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ABSTRACT: In this paper, a methodology is presented for the generation of an optimal set of maps

representing the intensity of a natural disaster over a region. In regional hazard and loss analysis, maps

like these are commonly used to compute the probability of exceeding certain levels of intensity at all

sites, while also providing information on the correlation among the intensity at any pair of sites. The

information on the spatial correlation between two locations is of utmost importance for the accurate

disaster performance assessment of lifeline components and of distributed systems. However, traditional

hazard maps (such as those provided by USGS) do not provide this essential information, but only the

probability of exceedance of a specific intensity at the various sites, considered individually. Therefore,

many researches have attempted to address this problem and incorporate correlation in their models,

mainly with two basic approaches. The first approach includes analytic or computational methodologies

to assess directly the correlation; the second approach is adopted by techniques for the selection of a rep-

resentative set of intensity maps, ofter referred to as “regional hazard-consistent maps”. The methodology

presented herein, which branches out from the previous two approaches, considers the intensity maps as

random fields. By adopting this abstract perspective, the new methodology is particularly appropriate for

a multi-hazard approach, and it can take advantage of tools for the optimal sampling of multi-dimensional

stochastic functions. These tools ensure that the weighted ensemble of generated samples (i.e., intensity

maps) tends to match all the probabilistic properties of the field, including the correlation. In fact, the

samples generated by the proposed methodology fully capture the marginal hazard at each location and

the correlated regional hazard. After the technique is presented, an application is provided, for the case

of seismic ground motion intensity maps.

1. INTRODUCTION

During the last decades, the increased attention for

socio-economic impacts of extreme events has led

structural engineers to slowly shift focus from in-

dividual structures to spatially distributed systems

and entire communities. Problems involving net-

work reliability, direct structural loss estimation,

and lifeline resilience are characterized by large un-

certainties and strong correlation among the vari-

ous physical quantities and locations. Many haz-

ard models for various types of disasters can suc-

cessfully capture the uncertainty, but do not con-

sider the spatial correlation. However, it has been

shown that underestimating the importance of the

regional correlation may introduce significant inac-

curacy on the socio-economic effects. For exam-

ple, Lee and Kiremidjian (2007) argued that seis-

mic risk models that do not consider ground mo-

tion and damage correlation underestimate system

risk and, as a consequence, high-cost economic de-

cisions may end up being nonconservative. Simi-

larly, Bocchini and Frangopol (2011) showed that
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the assumption of totally uncorrelated bridge dam-

age states in a network reliability analysis leads to

large nonconservative errors on the network perfor-

mance. Moreover, Crowley and Bommer (2006)

demonstrated that assuming perfect spatial correla-

tion leads to errors on the opposite side and overes-

timates the loss exceedance curves when a proba-

bilistic seismic hazard analysis (PSHA) is applied.

So, it has been established, that the studies on

these problems should be performed at the regional

scale and the models used should take into ac-

count accurate information on the spatial correla-

tion. This is particularly true for the correlation of

the intensity measure (IM) representing the severity

of a natural disaster at various locations. However,

this information is not included in the most popular

hazard maps, such as those provided by the United

States Geological Service (USGS) for seismic haz-

ard, and the National Oceanic and Atmospheric Ad-

ministration (NOAA) for weather-related hazards.

Traditional hazard maps provide information only

on the marginal hazard at each site, treated individ-

ually. The techniques used to generate these maps

take into account all the possible events of different

intensity, occurring at different sites and with dif-

ferent probability, and integrate them to determine

the probability of exceeding any level of a represen-

tative intensity measure (e.g., peak ground acceler-

ation for earthquakes; wind speed for hurricanes).

The drawback, however, is that the information on

the fact that each event affects concurrently multi-

ple locations is not embedded in the maps.

Therefore, the scientific community has tried to

address these issues with two different approaches.

The first group of researchers developed techniques

which tried to assess the regional correlation in a di-

rect fashion. In particular, a subgroup of this family

used analytic techniques (Moghtaderi-Zadeh and

Kiureghian, 1983; Gardoni et al., 2003), whereas

some others exploited computational approaches

(Bocchini and Frangopol, 2011). Even though most

of this techniques are elegant and easy to imple-

ment, providing closed-form solutions, they usu-

ally have to make substantial simplifications and

assumptions, which may not be realistic. The sec-

ond group of scientists utilizes simulation-based
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Figure 1: Hazard maps provide the marginal hazard at
all points, but not their correlation.

techniques to adequately correlate the IM at vari-

ous sites. This line of research led to the popular

“hazard-consistent” techniques for regional inten-

sity maps, extensively reviewed by Han and David-

son (2012) and Vaziri et al. (2012). The basic idea

is to select a reduced set from a large suit of histor-

ical and/or synthetic maps, generated by selected

scenario events (e.g., earthquakes). These models

select and weight the maps of the reduced set in a

way to match the hazard at each individual site (pro-

vided by USGS for example), as closely as possible

(hence the name “hazard-consistent”).

This paper proposes to approach the problem

with a different perspective. The first basic idea is

to consider the IM of an extreme event over a region

as a two-dimensional random field. Then, an ef-

fective technique called “Functional Quantization”

(Luschgy and Pagès, 2002; Miranda and Bocchini,

2015) is used to generate a small set of maps that

provide an optimal approximation (in the mean-

square sense) of the desired random field. This new

approach provides a very elegant formulation of the

problem and enables a truly multi-hazard paradigm,

because it treats in the same way the intensities of

all possible disasters. In fact, the methodology re-

quires only to have an appropriate subroutine for

the simulation of IM maps for the considered haz-

ard, such as earthquake, flood, or hurricane.

2. REPRESENTATIVE IM MAPS

For risk, loss, and resilience analyses at the com-

munity level, the problems are very complex and

simulation-based approaches have arisen as the

most popular option. Given the nested layers of
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uncertainties (e.g., hazard, structural response, re-

covery phase) the total probability theorem is usu-

ally applied to split the problem in simpler tasks.

Therefore, to handle the uncertainty in the hazard,

the generation of a set of representative IM maps is

the first step.

The selection of an appropriate IM (or a vector of

IM’s) and the generation of maps of its values de-

pends on the type of analysis that is performed. For

instance, in seismology it is customary to sample a

few random parameters that describe the character-

istics of the earthquake event, propagate the seis-

mic effects through the region by means of attenu-

ation functions (which could also include random

parameters), and sometimes superimpose random

residuals to the resulting map, to account for all the

other uncertainties that are not explicitly modeled

(see, for instance, Jayaram and Baker, 2010). The

most common IM’s are the peak ground accelera-

tion, values of the spectral acceleration for certain

periods, or a combination of these. Similarly, for

hurricanes the generation of IM maps starts with the

identification of a genesis point, sampling from a

kernel smoothed probability distribution of the his-

torical genesis points. Then, the hurricane track is

propagated over the time steps, usually based on

random parameters. Finally, the distribution of the

winds is assessed at each time step, using the cur-

rent location and trajectory of the hurricane, along

with another set of deterministic or random param-

eters. Simulators that follow this scheme have been

developed by Emanuel et al. (2006) and by Vickery

et al. (2000), among others. In this case, a repre-

sentative IM could be the maximum wind speed ex-

perienced by each site. Similar approaches can be

followed for other types of disasters, such as torna-

does or floods. The IM maps generated in this way

are then used as input for the subsequent analyses.

As for all probabilistic assessments, Monte Carlo

simulation (MCS) can be considered as the bench-

mark approach. If a sufficiently large number of

maps are used, MCS can accurately represent the

marginal hazard at each location, as well as the

spatial correlation among sites (embedded in the

IM maps). However, for practical applications, the

number of samples to obtain a good probabilistic

representation of the marginal hazard is at least in

the order of 104 and to capture the correlation this

number may have to increase by at least an order of

magnitude. Therefore, as for many applications, the

drawback of MCS is its high computational cost,

which makes it impractical in most cases.

Han and Davidson (2012) have reviewed a family

of methodologies that address explicitly this issue.

They aim at carefully selecting a set of historical or

synthetic IM maps and then applying appropriate

probabilistic weights, so that the regional hazard is

correctly represented even using a small number of

samples (“hazard-consistent” methods).

The most prominent methodologies of this group

are based on importance sampling, k-mean cluster-

ing, and optimization. Importance sampling is used

to partition the large range of the hazard model pa-

rameters in a more controlled way. For example,

the magnitude of the event is preferably sampled

at higher values (Kiremidjian et al., 2007). This

methodology improves the accuracy of a standard

MCS, but in many cases is applied only to some of

the parameters, ignoring other relevant ones (e.g.,

the source of the event).

K-mean clustering, as well as other clustering

techniques, is used to group the intensity maps in

clusters (Jayaram and Baker, 2010). In this case,

each map is assigned to the cluster with the clos-

est centroid map, according to the Euclidean norm.

Within each iteration, the centroid of each cluster is

recalculated as the mean of all the sample maps. Fi-

nally, the iterative scheme stops when no more reas-

signments take place and a random map is selected

from each cluster. This overall approach presents

many similarities with the technique that is pro-

posed herein and will be presented in Section 3.

However, the proposed technique has been devel-

oped starting from a completely different perspec-

tive, and its outcome has been proved to be optimal

in the mean square sense (ideal for hazard analy-

sis), which is not the case for previously developed

techniques.

A third set of methodologies is based on proba-

bilistic optimization. This group of techniques tries

to minimize the error between the marginal hazard

yielded by a set of selected IM maps and the “ex-
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act” values (e.g., those provided by USGS) for a se-

lected grid of points in a region. These optimization

models have been applied to different hazards, such

as earthquakes (Vaziri et al., 2012) and hurricanes

(Apivatanagul et al., 2011).

Overall, these methods yield good results in

terms of capturing the marginal hazard with a lower

computational cost than MCS. However, they do

not address explicitly the way in which the spatial

correlation is modeled, which should be the main

motivation for the development of most of these

methodologies. The implicit assumption is that the

use of real or realistic realization of the IM maps,

which individually carry a spatial correlation, will

automatically transfer a good representation of the

correlation to the weighted ensemble. Instead, the

technique proposed in the next section addresses

this point explicitly, and not only optimizes the rep-

resentation of the marginal hazard, but also of the

the spatial correlation.

3. HAZARD QUANTIZATION METHOD

The Hazard Quantization (HQ) method diverges

from the techniques previously described and ap-

proaches the regional hazard problem from another

perspective. The key difference is that it embraces

the nature of IM maps as random fields, which was

only sporadically hinted at, in the previous litera-

ture (see, for instance, Jayaram and Baker, 2009).

This approach yields several benefits. First, it al-

lows to take direct advantage of several method-

ologies that have already been developed for the

enhanced representation of generic random fields,

and which are backed up by proofs of optimality.

Second, it allows a more elegant treatment of the

various quantities involved in the problem. An ex-

ample of this is the fact that for the case of earth-

quakes, there is no distinction between the random

parameters that define the earthquake source (often

called “scenario parameters”) and those who model

the inter- and intra-event variability (often referred

to as “residuals”). HQ considers all parameters in

the same way, without the need of a hierarchy and

specialized simulation techniques for each group of

them (which can be included, but do not need to

be). This in turn yields the third advantage of HQ.

Its general perspective makes it a perfect paradigm

for multi-hazard analysis. All potential causes of

disasters can be addressed in the same way, with a

consistent and uniform framework, where the only

subroutine that is hazard-specific is the one for the

generation of individual maps, as described in Sec-

tion 2.

3.1. Theoretical foundation
Functional Quantization (FQ) is a technique for

the optimal representation of random functions

with a small number of samples (Luschgy and

Pagès, 2002). FQ has strong similarities with

other techniques that share the same goal, such as

the Stochastic Reduced Order Models (Grigoriu,

2009). What characterizes FQ is its optimality cri-

terion, which is the mean square convergence of

the approximate representation to the actual ran-

dom function. This makes it particularly appropri-

ate for hazard analysis in general, and regional IM

maps in particular, where convergence is sought on

both marginal distribution and correlation.

To take advantage of FQ, the IM map is con-

sidered a stochastic function F , which is a bimea-

surable random field on a given probability space

(Ω,F ,P) and is defined as:

F(x,ω) : Ξ×Ω → R (1)

where Ξ is the (multi-dimensional) space domain

and Ω is the sample space.

On the other hand, the random function FN ,

which approximates F , is defined by the following

equation:

FN(x,ω) =
N

∑
i=1

fi(x) ·1Ωi(ω) (2)

where the deterministic functions fi(x) are called

“quanta” and 1Ωi is the indicator function associ-

ated with event Ωi ⊂ Ω

1Ωi(ω) =

{
1, if ω ∈ Ωi
0, otherwise

(3)

Theoretically, almost all the probability space Ω
is partitioned into a mutually exclusive and collec-

tively exhaustive set {Ωi}N
i=1 and each event Ωi has

an associate probability P(Ωi) and a quantum fi,
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representative of all the sample functions associated

with ω’s which belong to the event Ωi.

The same concept can be also visualized from an-

other perspective. This is the space of square inte-

grable functions L2(Ξ) where the realizations of F
and FN lie. From this perspective, the L2(Ξ) space

is tasseled into {Vi}N
i=1, where each tassel Vi col-

lects all the realizations F(ω) with ω ∈ Ωi. Each

point f (x) in the Hilbert space L2(Ξ) can be asso-

ciated with its pre-image in the probability space,

hence by extension a tassel Vi matches an event Ωi.

Thus, when FQ is utilized, operating in both

the Hilbert and probability spaces, a tessellation

{Vi}N
i=1 and a corresponding partition {Ωi}N

i=1 are

induced. Next, the probability P(Ωi) associated

with each event must be computed. However,

thanks to the mentioned relationship between the

two spaces, it is possible to compute instead the

probability PF(Vi) = pi of the corresponding tas-

sel Vi, which is equal to the associated P(Ωi) (Mi-

randa and Bocchini, 2015). The set of pairs includ-

ing the quanta fi(x) and associated probabilities pi
is called “quantizer”, and it can be used as input for

the weighted simulation of the uncertain problem.

From a practical point of view, there are sev-

eral techniques to compute the quantizer of a cer-

tain random function. In particular, one tech-

nique is able to generate quantizers also for non-

Gaussian, non-stationary, multi-dimensional ran-

dom fields, which is what is needed for HQ.

This technique is called “Functional Quantization

by Infinite-Dimensional Centroidal Voronoi Tes-

sellation” (FQ-IDCVT) and it extends the idea of

Voronoi Tessellation (VT). VT is a technique for

the partitioning of a finite-dimensional Euclidean

space R
n into regions {Ti}N

i=1, called “Voronoi tas-

sels”. Each tassel is a n–dimensional convex poly-

hedron with a generating point y̌i ∈ R
n and is de-

fined as:

Ti =
{

y ∈ R
n | ‖y− y̌i‖< ‖y− y̌ j‖

for j = 1,2, . . . ,N; j �= i
} (4)

where ‖ · ‖ is the Euclidean norm. According to

Equation (4), all the points y ∈ R
n that belong to

tassel Ti are closer to the generating point y̌i than to

any other generating point y̌ j �=i. A special case of

VT is the Centroidal Voronoi Tessellation (CVT),

where each generating point y̌i is also the centroid

of tassel Vi. A CVT can be computed using Lloyd’s

Method (Ju et al., 2002).

FQ-IDCVT extends Lloyd’s Method to the

infinite dimensional Hilbert space of squared-

integrable functions L2(Ξ) (for more details on the

mathematical derivations, see Miranda and Boc-

chini, 2015). In the infinite-dimensional space, tas-

sels are defined as follows:

Ti =
{

F(ω) ∈ L2(Ξ) |
‖F(ω)− f̌i ‖L2(Ξ) < ‖F(ω)− f̌ j ‖L2(Ξ)

for j = 1,2, . . . ,N; j �= i
} (5)

where f̌i is the generating point of tassel Ti and

‖ · ‖L2(Ξ) is the L2(Ξ) norm. Equation 5 denotes

that all the realizations F(ω) closer to f̌i than to any

other f̌ j �=i are clustered in Ti. Note that the tassels

generated by the CVT in Equation 5 will be used as

the Vi in the FQ sense. In other words, Ti ≡Vi.

The f̌i’s are determined by the iterative algorithm

in Figure 2 (Miranda and Bocchini, 2013) until con-

vergence is met in terms of the following error met-

ric named “distortion”:

Δ
({Vi, fi}N

i=1

)
=

N

∑
i=1

∫
Vi

‖F(ω)− fi‖2
L2(Ξ)dPF (6)

Miranda and Bocchini (2015) proved that the mini-

mization of the distortion as defined in Equation (6)

ensures that a CVT of L2(Ξ) is obtained and it is op-

timal according to the mean square criterion. Note

that the argument of the norm in Equation (6) im-

poses convergence of the approximate representa-

tion to the random field, not focusing only on the

first moment or the marginal distribution.

FQ-IDCVT has been shown to work particularly

well against the curse of dimensionality that arises

in these problems and has been demonstrated for

Gaussian and non-Gaussian random fields (Chris-

tou et al., 2014; Bocchini et al., 2014). Therefore,

it is used in the proposed methodology for the simu-

lation of the strongly non-Gaussian, non-stationary,

two-dimensional field representing the IM distribu-

tion over a region.

5
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3.2. Computational algorithm
Figure 2 shows the flowchart of the FQ-IDCVT al-

gorithm, consisting of four blocks, which are de-

tailed in the following. The first block includes

the required input data. These are: (i) probabilis-

tic characteristics of the stochastic parameters re-

quired to generate an IM map; (ii) parameter N that

is the number of sample IM maps that will be used,

called “quantizer size”, which depends on the com-

putational resources; (iii) computational parameter

Nsim, which is usually in the order of Nsim = 100 ·N;

(iv) N sample IM maps, which are used as the initial

set of quanta.

The second module consists of the quanta identi-

fication, and it iterates the following tasks:

• generation of Nsim sample intensity maps;

• computation of the L2(Ξ) distance of IM map

realization j from all the quanta { fi}N
i=1 in the

2D space;

• clustering of each realization j to the tassel m,

where fm is the quanta with the smallest L2(Ξ)
distance from j;

• averaging of samples in each tassel Vi and up-

dating of the respective generating point fi.

The third block assesses the probabilistic weights

associated with the quanta, and it performs the fol-

lowing four steps:

• generation of N psim new sample IM maps,

where usually N psim = 10 ·Nsim
• computation of the L2(Ξ) distances and clus-

tering, as done in the previous block;

• assessment of the probability P(Ωi) as

P(Ωi) = pi =
Ni

N psim
(7)

where Ni is the number of maps in cluster i.
The last block represents the output quantizer,

which is the representative small set of IM maps

fi (i.e., quanta) and the associated weights pi.

The optimal partition of the sample space Ω pro-

vided by FQ-IDCVT has been proven to be opti-

mal and practically unaffected by the initial selec-

tion of quanta (Miranda and Bocchini, 2015). The

algorithm is easy to implement and in the follow-

ing numerical example it is shown that the resulting

ensemble of IM maps approximates very accurately

the exact marginal hazard and regional correlation.
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Figure 2: Flowchart of the FQ-IDCVT algorithm.

4. APPLICATION

For the demonstration of the proposed methodol-

ogy, a simplified representation of an earthquake

ground motion is considered. Figure 3 shows the

region of interest with two predefined faults. The

magnitude of the earthquake and the hypocenter

depth are assumed to have a triangular distribu-

tion with minimum, mode, and maximum equal to

[5.5,6,6.5] and [2.0,4.0,6.0]km, respectively. The

fault type is considered strike slip and the fault rup-

ture length is determined according to the model

adopted by HAZUS-MH (DHS, 2003). In terms

of attenuation, the empirical regression model pre-

sented by Abrahamson and Silva (1997) is utilized

for the generation of ground shaking maps, which

are in terms of spectral acceleration at a period T .

The case study is analyzed using HQ and the

characteristics of the resulting quantizer are com-

pared to the exact values of the autocorrelation

and the marginal probability of exceeding a certain
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Figure 3: Specified faults AB and CD in the region of
interest. The blue crosses represent the sample epicen-
ters.

value of Sa(T = 0.1s) computed by extensive MCS.

The FQ-IDCVT parameters considered herein are

N = 500, Nsim = 100 ·N and N psim = 1,000 ·N.

Figure 4 shows the marginal hazard P[Sa(T =
0.1s) > 0.4g]. The probabilities obtained by HQ

are in close agreement with the exact. Comparably

good results have been obtained also for the other

values of spectral acceleration threshold and period

T , even at the tails of the marginal distribution.

The autocorrelation of the quantizer has been

determined for different 1D stripes of the random

field, to be able to plot it (the complete autocorrela-

tion is a 4D function). An example is shown in Fig-

ure 5a. Figure 5b illustrates the difference between

the ensemble autocorrelation of the quantizer and

the exact. The error on this second-order statistic,

which is notoriously difficult to capture, is consid-

erably small, in the order of 0.1%.

5. CONCLUSIONS
A new methodology is presented for the generation

of an optimal set of maps representing the inten-

sity of a natural disaster over a region. The pro-

posed approach is rooted in the idea of consider-

ing explicitly the IM maps of any hazard as a two-

dimensional random field. Adopting this perspec-

tive, an advanced tool named FQ-IDCVT is used

for the optimal sampling of these two-dimensional

random functions. For highly correlated random

fields, such as IM maps for any type of hazard,

FQ-IDCVT ensures that the weighted ensemble of

the samples tends to match particularly well all the

properties of the field, including the correlation.

Figure 4: Comparison on the probability of exceedance
P[Sa(T = 0.1s)> 0.4g] between the exact (thick col-
ored lines) and the result obtained from HQ with
N = 500 (thin black lines).
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