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ABSTRACT: Uncertainty quantification is an integral part of many fields of science and engineering, 
but its application to seismic reliability and risk assessment in highway transportation networks is still in 
its infancy. This study identifies major known sources of uncertainties associated with seismic loss 
assessments in aging transportation networks, including hazards, structures, aging parameters, and 
network topology sources, while quantifying the impact of a subset of them on mean network-level 
reliability estimates. The uncertainty tracking process is illustrated with a case study network in South 
Carolina, USA. The source-to-response uncertainties are propagated and errors aggregated as they 
emerge with the adoption of surrogate seismic response models at both bridge and network levels. The 
observed range of uncertainties from the considered sources suggests that uncertainty quantification must 
become a standard procedure for reliability and risk assessment in transportation networks. Moreover, 
while the bridge surrogate models contribute significantly to overall uncertainties, network surrogate 
model’s contribution is found to be the least of all considered variables. Future opportunities exist to 
further identify key sources that should be targeted for improved confidence in risk estimates. 

 
1. INTRODUCTION 
Uncertainty is inherent in many modeling and 
experimental processes in science and 
engineering (Dror et al. 2006). Whether aleatory 
or epistemic, the sources of uncertainty which 
affect the scientific evaluations must be identified 
and their impact quantified and reported, if 
possible, so as to avoid inducing the sense of 
certainty into uncertain estimates. In stochastic 
processes where the reliability of physical 
systems is evaluated, quantifying uncertainties 
provides the distribution of the possible error 
around an estimated output, which can impact 
practical decision making in scientific, 
engineering, and financial applications (Adhikari 
et al. 2009; Alpak et al. 2013). 

Uncertainty quantification in engineering 
loss estimation is of particular interest to risk 
managers who maintain a portfolio of structures 
and are concerned about the risk posed by natural 
hazards. For risk assessment, it is customary to 
have a catalog of historical or synthetic hazard 
events with varying predicted rate of occurrences. 
Once the losses associated with each event are 
evaluated, one may aggregate the results in the 
form of an exceedance probability curve (also 
known as the risk curve), which presents the 
probability of exceeding a certain threshold of 
loss over a defined period of time (FEMA 2009). 
The uncertainties around the estimated losses 
contribute to the development of the risk curve, 
and can significantly influence the tail losses as 
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demonstrated in the literature [e.g., Aslani et al. 
(2012) and Bazzurro et al. (2008)]. Identifying the 
sources of uncertainty and quantifying their 
impact on the risk assessment in transportation 
networks is essential to study the seismic 
resilience of these systems, particularly at a time 
when the lack of adequate maintenance as the 
result of expense cuts has left many bridges in 
seismically active regions vulnerable against 
potential seismic excitations. Moreover, aging 
and deterioration has made bridges which may be 
lacking proper seismic detailing even more 
vulnerable to earthquake hazard (Choe et al. 2009; 
Ghosh and Padgett 2010). Accordingly, 
evaluating the effects of uncertainties from 
component to system in risk estimates should be 
considered an integral part of risk assessment 
studies. 

Table 1 lists a few sources of uncertainty 
which are known to influence direct and indirect 
loss estimates in highway transportation 
networks. Although evaluating all listed 
uncertainties is out of the scope of this study, 
identifying the possible sources provides 
opportunities for future studies. This paper 
focuses on the structural sources for uncertainty 
quantification, and adopts the mean occurrence 
rates and USGS (Peterson et al. 2014) 
recommended Ground Motion Prediction 
Equations (GMPEs) to develop the seismic hazard 
catalog, as discussed later in the paper. 

In addition to the listed sources, there are 
uncertainties originating from the computational 
methods employed for risk assessment (e.g., from 
the number of samples in Monte Carlo 
simulations). This study aggregates the impact of 
the computational uncertainties with the known 
structural sources and provides the uncertainty 
bounds for a sample simulated seismic event to 
demonstrate possible ranges and emphasize the 
significance of incorporating uncertainty 
quantification in risk assessments. Section 2 
elaborates on the methods for uncertainty 
propagation and quantification. Section 3 
introduces the adopted computational methods for 
bridge and network reliability evaluations, and 

demonstrates the case study bridge network. The 
uncertainty bounds are discussed in the results 
section, and the paper concludes by listing key 
findings and future research opportunities. 
Table 1. Example of known sources of uncertainty for 
seismic risk assessment in highway bridge networks  

HAZARD 
Geophysics of faulting systems 
Maximum possible rupture length and 
maximum possible magnitude 
Simulated or historical event rates of occurrence 
Ground motion prediction equations 

STRUCTURE 
Bridge locations 
Material properties 
Geometrical properties 
Deterioration parameters 
Live load (Traffic) 

NETWORK 
Topology 
Traffic assignment model 
Loss correlations 

2. UNCERTAINTY PROPAGATION AND 
QUANTIFICATION METHODS 

This section elaborates on methods to propagate 
the uncertainty in input variables (select variables 
from Table 1) to establish the uncertainty bounds 
on the estimated output (for example, bridge 
fragility or network reliability). As the focus is on 
structural and computational uncertainties, the 
bridge locations and network topology are fixed 
and no uncertainty is associated with the hazard 
catalog either. The uncertainty propagation is 
explored at two stages: a) Bridge fragility stage, 
and b) Network reliability stage. At the bridge 
fragility stage, uncertainties associated with 
structural modeling parameters, aging parameters, 
as well as the computational error from the 
application of a predictive metamodel for bridge 
fragilities are considered. These uncertainties are 
combined to predict the 95% confidence interval 
around the mean bridge fragility estimate. At the 
network reliability stage, the uncertainty 
originates from the application of a surrogate 
model, which is aggregated with the propagated 
errors from bridge fragilities stage to estimate the 
uncertainty bounds around the network 
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connectivity reliability, which is the final output 
in this study. 

Surrogate models are employed at both 
bridge fragility and network reliability 
computation stages to efficiently approximate the 
failure probabilities and avert the computational 
burden associated with traditional techniques. 
Development of these models require an 
experimental design matrix which is the input for 
the model selection process (Hastie et al. 2009). 
The reliability estimates associated with rows in 
the input matrix are evaluated using traditional 
methods [e.g., finite elements analysis for bridges 
and Monte Carlo or Recursive Decomposition 
(Liu and Li 2009) for the network] to provide the 
response vector. The surrogate model is trained 
using the provided input matrix and response 
vector, and the application error (test error) is 
estimated using samples not used in the training 
process. The described procedure provides an 
unbiased estimate of the error introduced by the 
surrogate model, which can be aggregated with 
uncertainty from other sources, as discussed next. 

In multiple-input and single output systems, 
several methods exist which quantify the 
propagation of uncertainty, such as Monte Carlo 
analysis, sensitivity analysis, statistical 
linearization, and first order analysis using Taylor 
series expansion (Lei and Schilling 1994). While 
each method has its advantages and shortcomings, 
this study adopts the first order analysis method 
because of superior computational efficiency and 
direct applicability to the case at hand. Highway 
bridge reliability problems are typically 
characterized by low curvature of the failure 
domain (Ghosh et al. 2013). For such moderately 
nonlinear problems, the first order analysis 
method for error propagation assessment provides 
an excellent approximation to the output 
uncertainty in the response while allowing 
partitioning of the error into its input sources (Lei 
and Schilling 1994; Stein et al. 2008). Moreover, 
this method is simpler statistical linearization in 
terms of computational complexity. The first 
order analysis method uses the Taylor series linear 
approximation of the response function around 

the mean of the predictor variables with the 
nonlinear components truncated. For example, if 
the output response y is a function of input 
variable vector x = {x1, x2,…, xn} as: 

 ( )y f x   (1) 
then, the Taylor series expansion of the response 
can be approximated as: 

        f
y f E E


  


x

x x x
x

  (2) 

The expected value and the variance of y can thus 
be evaluated as: 
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Equation 4 depicts the overall output model 
uncertainty as a function of the variances of the 
individual input parameters and thus helps to 
capture the propagation of uncertainty through the 
process. In many cases, the output response is not 
an exact function of the input variable, but 
involves model fitting errors. As is the case for 
this study, highway bridge fragilities are often 
obtained analytically after fitting a metamodel to 
the input predictor variables, and thereby 
introducing a metamodel error. In such cases, the 
variance of y can be expressed as: 
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where, ߪ௠  is the predictive metamodel error. 
Using a case study example in South Carolina as 
described next, Section 4 will demonstrate the 
error propagation method to quantify the 
contribution of individual error sources to overall 
output uncertainty through a case study. 

3. CASE STUDY EXAMPLE 
The highway bridge network around the 
Charleston metropolitan area in South Carolina, 
USA, has been previously studied by the authors 
to evaluate its network connectivity reliability 
(Rokneddin, et al. 2014a). A subset of that 
network, comprised of 22 bridges (Figure 1), is 
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studied in this paper to quantify the uncertainties 
in bridge-to-network reliability computations. 
The development of surrogate models and the 
associated uncertainties for the bridges and 
network are discussed next. 

 
Figure 1. Location and extent of the 22-bridge network 
case study. Dark circles in the zoomed-in figure 
indicate the location of origin nodes while the dark 
triangle shows the destination node. 

3.1. Surrogate models to develop parameterized 
bridge fragility functions.  
The bridges in the depicted network 

comprise two bridge types: Multi-span Simply 
Supported Slab (MSSS Slab) and Multi-span 
Simply Supported Concrete girder (MSSS 
Concrete) bridges. Both of these bridge types 
have been previously identified by Nielson (2005) 
as being seismically vulnerable due to inadequate 
seismic detailing of bridge components such as 
bridge columns and elastomeric pad bearings. The 
seismic performance of these bridges can be 
further exacerbated due to potential aging and 
deterioration of critical bridge components. As 
identified by Ghosh and Padgett (2012) and 
Rokneddin et al. (2014a) the reinforcing steel in 
bridge columns and bearing dowel bars are prone 
to corrosion deterioration from the chloride laden 
sea water in the atmosphere, while the elastomeric 
bearing pads are susceptible to time-dependent 
stiffening due to thermal oxidation. The following 
subsection discusses the development of time 
dependent parameterized seismic fragility models 
for the bridge classes which will subsequently be 

applied to individual bridges within the network 
by defining appropriate structure specific 
parameters. These fragility models are used to 
investigate the contribution of different sources of 
input parameter uncertainty to the overall error 
around the mean fragility estimate. 

3.1.1. Experimental design and finite element 
simulations 

Development of multidimensional bridge fragility 
models consists of the following steps: a) 
Formulate the experimental design matrix and 
conduct finite element simulation of bridge 
models, b) Fit metamodels to predict the seismic 
response of bridge components and subsequently 
develop parameterized seismic fragility curves.  

The experimental design matrix for the two 
bridge types is developed through a systematic 
combination of the predictor variables described 
in Fang et al. (2006). The considered variables 
include the peak ground acceleration (PGA) of the 
earthquake record, critical bridge modeling 
parameters, deterioration affected structural 
parameters and geometric parameters. While PGA 
is an uncontrolled parameter in the experimental 
design, the other parameters constitute the vector 
x (Equations 1 to 5). A complete list and 
descriptions of these parameters are presented in 
Table 2. 

Table 2: Input parameter predictor variables for case 
study bridge types 

Predictor 
Variable 

Variable Description 

MSSS Slab MSSS Concrete 
PGA Peak Ground 

Acceleration 
Peak Ground 
Acceleration 

x1 Concrete 
Strength 

Steel Strength 

x2 Bearing pad 
friction 

Bearing pad 
friction 

x3 Abutment gap Dowel gap 
x4 Shear modulus Shear modulus 
x5 Dowel Strength Dowel Strength 
x6 Column rebar 

area 
Column rebar 

area 
x7 Cover Depth Cover Depth 
x8 Column height Column height 
x9 Span Length Span Length 
x10 Deck Width Deck Width 
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This study adopts the Latin Hypercube 
experimental design with optimal spacing for 
computer experiments. Construction of the design 
sequence is followed by nonlinear dynamic time 
history analysis of three dimensional finite 
element bridge models, with bridge 
characteristics for each nonlinear time history run 
informed from the generated experimental design 
matrix. 

3.1.2. Parameterized bridge fragility 
development 

This study uses metamodels in two steps to 
develop generalized bridge class specific 
multidimensional vulnerability functions which 
are subsequently used for error propagation 
analysis. In the first step, the ensemble learning 
meta-algorithm known as Adaptive Boosting or 
AdaBoost (Hastie et al. 2009) is used to predict 
the seismic response of bridge components, such 
as columns, bearings and abutments, as a function 
of the predictor variables (Table 2). This 
algorithm uses a single composite strong learner 
by iteratively adding weak learners. For both 
bridge classes within the network, AdaBoost is 
found to perform well while predicting the bridge 
component responses resulting in high R2 values 
and low mean square errors after repeated random 
sub-sampling cross validation. In the second step, 
the logistic regression metamodel is used to 
develop parameterized bridge fragility models 
after comparing the component seismic demands 
from the AdaBoost models with the component 
capacity estimates from Nielson and DesRoches 
(2007). While the details of this procedure can be 
found elsewhere (Ghosh et al. 2013), bridge 
system failure probability (Pf) conditioned on 
PGA and parameter vector x = {x1, x2,…, xn} can 
be represented as: 

0
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where, τ0, τpga and τ1,…, τn are the logistic 
regression coefficients. The conditioned bridge 

failure probability corresponds to the variable y in 
Equations 1 to 5. 

3.2. The network surrogate model 
The development of network surrogate model is 
elaborated in Rokneddin et al. (2014b). Each row 
in the network-level experimental design matrix 
represents the bridge failure probabilities, as 
evaluated using the metamodeling procedure in 
Section 3.1, against a synthetic seismic scenario 
which is generated following the logic tree 
methodology recommended by the USGS 
(Peterson et al. 2014). In total, 398 seismic 
scenarios are sampled for this study to train the 
model, and the peak ground accelerations at the 
location of the 22 bridges are evaluated for each 
scenario using the recommended GMPEs (only 
the mean predicted PGA value is used per 
scenario; therefore, each scenario produces one 
intensity map). Subsequently, Equation 6 is used 
to estimate the set of bridge failure probabilities 
per scenario, resulting in 398 records for the input 
matrix to develop the network surrogate model. 
Once the network reliability associated with each 
record of bridge failure probabilities is evaluated 
by Monte Carlo simulations, 200 records out of 
398 are assigned to model training and validation, 
and the rest are reserved for testing in order to 
evaluate the order of error induced to the network 
reliability assessment by surrogate model 
application. 

Random Forests (Breiman 2001) are selected 
as the statistical learning method for network 
surrogate model development as it has been 
shown to provide superior performance in 
network reliability applications (Rokneddin et al. 
2014b). Random Forests, similar to AdaBoost, are 
an ensemble learning method which build a 
predictive model by averaging the outcome of a 
set of B regression trees as follows: 

 
1

1ˆ ( ) ( )
B

B
rf b

b
f T

B 

 y y  (7) 

where, ˆ ( )B
rff y  denotes the outcome of random 

forest prediction from a total of B regression trees 
and ( )bT y  is a regression tree formed out of a 



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 
Vancouver, Canada, July 12-15, 2015 

 6

randomly selected subset of input variables. For 
the network surrogate model, the input variables 
in y are the conditional bridge failure probabilities 
yi, i = 1, …, 22. The generic form of the regression 
tree can be described as 

1
( ) I( )

M

b m m
m

T c R


 y y    (8) 

where, the 22-dimensional input space described 
by y is divided into an optimal number of sub-
regions (M) each associated with a weight cm 
(Hastie et al. 2009).  

Figure 2 demonstrates the evolution of the 
root of mean squared error for predicted network 
reliability estimates as the number of the 
regression trees (B) grows. The model with an 
acceptable number of trees to provide the least 
error (around 400) is selected which results in an 
error in the order of 0.02 for network connectivity 
reliability estimates. 

 
Figure 2. The test error of the developed network 
surrogate model with 200 training records  

4. RESULTS AND DISCUSSION 
This section presents the evaluation of bridge 
failure probabilities and network reliability along 
with their associated uncertainties against a Mw = 
6.7 synthetic seismic event which was selected for 
this case study. This event was excluded from 
development of the surrogate models to provide 
an unbiased estimate of the associated errors in 
bridge and network failure probabilities. 

To demonstrate the uncertainty propagation 
at the bridge level, a MSSS Concrete girder bridge 
within the network is selected as an example. 
Among input parameters x1 to x10, the sources of 

uncertainty for this bridge are assumed to only 
stem from parameters listed in Table 3 along with 
their probability distributions. The distribution 
parameters for bridge modeling parameters x1 and 
x2 are taken from Nielson (2005), while the aging 
and deterioration parameters x4 to x6 are adopted 
from Rokneddin et al. (2014a). Given a chosen 
ground motion scenario, deterministic parameters 
for this bridge are the bridge dowel gap 
(x3=25.4mm) and cover depth (x7=38.1mm) 
(Nielson 2005). Additionally, the bridge 
geometric parameters (x8 to x10) are obtained from 
the National Bridge Inventory database (FHWA 
2010). 

Table 3: Probability distribution of the random 
variables affecting bridge fragility. C.O.V refers to 
the associated coefficient of variation. 

Variable Unit Distribution Mean C.O.V. 
x1

* MPa Lognormal 463 0.08 
x2

* - Lognormal 1 0.10 
x4

† MPa Uniform 2.50 0.30 
x5

† kN Lognormal 56.04 0.10 
x6

† cm2 Lognormal 5.67 0.10 
*Nielson (2005)  † Rokneddin et al. (2014a) 

The contribution of different parameter 
uncertainties and the logistic regression 
metamodel error to the uncertainty around the 
predicted fragility estimate is calculated using the 
first order analysis method (Section 2) for 
extensive damage state. At this limit state, the 
damage to bridge components is visible, requires 
repair and results in closure of the bridge for at 
least a week following a seismic event. Figure 3 
shows the mean predicted bridge fragility 
estimate (calculated using Equation 6) and the 
95% confidence bounds for each individual 
source of uncertainty represented by the outer 
extremities of the different colored band. The 
figure also shows the 95% confidence interval of 
the total error obtained by combing the different 
error sources in the logit space. Although not 
presented here, the total lumped uncertainty 
around the mean fragility is also verified using 
Monte Carlo simulations, showing close 
agreement with the first order analysis. 
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For the chosen MSSS Concrete bridge (and 
in general observed for other MSSS Concrete 
bridges within the network), Figure 3 reveals that 
column longitudinal rebar (x6) area has the highest 
impact on the output uncertainty followed by 
bearing pad shear modulus (x4) and steel strength 
(x1). The error contribution stemming from the 
parameters bearing pad friction and dowel 
strength (x2 and x5) are found to be negligible and 
not shown in the figure. The contribution from the 
metamodel error to the overall uncertainty is 
found to be the highest. Similarly, for the MSSS 
Slab bridges within the network, the metamodel 
error is predominantly higher than that of all other 
input variables, followed by the uncertainties 
stemming from column rebar area (x6), bearing 
pad friction (x2) and bearing dowel strength (x5). 

 
Figure 3: Predicted mean fragility estimate for the 
MSSS Concrete bridge type with 95% confidence 
bounds for each source of uncertainty represented by 
the different colored bands. Also shown is the 95% 
confidence interval from the total combined error.  

Using the mean predicted bridge failure 
probabilities, the network failure probability 
estimate is 0.264. Applying the 95% confidence 
bounds in bridge fragilities results in a range of 
0.145 to 0.455 for the network failure probability 
estimate. Finally, applying the 0.02 expected error 
from the network surrogate model extends the 
range to [0.143-0.457], as shown in Table 4. The 
observed range of uncertainty is significant, 
emphasizing the need to incorporate the known 
sources of uncertainty into risk assessment 
studies. For this example, the uncertainties 

associated with the network surrogate model are 
small compared to the variability from the bridge 
fragility metamodels and bridge input parameters. 
However, the error from the network surrogate 
model may become more significant for different 
network performance metrics (e.g., travel time) 
and topologies. 
Table 4. The range of uncertainties in network 
reliability estimates for the case study example 

Lower Bounds Mean Upper Bounds 
Network Bridge Bridge Network 

0.143 0.145 0.264 0.455 0.457 

5. CONCLUSIONS 
Although uncertainty quantification is considered 
an integral part of many tracks across different 
sciences and engineering, their application to 
seismic loss evaluations (travel time or loss of 
access) in highway transportation networks is in 
its infancy. This study identifies major sources of 
uncertainties, and quantifies the impact of 
structural and computational uncertainties on 
network connectivity reliability estimates for a 
case study network in South Carolina, USA. The 
developed multi-dimensional bridge fragility 
functions in this study are conditioned on the 
ground motion intensity, deterioration 
parameters, bridge modeling parameters, and 
geometric parameters. The contribution of each 
uncertainty source to the aggregate uncertainty 
around the mean estimated fragility is computed 
using a first order analysis method. The 
metamodel uncertainty contributes the most to the 
overall error followed by column rebar area, 
bearing shear modulus and steel strength for the 
concrete girder bridges, and column rebar area, 
bearing pad friction and bearing dowel strength 
for the slab bridges. Finally, the uncertainty from 
network surrogate model is aggregated with the 
uncertainties propagated from bridge fragilities to 
evaluate the overall uncertainties around the 
network reliability estimate. The uncertainties 
around mean losses from each event influence the 
risk curve, especially at tail losses. In future, the 
authors will explore this impact in a framework 
which includes the hazard, structural, and 
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computational uncertainties to improve the 
confidence in risk estimates. 

6. ACKNOWLEDGEMENTS 
This study was supported in part by the National 
Science Foundation under Grant No. CMMI-
1234690. Any opinions, findings, conclusions or 
recommendations expressed in this material are 
those of the authors and do not necessarily reflect 
the views of the National Science Foundation. 

7. REFERENCES 
Adhikari, S., Friswell, M. I., Lonkar, K., and Sarkar, A. 

(2009). “Experimental case studies for uncertainty 
quantification in structural dynamics.” Probabilistic 
Engineering Mechanics, 24(4), 473–492. 

Alpak, F. O., Vink, J. C., Gao, G., and Mo, W. (2013). 
“Techniques for effective simulation, 
optimization, and uncertainty quantification of the 
in-situ upgrading process.” Journal of 
Unconventional Oil and Gas Resources, 3–4, 1–
14. 

Aslani, H., Cabrera, C., and Rahnama, M. (2012). “Analysis 
of the sources of uncertainty for portfolio-level 
earthquake loss estimation.” Earthquake 
Engineering & Structural Dynamics, 41(11), 
1549–1568. 

Bazzurro, P., Park, J., Tothong, P., and Jayaram, N. (2008). 
Effects of spatial correlation of ground motion 
parameters for multi-site seismic risk assessment: 
Collaborative Research with Stanford University. 

Breiman, L. (2001). “Random Forests.” Mach. Learn., 
45(1), 5–32. 

Choe, D.-E., Gardoni, P., Rosowsky, D., and Haukaas, T. 
(2009). “Seismic fragility estimates for reinforced 
concrete bridges subject to corrosion.” Structural 
Safety, 31(4), 275–283. 

Dror, M., L’Ecuyer, P., and Szidarovszky, F. (2006). 
Modeling Uncertainty: An Examination of 
Stochastic Theory, Methods, and Applications. 
Springer US. 

Fang, K., Li, R., and Sudjianto, A. (2006). Design and 
modeling for computer experiments. CRC Press. 

FEMA. (2009). “FEMA Library - HAZUS®MH MR4 
Earthquake Model User Manual.” 
<http://www.fema.gov/library/viewRecord.do?id
=3732> (Mar. 11, 2011). 

FHWA. (2010). “NBI ASCII Files - NBI - Programs - 
Integrated - Bridge - FHWA.” 
<http://www.fhwa.dot.gov/bridge/nbi/ascii.cfm?y
ear=2010> (Mar. 11, 2011). 

Ghosh, J., and Padgett, J. (2010). “Aging Considerations in 
the Development of Time-Dependent Seismic 

Fragility Curves.” Journal of Structural 
Engineering, 136(12), 1497–1511. 

Ghosh, J., and Padgett, J. (2012). “Impact of Multiple 
Component Deterioration and Exposure 
Conditions on Seismic Vulnerability of Concrete 
Bridges.” Earthquakes and Structures, 3(5), 649–
673. 

Ghosh, J., Padgett, J. E., and Dueñas-Osorio, L. (2013). 
“Surrogate modeling and failure surface 
visualization for efficient seismic vulnerability 
assessment of highway bridges.” Probabilistic 
Engineering Mechanics, 34, 189–199. 

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The 
Elements of Statistical Learning: Data Mining, 
Inference, and Prediction, Second Edition. 
Springer Science & Business Media. 

Lei, J., and Schilling, W. (1994). “Parameter uncertainty 
propagation analysis for urban rainfall runoff 
modelling.” Water Science & Technology, 29(1-2), 
145–154. 

Liu, W., and Li, J. (2009). “An improved recursive 
decomposition algorithm for reliability evaluation 
of lifeline networks.” Earthquake Engineering and 
Engineering Vibration, 8(3), 409–419. 

Nielson, B. G. (2005). “Analytical fragility curves for 
highway bridges in moderate seismic zones.” PhD 
Thesis, Georgia Institute of Technology, Atlanta, 
Georgia. 

Nielson, B. G., and DesRoches, R. (2007). “Analytical 
Seismic Fragility Curves for Typical Bridges in the 
Central and Southeastern United States.” 
Earthquake Spectra, 23(3), 615–633. 

Peterson, M. D., Moschetti, M. P., Powers, P. M., Mueller, 
C. S., Haller, K. M., Frankel, A. D., Zeng, Y., 
Rezaeian, S., Harmsen, S. C., Boyd, O. S., Field, 
N., Chen, R., Rukstales, K. S., Luco, N., Wheeler, 
R. L., Williams, R. A., and Olsen, A. H. (2014). 
Documentation for the 2014 Update of the United 
States National Seismic Hazard Maps. Open-File 
Report 2014–1091, 243. 

Rokneddin, K., Ghosh, J., Dueñas-Osorio, L., and Padgett, 
J. E. (2014a). “Seismic Reliability Assessment of 
Aging Highway Bridge Networks with Field 
Instrumentation Data and Correlated Failures, II: 
Application.” Earthquake Spectra, 30(2), 819–
843. 

Rokneddin, K., J Ghosh, L Dueñas-Osorio, and JE Padgett. 
(2014b). “Seismic reliability assessment of bridge 
networks by statistical learning.” Safety, 
Reliability, Risk and Life-Cycle Performance of 
Structures and Infrastructures, CRC Press, 613–
620. 

Stein, A., Shi, W., and Bijker, W. (2008). Quality Aspects 
in Spatial Data Mining. CRC Press. 

 


	Uncertainty Propagation in Seismic Reliability Evaluation of Aging Transportation Networks
	1. INTRODUCTION
	2. UNCERTAINTY PROPAGATION AND QUANTIFICATION METHODS
	_Ref406668475
	3. CASE STUDY EXAMPLE
	_Ref406668599
	3.1. Surrogate models to develop parameterized bridge fragility functions.
	3.1.1. Experimental design and finite element simulations


	_Ref406319591
	_Ref406321894
	_Ref406345345
	_Ref406353820
	 
	3.1.2. Parameterized bridge fragility development

	3.2. The network surrogate model

	_Ref406353850
	4. RESULTS AND DISCUSSION
	_Ref406327758
	_Ref406351884
	_Ref406627542
	5. CONCLUSIONS
	_Ref406329757
	_Ref406629356
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

