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ABSTRACT: In many engineering applications, the assessment of reliability has to be done within a
limited amount of information, which does not allow to use exact values for the distributional hyper-
parameters. This is achieved defining probability boxes and assessing the reliability computing the failure
probability bounds. Probability boxes are often obtained from known probability distribution functions
represented by interval hyper-parameters. In the applications, not only it is of interest estimating the fail-
ure probability bounds, but it is also required to identify the extreme realizations leading to the estimated
bounds. In this paper, we propose a strategy, based on the Kolmogorov-Smirnov test, to identify the
parental distribution function that best fit the distribution of extreme realizations, obtained from the min-
max propagation. From the results obtained comparing the strategy with a direct search, it has emerged
that the proposed method is generally applicable and efficient.

1. INTRODUCTION
In reliability assessment it is of interest comput-
ing the effect of epistemic uncertainty on the failure
probability, (see e.g. Patelli et al. (2014), Roy and
Oberkampf (2010)) and making the least amount of
assumptions (see also Beer et al. (2013)). This re-
quires the epistemic uncertainty to be propagated
throughout the model and consequently quantified
in terms of failure probability intervals. Uncer-
tainty propagation can be performed by means of
different strategies, nonetheless a general distinc-
tion can be drawn between parametric (de Angelis
et al. (2015), Zaffalon (2002)) and non-parametric
approaches (Alvarez (2006), Ferson et al. (2002),
Kreinovich (1997)). The non-parametric proves to
be a more general approach because only bounds
of the statistical input quantities are concerned and
there is no need to specify any parental probability

distributions. However, this approach comes with
some limitations, in fact, once the bounds of the in-
terval probability are computed, it is not possible
to go back and identify the arguments in the input
space corresponding to such bounds.

In this paper we propose a numerical strategy
to resolve the issue of back-tracking the failure
probability bounds in the input space, using sim-
ulation methods and model updating procedure.
The interval failure probability is obtained from
the Dempster-Shafer (D-S) structure of the output
quantity of interest (Dempster (1967)). Any level
of the D-S structure identifies a minimum and a
maximum of the quantity of interest produced by
different searching domains. The expected value of
all the minima (maxima) of the D-S structure repre-
sents the lower (upper) bound of the expected value
of the quantity of interest. To any minimum (max-
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imum) corresponds an argument minimum (maxi-
mum) in the input space. Therefore, by gathering
all the minima (maxima), and track these minima
(maxima) back to the input space, it is possible to
construct a cumulative distribution function (CDF)
of the corresponding argument minima (maxima).
Equivalently, but this time selecting the right com-
bination of extrema, realizations in the input space
corresponding to the lower and upper bounds of the
failure probability can be identified. These realiza-
tions are then gathered to make up a cumulative
distribution function for each bound of the failure
probability, and subsequently interpreted, for exam-
ple, by means of model updating techniques. Here,
model updating is used to identify the best probabil-
ity function that fits the two obtained CDFs corre-
sponding to the lower and upper bounds of the fail-
ure probability. Eventually, a (parental) probability
distribution can be chosen to best fit the resulting
CDFs.

2. RELIABILITY ASSESSMENT WITH
PROBABILITY BOXES

2.1. Brief introduction to probability boxes
Probability boxes (p-boxes) extend the definition of
reliability to an interval of possible alternatives, en-
closed by a lower and a upper bound. In reliability
and risk assessment, p-boxes are invoked to repre-
sent what in literature is referred to as uncertainty of
Type III, which include both aleatory and epistemic
uncertainties. Let F and F be non-decreasing func-
tion from the real line R into [0,1] and F ≤ F for all
x∈R. A p-box is the set of all non-decreasing func-
tions F : R→ [0,1], such that F(x)≤ F(x)≤ F(x).

2.2. P-box convolution by means of Monte Carlo
simulation

A Dempster-Shafer structure can be seen as the
”discrete” equivalent of a p-box and it is key for
the reliability assessment of systems. The input-
output convolution of p-boxes, in practice, is per-
formed by using Monte Carlo simulation tech-
niques (Kreinovich et al. (1991)). Reliability as-
sessment is, therefore, performed by i) sampling the
equivalent D-S structure of the p-boxes, ii) obtain-
ing the output D-S structure, iii) and ultimately es-
timating the failure probability bounds.

2.3. Failure probability upper and lower bounds
Let G : Rn → R be the system performance func-
tion, θ ∈ Rn be a vector of p-boxes, and ΩF be
the domain of unacceptable states (or failure do-
main), such that ΩF = {θ : G (θ)≤ 0}. The sys-
tem performance is evaluated as g = G (θ). Each
focal element, θ

{s}, of the D-S structure is propa-
gated throughout the system, and the corresponding
image is obtained as

G (θ
{s}

) = [g, g]{s}; (1)

where,

g = min
θ∈θ

{s}
G (θ); g = max

θ∈θ
{s}

G (θ). (2)

The propagation of individual focal elements leads
to the failure probability bounds, obtained using the
plausibility and belief function as

pF = lim
Ns→∞

Ns

∑
G (θ

{s}
)∩ΩF

m(G (θ
{s}

)); (3)

pF = lim
Ns→∞

Ns

∑
G (θ

{s}
)⊆ΩF

m(G (θ
{s}

)); (4)

where, m is the mass associated to each focal ele-
ment of the D-S structure.

2.4. Reliability assessment with the parametric
approach

The failure probability bounds are obtained by
searching among all those distribution functions,
which mean values and standard deviations are in-
cluded in the intervals µ and σ . The problem can
be alternatively formulated as

pF = min
µ,σ

pF(µ,σ); pF = max
µ,σ

pF(µ,σ). (5)

Using this approach, the solution is included in the
p-box bounding CDFs (see e.g. Figures 1 and 2),
and it also belongs to one of the distribution func-
tions defined by the interval hyper-parameters (see
e.g. Table 1). In case where the performance func-
tion is a black-box, the approach is driven by an
optimization procedure that solves the problem of
Eq. 5 numerically.
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2.5. Reliability assessment with the non-
parametric approach

Any distribution function contained within the
bounding CDFs, even not belonging to any parental
distribution model, can be considered for the prob-
lem solution. This implies that the failure proba-
bility bounds obtained using this approach, are al-
ways wider than those obtained from the paramet-
ric approach, because a greater set of candidates is
searched for. The failure probability bounds are ob-
tained by computing plausibility and belief of the
output D-S structure as shown in Eqs. 3 and 4.

One major limitation of the non-parametric ap-
proach, despite its efficiency, is the difficulty in
identifying the input distribution functions that are
responsible for the failure probability bounds. This
issue is also known in literature as the tracking (or
back-propagation) problem. Here we propose a
strategy to tackle this issue.

2.6. Solution to the tracking problem
In many applications, it is of interest identifying the
distribution functions that lead to the failure proba-
bility bounds. Thus, a numerical strategy is needed
to characterize the distribution model that best rep-
resent the extreme realizations. Here, we propose
a strategy, based on the Kolmogorov-Smirnov test,
that identifies the function that best-fit the distribu-
tions of extrema (Kolmogoroff (1941)). The prob-
lem is formulated as

min
µ,σ

sup
x
|FNs(x)−F(x; µ,σ)| ; (6)

where, supx |FNs(x)−F(x; µ,σ)|, is the K-S statis-
tic, which represents a measure of similarity be-
tween the CDF obtained with the sample set
θ
{s}
min(max) and the distribution function F(x; µ,σ).

Solution to the problem is the pair of hyper-
parameters (µ∗,σ∗) that minimizes the K-S statis-
tic for each input p-box.

3. NUMERICAL EXAMPLE
The example is formulated to show limitations and
advantages of using the two approaches. The fol-
lowing performance function will be considered
throughout this section as

g = x2 y+ ex; (7)
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Figure 1: P-box bounding normal CDFs for x
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Figure 2: P-box bounding normal CDFs for y

where, x and y are p-boxes obtained from normal
distribution functions, which parameters are shown
in Tables 1. Let the failure event be defined by the
failure region ΩF = {x,y : G (x,y)≤ 0}, then the
failure probability is expressed as the interval

pF = P[g≤ 0]. (8)

The p-boxes defined in Table 1 are represented in
Figures 1 and 2 in terms of bounding CDFs.

The aim of this example is to identify the failure
probability bounds and the corresponding realiza-
tions in the input space, i.e. those CDFs that yield
the minimum and maximum failure probability.

Depending on how the input space of candidate
solutions is searched for, the solution may be signif-
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P-box µ σ Distribution
x [1, 5] [0.1, 0.6] Normal
y [−2, −0.5] [0.6, 2] Normal

Table 1: Mean values and standard deviations for the
definition of the p-box bounds

Figure 3: Limit state surface and box of mean values

icantly different. In the next sections two different
approaches of searching in the input space of can-
didate solutions are presented.

3.1. The parametric approach
In this simple case, the optimization can be reduced
to a one-dimensional search. In fact, the function of
Eq. 3 is monotonically increasing in y, which per-
mits to discharge µ

y
from the list of candidates, as

µ
y

and µy corresponds to pF and pF , respectively.
Also, the standard deviations can be taken out of the
optimization as only four candidate solutions can be
identified, which correspond to the four corners of
the domain σ . This becomes more evident if we
look to the limit sate surface and the box of candi-
date mean values, as shown in Figure 3. The opti-
mization is, therefore, reduced to a search along the
thick (upper and lower) edges represented in Fig-
ure 3. Given the shape of the limit state surface,
we expect the maximum failure probability to be lo-
cated somewhere near the peak of the limit sate sur-
face. Minimum and maximum failure probabilities
are obtained on the upper and lower edges of the
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Figure 4: Failure probability values obtained from the
optimization along the lower µx edge
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Figure 5: Failure probability values obtained from the
optimization along the upper µx edge

µx domain respectively, populating the space with
1000 realization. On each realization, the failure
probability is estimated using MC simulation with
105 samples. Results from the edge optimization
are shown in Figure 4, where it is shown that the
maximum failure probability (unlike the minimum)
is attained within the edge, thus not at the corners
of the domain. Figure 5 shows that the minimum
failure probability is held at the right endpoints of
the domain, i.e. for µx = 5. The argument optima
and corresponding failure probability extrema are
reported in Table 2.
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min pF max pF
P-box 5.30 10−9 0.493

x (µx)· = 5.0 (µx)
· = 3.49

x (σx)· = 0.1 (σx)
· = 0.1

y (µy)· = -0.5 (µy)
· = -2.0

y (σy)· = 0.6 (σy)
· = 2.0

Table 2: Failure probability bounds and corresponding
extreme normal distributions

3.2. The non-parametric approach
The failure probability bounds are obtained by gen-
erating a great number of samples, from the p-
boxes, and subsequently constructing the associ-
ated D-S structures of the response. The procedure
for constructing the D-S structure of the response is
briefly summarized as,

1. draw a uniform random number, α{s}, for each
p-box, between 0 and 1;

2. get the sample endpoints x{s} using the inverse
bounding CDFs, F−1 as;

x{s} = F−1
(

α
{s}

)
; x{s} = F−1

(
α
{s}

)
; (9)

3. identify minimum, r{s}, and maximum re-
sponse, r{s}, within the search domain, x{s}.
This step is also referred to as min-max prop-
agation;

4. repeat the above steps for s from 1 to Ns, i.e.
loop over the number of samples Ns;

5. collect samples and corresponding response
extrema.

Once the D-S structure of the response is obtained,
the failure probability bounds are obtained from the
D-S plausibility and belief as

pF = lim
Ns→∞

1
Ns

Ns

∑
s=1

I [g{s} < 0]; (10)

pF = lim
Ns→∞

1
Ns

Ns

∑
s=1

I [g{s} < 0]; (11)

where, I : R → {0,1} is the indicator function.
Most of the attention, in the above procedure, is
usually given to the min-max propagation step. In
fact, this can be troublesome, especially if the re-
sponse is the output of a black-box model, thus the
propagation is done by invoking global optimiza-
tion algorithms (such as evolutionary or stochastic
algorithms). However, in this case, solution to the
propagation task can be found analytically, as the
performance function is given explicit mathemati-
cal expression.

3.2.1. The min-max propagation
The performance function of Eq. 3 is monoton-
ically increasing with respect to y, which is a
great advantage as it excludes the presence of rel-
ative minima and maxima. Moreover, it implies
that, for every value of x, as the variable y de-
creases/increases so does the performance function.
This leads to the following relationships

g = x2
∗ y+ ex∗; g = x∗2 y+ ex∗; (12)

where x∗ and x∗ are yet to be determined. On the
other side, the performance function is not mono-
tonic with respect to x. The sign of the first and
second derivatives of g, says that the function is
monotonically increasing with respect to x only in
the portion where y ∈ [−1.37,0]. Whereas, for y ∈
(−∞,−1.37)∪ (0,∞) the function may have a min-
imum or maximum. Within the latter portion of do-
main, the minimum/maximum is identified solving
for x the partial derivative ∂g/∂x, and subsequently
checking if the obtained value is smaller/greater
than the values at the endpoints x and x.

3.2.2. Solution to the back-propagation problem
The problem is addressed collecting all those real-
izations in the input space that correspond to the
response extrema. It is, thus, crucial solving the
min-max propagation problem by keeping track,
back to the input space, of all the minima and max-
ima. These are also referred to as extreme realiza-
tions. The failure probability bounds are computed
by means of Eqs. 10 and 11 using 105 MC samples.

pF = [pF , pF ] = [0, 0.754].
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Figure 6: CDFs from the x p-box of extreme realiza-
tions leading to the failure probability upper bound
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Figure 7: CDFs from the y p-box of extreme realiza-
tions leading to the failure probability upper bound

The strategy intends to use the distributions of
minima and maxima as probability models corre-
sponding to the upper and lower bounds of the fail-
ure probability, respectively. In Figures 6 and 7 the
distribution of minima, corresponding to the upper
failure probability, are compared with the extreme
normal distributions of Table 2 for the maximum
failure probability, obtained by solving the opti-
mization problem. Figure 7 shows quite clearly
that the normal distribution obtained from the para-
metric approach, i.e. corresponding to the maxi-
mum failure probability, fits quite well the distribu-
tion of minima obtained from the non-parametric

min p∗F max p∗F
P-box 1.8 10−5 0.468

x (µx)· = 4.97 (µx)
· = 2.43

x (σx)· = 0.23 (σx)
· = 0.60

y (µy)· = -0.51 (µy)
· = -1.98

y (σy)· = 1.10 (σy)
· = 1.07

Table 3: Failure probability bounds and corresponding
extreme normal distributions obtained with the non-
parametric approach

approach. Figure 6 also shows a good fit, although,
this time, it is clear that the normal distribution does
not represent the best fit.

The solution to the back propagation prob-
lem can be found by selecting in the space
of parental (normal) distribution functions, those
hyper-parameters corresponding to the min/max
failure probability. Within the non-parametric
approach, this can be done searching for the
parental distribution functions that provides the
best fit to the collected distributions of minima
and maxima. Here, the normal distribution that
best-fit the extreme realizations is obtained using
the Kolmogorov-Smirnov test, by minimizing the
statistic (k-s distance) DNs = supx |FNs(x)−F(x)|.
The results from the the k-s distance minimization
are shown in Table 3. Figures 8 and 9 show the x
and y extreme normal distributions obtained for the
failure probability upper bound. It is interesting to
see that the two normal distribution functions of ex-
treme values obtained using the two approaches do
not differ much. However, the failure probability
bounds obtained using the proposed strategy, as it
can also be seen in Table 3, are not the optimal ones,
as they are enclosed in the ones obtained using the
parametric approach,which are shown in Table 2.
Note, from Figure 9 that the extreme realizations
of p-box y are distributed as the upper CDF as the
model is monotonic with respect to this variable.

3.3. Final remarks
From the analysis of the extreme realizations with
both parametric and non-parametric approaches we
may conclude that

– if the response is monotonic with respect to a
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Figure 8: Failure probability upper bound: the normal
distribution, from the x p-box, that best-fit the extreme
realizations is obtained with a k-s distance of 0.11
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Figure 9: Failure probability upper bound: the normal
distribution, from the y p-box, that best-fit the extreme
realizations is obtained with a k-s distance of 0.15

p-box, the failure probability bounds are ob-
tained from the bounding CDFs of that p-box,

– if the response is not monotonic with respect
to a p-box, the distribution function of the ex-
treme realizations is enclosed in the bounding
CDFs of that p-box and may have a compli-
cated form,

– in general, the reconstructed CDF of the ex-
treme realizations is not distributed as the
parental model of probability

– if the response is monotonic with respect to all
p-boxes and if, for every p-box, the bounding
CDFs are made of only two distribution func-
tions (such as in the Beta model), the solution
from the two approaches coincides.

4. CONCLUSIONS
In many engineering applications the assessment
of reliability requires the consideration of uncer-
tainty in the form of probability boxes. Very often,
probability boxes are defined using known proba-
bility distribution functions represented by interval
hyper-parameters. In these cases, it is of interest not
only estimating the bounds on the output statisti-
cal quantity of interest, such as the failure probabil-
ity, but it is also required to identify which extreme
realizations led to the estimated bounds. While in
some cases it may be sufficient just knowing what
the mass function of these realizations is, in other
cases it may be necessary to know what is the clos-
est distribution function, from the underlying model
of probability. In this paper, we have proposed a
strategy, based on the Kolmogorov-Smirnov test,
to identify the parental distribution function that is
closest to the distribution of extreme realizations.
The strategy collects the realizations from the min-
max propagation, and search, in the space of feasi-
ble hyper-parameters, for the distribution function
that best-fit the collected data. From the results ob-
tained comparing the strategy with a direct search,
performed by means of the parametric approach, it
has emerged that the proposed method works well
and shows also to be quite efficient. However, the
accuracy of the strategy might not be satisfactory
for the lower bound of the failure probability, which
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is different from the optimal value by orders of
magnitude. An improvement in this direction can
be sought, for example, putting more emphasis on
the tails of the fitted distributions. Also, as one
more future research direction, it would be interest-
ing to see how choosing more than one probability
model at a time can increase the confidence of the
estimation and lead to a better representation of the
extreme realizations.
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