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ABSTRACT: Modern high-resolution numerical models used in engineering often produce multi-
dimensional maps of outputs (e.g. nodal displacements on a FEM mesh) that may result in more than 105

highly correlated outputs for each set of model parameters. Most available metamodelling techniques,
however, are not yet suitable for handling such large maps, including Polynomial Chaos Expansions
(PCE). Indeed, the PCE of a numerical model with many outputs is traditionally handled by indepen-
dently metamodelling each one of them. We introduce a two-stage PCE approach that aims at solving
this problem: in the first stage, PCE is used to compress the map of outputs on a much sparser basis in the
map coordinates; in the second stage, standard PCE of the compressed map is carried out w.r.t. the un-
derlying model parameters. Standard PCE post-processing techniques are then used to derive analytical
expressions for several stochastic properties of the resulting compressive PCE.

1. INTRODUCTION
Polynomial Chaos Expansions (PCE) are a well es-
tablished tool in Uncertainty Quantification (UQ),
in both applied mathematics and engineering ap-
plications. Extensive literature is available on ef-
ficient non-intrusive techniques for calculating the
y j coefficients, such as spectral projection and
least-square regression (see e.g., Sudret (2007)
and references therein). However, a field of re-
search that remains relatively unexplored is that of
non-intrusive metamodelling of multi-dimensional
model maps. Examples of such maps include time-
dependent solutions of partial differential equa-
tions (PDE) and force/displacement fields calcu-
lated by finite element modelling FEM on multi-
dimensional meshes. In their seminal work in the
field of metamodelling of vector-valued functions,
Blatman and Sudret (2013) proposed compressing
the model response map via principal component
analysis (PCA) and metamodelling each significant
principal component independently. We herein pro-
pose an extension of this approach that uses PCE as
the compression tool to represent complex (but reg-
ular) high-dimensional model maps efficiently. Due

to the linearity of PCE, point-by-point convergence
in the full-model space ensures similar convergence
in the compressed model response.

In Section 2, we give a brief introduction to PCE
for scalar and vector-valued functions. In Section 3,
we introduce the concept of model maps and the
formalism of compressive polynomial chaos expan-
sions (CPCE). We also provide an algorithm for the
non-intrusive calculation of the CPCE coefficients.
In Section 4, we discuss and derive analytical ex-
pressions for several stochastic properties of CPCE.
We then apply the CPCE on a test 2D function in
Section 5. Finally, we summarize and give conclud-
ing remarks in Section 6.

2. POLYNOMIAL CHAOS EXPANSIONS
2.1. Basic definitions
Polynomial Chaos Expansion (PCE) is a spec-
tral decomposition technique that allows one to
represent a finite-variance scalar-output function
Y = M (ΞΞΞ) as:

Y = M (ΞΞΞ) =
∞

∑
j=0

a jΨ j(ΞΞΞ) (1)
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where ΞΞΞ ∈ RM is a random vector of uncertain pa-
rameters, a j ∈R is a set of scalar coefficients (spec-
tral coordinates) and the Ψ j(ΞΞΞ)∈R form a polyno-
mial orthonormal basis w.r.t. the functional scalar
product:

〈g(ξξξ ),h(ξξξ )〉=
∫
DΞΞΞ

g(ξξξ )h(ξξξ ) fΞΞΞ(ξξξ )dξξξ (2)

where DΞΞΞ is the support of ΞΞΞ and fΞΞΞ(ξξξ ) is a positive
semi-definite weight function that satisfies:∫

DΞΞΞ

fΞΞΞ(ξξξ )dξξξ = 1. (3)

Note that, due to its properties, it is customary to
interpret fΞΞΞ(ξξξ ) as the probability density function
(PDF) of the random variable ΞΞΞ in stochastic PCE
applications. Nevertheless, the spectral decomposi-
tion in Eq. (1) is, in a more general context, a func-
tional approximation of the model function M (ΞΞΞ)
as long as an appropriate weight function fΞΞΞ(ξξξ ) is
used in the definition of the scalar product in Eq (2).

The orthonormality condition on the basis ele-
ments Ψ j reads:〈

Ψi(ΞΞΞ),Ψ j(ΞΞΞ)
〉
= δi j. (4)

where δi j is the Kronecker symbol.

2.2. Sparsity of PCE
Note that the sum in Eq. (1) has an infinite num-
ber of terms, hence requiring truncation strategies
for computational purposes. In practice, however,
smooth models tend to have quickly decaying PCE
coefficients, hence allowing for accurate basis trun-
cation strategies to be devised. The truncated form
of Eq. (1) reads:

Y (ΞΞΞ)' ∑
ααα∈A M,p

aαααΨααα(ΞΞΞ) (5)

where ααα = {α1,α2, ...,αM} is a multi-index that
identifies the polynomial degree of Ψααα in each of
the M input variables, while A M,p is a finite cardi-
nality P=

∣∣A M,p
∣∣ set of multi-indices of dimension

M and maximum degree p.
The cardinality P can be controlled in many

ways, e.g. via maximum-polynomial degree trunca-
tion strategies (e.g. hyperbolic truncation, see Blat-
man and Sudret, 2010) or via sparsity-favouring co-
efficient calculation strategies (e.g. through Least
Angle Regression, Blatman and Sudret, 2011).

2.3. PCE of vector-valued models
A trivial extension of Eq. (1) to the case of mod-
els with vector-valued outputs YYY =

{
Y 1,Y 2, ...,Y n}

consists in separately expanding each of the outputs
independently on the same truncated basis:

Y i (ΞΞΞ)' ∑
ααα∈A M,p

ai
αααΨααα(ΞΞΞ), i = 1, ...,n (6)

Due to the orthonormality of the Ψ(ξξξ ) in Eq. (1)
given in Eq. (4), it is trivial to demonstrate that the
mean value of each of the components of YYY is given
by:

µ
i
YYY = ai

000 (7)

where a000 represents the coefficient of the constant
basis term. Correspondingly, the shared polyno-
mial basis ensures that the covariance information
between the elements of YYY is also encoded in the co-
efficients ai

ααα , even though they are calculated inde-
pendently for each outputs. In fact, the covariance
matrix of the elements of YYY can be written as:

Ci j
YYY

def
= E

[
(Y i−µ

i
YYY )(Y

j−µ
j

YYY )
]

(8)

By substituting Eq. (6) and Eq. (7) into Eq. (8),
one obtains (the reference to the random variable ΞΞΞ

is dropped for better readability):

Ci j
YYY = E

[
∑

ααα 6=000
ai

αααΨααα ∑
βββ 6=000

a j
βββ

Ψβββ

]
(9)

where the notation ααα 6= 000 stands for ααα ∈A M,p
\000 .

Due to the orthonormality of the basis w.r.t. to
the expectation value in Eq (4), it immediately fol-
lows that:

Ci j
YYY = ∑

ααα 6=000
ai

αααa j
ααα (10)

3. COMPRESSIVE POLYNOMIAL CHAOS
3.1. Model maps
In many common modelling scenarios, the model
response to a sample of uncertain model parameters
ξξξ is not simply a scalar, but it is a d−dimensional
map, e.g. the displacements at the nodes of a com-
plex finite element model (FEM). Hence, we define
a model map as:

M (ΞΞΞ,XXX) ∈ R (11)
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where ΞΞΞ ∈ RM is a random vector with probabil-
ity density function fΞΞΞ(ξξξ ) that describes the uncer-
tainty in the model parameters, while XXX ∈ Rd is a
set of coordinates in the appropriate model space
(e.g., Cartesian coordinates, or time). An example
of model map with d = 1 could be the vertical dis-
placement along the length of a simply supported
beam with uncertain Young’s modulus. In this case,
XXX ∈ R would represent the coordinate along the
beam length, while ΞΞΞ the uncertain Young’s modu-
lus.

Albeit strictly speaking not a random variable,
a deterministic coordinate XXX on a bounded do-
main can be seen as a random variable suitably
distributed on the entire map. In the case of a
FEM model with a regular mesh, the node loca-
tions are uniformly distributed throughout the do-
main. Similarly, a finite-difference solution of a
time-dependent PDE is typically calculated with
regular time sampling.

In this contribution, we consider each calcula-
tion of a model map for a given realization ξξξ

(i)

of the input random vector ΞΞΞ as a sample from a
scalar model M (ξξξ

(i)
,XXX) with a d-dimensional ran-

dom input vector XXX . A d = 2 example of two re-
alizations of such a map is shown for reference in
Figure 1.

In typical applications, such sample can include
several tens up to hundreds thousands of values, as
is often the case with high fidelity FEM models.
Very high resolutions, however, are often used due
to numerical stability requirements, even in cases
when the actual model response is very smooth.
With no loss of generality, in this paper we will only
consider applications where the sampling in the co-
ordinate space is uniform. Note that there are no
constraints in the regularity of the sampling, nor in
the number of samples, which may even vary be-
tween different realizations of the random parame-
ters ξξξ

(i), as long as their distribution is uniform.

3.2. Polynomial map compression
When metamodelling a function with a large num-
ber of outputs, the classical approach of performing
full polynomial chaos expansion for each one of the
outputs can quickly become impractical. Due to the

independence of ΞΞΞ and XXX , for any given realization
ξξξ of the input random vector ΞΞΞ, the truncated PCE
in Eq. (5) of a model map realization on its coordi-
nates can be written as follows:

M (ξξξ ,XXX)' ∑
γγγ∈A d,pC

cγγγ(ξξξ )ΦΦΦγγγ(XXX) (12)

with orthonormal polynomial basis

ΦΦΦγγγ(XXX) =
d

∏
i=1

φγi(Xi). (13)

Please note that, due to the independence between
ΞΞΞ and XXX , the coefficients cγγγ(ξξξ ) are just scalars in
the context of Eq. (12).

If the model map M (ΞΞΞ,XXX) is smooth in the
XXX coordinates, the number of coefficients cγγγ(ξξξ )
is typically limited to a few tens to several hun-
dreds elements. Specifically, the number of coef-
ficients equals the cardinality of the truncation set
PC = |A d,pC |.

Considering each of the cγγγ(ξξξ ) as a function on
the random input vector ΞΞΞ, we can further expand
each coefficient as:

cγγγ(ξξξ )' ∑
ααα∈A M,p

aγγγαααΨΨΨααα(ξξξ ) (14)

which, when plugged back into Eq. (12) reads:

M (ξξξ ,XXX)'∑
γγγ

∑
ααα

aγγγαααΨΨΨααα(ξξξ )ΦΦΦγγγ(XXX). (15)

Equation (15) is the compressive PCE equation
(CPCE). In case of a numerical smooth model map
with a very large number of outputs for each real-
ization of the random parameters ξξξ , the outputs are
first compressed to their sparse PCE coefficients,
which in turn are surrogated via PCE on the origi-
nal input random variables.

3.3. Non-intrusive calculation of the CPCE coef-
ficients

Practically, the non-intrusive calculation of the co-
efficients aγγγααα in Eq. (14) and Eq. (15) requires a
two-step least-squares algorithm. For details about
least-squares-based calculation of PCE coefficients,
with emphasis on sparsity, please refer to Blatman
and Sudret (2011).
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Figure 1: Two realizations of the model map in Eq. (23) calculated on a regular grid with n = 105 nodes. Each
map corresponds to one realization ξξξ

(i) of the input random vector ΞΞΞ.

In the first stage, an experimental design
E =

{
ξξξ
(1)
,ξξξ

(2)
, ...,ξξξ

(N)
}

is created as a suit-
ably sized sample of the input random vector ΞΞΞ,
and the corresponding model maps are calculated
Y =

{
yyy(1),yyy(2), ...,yyy(N)

}
. Each yyy(i) is a vector of

scalar model responses at the corresponding set of
coordinates X (i) =

{
xxx(i)
(1),xxx

(i)
(2), ...,xxx

(i)
(n(i))

}
. Please

note that there is no restriction on the size n(i) of
each model map realization, as long as all map real-
izations are defined on the same domain and drawn
from the same distribution. This property is impor-
tant in practice, because many model maps have re-
sponses defined on coordinate sets that depend on
the corresponding realization ξξξ

(i) of the random pa-
rameters ΞΞΞ. A typical example would be the finite
difference solution of a PDE in time, whose time-
step (that defines the coordinates X (i)) depends on
the model parameters to ensure numerical stability.

When the experimental design Y is avail-
able, a set of compressive PCE coefficients
ccc(i) = {cγγγ1(ξξξ

(i)
),cγγγ2(ξξξ

(i)
), ...,cγγγPC

(ξξξ
(i)
)} is cal-

culated according to Eq. (14) for each one of the
experimental design samples yyy(i). The coefficients
are then grouped as C =

{
ccc(1),ccc(2), ...,ccc(N)

}
. In a

typical engineering scenario, M� d and n(i)� N,
hence allowing the compression to achieve high ac-
curacy in the coordinates XXX at a relatively low com-
putational cost.

In the second stage, the compressed experimental
design C is used to calculate the CPCE coefficients
aγγγααα in Eq. (14).

3.4. Considerations on convergence
Due to the linear nature of PCE, the compres-
sion coefficients aγγγ(ξξξ ) share similar properties
of smoothness and finite variance as the original
model map in equation Eq. (6). Hence, if the point-
wise PCE on ξξξ of a model map is sparse and con-
vergent for any xxx, so will be its compressive coun-
terpart in Eq. (15).

4. POST-PROCESSING OF CPCE
4.1. Moments of a CPCE
An important property of PCE is that its coefficients
encode substantial information about the stochastic
properties (e.g. moments) of the model response,
as shown in Section 2.3. Due to the separation be-
tween physical coordinates and random input pa-
rameters in Eq. (12), the model map at each coordi-
nate point xxx can be considered as a linear superim-
position of the random variables cγγγ(ξξξ ) with coeffi-
cients ΦΦΦ(xxx). It is therefore easy to extend Eqs. (7)
and (10) through Eq. (14):

µYYY (xxx) = ∑
γγγ

aγ000ΦΦΦγγγ(xxx) (16)

for the mean value at a point xxx. Correspondingly,
the covariance between any two coordinate points
(xxx,xxx′) reads:

CYYY (xxx,xxx′) = ∑
γγγ

∑
γγγ ′

Cγγγγγγ ′
ccc ΦΦΦγγγ(xxx)ΦΦΦγγγ ′(xxx

′) (17)

where Cγγγγγγ ′
ccc is the covariance matrix of the ran-

dom coefficients cccγγγ(ξξξ ) calculated according to
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Eq. (10). Note that this result is equivalent to build-
ing a classical PCE in an augmented input space
ΞΞΞ
(aug) = {ΞΞΞ,XXX}. Such an approach, however,

would be computationally more challenging, as it
would require building a suitable PCE basis to ac-
count for the separability of the model map w.r.t.
ΞΞΞ and XXX , as well as solving a higher dimensional
least squares minimization with a very large exper-
imental design, instead of solving N independent,
d-dimensional ones.

4.2. Variance decomposition and Sobol’ indices
As demonstrated in Sudret (2008), a close relation
exists between variance decomposition, and PCE
coefficients. Such relation is particularly useful for
the calculation of the so-called Sobol’ global sensi-
tivity indices, a well established tool in sensitivity
analysis.

The basic form of variance decomposition can be
written as follows (Sobol’ (2001)):

f (ξξξ ) =
M

∑
i=1

fi(ξi)+∑
i 6= j

fi j(ξi,ξ j)

+ ...+ f12...M(ξ1,ξ2, ...,ξM)+ f0

(18)

where the fi j...s are scalar functions depending on
the subset of input variables {ξi,ξ j, ...,ξs}.

The coefficients in Eq. (14) can be grouped ac-
cording to the functional dependence of the corre-
sponding Ψααα (Sudret, 2008):

cγ(ξξξ ) = ∑
ααα∈A M,p

i

aγγγαααΨΨΨααα(ξi)+ ∑
ααα∈A M,p

i j

aγγγαααΨΨΨααα(ξi,ξ j)

+ ...+aγγγαααΨΨΨααα(ξi,ξ j, ...,ξM)+αγγγ000 (19)
def
= c{i}γγγ + c{i j}

γγγ + ...+ c{12...M}
γγγ + cγγγ000

where the set of multi-indices:

A M,p
i j...s = {ααα ∈A

M,p : αk > 0 ∀k ∈ {i, j, ...s} ,
αl = 0 ∀l /∈ {i, j, ...s}} (20)

identifies the basis elements that depend on the sub-
set of the input variables {i, j, ...s}. Because of the
uniqueness of the two representations in Eqs. (14)
and (18), each sum in Eq. (18) can be identified
with the corresponding sum in Eq. (19).

The Sobol’ indices can be defined as the ratio of
the variance of each term in Eq. (18) Di j...s to the
total variance D:

Si j...s = Di j...s/D. (21)

By calculating the covariance matrices Cγγγγγγ ′

ccc{i j...s} of

the sub-PCE compression coefficients c{i j...s}
γγγ in

Eq. (19) with Eq. (10), it is trivial to derive the map-
equivalent of the Sobol’ indices in Eq. (21) starting
from the map-covariance in Eq. (17):

Si j...s(xxx) =
1

CYYY (xxx,xxx)
∑
γγγ

∑
γγγ ′

Cγγγγγγ ′

ccc{i j...s}ΦΦΦγγγ(xxx)2. (22)

5. EXAMPLE APPLICATION: 2D MAP

5.1. A 2D analytical map
To validate the method proposed and the cor-
responding post-processing properties, an ad-hoc
complex 2D analytical map is created according to:

Y (ξξξ ,xxx) = e−
1
2 (x1ξ1)+10ξ

2
1 ξ2x2

2+

sin(−π(x2
1 +ξ2x2)

2)
(23)

The map coordinates span a rectangular region
x1,2 ∈ [−1,1]. Each model evaluation returns the
map value on a regular grid of 400×250 (n = 105)
points in the coordinate space. Some example
model maps for different realizations of ΞΞΞ are
shown for reference in Figure 1.

The input random vector is chosen as
ΞΞΞ ∼ U (−1,1)2. Albeit in this particular
case both the bounds and the dimensionality on
ΞΞΞ and XXX coincide, this condition is neither re-
quired nor recommended. Indeed, in many typical
engineering scenarios, M� d.

The choice of such a seemingly complex model
stems from the need to meet the following criteria
for demonstration purposes:

• the dimensionalities M and d must be low
enough to allow for effective visualization;

• the model must be sufficiently complex and
not simply polynomial;
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• the model must exhibit sufficient variance
w.r.t. the random inputs ΞΞΞ;

• the model must have predictable distributions
for moments and sensitivity indices.

5.2. The experimental design
The experimental design used in this analysis con-
sists of N = 200 realizations of the input random
vector ΞΞΞ, hence resulting in a corresponding num-
ber of model maps similar to those in Figure 1.

Following the approach outlined in Section 3.3,
the set of model responses Y is calculated on the
experimental design E =

{
ξξξ
(1)
,ξξξ

(2)
, ...,ξξξ

(N)
}

.
The corresponding set of compressive- ex-
perimental designs in the map coordinates
X (i) ≡X =

{
xxx(1),xxx(2), ...,xxx(n)

}
is identical for

each experimental design sample ξξξ
(i): the regular

grid with n = 105 nodes described in Section 5.1.

5.3. Experimental design compression
For the calculation of the compressive coeffi-
cients cccγγγ in Eq. (14), the regular grid X is
treated as a uniform sampling of a random vector
XXX ∼ U (−1,1)2. Ordinary least squares regres-
sion with maximum polynomial degree pc = 25 in
d = 2 dimensions is then performed. A hyperbolic
truncation scheme with q = 0.7 is chosen to define
the PCE basis (Blatman and Sudret, 2011). The
choice of pc and q is based on a preliminary analy-
sis of a random subset of the available experimen-
tal design. More generally, it is possible to apply
any adaptive sparse PCE algorithms to determine
the smallest set of basis elements suitable to accu-
rately represent all the maps in the experimental de-
sign. The resulting estimated generalization error
for each element of the experimental design was
observed in the range errG ∈ [10−14, 10−6], indi-
cating excellent compression accuracy.

The coefficients of the N PCEs thus cal-
culated are gathered in the compressed design
C =

{
ccc(1),ccc(2), ...,ccc(N)

}
. After compression, the

original representation of each experimental design
sample was reduced from n = 105 to a much more
manageable nc = |A d,pc | = 226 scalars.

5.4. Compressive PCE
Classical PCE is now performed independently for
each of the nc dimensions of C to calculate the
aγγγααα coefficients in Eq. (15). For this application,
we performed sparse adaptive PCE using the Least
Angle Regression algorithm (LARS) to enforce L1
sparsity on the set of coefficients. The polynomial
degree was adaptively chosen for each of the output
dimensions in the range p ∈ [3,15] (for degree-
adaptive LARS, see Blatman and Sudret, 2011).
The final accuracy of this expansion varied from ac-
ceptable to good, with errGγγγ ∈ [10−4, 10−3].

5.5. CPCE results
Finally, a validation set of Nval = 104 samples ob-
tained by crude Monte Carlo simulation is evalu-
ated with the full model in Eq. (23) to compare the
statistical properties of the model map with those
extracted from the coefficients of the CPCE.

Expectation value: the reference expectation
value of the map calculated from the validation set
is shown in the left panel of Figure 2. The cor-
responding CPCE-based estimate calculated with
Eq. (16) is shown in the right panel of the same fig-
ure. The match between the two is excellent in all
the points in the map coordinates XXX .

Variance: the variance of the map is shown on
the left panel of Figure 3, while the correspond-
ing PCE approximation (Eq. (17)) is shown in the
right panel of the same Figure. The approximation
is once again excellent throughout the domain.

Sobol’ indices: the calculation of Sobol’ indices
for such a large map would be by far too expensive
with classical methods. CPCE, however, provides
a functional form of the Sobol’ indices in Eq. (22),
which can be used to inexpensively calculate them
for the entire map, even in points that are not in-
cluded in the outputs of the original model. Fig-
ure 4 shows the full maps of Sobol’ indices on the
domain of XXX . For validation purposes, we show
in Figure 5 the comparison between several point-
wise PCEs and CPCE for a slice at x2 ' −0.25.
The Sobol’ indices calculated from point-wise PCE
are plotted as circles, while the corresponding esti-
mates by CPCE by solid lines. The match is excel-
lent.
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Figure 2: Mean map of the model in Eq. (23) as calculated from a reference sampling (left) and its estimate from
PCE coefficients based on Eq. (16) (right).
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Figure 3: Variance map of the model in Eq. (23) as calculated from a reference sampling (left) and its estimate
from PCE coefficients based on Eq. (17) (right).
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Figure 4: First order Sobol’ index maps for ξ1 (left) and ξ2 (center) as estimated with Eq. (22) and corresponding
second order index map (right).
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6. SUMMARY AND CONCLUSIONS
In this paper we have introduced an algorithm that
leverages on the regularity of numerical models
with a large number of outputs by adopting a com-
pression strategy. In particular, it is well known that
PCE has very good sparsity properties for smooth
functions on bounded domains. Therefore, we in-
troduced a two-stage approach to first pre-process
the experimental design of model maps, compress-
ing it on a sparse PCE basis, followed by classical
PCE on the compressed experimental design.

Due to the linearity of PCE, we could derive sim-
ple analytical expressions for the functional repre-
sentation of the first moments of the model map in
terms of its coordinates, as well as for more com-
plex (and interesting) quantities that can be nor-
mally derived by post-processing PCE coefficients.

We want to stress on the fact that this approach
does not degrade nor improve the convergence
properties of classical point-wise PCE. This is im-
portant, as CPCE does not aim at extending the va-
lidity class of PCE methods, but rather at allow-
ing the analyst to handle models with a large num-
ber of outputs. It is common engineering practice
e.g. to calculate expensive FEM responses of com-
plex structures, but then to only consider few se-
lected quantities of interest for their actual analy-
sis (e.g. selected inter-storey displacements, etc.).
With CPCE, the entire set of displacements could
be meta-modelled, hence taking advantage of the
complexity of the full calculation.

Finally, it should be noted that the choice of PCE

as the compression tool is just one of many: the
only requirement for the entire formal setting of this
paper is that the spectral representation in Eq. (12)
holds. Polynomials are one of a number of or-
thonormal bases that can be built to represent a d-
dimensional scalar function as a linear superimpo-
sition of terms. Other commonly employed spec-
tral techniques include Fourier transforms, orthog-
onal wavelet decomposition, Karhunen-Loève ex-
pansions and many others. Note that standard finite
element representation is also part of this frame-
work. In other words, any spectral decomposition
on an orthonormal basis onto which each realiza-
tion of the model map is smooth can be used within
this framework with the same equations.

Future extensions of this work include the com-
bination of the prediction errors from the two stages
of PCE to the final map, as well as a more efficient
compression strategy that only considers significant
terms in the truncated set A d,pc .
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