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ABSTRACT: Sensitivity analysis of fluid-structure interaction (FSI) simulations provides an important
tool for assessing the reliability and performance of coastal infrastructure subjected to storm and tsunami
hazards. As a preliminary step for gradient-based applications in reliability, optimization,system iden-
tification, and performance-based engineering of coastal infrastructure, the direct differentiation method
(DDM) is applied to FSI simulations using the particle finite element method (PFEM) to compute sensi-
tivities of simulated FSI response with respect to uncertain parameters of the structural and fluid domains
that are solved in a monolithic system via the PFEM. Due to geometric nonlinearity of the free-surface
flow, geometric sensitivity of the fluid is considered in the governing equations of the DDM along with
sensitivity of material nonlinear response in the structural domain. An example application shows sen-
sitivity to load and resistance variables of a reinforced concrete frame subjected to tsunami loading with
open and closed first story design configurations.

1. INTRODUCTION

Wave loads induced by tsunami and storm surge
events can cause significant damage to critical
coastal infrastructure as observed in recent natural
disasters such as the 2011 Great East Japan earth-
quake and tsunami and the Superstorm Sandy hurri-
cane of 2012. The modeling of wave loads as static
forces on a deformable body, or conversely, as hy-
drodynamic forces on a rigid body, may not provide
accurate predictions of structural response. To ob-
tain accurate response for structural displacements
and forces, fluid-structure interaction must be con-
sidered accounting for the kinematics and deforma-
tion of both the structural and fluid domains. It is
also imperative to assess the sensitivity of structural
response to stochastic wave loading and uncertain
structural properties. The sensitivity has important
implications for the design of coastal infrastructure
and in assessing the probability of failure of build-
ings and bridges in tsunami and storm events as part
of an over-arching performance-based engineering
framework.

Fluid-structure interaction with incompressible
Newtonian fluid is one of the most challenging
problems in computational fluid mechanics be-
cause the incompressibility condition leads to nu-
merical instability of the computed solution. A
large number of Finite Element Methods (FEM)
have been developed for the computation of incom-
pressible Navier-Stokes equations using the Eule-
rian, Lagrangian or Arbitrary Lagrangian-Eulerian
(ALE) formulations Girault and Raviart (1986);
Gunzburger (1989); Baiges and Codina (2010);
Radovitzky and Ortiz (1998); Tezduyar et al.
(1992). The particle finite element method (PFEM)
Oñate et al. (2004), has been shown to be an ef-
fective Lagrangian approach to FSI because it uses
the same Lagrangian formulation as structures. A
monolithic system of equations is created for the si-
multaneous solution of the response in the fluid and
structural domains via the fractional step method
(FSM). This alleviates the need to couple disparate
computational fluid and structural modules in order
to simulate FSI response, which can lead to uncon-
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servative estimates of structural response.

While the PFEM solution of FSI simulations via
a monolithic system has computational advantages
in determining the fluid and structure response, the
sensitivity of this response to uncertain modeling
parameters is just as, if not more, important than the
response itself. As a standalone product, sensitivity
analysis shows the effect of modeling assumptions
and uncertain properties on system response, but
it also an important component to gradient-based
applications. There are two methods for calculat-
ing the sensitivity of a simulated response. The
finite difference method (FDM) repeats the simu-
lation with a perturbed value for each parameter
and does not require additional implementation as
perturbations and differencing can be handled with
pre- and post-processing. The accuracy of the re-
sulting finite difference approximation depends on
the size of the perturbation where the results are
not accurate for large perturbations and are prone to
numerical round-off error for very small perturba-
tions. Due to the need for repeated simulations, the
FDM approach can become inefficient when there
is a large number of parameters.

A more accurate approach is the direct differ-
entiation method (DDM), where derivatives of the
governing equations are implemented alongside the
equations that govern the simulated response. At
the one-time expense of derivation and implemen-
tation, the DDM calculates the response sensitiv-
ity efficiently for each parameter as the simulation
proceeds rather than by repeating the analysis. The
DDM is generally more accurate than the FDM be-
cause the sensitivity is computed using the same nu-
merical algorithm as the response, making it subject
to only numerical precision rather than round off.
Analytical approaches to sensitivity analysis based
on DDM of structural response have been well de-
veloped in the literature Kleiber et al. (1997); Scott
et al. (2004); Scott and Haukaas (2008), while sen-
sitivity analysis of fluid-structure interaction (FSI)
has not been addressed. This is partly due to the
complexity of the computation for the FSI response
and the cumbersome nature of staggered computa-
tional approaches.

2. PFEM RESPONSE COMPUTATIONS

This section provides a brief review of the equa-
tions that govern FSI response using the PFEM. Af-
ter applying finite element techniques, discrete al-
gebraic equations are formed from MINI elements
in the fluid domain and arbitrary line and solid ele-
ments in the structural domain. The algebraic equa-
tions will be differentiated in the following section
for sensitivity analysis via the DDM.

In the combined equations of fluid and structures,
particles connected to both domains are identified
as interface particles, whose contributions appear in
both fluid and structural equations. Subscripts i, s
and f are given to indicate interface, structural and
fluid variables and equations

Mssv̇s +Msiv̇i +Cssvs +Csivi (1)

+Fint
s (us,ui) = Fs

Misv̇s +
(
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ii +M f

ii

)
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i (us,ui)−Gip = Fs

i +F f
i

M f f v̇ f −G f p = F f (3)

GT
f v f +GT

i vi +Sp = Fp (4)

Numerical time integration, such as the backward
Euler method, and nonlinear solution algorithm,
such as fixed-point iteration, can be applied to the
combined equations in order to obtain a monolithic
system of equations, which is solved by the frac-
tional step method (FSM).

3. DIRECT DIFFERENTIATION OF THE PFEM
For structural sensitivity analysis, even for non-

linear materials, the configuration is often fixed.
However, for large displacement applications such
as FSI, additional sensitivity terms that arise from
updating the configuration at each iteration must
be taken in to account in the derivation of sensi-
tivity equations. The direct differentiation method
(DDM) is used here to compute the sensitivity of
PFEM analysis with FSM. As in Kleiber et al.
(1997), the DDM is applied on the combined FSI
Eqs. (1) to (4) to develop the combined FSI sensi-
tivity equations for fluid and structure.

By taking the derivative of the combined FSI
Eqs. (1) to (4) with respect to an uncertain param-
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eter θ , the combined sensitivity equations are ob-
tained with assigned subscripts i, s and f
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where, the matrices H and T account for geometric
nonlinear of the fluid response and its influence on
the fluid response sensitivity.

4. EXAMPLES

This example is of a tsunami bore impact-
ing a three story reinforced concrete building.
The structural model shown in Fig. 1 was de-
veloped by Madurapperuma and Wijeyewickrema
(2012) for the analysis of water-borne debris and
was further analyzed by Zhu and Scott (2014)
to demonstrate fluid-structure interaction using the
PFEM. To capture material and geometric non-
linearity, each frame member is discretized in to
ten displacement-based beam-column finite ele-
ments (dispBeamColumn in OpenSees) with fiber-
discretized cross-sections at the element integration

points and the corotational geometric transforma-
tion Crisfield (1991). As discussed above, the ge-
ometric nonlinear sensitivity of the fluid is con-
sidered through geometric tangent stiffness matri-
ces. DDM sensitivity for the frame elements is de-
scribed in Scott et al. (2004) while that for the coro-
tational transformation is provided in Scott and Fil-
ippou (2007).

The cross-section dimensions, reinforcing de-
tails, and concrete properties of the frame are
shown in Fig. 2. Light transverse reinforcement
provides residual concrete compressive strength in
the core regions of the members. Zero tensile
strength is assumed for the concrete (Concrete01
in OpenSees) and the longitudinal reinforcing steel
is assumed bilinear with elastic modulus 200 GPa,
yield strength 420 MPa, and 1% kinematic strain
hardening (Steel01). Gravity loads and nodal mass
were calculated assuming uniform pressure of 4.8
kPa on floor slabs and 1.0 kPa on the roof with trib-
utary width of 6 m.

A refined mesh of beam-column elements is used
for the first floor column members in order to rep-
resent a design configuration with a closed first
floor that resists hydrodynamic loading. A com-
monly proposed tsunami mitigation strategy is to
design buildings with an open first floor config-
uration that allows fluid to pass through without
developing significant impact and drag forces on
the structure. This is accomplished by using only
one beam-column element for the first floor column
members, i.e., a coarse mesh that will not develop a
fluid-structure interface.

The tsunami bore has height 4.5 m, initial veloc-
ity 2 m/s, and out-of-plane thickness 6 m. The sim-
ulation begins at impending impact on the frame.
Snap shots of the simulation are shown in Fig. 3
for the case of closed first story with a refined mesh
of first floor beam-column elements. The simula-
tion is repeated and shown in Fig. 4 using a single
element coarse mesh for an open first story, which
allows the fluid passing through the structure.

The roof displacements for the Fig. 3 and Fig. 4
are compared in Fig. 5, where the closed floor
has much larger displacement than the open floor.
Whereas, in Fig. 6, the axial forces of right col-

3



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

6 kN/m

28.8 kN/m

28.8 kN/m

6 m 6 m

4 m

3.6 m

3.6 m

Figure 1: Geometry and floor loads of reinforced con-
crete frame example.
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Figure 2: Beam and column cross-sections of rein-
forced concrete frame.
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Figure 3: Snap shots of the tsunami waves runup on
coastal structure.
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Figure 4: Snap shots of the tsunami waves passing
through coastal structure.
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Figure 5: Roof displacements for two cases.
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Figure 6: Axial forces at the base of right column for
two cases.
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Figure 7: Bending moments at the base of right column
for two cases.
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umn don’t shown much difference between the two
cases. This is due to the fact that axial forces of
columns are primarily determined by vertical loads
rather than the lateral wave loading. The bending
moments in Fig. 7, which are greatly influenced by
the wave loading, show the difference between two
cases.
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Figure 8: Disp. sens. to f c
c for two cases.
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Figure 9: Disp. sens. to f c
c for closed floor using DDM

and FDM.
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Figure 10: Disp. sens. to f c
c for open floor using DDM

and FDM.

The floor displacement sensitivity to uncer-
tain parameters, the column concrete compressive
strength f c

c and the fluid density ρ f are shown in
Fig. 8 to Fig. 13. The sensitivity to f c

c are similar
for two cases since the similar structures are used.
But the sensitivity to ρ f are very different since the
waves are running in different directions.

The bending moment sensitivity to uncertain pa-
rameters, the column concrete compressive strength
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Figure 11: Disp. sens. to ρ f for two cases.
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Figure 12: Disp. sens. to ρ f for closed floor using
DDM and FDM.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−100

−50

0

50

100

Time (sec)

(∂
U
/
∂
ρ
f
)
ρ
f
(m

m
)

DDM FDM

Figure 13: Disp. sens. to ρ f for open floor using DDM
and FDM.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−4,000

−2,000

0

2,000

Time (sec)

(∂
M

/
∂
f
c c
)
f
c c
(k
N
·m

)

Closed floor Open floor

Figure 14: Bending moment sens. to f c
c for two cases.
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Figure 15: Bending moment sens. to f c
c for closed floor

using DDM and FDM.
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Figure 16: Bending moment sens. to f c
c for open floor

using DDM and FDM.
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Figure 17: Bending moment sens. to ρ f for two cases.
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Figure 18: Bending moment sens. to ρ f for closed floor
using DDM and FDM.
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Figure 19: Bending moment sens. to ρ f for open floor
using DDM and FDM.

f c
c and the fluid density ρ f are shown in Fig. 14 to

Fig. 19.
For all sensitivities, the DDM results are match-

ing to FDM results with a small perturbation be-
tween 10−8 and 10−10.

5. CONCLUSIONS
The PFEM is an effective approach to simulat-

ing FSI because it uses a Lagrangian formulation
for the fluid domain, which is the same formula-
tion typically employed for finite element analy-
sis of structures. Development of DDM sensitivity
equations for the PFEM broaden its application to
gradient-based applications in structural reliability,
optimization, and system identification. Due to ge-
ometric nonlinearity of the fluid domain, additional
terms were required to derive and implement the
DDM equations for the PFEM. Following the same
analysis procedure as for the response itself, the
sensitivity equations are solved using the fractional
step method (FSM). Tsunami loading on a rein-
forced concrete frame verifies the DDM implemen-
tation for PFEM with sensitivity results by match-
ing finite difference solutions with small parame-
ter perturbations. Two cases with first floor open
and closed are compared in structural responses and
sensitivities to various uncertain parameters. Fu-
ture applications of DDM sensitivity for the PFEM
include time variable reliability analysis of fluid-
structure interaction, which is an important con-
sideration for multi-hazard analysis involving wind
loading concurrent with storm surge and tsunami
following an earthquake.
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