter-arrival imelg, Tz, .-+, With 50 19 test a logical condition in the following

Th = Sve1— S An ordinary renewal processs way:

defined as a sequence of non-negative, indepen-

dent and identically distributed random variables 1 onlyif Ais true

Ty, To, -+, Tn With a distributionFr (t). Liay = { 0 otherwise. (5)
The arrival time of am™ event,S,, can be written

as a partial sum, =Ty + To--- +Tn. The proba- From probability theory, itis known thé [1(a)] =

bility distribution of S, can be derived in principlep(a]. Using the indicator function, the counting

from ann-fold convolution of distributionFr (t), as process can be written as

_ — M ®
Fs,(X) =P[Ti+ T2+ Tn <X =F"(x) (1) N(t) = Zl{sgt} and
This convolution can be evaluated in a sequential '2
manner as ENb]=At) = ZIP’ (S <t] (6)
i=

n (-1
FT( )(X) :/0 FT( )(x—y) dFr(y), (n=2) () Eq (6) and Eq. (1) implies that the renewal function
can be written as a sum of convolutions:

Note that & (y) = fr(y) dy when the probability
density ofT, fr(y), exists. e

The number of eventd\(t), in the time interval A = i;FT ® (7)
(0,t] is referred to as aounting (or renewal) pro-
cessassociated with the partial surg n> 1, and However, this approach is not fruitful, as the com-

formally defined as putation of higher order convolutions is not an easy
task. Therefore, the computation relies on the re-
N(t) =max{n,§, <t} (3) newal property of the process.
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The analysis starts with breaking the sum given X2
: X Xn
in Eq (6) as 1 L X1
/\(t) = P [Sg]_ < t] + ZZP [S < t] or 6 S S S1 S, ot
1= N Tl A T2 7 N Tn 7

= P[S <] +_2P[S+1 <t (8

Figure 2: An example of a marked renewal process.

The essence of the renewal argument is that after
arenewal a (probabilistic) replica of the original renark of the renewal process. If a random mark
newal process starts again. Noting tBat= T; and X is assigned to the arrival tim§, then the se-

S+1=T1i+ S, Eq. (8) can be rewritten as quence{(S1,X1), (S, X2),---} is called amarked
. point processas shown in Figure 2. This model
AD=P[T <tl+ S PT+S <t g) is useful to evaluate the probability of intensity ex-
® M<t] i; M+S < ®) ceeding a critical limit in a time intervdD,t).

The compound process refers to the cumulative
Any i term in the sum in Eq. (9) can be simplifie@ffect of a renewal process. For example, each oc-
as currence of a hazard results in damage costi@y $
t to repair the structure. Suppose the repair cost is
P[T1+S§ <t =/ P[S <t—x]dFr(x) (10) modelled as a random variable, then total (cumula-
0 tive) repair cost in the intervalO,t) is given as a
Substituting this in Eq. (9) and inter-changing thendom sum:
order of summation and integration leads to

ith

N(t)
K=y C (14

’[ [oe]

A =P <1 +/0 (;P [S=<t- X]> dFy (X)(llp((t) is technically referred to as the compound pro-
. cess. Note tha(t) = 0 fort < S;. The mean and

Comparing the summation term inside the parevariance of the compound process are useful in the
theses with Eqg. (6), it is nothing but the expectdife cycle cost analysis, as shown later in the paper.
number of renewals in time intervéd,t — x|, which
is equal to/A(t — x) by virtue of the renewal argu-2.2. Homogeneous Poisson Process
ment. This leads to the final result known as thmis is the simplest and most widely used renewal

renewal equation (Tijms, 2003): process model in which the time between the occur-
; rence of events is an exponentially distributed ran-
A(t) == Fr(t)+ / At—x)dFr(x).  (12) dom variable with the distributioRir (x) = 1— e
0 and the mean gfir = 1/A. The distribution ofN(t)
The renewal rate is defined as the expected nufmexplicitly given by the Poisson probability mass
ber of renewals per unit time given as: function as
K oAt
My =LY (13) pIND) =K = p= AV ET s

2.1.2. Marked and Compound Renewal Proces3é® probability of no renewal i(0,t] (e.g., no oc-
In addition to the time of occurrence of a hazardurrence of failure) is synonymous with the relia-
its severity (or intensity) tends to be highly uncebility in time interval, (0,t] as

tain. Variability in the intensity can be modelled

by a random variable, which is referred to as the P[N(t)) =0 =P[Ty > t] =R(t) =e !, (16)

3



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

which is essentially the complementary distributiomherep; = 1 — Fg(s;) This is based on the decom-
of T. The renewal function of HPP is given as  position property of the Poisson process. Based on
Eq. (16), the structural reliability is given as Pr.
At)=At (17)  The compound Poisson process also has a simple

analytical structures, which will be discussed in the
Here, A is referred to as the failure rate. In sunkext Section.

mary, the probabilistic structure of the homoge-
neous Poisson process is completely defined y LIFE-CYCLE COST ANALYSIS (LCCA)

simple analytical formulas. 3.1. Expected Life-Cycle Cost
Suppose the occurrence of a hazard costs the owner
2.2.1. Decomposition and Superposition of a facility C $, in repairing and restoring the struc-

The two most useful properties of the Poisson priote. The repair cost is uncertain due to uncertainty

cess are related to the decomposition and supergssociated with the intensity of hazard and other

sition defined as follows. design features. The repair cost has a mgan
Suppose the seismic events occur with a fateand standard deviatioaoc. The total costK(t),

but the probability of structural failure given armn a time interval(0,t] is a random sum given by

event isp, then the structural failure is also a Poid=q. (14). The evaluation of expected cost begins

son process with the rafep. This assumes that thevith rewriting it as

structure is renewed to the original state after each -

failyre, and the repair time is negligible. In fact, a K(t) = Zlci lig<t) (19)

Poisson process can be randomly decomposed into =

n sub-processes, each with the rate parameters as _ _ )
Ap,i=1-- nandpi+-- +pn=1. If the cost is assumed to be independent of inter-

The superposition is related to the merger 8fcurrence timeT) of hazards, then the evaluation
Poisson processes. Suppose thereraseismic of expected cost becomes rather simple as shown

sources (faults) andj is earthquake occurrence ratBe!OW.

from anit" source. The occurrence of earthquakes ®

from any of n sources is also a Poisson process EK{)] = _ZE[Ci]E [1{33}}
with rate being the sum of rates of all the seismic =

: )
sources, i.e.,

= E[C]le[s <t
EK(t)] = pcAt) (fromEqg. (6) (20)

Th_is property is extensively used in probabilistiﬁq_ (20) is a standard result of the compound re-
seismic hazard assessment (PSHA). newal process (Gallager, 2013).

A=A+t A+t A (18)

2.2.2. Marked and Compound Poisson Processg$  viariance of Life-Cycle Cost

Randomness in the intensity and occurrence of Ble evaluation of the variance of LCC begins in
external hazard can be modelled as a marked P@isnuch more systematic way (Cheng and Pandey,
son process. For example the peak ground accefgyi2). Firstly, second moment of the cost is written

ation (pga) associated with an earthquake evenisng the law of total expectation as
modelled as a random variable. The marked pro-

cess is useful in structural reliability analysis over & [K?(t)] = E [K?(t)1{7,<q] +E [K?(t)Lir,0)]
time interval (or life-cycle). (21)

Given the distribution of the pgds(s), earth- In case ofT; > t, i.e., the first occurrence of hazard
guake events exceeding certain level, sayalso is beyond the time interval of interest, no cost will
constitute a Poisson process with the ratp;, accrue,i.e.K(t) =K?(t) =0.
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On the other hand; <t means that at least ondJsing this result, a simpler expression fg(t) is
hazard would occur in the time interval. Thereforeptained as
the total cost will be the sum of damage cost due to
the first hazardC; attimeTy, and the costK (Tq,t),  9(t) = (Hc — 2p8) Fr(t) +2uc E[K(t)]  (30)
in the remaining time interval. Thu&(t) = Cy +

K(Ti,t). Using these result, Sinceg(t) is a bounded and integrable function, the

renewal equation, Eq.(27) has the following solu-
E [K?(t)] :]E[(C1+K(T1,t))21{Tl§t}] (22) tion:

In the spirit of the renewal argument that the re- [ [Kz(t)} —=g(t) +/tg(t —x)dA(X)
newal process starts again after the first renewal at 0

time Ty, the damage cost in the remaining intervihich can also be written as

can be written a& (t — T1) which has the same dis-
tribution asK (t). Using this argument and expand-
ing the square term in EqQ. (22) lead to

E [K?(t)] :g(t)+/otg(t—x))\(x)dx (31)

E[Kz(t)} :E[Cfl{nét}} + In summary, given the renewal function and

I[-E[2C1K(t—T1)1{T1§t}]Jr the expected life cycle cost, the second mo-

E [Kz(t—Tl))zl{T <t}] (23) ment of the life-cycle cost can be calculated us-
1>

ing the above equation. Then the variance can

Assuming that th€ is independent of , these ex- be calculated using the standard relationship as
pectations can be evaluated in the following ma@E [KZ(t)] —(E [K(t)])z}.

ner.
E [C3l1,<ty] =E [C?] Fr(v), (24) 3.3. Discounted Life Cycle Cost
The expected value of the discounted life-cycle cost
E [2CiK (t —T1)1ir <1 or (NPV) can be obtained using the renewal argu-
_ t _ ment. Here, the damage cdtincurring at time
2 He JoE[K{Et=x)]dFr(x) (25) S is discounted back to present tim& = 0, as
and lastly Cie PS, wherep is the interest rate. Thus,the total
t discounted life-cycle cost can be written as
E (K2t~ T0))2Lirey] = [ B K3t =] dFr ()

(26) Kp(t) = S CePrS1 (32)
Substituting all these simplified terms in Eq.(23) ) i; I .

leads to the following renewal equation: . :
Its expected value is then written as

E [K2(t)] = g(t) + /0 tE[Kz(t—x)} dFr(x) (27)

" BKo()) = EG] 3 E[e L]

t © et
g(t) = pacFr (t) + 24c / E K (t —x)] dFr (x) =y / e Pdrg(x)  (33)
0 &5 /o
(28)
Note thatpxc is the second moment of the damaggacg) thatFg (X) = T(i)<x) and substituting it in

cost, andt [K(t —x)] is already given by Eq.(20). gpove equation leads to
In fact, the expected cost can also be derived us-

ing the renewal argument in form of the following _ © ot e (i)
integral equation: ElKo(t)] = pc i;/o e PXdF; (x)

t t .
E[K(t)] = HoFr(t) + /0 E[K(t—x)]dFr(x) (29) S /0 e P S dr(x) (34)
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Based on Eq. (7), the final result is obtained as as the density of the cost, which is needed to

t evaluateE [e~9C1].

E[Kp(t)] = pic / e PXdA(X) (35) Since the solution of a defective renewal equa-
0 tion is a more involved task, further analysis of this

B[oblem is pursued in a separate investigation.

It is interesting to note that even for a general r

newal process the expected discounted cost hasg g Life-Cycle Cost Analysis: HPP Model
fairly simple analytical form. If the occurrence of a hazard is modelled as an HPP,
3.4. Expected Utility Analysis then the life-cycle cost is equivalent to a compound

A renewal type integral equation can be derived fglp isson pracess. Using Eq.(20) and noting that the

a restricted family of the utility function, such agenew?lguncttlon OfbHPP '.T‘ Slrgtplf,ok(tzi: At, the
an exponential function of the following form (Chgxpec ed costcan be easily oblained as

and Ellingwood, 2013): EK{)]=pHcAt (42)

_ —aK(t)
UK(D)=-ae (36) The second moment (or mean square) of the cost

For sake of notational simplicity, define the ex¢an be obtainAed from Eq.(31) with(x) = A and
pected utility without any multiplicative constant§T () =1—e %

as E [K2(t)] = pac At + (HcAt)? (43)

_ _ —aK(t) 3
EUK()))] = e(t) E[e ] (37) The variance of cost is simply

The formulation proceeds in the same way as that

2
for the second moment in Section 3.2. Ok 1) = Hac At (44)
E[U(K(t)] = E [U(K(t) 1<) The expected discounted cost can be obtained
B from Eq.(34) as
+E [U(K(t) 11,51 (38) a(34)

t
The first term can be simplified by invoking the reg [Kp(t)] = uc / e PXAdx= M(1— e P1)(45)
newal argument as (Cheng et al., 2012) 0 P

This standard formula is commonly used in seismic

_ —a(C1+K(t—T
E [U(K@l{ﬁét}} =E [e (G 1))1{T1§t}} risk analysis (Liu et al., 2004; Porter et al., 2004).

(39)4. SEISMIC RISK ANALYSIS: DISCUS-
SION

— fé]E [efaK(th):| E [efacl} dFr (X)

The second expectation term in EQq.(38) simpl o .
turns out tobe Fr(t), sinceK(t) = 0 whenT; > t. 1. Seismic Hazard Analysis

The final solution can be written as an integr@onSider a hypothetical site that is vulnerable to
equation amage from earthquakes originating from three

seismic sources shown in Figure 3. This Figure also
provides occurrence rates, magnitude and depth of
seismic sources. Here, the earthquake intensity is
guantified as the spectral acceleratignat 1 sec-

00 =Fr(0)+ [ 0t o0 dx)  (40)

where f(x) = E [e—acl] r (%) (41) ond period of the structure situated at the site.
¢ T For details of the probabilistic seismic hazard
is a defective density. analysis (PSHA), readers are referred to McGuire

EQ.(40) is also referred to as a defective renewdD04). The ground motion prediction equation, a
equation, and its solution will depend on the probainction of earthquake magnitudelf and distance
bility density of the renewal intervafy (x), as well (R), given by Abrahamson and Silva (1997) is used.
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Figure 4: Seismic hazard curves resulting from three

Figure 3: Seismic sources near the site. sources.

PSHA leads to the complementary distribution of
S, from anit" sourceas

Fi(s) =P[Si > s]
:/M/RIP[Sai>s|m,r] fr(r) fu(m)drdm  (46)

Since the earthquake occurrence is modelled as .92
an HPP with rat; per year, earthquakes exceeding
an intensitys is also an HPP with raty F (s). This 0.001 0_‘01 0_‘1 .
result is based on the decomposition property of the Spectral acceleration (g)
Poisson process.

From the superposition principle, the combinddgure 5: Probability distribution (CDF) of the spectral
earthquake hazard from all the three sources is Zi§g¢leration (gat 1 sec period).
a Poisson process with an overall rateAo& A1 +
A2+A3=0.1peryear. In particular, the occurrence |n summary, the earthquake hazard at the site in
rate of earthquakes exceeding a magnitsiealso question is described as a marked Poisson process
given by the superposition principle as with the rate ofA = 0.1 per year and the distribution

of mark (&) is shown in Figure 5.

A(S) = A1Fa(S) + A2F2(s) + AsFs(s) (47)
4.2. Life-Cycle Damage Cost

A plot of A (s) versuss, referred to as the hazardhe damage cosC, given the occurrence of an
curve, is shown in Figure 4. earthquake tends to be a function of the extent of

The probability of no occurrence of earthquaksructural damage, which in turn depends on the
exceeding the intensitg in (0,t] is equivalent to earthquake intensityS,. The seismic damage to
the cumulative probability that the earthquake igtructure is typically quantified in terms of drifdj,
tensity does not exceexdn (0,t], which is given as which is related witts, by a simple empirical rela-
Fs.t(s) = e *% On an annual basis, i.e.= 1, tionship, such as the following logarithmic relation
this distribution is given as (Cornell et al., 2002):

Fa(s) =e?0 (48) IND=a+binS,+¢ (49)
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