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ABSTRACT: Practical applications for separation of aleatory and epistemic uncertainties are 
demonstrated with two examples applied to steel structures and pipelines. These examples show the 
need for separation of uncertainties, the application of existing strategies and their limitations. The first 
example pertains to the behaviour of a simple steel connection subjected to combined axial, shear and 
moment loading. Uncertainties in the material properties of the connection components are shown to 
have a significant influence on the model uncertainty corresponding to the connection moment 
capacity. The second example shows that the uncertainties in the geometric imperfections of a steel 
pipeline contribute to the total model uncertainty in the strain capacity of the pipe. More such case 
studies demonstrating the utility of separation of epistemic uncertainty are expected to lead to increased 
efficiency in future model development.  

 
 

1. INTRODUCTION 
Characterizing model uncertainty forms an 
important component of model-based (as 
opposed to historical data-based) risk analysis, as 
it has a significant influence on ranking the 
outcomes for risk management. When empirical 
or semi-empirical mathematical models are 
developed from experimental data, the model 
uncertainty is often assumed to be random and is 
represented by probabilistic distribution of the 
residuals of the model fitting. During validation, 
the discrepancy between the experimental and 
the model response is attributed entirely to the 
model error, and is considered as “total model 
uncertainty”. However, experimental 
measurements themselves are subjected to 
variability due to inherent randomness in the 
material properties and geometric parameters of 
the experimental specimens, and measurement 
errors of the testing equipment.  

The variation in the experimental results 
could be attributed to “aleatory uncertainty”, i.e. 
uncertainty due to inherent randomness, as this 
uncertainty is irreducible despite repeated testing 
of nominally identical specimens. Therefore, a 
significant challenge in development of reliable 
mathematical models, and application of model-
based risk analysis, is to identify and separate the 

aleatory uncertainty from the model uncertainty, 
also known as “epistemic uncertainty”. As 
epistemic uncertainty is reducible with 
improvements to model form and parameters, it 
is desirable to identify the fraction of epistemic 
uncertainty in the total model uncertainty. 
Furthermore, when the uncertainty in the model 
material and geometric parameters is explicitly 
modeled in a risk analysis, employing the total 
model uncertainty would account for the 
uncertainties in model material and geometric 
parameters twice.   

Assuming statistical independence and 
normal distribution for all the sources of 
uncertainty, the total variability in the response 
would be equal to sum of the variances from all 
sources of uncertainty in a linear model. 
Similarly, using the rule of total variance, the 
sum of the explained variance due to the 
parameter influence, and the unexplained 
variance – computed as the variance of the 
conditional expectation of the response – would 
be equal to the total variability in the response. 
Therefore, in theory, it is possible to isolate the 
epistemic model error once the variability in all 
other sources of uncertainty is known. However, 
these methods may not be practicable in reality 
due to the constraints on the type of data (e.g., 
direct measurements, population-wide statistical 
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measures, measurements with unquantified bias, 
and so on) available, and the sample sizes of 
available data. 

In this paper, two case studies are presented 
where the estimation of epistemic model 
uncertainty is performed using the commonly 
available methods. The first case study pertains 
to the model for predicting the capacity of simple 
steel connections. The second case study pertains 
to the model for estimating compressive strain 
capacity of steel pipelines. For these two cases, 
the constraints on the available data and the 
difficulties in application of simple methods for 
separation of uncertainties are presented. 
Following this, strategies to overcome the 
limitations are also demonstrated in these 
applications.  

2. CASE STUDY 1: CAPACITY OF SIMPLE 
STEEL CONNECTIONS 

Shear-tab connections are one of the most 
commonly used beam to column connections to 
transfer shear load in steel frame buildings. 
These connections are designed assuming zero 
moment capacity and their behaviour under 
combined axial, shear, and moment loads is not 
well-known. Figure 1 shows the parts of a typical 
shear-tab connection. The steel plate, called 
“shear-tab”, is welded to the column face and 
bolted to the beam web forming the load path for 
transfer of vertical loads from beam to column.  

 

 
Figure 1: Parts of a typical shear-tab connection  
 

A component-based model for predicting 
the capacity of single shear-tab connections 
subjected to a combined axial, shear, and 
bending loads has been recently proposed 

(Koduru & Driver 2014). The model is a 
combination of parallel and series system of 
several uni-axial springs representing weld 
fracture, bolt failure, plate yield, plate fracture 
and plate tear-out, where each spring model has 
the general form for maximum capacity as,  

 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶𝑖𝑖 ∙  𝑚𝑚𝑖𝑖 ∙ 𝑔𝑔𝑖𝑖 (1) 

Where Fspring is the spring force, Ci represents 
empirical model coefficients, mi represents 
material properties, and gi represents geometric 
properties.  

Tension, shear, and moment capacity 
predictions from the model were validated 
against the experimental results from a variety of 
loading regimes. Table 1 shows the experimental 
data from full scale tests conducted by 
Thompson (2009) compared to the model 
predictions for tension and moment capacity of 
the shear tab connections.  

 
Table 1: Comparison of experimental data with 
model predictions ( Koduru & Driver 2014) 

Moment(kN.m) Tension(kN) 
Measured Predicted Measured Predicted 

17.78 20.15 217.73 248.02 
16.35 20.15 217.73 248.02 
19.10 20.15 188.11 248.02 
20.64 20.15 188.11 248.02 
36.72 36.98 289.12 302.02 
38.41 36.98 293.57 302.02 
36.72 36.98 185.21 302.02 
42.37 36.98 185.21 302.02 
31.07 36.98 160.13 302.02 
33.89 36.98 151.23 302.02 
64.20 68.30 226.85 231.74 
70.61 68.30 214.26 231.74 
61.17 68.30 253.54 231.74 
70.00 68.30 240.77 231.74 
 
The full scale tests include four nominally 

identical specimens each for a three-bolt and a 
five-bolt connection, and six nominally identical 
specimens of a four-bolt connection. The model 
predictions were computed from the nominal 
values of the specimen dimensions and strengths. 
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Therefore, these predictions do not represent the 
inherent randomness of the material and 
geometric parameters.  

The total model uncertainty is computed as 
the ratio of measured to predicted values. The 
mean and coefficient of variation (CoV) of 
model uncertainty for tension are 0.82 and 0.24, 
while the mean and CoV for moment capacity 
are 0.96 and 0.093, respectively. As noted 
before, the model bias and variance for the 
predictions represented in Table 1 do not include 
the inherent randomness due to the input 
parameters. Therefore, in order to evaluate the 
epistemic uncertainty in the total model 
uncertainty, the variability due to input 
parameters must be separated. 

 Table 2 shows a partial list of the required 
input material and geometry parameters of the 
model and their variability expressed as CoV.  

 
Table 2: Variance of input material and geometry 
parameters 

Parameter CoV 
Weld tensile strengtha,  Xu 0.082 
Plate yield strengthb, fyp 0.054 

Plate tensile strengthb, fup 0.034 
Beam web yield strengthb, fyw 0.054 

Beam web tensile strengthb, fuw 0.046 
Bolt tensile strengthc, fub 0.045 

Weld thicknessa, Wt 0.154 
Plate thicknessb, tp 0.025 

Beam web thicknessb, tw 0.025 
Bolt cross-section aread, Ab 0.006 

aKanvinde et al. (2008) 
bSchmidt & Barlett (2002) 
cKulak (2005) 
dMoore et al. (2008) 

 
All the parameters in Table 2 have a 

lognormal distribution. As the coupon tests and 
other specimen measurements are not available 
for all the required parameters, the available 
CoVs – shown in Table 2 – are collected from 
the literature. It is noted here that it is often rare 
to find the details of all the specimen 

measurements for experimental results, and as 
such population-based variance measures 
available in the literature are often used in 
practical applications. Assuming that the input 
parameters are uncorrelated and the model 
uncertainty is multiplicative, the variance of total 
model uncertainty is computed as,  

 𝜎𝜎𝑡𝑡2 = ∑ 𝜎𝜎𝑖𝑖2 +  𝜎𝜎𝑒𝑒2𝑛𝑛
𝑖𝑖=1  (2) 

where σi
2 is variance of the ith input parameter 

computed as σi
2 = log(1+CoVi

2), n is the total 
number of input parameters influential on the 
model response, and σe

2 is variance of the 
epistemic model uncertainty. 

As the total capacity of the connection is 
governed by the weakest component of the 
connection, the variance in the capacities are 
driven by the variance in the parameters 
associated with the dominant mode of failure 
under a given loading regime. The sensitivity 
analyses in Koduru & Driver (2014) have also 
shown that the capacity of shear-tab connections 
is significantly dependent on the mode of failure. 
For the experimental results considered in Table 
1, the modes of failure observed are, bolt shear 
failures, edge tear-out of the plate, fracture of the 
plate, and a combination of bolt failure with plate 
failure modes. Therefore, Eq. (2) is applied to 
compute epistemic model uncertainty separately 
for each failure mode and a combination of bolt 
and plate failure modes. In the component-based 
model, the spring capacity to resist bolt shear 
failure is modelled as,  

 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐶𝐶𝑏𝑏 ∙  𝑓𝑓𝑢𝑢𝑢𝑢 ∙ 𝐴𝐴𝑏𝑏 (3) 
where Cb, is the empirical model coefficient to 
convert bolt tensile strength to shear strength. 
The spring capacity to resist plate tear-out failure 
is modelled as,  

 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑜𝑜𝑢𝑢𝑢𝑢 = 𝐶𝐶𝑒𝑒 ∙  𝑓𝑓𝑢𝑢𝑢𝑢 ∙ 𝑡𝑡𝑝𝑝 ∙ 𝐿𝐿𝑒𝑒 (4) 

where Ce, is the empirical model coefficient and 
Le is the distance from center of the bolt to the 
free edge of the plate. Finally, the spring capacity 
to resist plate fracture is modelled as,  

 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  𝑓𝑓𝑢𝑢𝑢𝑢 ∙ 𝑡𝑡𝑝𝑝 ∙ 𝐿𝐿𝑛𝑛𝑛𝑛 (5) 
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where Lnt, is the net section length in tension. For 
combined failure modes, the total capacity will 
be a summation of capacities for each failure 
mode. The parameters influencing each failure 
mode and the computed epistemic model 
uncertainty for moment and tension capacities 
are listed in Table 3.  

 
Table 3: Epistemic model uncertainty 

Failure 
mode 

Parameters Epistemic CoV 
Moment Tension 

Bolt failure fub, Ab 0.082 0.231 
Plate 

failure 
fup, tp 

0.083 0.232 
Bolt +Plate 

failure 
fub, Ab, fup, 

tp 0.078 0.230 
 
Table 3 shows that the epistemic model 

uncertainty for moment capacity is dependent on 
the observed failure modes. For single failure 
modes, the reduction in total model uncertainty 
(expressed as CoV) due to the separation of 
aleatory uncertainty is between 11-13%. In 
contrast, for the combined failure mode, aleatory 
uncertainty due to material and geometric 
parameter variability accounts for 17% of the 
total model uncertainty. For the tension capacity, 
the material and geometric parameter variance 
explains only 2-3% of the total model 
uncertainty. Therefore, the uncertainty in the 
capacity model coefficients for bolt shear, and 
plate tear-out failure modes are included to 
compute the remaining epistemic model 
uncertainty.  

The CoV of model coefficient for bolt 
capacity, Cb, is taken as 0.048 (Kulak 2005), and 
the CoV of model coefficient for plate tear-out, 
Ce is taken as 0.083 (Koduru & Driver 2012). 
Table 4 shows the portion of epistemic model 
uncertainty for moment and tension capacity 
with the inclusion of uncertainties in model 
coefficients of dominant failure modes. For 
moment capacity, 90% of the total model 
uncertainty is accounted by the known 
uncertainties in the material, geometry, and 
model coefficients for plate failure mode. Under 

the combined failure mode, 94% of the 
uncertainty is explained by the known 
uncertainties. Therefore, selection of variance to 
represent model uncertainty for moment capacity 
must be connection-specific and dependent on 
the expected failure mode. For tension capacity, 
although the epistemic uncertainty reduced by 4-
10% with the inclusion of uncertainties in model 
coefficients, there is potential for further 
reduction. In future studies, consideration of 
uncertainties in connection-specific geometric 
parameters (e.g., spacing between the bolts, the 
distance between bolt and the free edge of the 
plate, and bolt-hole diameter) have the potential 
to reduce total model uncertainty.  

 
Table 4: Epistemic model uncertainty for tension 
considering variance of model coefficients 

Failure 
mode 

Parameters Epistemic CoV 
Moment Tension 

Bolt failure fub, Ab, Cb 0.066 0.226 
Plate 

failure 
fup, tp, Ce 

0.010 0.216 
Bolt +Plate 

failure 
fub, Ab, fup, 
tp, Cb, Ce 0.005 0.213 

 

3. CASE STUDY 2: COMPRESSIVE STRAIN 
CAPACITY OF STEEL PIPELINES 

Buried onshore pipelines are often subjected to 
compression due to ground movements caused 
by slope movements, frost heave, thaw 
settlement and seismic loads. Excessive 
compression on the pipeline either due to 
bending or due to axial loads causes local 
buckling, which is a threat to pipeline integrity. 
Therefore, accurate assessment of compressive 
strain capacity of buried pipelines forms a 
significant part of strain-based design of buried 
pipelines.  

Previous studies by Yoosef-Ghodsi et al. 
(2014) and Zhang et al. (2014) have shown 
Dorey model (Dorey et al. 2001) as one of the 
recommended models for predicting compressive 
strain capacity of pipelines. Dorey model has 
four equations for predicting the strain capacity 
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of pipe body and girth-weld with or without 
Luder’s plateau in the stress strain relationship of 
the pipe steel. The equations for compressive 
strain capacity with Luder’s plateau are,  

 𝜀𝜀𝑝𝑝 = 𝑓𝑓𝑝𝑝 ∙ (1 − 𝑎𝑎 ∙ 𝜎𝜎ℎ
𝑓𝑓𝑦𝑦

)−1 ∙ �𝐸𝐸
𝑓𝑓𝑦𝑦
�
0.8
∙ �𝑏𝑏 − ℎ𝑔𝑔

𝑡𝑡

0.15
� (6) 

𝜀𝜀𝑤𝑤 = 𝑓𝑓𝑤𝑤 ∙ (1 − 𝑐𝑐 ∙ 𝜎𝜎ℎ
𝑓𝑓𝑦𝑦

)−1 ∙ �𝐸𝐸
𝑓𝑓𝑦𝑦
�
0.7
∙ �𝑑𝑑 − ℎ𝑚𝑚

𝑡𝑡

0.09
�  (7) 

where εp and εw are the strain capacities for plain 
pipe and girth weld, respectively, a, b, c and d 
are model constants, fp and fw are constants for a 
given pipe wall thickness and diameter, σh is the 
hoop stress due to internal pressure, fy is the hoop 
yield strength, E is the elastic modulus, t is the 
pipe wall thickness, hg is pipe-body geometric 
imperfection, and hm is girth-weld high-low 
misalignment.   

This model has the least number of required 
input parameters and has the lowest standard 
deviation for the total model uncertainty 
compared to the available models for 
compressive strain capacity (Zhang et al. 2014). 
From the experimental data for 61 full scale tests 
summarized in Zhang et al. (2014), the mean and 
CoV for total model uncertainty are 1.01 and 
0.27, respectively. However, these values are 
computed assuming median values for two 
critical input parameters of the model, namely, 
pipe-body geometric imperfections, hg, and girth-
weld high-low misalignment, hm.   

Geometric imperfection in the pipe body is 
caused by surface undulations on the outer 
surface of the pipe and is expressed as the height 
between peak and valley of the undulation, 
measured perpendicular to pipe longitudinal axis. 
Figure 2 shows the quantification of hg.   

 

 
Figure 2: Geometric imperfections of pipe body 
(after Zhang et al. 2014) 

 
Girth-weld high-low misalignment is caused 

due to misalignment in pipe sections at the cross-
section weld joints. This misalignment reduces 
the compressive strain capacity near the girth 
weld of the pipe. Table 5 shows the CoVs for 
selected material and geometry parameters of 
Dorey model. The remaining input parameters, 
which are, pipe wall thickness, pipe diameter, 
internal pressure, and Young’s modulus are not 
considered due to the lack of uncertainty 
characterizations.  

 
Table 5: Variance of input material and geometry 
parameters for Dorey model 

Parameter CoV 
Hoop yield strengtha, fy 0.035 

Pipe body imperfectionsb, hg 0.548 
Weld misalignmentb, hm 0.721 

aCSA Z662, Annex O. (CSA 2011) 
bDerived from data in Zhang et al. (2014) 

 
Assuming lognormal distributions for the 

parameters in Table 5, CoV for epistemic model 
uncertainty is estimated separately for pipe body 
and for girth-weld compressive strain capacities. 
Based on the model form of Dorey equations, 
total model uncertainty for pipe body capacity is 
expressed as,  

 𝜎𝜎𝑡𝑡2 = (0.82 + 2)𝜎𝜎𝑓𝑓𝑦𝑦
2 + 0.152𝜎𝜎ℎ𝑔𝑔

2 + 𝜎𝜎𝑒𝑒2 (8) 

and the total model uncertainty for girth-weld 
capacity is expressed as, 

  𝜎𝜎𝑡𝑡2 = (0.72 + 2)𝜎𝜎𝑓𝑓𝑦𝑦
2 + 0.092𝜎𝜎ℎ𝑚𝑚

2 + 𝜎𝜎𝑒𝑒2 (9) 

Based on Eq.s (8) and (9), the CoV for epistemic 
model uncertainties for pipe body and girth-weld 
capacities are assessed as 0.251 and 0.257 
respectively.  This indicates that epistemic model 
uncertainty forms a significant part of the total 
model uncertainty and it is possible to further 
reduce this uncertainty in future studies with the 
availability of detailed measurements of input 
model parameters. 
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4. DISCUSSION  
In this paper, two case studies are presented to 
demonstrate the strategies for separation of 
epistemic uncertainty in the total model error. 
The limitations for separation of epistemic 
uncertainty are primarily due to: 

• Lack of relevant specimen measurements 
corresponding to experimental results. 

• Limited number of experimental samples 
which prevent accurate characterization of 
material and geometry parameter 
uncertainties. 

• Difficulty in obtaining precise physical 
measurements for certain model input 
parameters, e.g., surface undulations, weld 
throat thickness, and weld misalignment and 
so on. 

• Discrepancy in definitions of measured 
model response, e.g., gauge length for 
averaging compressive strains close to local 
buckling, tension capacity of steel capacity 
measured as horizontal force or along the 
axis of the connecting beam, which prevent 
the meta-analysis of all available 
experimental data. 
Despite these limitations, it is possible to 

separate the epistemic model uncertainty by the 
following strategies: 

• Use population-based variance measures for 
material and geometry parameters.  

• For applications where population-based 
variance is disproportionately large, it is 
advantageous to use a subset of the data that 
corresponds to the specimen characteristics. 
For example, finding the data set with similar 
steel grade, similar thickness, and so on. 

• When model parameters are expected to be 
correlated and the correlation structure is 
unknown, assume a perfect correlation and 
represent the variance of only one of the 
correlated variables. Otherwise, ignoring the 
correlation leads to under-estimation of 
epistemic model uncertainty.  

• A sensitivity analysis of the model response 
to the input parameters provides a guideline 

for selecting the most important parameters 
that are likely to have contributed to the total 
model uncertainty. 

5. CONCLUSION  
Employing mathematical models for 
representation of structural system behaviour is 
common in engineering practice. Often the 
response from these models is validated against 
the experimental results to characterize the 
uncertainties and approximations associated with 
the mathematical models. However, ignoring the 
uncertainties due to material and geometry 
parameters would lead to an overestimation of 
model uncertainty. In the long run, this leads to 
inefficient effort to improve the model 
predictions as the proportion of aleatory 
uncertainty in the total model uncertainty 
increases.  

The present study shows the strategies to 
separate aleatory and epistemic uncertainties for 
two practical applications. Despite the 
highlighted limitations due to the low sample 
sizes of the measurement data, and uncertainty 
characterization of the input parameters, 
employing the proposed strategies has shown 
which models would benefit from further 
improvements and which models should focus 
on proper characterization of aleatory 
uncertainty. In future, more such case studies 
demonstrating the utility of separation of 
epistemic uncertainty are expected to lead to 
increased efficiency in engineering model 
developments.  
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