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ABSTRACT: This paper describes the development of a new snow load map for defining ground snow 
loads for building (roof) design in the state of Colorado. The newly proposed Colorado maps aim to 
ensure that structures designed across the state achieve the target safety index of 3 defined in ASCE 7. 
To achieve this target safety index, the proposed design ground snow loads may be bigger or smaller 
than the 50-year load that ASCE 7 currently recommends for design, depending on the site. 

 
1. INTRODUCTION 
Current practice for determining design snow 
loads for buildings is based on uniform hazard. 
In the ASCE 7-10 standard (ASCE 2010), for 
example, design snow loads are based on ground 
snow loads with a 2% annual probability of ex-
ceedance, i.e. having a 50-year mean recurrence 
interval (MRI). The roof snow load is then 
computed from ground snow loads based on 
conversion factors considering the roof’s 
importance, thermal, and exposure factors. For 
buildings designed with Load Resistance Factor 
Design (LRFD), the pertinent load combination 
for determining the ultimate load (U) is: 

 𝑈 = 1.2𝐷 + 1.6𝑆 (1), 

where D and S are the design dead and roof snow 
loads, respectively.  

The reliability index β, also known as the 
safety index, is inversely related to the 
probability of failure for a given 50-year time-
period. The commentary for ASCE 7-10 defines 
target reliability indices to be achieved by 
buildings designed according to that standard; 

these targets depend on the building’s risk 
category (i.e., occupancy and use) and the 
potential consequences of failure. For typical 
buildings (Risk Category II), the target 50-year 
safety index is 3 for member failure that is not 
sudden or leading to progressive damage.  

In developing current code approaches, 
Ellingwood et al. (1982) showed that Equation 1 
leads to designs that have β of approximately 3. 
This analysis considered a typical site with 
annual maximum ground snow loads that follow 
a Type II extreme value distribution and have a 
coefficient of variation (C.O.V.) of 0.26. A sub-
sequent study showed that a lognormal 
distribution fit snow data then available in the 
Northeast quadrant of the United States 
(Ellingwood and Redfield 1983).  

If the shape of the annual maximum ground 
snow load distribution differs from the shape 
assumed in the reliability calculations, β may be 
higher or lower than 3. In the state of Colorado, 
for example, the C.O.V. of annual maximum 
ground snow loads ranges from about 0.2 to 1.0 
at different sites, due to large differences in 
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topography and climate. For example, in the 
eastern plains region of the state annual max-
imum ground snow loads come from single 
storm events, which are highly variable from 
year to year. Ground snow load distributions at 
sites in this region have high C.O.V.s and rela-
tively heavy upper tails. In the Rocky Mountains, 
maximum annual ground snow loads are due to 
snow accumulation over the winter season and 
have much smaller year-to-year variation.  

These differences produce large variations 
in the reliability of roofs governed by snow loads 
throughout the state (Kozak and Liel 2015, 
SEAC 2015). When designed for the 50-year 
loads, the reliability achieved at mountain sites 
can be much higher than 3. Conversely, the relia-
bility indices achieved at most sites in the plains 
are lower, due to higher variability than that 
considered in the original formulation of the 
snow load factor. This kind of variation is also 
expected in other western states where there are 
significant climatologic and geographic differ-
ences in the state and where climate varies 
significantly from the sites in the northeastern 
U.S. used to develop snow design procedures. 

This study characterizes probabilistic 
ground snow load distributions for various sites 
in the state of Colorado and quantifies the 
necessary design snow loads to achieve a 
reliability of β = 3. This is accomplished by: (1) 
gathering and interpreting historical ground snow 
load data for Colorado; (2) fitting probability 
distributions to annual maximum ground snow 
data; (3) characterizing roof demand and 
capacity variables and assessing roof reliability; 
(4) determining design ground snow loads for a 
target of β = 3.0. This paper illustrates two 
Colorado locations with very different snow load 
patterns. We build on three previous studies of 
design snow loads in Colorado (SEAC 1971, 
Harris 1988, and SEAC 2007), but incorporate 
additional historical data and utilize a reliability-
based approach. More details are provided in 
SEAC (2015).  

2. GROUND SNOW LOAD DATA  

2.1. Data Sources for Colorado Sites  
Ground snow data for the state of Colorado is 
gathered from a number of sources: Snow 
Course, Snowpack Telemetry (SNOTEL), and 
National Weather Service (NWS) stations.  

Snow depth and weight at Snow Course 
stations are measured by trained observers. An 
aluminum pipe is used to trap snow, such that the 
depth and weight of the snow in the pipe are 
measured. This process is typically repeated at 
ten locations along a half-mile course, and the 
average of the ten measurements is recorded 
(NRCS 2014). Snow Course measurements are 
recorded monthly and date back as far as 1936 in 
Colorado. A total of 177 Snow Course stations 
are used for this study. 

SNOTEL stations are automated and tend to 
be installed in remote mountainous areas. They 
measure snow weight via a pillow that senses the 
pressure of the snow on top of it, electronically 
transmitting the data to a central repository. A 
total of 117 SNOTEL stations are used here. 

  There are two kinds of NWS weather 
stations: first-order and cooperative observer 
(CO-OP). First-order NWS stations measure 
snow depth and weight on a daily basis. At CO-
OP stations, snow depth is measured daily, but 
snow weight is not. Therefore, ground snow 
weights at these stations must be estimated from 
snow depth. Data is gathered from a total of 303 
NWS CO-OP stations and six first order stations.  

2.2. Assembly of Colorado Snow Data 
Data from the 603 NWS, SNOTEL and Snow 
Course stations is assembled into 327 “snow 
sites” in the state. There are fewer snow sites 
than snow recording stations because: (1) where 
SNOTEL stations have replaced Snow Course 
stations, they are treated as a single site; (2) sites 
with less than 30 years of snow data are omitted 
because their snow records are considered too 
short to be used for the statistical analyses 
performed in this study; (3) stations in very close 
proximity (i.e. close enough so that no difference 
is expected in their ground snow loads) are 
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combined into single sites. 1 Station combination 
is based on proximity and similarity of the 
terrain and topography. Mountain stations are 
combined into a single site when they are within 
two miles and 300 ft. elevation of each other, and 
plains stations are combined if they are within 
10-15 miles and 500 ft. elevation of each other. 
The proximity that is necessary for multiple 
stations to be considered as one site is based on 
expert judgment considering the relative spatial 
variability of ground snow loads in different 
regions in Colorado.  

Each snow site contains the following 
information: history of annual maximum snow 
weights and/or depths, latitude, longitude, 
elevation, and names of contributing snow 
stations. For cases where a snow site is a 
combination of two or more snow stations, the 
annual maximum weights are taken as the 
maximum values from all of the contributing 
stations for each year.   

2.3. Depth to Weight Conversions 
Annual maximum snow weight is estimated from 
annual maximum snow depth where snow 
weight data is unavailable. Following Tobiasson 
and Greatorex (1997), the relationship between 
snow depth and snow weight is assumed to 
follow a power curve.  

In order to determine a relationship between 
snow depth and snow weight, the snow sites in 
this study are classified as either “settled” or 
“compacted” (SEAC 2007). Settled snow sites, 
typically found in the plains, are sites at which 
most of the snowpack tends to melt between 
snowstorms. Compacted snow sites, typically 
found in the mountains, accumulate snow 
throughout the winter. Snowpack at these sites 
tends to be denser than at settled snow sites, due 
to consolidation over the season. 

Examination of snow sites for which both 
weight and depth measurements are available 
shows that the relationship developed by 

                                                
1 In addition, some NWS records are actually combinations 
of nearby sites due to movements of the recording location 
over time, meaning that a number of station combinations 

Tobiasson and Greatorex (1996) is unbiased for 
predicting snow weights at settled snow sites in 
Colorado, where:  

 𝑊 = 0.28 ∗ 𝐷!.!" (2) 

Here, W is annual maximum snow weight in psf 
and D is annual maximum snow depth in inches. 
For compacted sites, a separate relationship 
based on Colorado Snow Course data is 
developed, as shown in Figure 1.  

 𝑊 = 0.58 ∗ 𝐷!.!" (3) 

 
Figure 1: Relationship between annual maximum 
weight and annual maximum depth in Colorado.  

3.  PROBABILITY DISTRIBUTIONS FOR 
ANNUAL MAXIMUM GROUND SNOW 
LOAD  

Probability models are fit to the observed annual 
maximum ground snow load data in two stages. 
In the first stage, probability models are fit 
individually to each snow site’s data. In the 
second stage, the shape of the distribution tail at 
each site is modified to reflect typical tail shapes 
for other sites with similar climatic and geo-
logical features.  

3.1 Probability Models Fit to Individual Snow 
Site Data 

Figure 2a provides an example histogram of 
annual maximum snow load for a typical plains 
snow site, Denver-Stapleton. As in this example, 
the histograms for most sites on the plains are 
strongly skewed, and the upper tail of the 
distribution becomes particularly important for 
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reliability analysis, because structural failures 
tend to occur when snow loads are much bigger 
than the design value (i.e. loads having long 
MRIs). As a result, we fit each candidate 
distribution to the upper one third of the data 
(hereafter referred to as “tail-fitting”). For the 
purpose of the tail-fitting, we consider four two-
parameter probability models: Normal, Gamma, 
Lognormal, and Log-Gamma. Of these 
distributions, the Normal has the lowest 
probability density in the upper tail and the Log-
Gamma has the highest density in the upper tail. 
Although a number of other distributions have 
been used to model ground snow loads, these 
four are considered to be sufficient to represent 
the historical data at all sites, because of the tail-
fitting methods.  

To fit the distributions to the data, for 
distributions belonging to the Normal family, the 
data points (i.e. annual maximum snow weights 
recorded at the snow site) are rank-ordered and 
plotted on probability paper. As illustrated in 
Figures 2b-c, a least-squares linear regression 
line is fit to the upper third of the data to 
determine the distribution parameters. 
Distributions are also fit to the entire data sets, 
but for illustration purposes only. 

The tail-fitting approach for Gamma family 
distributions is similar. However, since Gamma 
distribution parameters (shape and location) are 
coupled, there is no standard probability paper 
for plotting the data. Instead, the observed data 
values are plotted against values that are 
computed from a trial Gamma distribution. The 
parameters of the trial Gamma distribution are 
refined until a least-squares linear regression of 
the theoretical values with the observed values 
results in one-to-one line.  

 

 Figure 2: (a) Histogram of Denver-Stapleton 
historical snow site data with tail-fitted probability 
density functions overlaid. (b)-(c) Normal and 
Lognormal distributions fit to all of the data and to 
the tails only. The thick parts of the solid lines 
identify the upper third of the data used for tail-
fitting. The labels above each plot indicate the 
distribution type, R2 goodness of fit for the tail-fit 
least squares regression, and ground snow loads with 
MRIs of 50, 100, 500, and 1000 years from the tail-fit 
distribution.   
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Strengths and weaknesses of the site-
specific tail-fitting approach are highlighted by 
Figure 2. They work well for predicting 
moderately rare loads (e.g. MRI of 50 years) but 
not extremely rare loads (e.g. MRI of 1000 
years). Notice that the 50-year loads, i.e. loads 
with a MRI of 50 years, are well-predicted by 
both distributions shown; in fact, all four tail-fit 
distributions produce a 50-year load between 20 
and 22 psf at Denver-Stapleton. In contrast, dis-
tributions fit to the entire data set predict 50-year 
loads of 15, 17, 16, and 26 psf, for Normal, 
Lognormal, Gamma, and Log-Gamma, respect-
ively. For comparison, the top three recorded 
values in the 121-year record are 22, 23, and 32 
psf. There is also significant variability in the 
more extreme values, e.g. the 500 and 1000-year 
loads, even among the tail-fit distributions. The 
discrepancies in extremely rare loads (500 and 
1000 year loads) that are predicted by the 
different distributions are the result of having too 
few years of data (50-100 years of data). These 
extrapolations depend heavily on the distribution 
that is selected.  

3.2 Clustering of Snow Sites to Modify 
Distribution Tail Shapes  

Since the snow sites have between 30 and 120 
years of data, the shapes of the tails of the 
probability distributions beyond the 100-year 
values are difficult to estimate. DePaolo (2013) 
showed that clustering of sites could be used to 
improve understanding of ground snow loads at 
snow sites by considering what we know about 
similar sites. Here, the tail of each site-specific 
distribution is modified to reflect a more general 
tail shape determined from a cluster of sites with 
similar climatic and geographic features, thus 
improving our estimates of the distribution 
shapes in the extreme upper tails. Snow sites are 
clustered into groups of 20 sites or greater, based 
on similarities in altitude and climatic region.  

The tail shape for a cluster of sites is 
modeled by combining the data for all of the 
snow sites in the cluster into one data set. By 
combining data from the entire cluster, we obtain 
data records on the order of 1000 years rather 

than 50-100 years2, increasing our confidence in 
the behavior of the far tail (e.g. snow loads with 
MRIs as great as 1000 years). Since the 
magnitude of ground snow loads at different sites 
is expected to vary, data from each site are first 
scaled so that the scaled site 20-year MRI ground 
snow load matches the average 20-year MRI for 
all the sites the cluster. The cluster distribution is 
then tail-fit for the top 10% of the combined data 
set.3 Once the shape of the tail for the cluster is 
determined, the tail shape is rescaled back to the 
20-year MRI load of the individual site of 
interest, such that the snow distribution for each 
snow site retains the 20-year MRI from its 
historical record, but the tail shape benefits from 
the longer record obtained through clustering. 
SEAC (2015) describes the clustering approach 
for modifying the extreme upper tails in detail. 

4 RELIABILITY ASSESSMENTS 

4.1 Monte Carlo Reliability Assessment 
Reliability assessments are used to determine the 
reliability index for roofs designed according to 
the 50-year load, and, alternatively, what design 
load value would be required to achieve a 
reliability index of 3.0. The reliability analysis 
considers simply supported steel roof beams that 
are governed by snow loads.   

Reliability at each site is assessed with 
Monte Carlo Simulation methods (Fishman 
2006). For each assessment, ten million Monte 
Carlo simulations are performed, each 
representing a single year. Each simulation 
computes a random demand (i.e. roof dead and 
snow load) and random load-carrying capacity. If 
the moment demand is greater than the moment 
capacity in a given simulation, a failure is 

                                                
2 This analysis assumes that snow records at each site are 
independent. By combining nearby stations into single 
snow sites before reaching this step, we decrease the 
probability of double-counting extreme values from the 
same snowstorms, but we do not eliminate it. 
3 Tail-fits for combined data are performed for the top 
10%, rather than the top one third of the data, because they 
are intended to estimate the far tail, and the larger cluster 
data sets have significant numbers of data points (>50) 
above that threshold. 
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assumed to have occurred. The total number of 
failures divided by the number of simulations is 
the approximate annual probability of failure, 
which is converted to the probability of failure in 
50 years using the Poisson distribution. The 
probability of failure is then converted to a 50-
year reliability index. The Monte Carlo 
Simulation is repeated for a range of design 
ground snow loads, to produce a curve relating 
design ground snow load to the reliability index 
under varying design conditions.  

To conduct the reliability assessment, we 
first design a roof for the design ground snow 
load of interest. The roof consists of wide flange 
steel beams that are 30 feet in length and have a 
tributary width of 30 feet, considering a dead 
load of 15 psf.4 The roof snow load is taken as 
0.7 times the ground snow load based on the 
ASCE 7 Standard (ASCE 2010) for typical 
thermal and exposure characteristics (coefficients 
of 1.0 in ASCE 7). The required section modulus 
for a simply supported wide flange steel roof is 
computed for the factored dead and ultimate 
snow loads, and a strength reduction factor of 
0.9. Deflection limits are not considered in the 
design process. 

4.2 Uncertain Capacity Variables 
In the reliability analysis, the true moment 
capacity of the steel roof member is computed 
considering uncertainty in the yield strength and 
plastic section modulus of the section. The steel 
yield strength is taken to be lognormal 
distributed with a mean value of 1.1 times the 
nominal yield strength of 50 ksi, with a 
logarithmic standard deviation of 0.09. The 
plastic section modulus is normally distributed 
with a mean value of 1.05 times the required 
section modulus. The 1.05 factor accounts for the 
increase in section size that would be achieved if 
a discrete steel section was selected in the 
design. The plastic section modulus has a 
coefficient of variation of 0.05 (Galambos and 

                                                
4 A series of sensitivity studies conducted by the authors 
shows that the reliability results are not sensitive to the 
roof geometry and other design assumptions. 

Ravindra, 1978; Lind, 1977).  

4.3 Uncertain Demand Variables 
Demand variables that are considered in the 
reliability assessment are roof dead load and roof 
snow load. Following Ellingwood et al. (1982), 
the roof dead load is assumed to be normally 
distributed with an expected value of 1.05 times 
the design dead load and with a C.O.V. of 0.1.   

The roof snow load in Monte Carlo analysis 
is modeled as a function of two random 
variables: the ground snow load, which is 
discussed in Section 4, and the ratio of roof snow 
load to the ground snow load, i.e. the ground-to-
roof conversion factor. Ellingwood and 
O’Rourke (1985) estimated that the ground-to-
roof conversion factor for snow loads is 
lognormally distributed with a median of 0.47 
and logarithmic standard deviation of 0.42, based 
on data for roofs with varying exposure and 
thermal conditions collected by O’Rourke et al. 
(1982). More recent data collected by Høibø 
(1988, 1989) (supplied by Thiis and O’Rourke, 
2015) shows that a significant portion of the 
variation of the ground-to-roof conversion factor 
can be explained by the magnitude of the ground 
snow load. Figure 3 shows that the ratio of roof 
snow load to ground snow load decreases as 
ground snow load increases, because larger 
ground snow loads tend to be due to season long 
accumulation, which allows time for wind, 
thermal and sublimation processes to remove 
more snow from the roof. 

Like Ellingwood and O’Rourke (1985), we 
assume the ground-to-roof conversion to be 
lognormal. However, we condition the 
conversion factor on the ground snow load level, 
such that the median and logarithmic standard 
deviation of the distribution are a function of the 
ground snow load. Figure 3 shows the Thiis and 
O’Rourke (2015) data with the results of our 
statistical analysis, using local polynomial re-
gression, overlaid. The thick black line is the 
analytical function that is used in this study to 
estimate the median ground-to-roof conversion 
as a function of ground snow load, obtained by 
fitting an exponential function to the moving 
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median. The modeled ground-to-roof conversion 
factor has an asymptote that is fixed at 0.4, 
which is nearly reached within the range of avail-
able data. There are insufficient data for ground 
snow loads greater than 100 psf to determine 
whether a median ground-to-roof conversion 
factor less than 0.4 is acceptable for such 
conditions.  

The logarithmic standard deviation of the 
ground-to-roof conversion factor is 0.33 for 
ground snow loads greater than 33 psf and varies 
linearly from 0.1 to 0.33 for ground snow loads 
between 0 psf to 33 psf. For simulation purposes, 
an upper bound ground-to-roof conversion factor 
of 1.25 is enforced. Of all the demand and 
capacity variables considered in the reliability 
analysis, the ground-to-roof conversion factor 
and the ground snow load distribution are the 
most uncertain.  

4.4 Reliability Assessments for Selected 
Colorado Sites  

Reliability assessments are presented for Denver 
and Keystone Mine, because these locations 
exhibit typical plains and mountain climatology 
in the state of Colorado. The distribution of 
annual maximum snow loads in Denver is 
positively skewed (Figure 2), with a mean annual 
maximum snow load of 6 psf and a large C.O.V. 
(approximately 0.80). The distribution of annual 
maximum snow loads at Keystone Mine has a 
mean value of 105 psf, a low C.O.V. 
(approximately 0.35), and an unskewed 
distribution.  

 Figures 5 and 6 show the results of the 
reliability assessments for Denver and Keystone 
Mine, with and without the minimum snow load 
for low-slope roofs included in the design 
procedure.5 The green dashed lines represent the 
50-year MRI ground snow load at each site (i.e. 
the design ground snow load per current 
methods, but with an improved estimate of the 
50-year value obtained from the tail-fitting 

                                                
5 For low-slope roofs only, ASCE 7 defines minimum roof 
snow loads equal to 20 psf or the ground snow load, 
whichever is lesser, times the snow importance factor. 

procedure described in this paper). The red 
dashed lines represent the required design ground 
snow load to achieve a reliability index of 3.0 
(i.e. the “risk-targeted” design snow load), 
assuming that the LRFD load combination from 
Equation 1 is used for design.  

 
Figure 3: Ratio of roof snow load to ground snow 
load (GR) vs. ground snow load (Pg) with the 
analytical ground-to-roof conversion overlaid. Data 
was collected by Høibø (1988, 1989) and provided by 
Thiis and O’Rourke (2015).   

 
Looking first at the 50-year MRI loads for 

Denver and Keystone Mine, it is apparent that 
designing the 50-year MRI loads does not 
produce consistent reliability between sites (2.0 
for Denver and 3.5 for Keystone Mine). ASCE 7 
reliability targets are not met in the plains, but 
are exceeded in the mountains.  

In order to produce a reliability index of 3, 
the design ground snow load in Denver should 
be approximately 35 psf, 1.75 times higher than 
the 50-year MRI ground snow load of 20 psf. 
Alternatively, if the 50-year MRI load were 
taken as the design load in Denver, then the 
LRFD load factor for snow loading would need 
to be 2.8 instead of 1.6 to produce a reliability 
index of 3.0. We observe, however, that the 
increase in design ground snow loads from 20 to 
35 psf in Denver is consistent with current local 
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practice. The city of Denver already requires a 
minimum flat-roof load of 25 psf for Risk 
Category II buildings (City of Denver 2011). A 
design ground snow load of 35 psf corresponds 
to a flat-roof snow load of 24.5 psf.  

 
 
Figure 4: Reliability index vs. design ground snow 
load for Denver.    

 
Figure 5: Reliability index vs. design ground snow 
load for Keystone Mine.    
 

For Keystone Mine, a design ground snow 
load of 163 psf is sufficient to produce a 
reliability index of 3, which is 12% lower than 
the 50-year MRI ground snow load of 186 psf. If 
the 50-year MRI load were taken as the design 
load in Keystone Mine, then the LRFD load 
factor for snow loading would need to be 1.4 
instead of 1.6 to achieve the target reliability. 

5.   CONCLUSIONS: A MOVE TOWARD 
UNIFORM  RELIABILITY DESIGN 
SNOW LOAD MAPS 

This study demonstrates that the current LRFD 
snow load factor of 1.6, when coupled with a 
design snow load with a 50-year mean 
recurrence interval, does not produce consistent 
reliability for sites across Colorado. The risk of 
snow-induced roof failure is higher in the plains 
than in the mountains. This finding suggests that 
current approaches do not provide adequate and 
consistent safety against structural failure. 
Although the study focuses on Colorado, the 
same discrepancies would be observed in any 
region with significant variability in climate.  

This study proposes new approaches for 
determining snow load maps that provide 
consistent reliability against ultimate limit states. 
It would be impractical and unnecessarily 
complicated to impose LRFD snow load factors 
that vary with location. Therefore, a reliability-
targeted ground snow load map is proposed for 
the state of Colorado that is similar in concept to 
the risk-targeted maximum considered 
earthquake ground motion maps adopted in 
ASCE 7-10 (Luco et al. 2007, ASCE 2010). 
Such a map would be composed of design 
ground snow load values that achieve a target 
risk of snow-induced structural failure when 
factored by 1.6. This target corresponds to a β of 
3, or approximately 0.13% probability of failure 
in 50 years for ordinary buildings.  

The reliability analysis suggests that design 
ground snow load values in the plains of 
Colorado should be on the order of 1.75 times 
the 50-year MRI loads to achieve the target risk. 
This finding is consistent with local standard 
practice: engineers already use snow loads that 
are higher than the 50-year MRI load for 
designing buildings in Denver and other 
populated communities on the eastern side of the 
Rocky Mountains. Design snow loads in the 
mountains will be on the order of 10% less than 
the 50-year MRI loads. This reduction occurs 
because season-long accumulation in heavy 
snow areas reduces variability in the ground 

75% 
Increase 

12% 
Decrease 
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snow loads. These conclusions are supported 
here by two case study examples of Keystone 
Mine and Denver, but a substantial number of 
other sites have also been examined.  

Production of a reliability-targeted ground 
snow load map for the state of Colorado is 
underway. The proposed approach could be used 
to develop reliability-targeted ground snow load 
maps for any region for which snow loading is a 
significant design consideration and where 
significant climatic variation exists.  
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