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ABSTRACT: A recent approach to surrogate modelling, called dynamic trees, uses regression trees
to partition the input space, and fits simple constant or linear models in each “leaf” (region of the in-
put space). This article aims to investigate the applicability of dynamic trees in sensitivity analysis, in
particular on high dimensional problems at low sample size, to see whether they can be applied to dimen-
sionalities usually out of the range of surrogate models. Comparisons are made with Gaussian processes,
as well as three measures based on a radial sampling scheme: the Monte Carlo estimator of the total
sensitivity index, an elementary effects measure, and a derivative-based sensitivity measure. The results
show that the radial sampling measures generally outperform the surrogate models tested here, with the
exception of response surfaces that feature discontinuities.

Uncertainty analysis (UA) and sensitivity analy-
sis (SA) are now widely acknowledged as essen-
tial components of model-based engineering de-
sign and risk analysis. However, there are still
many practical difficulties associated with accu-
rately quantifying and propagating uncertainties
through a model. Not the least of these problems
is that of computational expense: given that most
complex models cannot be represented in a closed
form, UA and SA must be performed by sampling
the model by running it a number of times at dif-
ferent values of its input variables. If it is possible
to run the model a fairly large number of times, the
Monte Carlo method can be used to estimate the
variance of the model output and measures of sen-
sitivity to a reasonable degree of precision.

Unfortunately, complex models may often take
hours or even days to run for a single set of in-
put variable values; in such cases the Monte Carlo
method cannot provide accurate estimates. Surro-
gate models, known variously as “emulators” or
“metamodels”, have become widely-used tools that
aim to overcome this problem by building a statis-
tical approximation of the model based on a small
number of model runs. The surrogate model can
then be used to estimate quantities of interest via
the Monte Carlo method (since the surrogate model
can be run in a very small amount of time), or using

analytical integration if it is sufficiently tractable.
Data modelling approaches may also be used in

the setting of “given data”, i.e. when the avail-
able data points are arbitrarily placed and cannot
be positioned according to a Monte Carlo design,
for example. This occurs in the analysis of com-
posite indicators, in which data is available for a
fixed number of entities, such as countries, regions
or universities, and no further points can be added,
In such cases, nonlinear regression, such as lo-
cal linear regression or penalised splines, can be
used to estimate first-order sensitivity by regress-
ing against each variable in turn (Paruolo et al.,
2013). In general, however, interactions between
variables may be significant and it is not sufficient
to know only first-order sensitivity indices. Mul-
tidimensional surrogate models have the capability
to estimate the effects of higher order interactions
and can estimate the total sensitivity indices.

At least two major drawbacks of surrogate mod-
els are that first, they introduce further uncertainty
in the approximation of the model by its surrogate,
although this is acceptable if the uncertainty is suf-
ficiently small. Second, they tend to scale poorly
with dimensionality: as the number of input vari-
ables grows, the number of data points required to
accurately fit the surrogate can grow beyond a fea-
sible limit.
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Given these caveats, there is a substantial amount
of research effort devoted to building surrogate
models that can emulate possibly strongly nonlin-
ear and nonstationary model responses, at high di-
mensionalities, for as few model runs as possi-
ble. Examples of such emulators include Gaussian
processes (Oakley and O’Hagan, 2004), polyno-
mial chaos expansions (Sudret, 2008), and high di-
mensional model representations (Rabitz and Aliş,
1999). A comparison of some of these methods in
the context of sensitivity analysis can be found in
Storlie and Helton (2008).

One class of surrogate model that has the poten-
tial to be applicable in high dimensions, and can
demonstrate considerable flexibility, is the use of
regression trees (RTs). RTs take the approach of
dividing the input space of the model into a num-
ber of complementary regions, known as “leaves”,
such that each leaf has a regression model asso-
ciated with it which approximates a particular re-
gion of the input space. The advantage of this ap-
proach is that a number of simple, stationary (pos-
sibly linear or even constant) regression models can
be combined to make a surrogate model that, glob-
ally, is able to handle nonlinear and nonstationary
model responses, even with discontinuities (Becker
et al., 2013).

A Bayesian approach to building RTs was de-
veloped by Chipman et al. (1998), which builds a
posterior distribution over trees from a prior distri-
bution conditioned on training data (model runs).
Inferences can then be made by averaging over a
large number of possible tree models. This con-
cept was extended by Gramacy and Lee (2008) by
using Gaussian processes as the regression model
at each leaf. Most recently, the idea of “dynamic
trees” (DTs) was developed by Gramacy and Pol-
son (2011), which uses a particle learning algorithm
to allow sequential updating of the RT. Addition-
ally, an approach for variable selection was pro-
posed based on the variance reduction due to tree
nodes using each variable. These approaches are
encoded in the R packages tgp (Gramacy, 2007)
and dynaTree (Gramacy et al., 2013), which are
used as the basis for these experiments.

In this work the use of DTs, and RTs in general,

is investigated in the context of sensitivity analy-
sis, in particular to see whether RT surrogate mod-
els can be used to perform sensitivity analysis and
variable screening in high dimensions, at low sam-
ple sizes. RTs are used to estimate variance-based
sensitivity indices as well as an alternative sensitiv-
ity measure based on variance reduction caused by
splits on a particular variable, described in Section
2. The performance is compared with sampling-
based measures described in Section 3.

1. BAYESIAN REGRESSION TREES

Consider a model f , which has k uncertain inputs
denoted {XXX i}k

i=1, and a univariate output Y , such
that Y = f (XXX). It will be assumed that XXX ∈ X ,
where X = [0,1]k. A regression tree works by
recursively dividing the input space X into non-
overlapping partitions using rules of the form xi≤ s,
i.e. splitting the data using a single input variable at
a time. An example of a simple RT is shown in Fig-
ure 1. The data are sorted by the splitting rules into
the terminal nodes, or “leaves”. Each leaf defines a
region of the input space and has its own regression
model assigned to it – this may be as simple as a
constant or linear regression, or more sophisticated,
such as a Gaussian process. Although a single re-
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Figure 1: An example of a regression tree.

gression tree will have discontinuities between each
leaf region, by adopting a Bayesian approach which
averages over many possible trees, the discontinu-
ities can potentially be smoothed out. In this sense
the Bayesian approach shares some similarities to
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the random forests method (Breiman, 2001): a large
number of “‘weak learners” which can model com-
plex data when combined. In the following, a very
brief overview of Bayesian tree-based models is
given.

In order to build regression trees using the
Bayesian framework, it is necessary to create a
prior distribution over tree models, p(T,ΘΘΘ), where
T represents the tree-structure random variable, and
ΘΘΘ the random vector of unknown regression param-
eters defining the regression models at each leaf of
the tree. This can conveniently be divided such that

p(ΘΘΘ,T ) = p(ΘΘΘ|T )p(T ) (1)

which allows the tree prior to specified indepen-
dently of the regression parameters. It is not pos-
sible to specify an analytical prior over trees, but
a prior distribution may be specified indirectly via
a number of rules which dictate the probability of
moving from one tree to another, by adding and re-
moving nodes, as well as swapping and changing
splitting rules. This fits naturally into the frame-
work of Markov chain Monte Carlo (MCMC) sam-
pling, which is used to sample the posterior distri-
bution.

The prior may now be combined with the model
likelihood, (Y |X ,T,ΘΘΘ), given the data, which is de-
pendent on the type of model used at each leaf. If
the parameter prior has a carefully chosen form, it
is possible to analytically marginalise the model pa-
rameters, i.e.,

p(Y |X ,T ) =
∫

p(Y |X ,T,ΘΘΘ)p(ΘΘΘ|T )dΘΘΘ. (2)

Now using Bayes’ theorem the posterior distribu-
tion over trees can be found up to a proportional
constant,

p(T |X ,Y ) ∝ p(Y |X ,T )p(T ) (3)

which can now be explored via the Metropolis
Hastings (MH) algorithm. When the regression
model at the leaves is more complex, for exam-
ple when it is a Gaussian process, the parameters
cannot be analytically marginalised. As a result,
the MH algorithm cannot be exclusively used since
the dimensionality of the parameter space changes

from one step to the next. In this situation, Gra-
macy and Lee (2008) use reversible-jump MCMC,
for jumps between tree models, with a combination
of Gibbs sampling and the MH algorithm for sam-
pling from the posterior parameter distribution.

Dynamic trees (DTs) are an extension to RTs in
general, being designed to dynamically adapt and
update on the observation of new data, using a se-
ries of rules on how a tree can change with the ar-
rival of new data points, and a particle learning ap-
proach. The DTs used here use either constant or
linear models at each tree leaf: in this sense they
are simpler than the treed Gaussian process models
described in (Gramacy and Lee, 2008). However,
in the context of low sample sizes, the simpler leaf
models might have an advantage.

DTs are designed in particular to dynamically
update on the arrival of new data – they incorpo-
rate rules which change the structure of the tree lo-
cally with each new observation. The experiments
here do not involve dynamic updating of the model,
however the DT approach can equally be applied to
batch data by running the data through the learn-
ing algorithm several times in a different order and
using the averaged results. The details of the con-
struction of the tree prior and the updating rules
must be referred to Gramacy and Polson (2011) due
to space limitations, however the essence of the DT
approach is the same as any other Bayesian regres-
sion tree.

2. SENSITIVITY ANALYSIS WITH REGRESSION

TREES
RTs can be used to generate large surrogate-model
samples which can be used to estimate measures of
sensitivity, specifically the first-order sensitivity in-
dices (Cukier et al., 1973), and the total-order sen-
sitivity indices (Homma and Saltelli, 1996). The
experiments in this work will focus on the latter,
defined as,

STi =
EXXX∼i[VXi (Y | XXX∼i)]

V (Y )
(4)

where V (·) is the variance operator, and ∼ i de-
notes the set of indices except i. Estimation is per-
formed using the Monte Carlo approach, described
in Jansen (1999). In fact estimates can be returned
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as distributions rather than point estimates, since
they are estimated at every tree model visited in the
MCMC search (after burn in). These distributions
therefore account for both the uncertainty in the tree
structure and model parameters.

A more novel approach to measuring sensitiv-
ity was also proposed by Gramacy et al. (2013), in
which the “relevance” of a variable xi is measured
as the sum of the reductions in predictive variance
due to splits involving xi. Let the reduction in pre-
dictive variance for a given node (split) be ∆(η).
The relevance is defined as,

Ji(T ) = ∑
η∈IT

∆η1[ν(η)=i], (5)

where ν(η) is the variable index of the split of η ,
and IT is the set of all internal (non-terminal) tree
nodes. When the regression model is a simple con-
stant at each leaf, dependencies of y on xi are cap-
tured exclusively by splits on xi, and each split con-
tributes to a reduction in variance if xi affects the
output in some way. Intuitively then, if a variable
has no influence on the output, any splits on that
variable will give no reduction in variance; con-
versely splitting on an influential variable will de-
crease the predictive variance. In the case where the
leaf model is anything other than constant, the rele-
vance measure cannot be used as a reliable measure
of sensitivity because reductions in predictive vari-
ance will be due to both splits on variables and the
specification of the regression model at the leaf. Al-
though the requirement of a constant leaf model is
somewhat restrictive, this work aims to see whether
it can be used to perform “low-resolution” screen-
ing analyses in for models with high dimensional-
ity.

3. SAMPLING-BASED MEASURES
In order to put the performance of the DT approach
into perspective, the measures from the DTs (ST
and J) are compared here with some other sensi-
tivity measures. To compare against the perfor-
mance of a more “conventional” surrogate model,
the fully Bayesian Gaussian process is used from
the TGP package. Additionally, three much sim-
pler “sampling-based” approaches are used which
do not use surrogate models: first, the Monte Carlo

estimator of ST , which is based on a so-called “ra-
dial” experimental design. Letting xxx(i)j and xxx(i

′)
j be,

respectively, a point in the input space, and a point
that differs from xxx(i)j only in the value of xi, the esti-
mator of the numerator of STi (see (4)) is as follows
(Jansen, 1999),

V̂Ti =
1

2N

N

∑
j=1

∣∣∣ f (xxx(i′)j )− f (xxx j)
∣∣∣2 . (6)

The next measure is the mean of absolute elemen-
tary effects, µ̂∗i , which is estimated as (Campolongo
et al., 2011),

µ̂
∗
i =

1
N

N

∑
j=1

∣∣∣ f (xxx(i′)j )− f (xxx j)
∣∣∣

|x(i
′)

ji − x ji|
. (7)

Here, x ji denotes the ith coordinate of xxx j, so that
the denominator of (7) is equal to the difference
in xi between xxx(i)j and xxx(i

′)
j . The final measure

used in this study is part of a set of sensitivity
measures called “derivative-based global sensitiv-
ity measures” (DGSM). The measure is the integral
of squared derivatives, i.e. νi =

∫
H (∂y/∂xi)

2dxxx.
This may be estimated as (Sobol and Kucherenko,
2009),

ν̂i =
1
N

N

∑
j=1

∣∣∣ f (xxx(i′′)j )− f (xxx j)
∣∣∣2

|x(i
′′)

ji − x ji|
, (8)

where xxx(i
′′)

j is a point that differs from xxx j only by a
small increment δ of xi, in order to give an estimate
of ∂y

∂xi
at each point xxx j. This increment is kept fixed

for all j, and is recommended as δ = 1×10−5 when
sampling with respect to the unit hypercube.

4. EXPERIMENTS
In order to assess the performance of the tree mod-
els and their associated measures, experiments were
performed on test functions rather than physical
models. Test functions represent the possible be-
haviour of complex physical models, but have the
advantage that the sensitivity indices are known a
priori via analytical expressions. The performance
of the methods and measures here is of course con-
ditional on the test function and may be different
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for other functions, however the same is true for
physical models.

The focus of this work was on the applicability
of DTs to problems of high dimensionality, at low
sample sizes. In such cases it is unrealistic to ex-
pect precise estimates of sensitivity indices — usu-
ally one is interested in identifying input variables
which have a significant influence on the model out-
put, and similarly identifying those that have little
or no effect. This setting is often referred to as
“screening”. Accordingly, for each test function,
a certain fraction γ of the input variables was set to
be of higher influence, and the remaining fraction
1− γ of variables to be of lower influence (the ex-
act sensitivity is controlled by the parameter values
in each case).

The experiments are then set as follows. Let
khigh = bγkc, i.e. the number of input variables
that are set as high influence, and klow = k− khigh.
In each test function, the variables are set such
that {ST 1 = ST 2 = ... = ST khigh} � {ST khigh+1 =
ST khigh+2 = ...= ST k}. In other words, the first khigh
variables are set to have equal and high sensitivities,
and the remainder to have equal and low sensitivi-
ties.

Now let ri be the ranking of the ith variable by
one of the sensitivity measures defined previously,
where ranking runs in descending order, i.e. ri = 1
is ranked as the most influential variable, and ri = k
is the least. The measure of error, Z, is as follows,

Z =
1

khigh

khigh

∑
i=1

1(ri > khigh), (9)

where 1(·) is the count function. This metric there-
fore measures the fraction of influential variables
that are ranked outside the top khigh variables by
the sensitivity measure. This is purely a measure
of sorting the variables into high and low impor-
tance groups, and gives no regard to precise rank-
ings or possible cutoff values that might be used to
select high importance from low importance vari-
ables, since what is a “high importance” variable is
usually subjective and problem-dependent.

In order to capture the average performance, for
each test function investigated, 20 repetitions are
made (this limit was imposed by the significant

computational cost of constructing a large num-
ber of surrogate models). The experimental de-
signs here are all based on the Sobol’ sequence,
which is a low-discrepancy sequence suitable for
both Monte Carlo estimation and surrogate model
training. The sample is randomised by applying a
random shift in each dimension for each replica-
tion, following the approach of Owen (1998). Ad-
ditionally, each function is tested at sample sizes
from NT = 62 to NT = 248, representing the sizes
of samples that might be available when the model
is very computationally expensive. These particu-
lar values were chosen because the measures based
on radial sampling require a structured sample of
size NT = N(k+ 1), where N is a positive integer.
At the chosen dimensionality of k = 30, NT = 62
when N = 2, for example. The surrogate models
were built at the same sample sizes to make a fair
comparison.

4.1. Polynomial additive function
The first function used for comparison was a simple
polynomial additive function, of the form,

h(xxx) =
k

∑
i=1

aix
p
i , (10)

where p is the order of the polynomial, and the ai
are weighting coefficients. In this function there are
no interactions between variables, so ∑Si = 1. The
parameters were set as follows: p = 2, ahigh = 3
and alow = 1, and γ = 0.2, with k = 30. This means
that 20% of variables are set to have high sensitiv-
ities, i.e. by setting a1 = a2 = ... = a6 = 3, and
a7 = a8 = ...= a30 = 1. The results are as shown in
Figure 2. The polynomial function is a smooth ad-
ditive function, which would tend to favour surro-
gate models which rely on assumptions of smooth-
ness. However the results show that the perfor-
mance of the DTs is rather poor. By far the worst
performer is the relevance measure of the dynamic
trees surrogate model, which does start converge to
a reasonable level of error as the sample size in-
creases above 200 points, but at lower sample sizes
is little better than random noise (consider that if
random sensitivity measures were assigned to each
variable, the value of Z would on average be 0.8).
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Figure 2: Results of sensitivity measures applied to
polynomial additive function.

The Monte Carlo estimator of ST performs better,
but still with a considerable margin of error. A
much better performance is given by the ST esti-
mation via the DT surrogate, and even better via
the Gaussian process. However, the best perfor-
mance of all is given by the elementary effects and
DGSM measures, which do not rely on surrogate
models, and correctly identify the group of signif-
icant variables at every sample size, and for every
data replication tested. This seems to suggest that at
the sample sizes tested, when the objective is sim-
ply to identify important variables, surrogate mod-
els do not offer any improvement over measures
that estimate directly from the sample (at least on
this function).

4.2. G∗ function
The second test function is a widely-used bench-
mark function in sensitivity analysis studies – the
“G∗ function”. It has the following form:

G∗ =
k

∏
i=1

g∗i

g∗i =
(1+α) |2(xi +δi− I[xi +δi])−1|α +ai

1+ai
(11)

where ai,δi and αi are parameters which can be
chosen to obtain different behaviours of the func-
tion. I[xi + δi] is the integer part of (xi + δi). The

relative importance of the inputs (x1,x2, . . . ,xk) in
the G∗ function is controlled by the magnitude of
ai, and the nonlinearity by αi. The parameter δi is
a “shift” parameter which moves the position of the
function in the input space, without having any ef-
fect on the sensitivities. This is set to zero in this
work since for each replication, the Sobol’ sample
is already randomly shifted, achieving exactly the
same effect. In this experiment, the parameters are
set as ahigh = 1 and alow = 2, which are chosen to
result in a function with strong interactions: with
k = 30 and α = 2, the sensitivity indices can be an-
alytically calculated as ∑Si = 0.151.
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Figure 3: Results of sensitivity measures applied to G∗

function. The line styles are the same as in Figure 2.

The results of the RTs and other measures ap-
plied to the G∗ function show a similar story to that
of the polynomial function, but with a clearer divi-
sion. The G∗ function is strongly nonlinear and has
strong interactions between variables, so is natu-
rally a more challenging subject for sensitivity anal-
ysis. Referring to Figure 3, one can see that the
RT surrogate models, and the Gaussian process, all
show poor performance at the sample sizes tested,
with variable ordering little better than random.
The most successful measure is clearly the DGSM
measure ν , which effectively orders the variables
even at the lowest sample size. Similar to the other
measures, the error does not decrease very signifi-
cantly with increasing sample size.

The DGSM measure appears to have an advan-
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Figure 4: Results of sensitivity measures applied to step
function.

tage because it relies on small steps, which capture
the partial derivative of the function at each point
visited. In the case of the G∗ function this cap-
tures the sensitivity quite well. Measures such as ST
and µ∗, on the other hand, take large steps between
samples, which in the case of a non-monotonic
function, can underestimate sensitivity at low sam-
ple sizes. The surrogate models simply do not have
enough training data to characterise the function at
this sample size.

4.3. Step function
The final test function is a simple function with a

near-discontinuity, of the form,

s(xxx) =
k

∑
i=1

aierf(15(xi−0.5)) (12)

where erf is the error function. This function has
a gradient of zero in most places, except around
xi=0.5, at which point the gradient is very steep. For
the numerical experiments, ahigh = 2 and alow = 1,
with a fraction γ set to 0.2.

The step function was in fact chosen as a counter-
example to show the limitations of the DGSM mea-
sures. This is clearly shown in Figure 4, where the
three DGSM measures perform quite poorly. This
is very likely due to the fact that DGSM measures
use small steps to approximate the pointwise gradi-
ent, however in the step function the gradient is zero

in most places. So the DGSM measures require a
fairly large sample size to sample a point in which
the gradient is non-zero. On the other hand, the
emulator approaches build a response surface from
all the points simultaneously, so the large steps in
each x direction are identified, even at low sample
sizes. The relevance measure J still does not per-
form well, but the ST estimate of the dynamic tree
model performs the best on average of all the meth-
ods considered here. This suggests that in the pres-
ence of discontinuities, the dynamic tree approach
might be the preferred option.

5. DISCUSSION AND CONCLUSIONS

The conclusion of this work is that surrogate mod-
els did not really help in identifying significant vari-
ables at low sample sizes, when the dimensionality
was reasonably high, with the exception of the near-
discontinuous step function. The hope was that dy-
namic trees, being relatively simple surrogate mod-
els, might be fruitfully applied in the screening con-
text. However, it seems that surrogate models (in-
cluding DTs) tend to be restricted to a particular
domain of application: problems with low dimen-
sionality and sufficient sample size. The fact that
gradient-based measures easily outperform the sur-
rogates in many of the experiments here demon-
strates that when the sample size is low, surrogate
models impose assumptions which cannot be justi-
fied – this is likely due to the surrogate model’s at-
tempts to extrapolate into unsampled regions of the
input space with very little sample data to estimate
the behaviour of the true model. Even in the case
of the additive polynomial function, a very smooth
function which would tend to favour smooth surro-
gate models such as Gaussian process, the surrogate
models did not perform as well as the simpler ele-
mentary effects and DGSM measures.

One case in which the dynamic trees did perform
well was that of the discontinuous step function,
which is a setting that is unsuitable for gradient-
based approaches. This also favours a model based
on linear or constant regressions. However (in the
experience of the author), most physical models do
not exhibit this kind of behaviour.

In particular, the relevance measure based on dy-
namic trees was not very successful in the exper-
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iments performed here. This could be due to the
fact that it relies on regression trees with constants
at each leaf, which were unable to effectively model
the nonlinear test functions considered here.

On the other hand, it is revealing that DGSM
measures can be applied successfully even at very
low sample sizes, when the aim is to screen signif-
icant variables from insignificant ones. A possible
drawback of this approach could however be that
the requirement of small perturbations may present
problems in real models, because results may not be
available to a sufficient number of significant fig-
ures to accurately estimate partial derivatives. This
could possibly be overcome by tuning the perturba-
tion size to the smallest value that can result in a
reasonable estimate.

Further work that could stem from this study
would be to understand under what circumstances
surrogate models in general perform better than
DGSM and elementary effects measures, and thus
to guide practitioners to know whether to use a sur-
rogate or sampling-based measures for a particu-
lar problem, perhaps based on the dimensionality
of the problem and the available number of sample
points.
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