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ABSTRACT: The increasing use of surrogate models has widened the range of application of classical
reliability-based design optimization (RBDO) techniques to industrial problems. In this paper, we con-
sider such an approach to the lightweight design of an automotive body structure. Solving this problem
while approximating the complex models (nonlinear, noisy and high-dimensional) with a single meta-
model would require a very large and non affordable design of experiments (DOE). We thus investigate
and propose a methodology of adaptive Kriging based RBDO where an initial DOE is iteratively updated
so as to improve the Kriging models only in regions that actually matter. The nested reliability analysis
is expressed in terms of quantiles assessment. Two stages of enrichment are performed. The first one
seeks to gradually improve the accuracy of the metamodels where the probabilistic constraints are likely
to be violated. The second one is embedded in an evolution strategy optimization scheme where, at each
iteration, the accuracy of the quantile estimation is improved if necessary. The methodology is applied
on an analytical and crashworthiness design problems showing good performance by enhancing accuracy
and efficiency with respect to a traditional approach.

The computational cost of the latest high fidelity
simulation codes make them unaffordable when it
comes to structural design problems such as opti-
mization or reliability analyses. Designers are now
familiar with so-called metamodelling approaches
where an easy-to-evaluate function is used as a
proxy of the true model M : xxx ∈ X ⊂ Rs 7→ y =
M (xxx). The metamodel is fitted by learning over
an initial design of experiments which is basically
some pairs of known inputs-outputs of the code:
D = {(xxx(i),yi), i ∈ {1, . . . ,n},∀xxx(i) ∈ X ⊂ Rs,yi =
M (xxx(i)) ∈ Y ⊂ R}. In this paper, we consider the
application of such an approach to the lightweight

design of an automotive body structure. The as-
sociated constraints have shown to be very noisy
because of the chaotic nature of a vehicle frontal
impact. To account for the various uncertainties as-
sociated with this problem, reliability-based design
optimization (RBDO) is performed. However, per-
forming the RBDO on surrogate models built on
a single space-filling design does not yield accu-
rate solutions nor is it efficient. This is because ul-
timately, the region of interest for optimization is
very often only a small subset of the entire design
space. Alternatively, an initial surrogate model can
be iteratively updated to accurately approximate M
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only where necessary such as introduced in the
framework of expected global reliability analysis
(Bichon et al. (2008)).

We propose here a methodology for adaptive
Kriging-based RBDO embedded in an evolution
strategy where at each iteration, the accuracy of
the surrogate model is checked and if necessary im-
proved by local enrichment. The paper is organized
as follows. First we set up the RBDO problem and
briefly review Kriging. Then we introduce the tech-
niques for adaptive design of experiments followed
by the entire methodology. Finally, an analytical
and a finite element-based examples are considered
for application.

1. DESIGN OPTIMIZATION UNDER UN-
CERTAINTY

Uncertainties are ubiquitous in structural systems
and play a key role in the robustness and reliabil-
ity of optimized solutions. The reliability aspect is
most often handled with RBDO. Such a technique
seeks to balance some cost and a predefined level of
reliability. Generally, the RBDO problem is stated
in the following terms:

ddd∗ = argmin
ddd∈D

c(ddd) s.t.{
f j(ddd)≤ 0, { j = 1, . . . ,ns}
P(gk(XXX(ddd),ZZZ)< 0)≤ Pfk , {k = 1, . . . ,np}

(1)

where a cost function c is minimized with respect to
design variables ddd while satisfying to a collection of
ns soft and np performance constraints respectively
denoted by fff and ggg. The former simply bounds the
design space and the latter splits it into safety and
failure domains. To account for the uncertainties,
the RBDO approach addresses the problem in terms
of probability of failure being lower than a given
threshold, herein PPP f = {Pfk ,k = 1, . . . ,np}. In this
respect, the random variables XXX ∼ fXXX |ddd and ZZZ ∼ fZZZ
are introduced and respectively stand for the design
and environment variables.

The solution of Eq. (1) requires the assessment of
the probability of failure for any given design dur-
ing the optimization process. This is usually done
by integrating the joint probability density function
of XXX and ZZZ over the failure domain, which can

turn out to be a cumbersome task (Dubourg et al.
(2011)).

Despite many techniques exist in the literature to
solve this problem, we adopt a simpler yet efficient
approach by replacing the probabilistic constraint
with a quantile assessment. This is especially justi-
fied since the target probabilities of failure are rel-
atively high in the problems we are addressing (ac-
tually around 5%).

Eq. (1) then rewrites:

ddd∗ = argmin
ddd∈D

c(ddd) s.t.
{

f(ddd)≤ 000
gα(XXX(ddd),ZZZ)≤ 000 (2)

where for any performance function gk, the quantile
gkα

(XXX(ddd),ZZZ)≡ gkα
(ddd) is defined such that:

P(gk(XXX(ddd),ZZZ)≤ gkα
(ddd)) = α (3)

The quantile estimation mostly resorts to Monte
Carlo (MC) sampling. More specifically for a given
design ddd(i), a MC population is sampled following
fXXX |ddd and fZZZ:

C
(i)
q =

{
(xxx j(ddd(i)),zzz j), j = 1, . . . ,Nq

}
(4)

The model is then evaluated on these points and the
results ranked in ascending order. The estimated
quantile corresponds to the bNqαc-th term, where
b•c denotes the floor function.

This simulation technique is nonetheless very-
time consuming as it relies on multiple model
evaluations. To make the RBDO affordable, a
surrogate-based approach is adopted. In this paper,
Kriging has been chosen as default surrogate and
will be briefly reviewed in the next section.

2. KRIGING SURROGATE
Kriging or Gaussian process modeling relies on a
major hypothesis which is to assume that the func-
tion to emulate is one realization of a stochastic pro-
cess (Santner et al. (2003)) that reads:

M (xxx) =
p

∑
j=1

β j f j(xxx)+Z(xxx) (5)

where ∑
p
j=1 β j f j(xxx) is a linear combination of

some basis functions which captures a global
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trend, as conventionally assumed in universal Krig-
ing, and Z(xxx) is a zero-mean Gaussian Process
with auto-covariance function Cov [Z(xxx),Z(xxx′′′)] =
σ2R(xxx,xxx′′′;θθθ). In this setting, σ2 is the variance,
R(xxx,xxx′′′;θθθ) the auto-correlation function and θθθ a
vector gathering its hyperparameters.

Building up the model requires first to make
some choices about the basis and auto-correlation
functions, the most popular ones being respectively
low order polynomials and parametric multi-variate
stationary functions. The latter encodes the as-
sumptions about the underlying process such as
regularity.

The Kriging approximate for a new point xxx(0)

is provided by a realization of a Gaussian variable
G∼N (µĜ,σ

2
Ĝ
):{

µĜ = fff (xxx(0))T β̂ββ + rrrT
0 RRR−1(yyy−FFF β̂ββ )

σ2
Ĝ
= σ̂2(1− rrrT

0 RRR−1rrr0 +uuuT (FFFT RRR−1FFF)−1uuu)
(6)

where β̂ββ = (FFFT RRR−1FFF)−1FFFT RRR−1yyy and σ̂2 = 1
n(yyy−

FFFβββ )T RRR−1(yyy−FFFβββ ) are the generalized least-square
estimates of the Kriging parameters for a poly-
nomial trend and uuu = FFFT RRR−1rrr000 − fff (xxx(0)). The
following matricial notation have been introduced:
FFF = {Fi j = f j(xxx(i)), i = 1, . . . ,n, j = 1, . . . , p}, RRR =

{rik = R(xxx(i),xxx(k)), i = 1, . . . ,n,k = 1, . . . ,n} and
rrr000 = {R(xxx(0),xxx(i)), i = 1, . . . ,n}.

The parameters θθθ are inferred from the data.
This learning stage usually resorts to various tech-
niques among which the widely used maximum
likelihood estimation. It turns out to be an optimiza-
tion problem which reads:

θ̂θθ = arg min
θθθ∈Rdθ

σ̂
2(θθθ)(detRRR(θθθ))

1
n (7)

where dθ is the number of parameters. This crucial
optimization problem is solved here by an hybrid
algorithm (genetic followed by BFGS) as proposed
in the R package DiceKriging we are using (Rous-
tant et al. (2012)).

Eq. (6) displays the mean and variance of the
Kriging prediction. This variance provides Krig-
ing with a local estimator of error mainly due to
the sparsity of data. This feature is exploited in so-
called adaptive designs.

3. ADAPTIVE DESIGNS
3.1. Learning function
Following the ideas developed in the framework
of efficient global optimization, various approaches
were introduced to adaptively update initial design
of experiments. According to whether it is the ob-
jective or the constraint function that is surrogated,
different families of learning functions are used.
In our context of constraints handling with a per-
fectly known objective function, we focus on AK-
MCS (Active Kriging - Monte Carlo Simulation)
proposed by Echard et al. (2011). Many other learn-
ing functions exist and are to the authors experience
almost equally efficient. However, AK-MCS has a
very simple formulation and is easy to interpret.

The idea in AK-MCS is to sample a very large
MC population of candidates for enrichment. The
learning function will then select among these
points the one which promises the highest expected
gain of information. This gain of information is
considered here with respect to either quantile es-
timation or contour approximation. Therefore it re-
sults in two slightly different formulations.

For quantile estimation, we follow the method-
ology proposed in Schöbi and Sudret (2014). Let
us consider we are at iteration i of the optimization
process. With the current design ddd(i), the MC pop-
ulation C

(i)
q considered for enrichment is sampled

according to Eq. (4). The learning function then
reads:

Uq(xxx,zzz) =
|µĜ(xxx,zzz)− ĝα(ddd(i))|

σĜ(xxx,zzz)
(8)

where ĝα(ddd(i)) is the estimate of the quantile com-
puted through the Kriging model. The best next
point is the one that minimizes Uq. It simply cor-
responds to points with estimates close to the cur-
rent quantile or with high variance. By iteratively
adding points in this fashion, the accuracy of the
quantile estimate will be improved.

For contour approximation, the candidate MC
population is defined in the joint space of design
and environment variables: Cc = {(xxx( j),zzz( j)), j =
1, . . . ,N} and the learning function reads:

Uc(xxx,zzz) =
|ĝα(ddd)|
σĜ(xxx,zzz)

(9)
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The same mechanisms as for Uq are in play here.
Therefore samples with a high probability of con-
straint violation and/or high variance are likely to
be added in the design. The computational cost
of Uc is quite high as it implies N × Nq calls of
the Kriging model. To reduce this computational
burden, the quantile is estimated here with a very
limited number of samples in a bootstrapping ap-
proach. More specifically in this paper, we go from
the usual Nq = 104 to Nq = 500 samples with re-
spectively 200 and 500 bootstrap replicates for the
first and second applications. This setting offers
a fair trade between accuracy and computational
time.

3.2. Multi-constrained and multi-points enrich-
ment

As stated above, we are concerned with multi-
constrained optimization problems. Furthermore,
the computational power of clustered PCs allows us
to simultaneously launch many evaluations of the
true model. In such a case, the adaptive scheme
should allow for multi-points enrichment. Consid-
ering these two aspects, the enrichment methodol-
ogy described above is slightly modified.

First, let us consider the presence of multiple
constraints. Fauriat and Gayton (2014) proposed a
composite criterion for system reliability problems.
That is, the learning function is evaluated only with
respect to the constraint that plays the largest role
in the system failure. For Eqs. (8,9), this translates
respectively to:

U s
q(xxx,zzz) =

|µĜs
(xxx,zzz)− ĝsα

(ddd(i))|
σĜs

(xxx,zzz)
(10)

U s
c (xxx,zzz) =

|ĝsα
(ddd)|

σĜs
(xxx,zzz)

(11)

where s is the index of the performance function
with the highest value at the evaluated point.

On the other hand, to allow for multiple points
enrichment, we first define the following 95% mar-
gins of uncertainty:

Mq = ∪
np
k=1{(xxx,zzz) ∈ Cq : ĝkα

−2σĜk
≤

µĜk
≤ ĝkα

+2σĜk
}

(12)

Mc = ∪
np
k=1{(xxx,zzz) ∈ Cc :−2σĜk

≤ ĝkα
≤ 2σĜk

}
(13)

where Mq and Mc correspond respectively to
the quantile estimation and contour approximation
problems.

The learning function is evaluated on this sub-
set of points. K clusters are identified by means of
weighted K-means clustering with weight ϕ(−Uc)
(or ϕ(−Uq) ), where ϕ is the standard Gaussian
probability density function. By this weighting, re-
gions where the criterion is high will be favored.
The best next points to add are selected as the ones
in Mc (or Mq) which are the closest to the clusters
centroids.

4. ADAPTIVE KRIGING BASED RBDO
The above-mentioned topics are now embedded in
an optimization scheme so as to propose a method-
ology for adaptive Kriging-based RBDO.

We start by applying a few iterations of enrich-
ment for contour approximation. This is to roughly
locate and enrich regions of the space where the
constraints are likely to be violated. This allows us
to start from a very scarce initial design of experi-
ments. We stop this enrichment procedure when the
size of the 95% margin of uncertainty is consider-
ably reduced. Particularly, we consider the follow-
ing criterion: the ratio of Card(Mc) between the
current and the initial iteration being lower than a
given threshold, say 0.15. The residual epistemic
uncertainty will be reduced through enrichment for
quantile estimation during the optimization.

Let us now consider we are solving the RBDO
problem in an iterative way:

ddd(i+1) = ddd(i)+ννν
(i) (14)

where ννν(i) is a step in the search space promising
an improvement of the objective function.

Since the true functions have been replaced by
Kriging approximations, a sufficient level of accu-
racy of the metamodels should be ensured before
proceeding to the updating scheme in any given it-
eration. We consider that the following relationship
should hold:

|ĝ+kα
− ĝ−kα

|
µmax

Ĝk
−µmin

Ĝk

≤ εgk , ∀k = {1, . . . ,np} (15)
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where ĝ±kα
are the quantiles estimated with the func-

tions µĜk
± 2σĜk

, µmax
Ĝk

and µmin
Ĝk

are respectively
the maximum and minimum values of µĜk

evalu-

ated on C
(i)
q and εgk a predefined threshold.

If Eq. (15) holds for any small values of εgk , then
the metamodels are deemed accurate enough to be
trusted as surrogates of the true functions and one
can proceed to the updating scheme. However, if
this relationship does not hold, instances of enrich-
ment should be performed so as to improve the ac-
curacy of the quantile estimates.

For this strategy to make sense, the optimiza-
tion algorithm should handle only one point per
iteration. Otherwise the accuracy of the quantiles
would have to be estimated on all the points gener-
ated in an iteration. This would make the strategy
cumbersome. The condition of one point per iter-
ation is generally well fulfilled by gradient-based
approaches. However and globally speaking, lo-
cal search algorithms are not adapted to the multi-
modal problems we are intending to solve. In this
paper, we use the covariance matrix adaptation -
evolution strategy (CMA-ES), more specifically the
(1+1)-CMA-ES for constrained optimization pro-
posed by Arnold and Hansen (2012). The overall
strategy is summarized in the algorithm in Figure 1.

1. Intialize D , ddd(0)

2. Enrich for contour approximation and update
D - Eq.(9)

3. Start optimization, i = 0
4. Build MC population C

(i)
q - Eq. (4)

5. Compute ĝα , ĝ+α , ĝ−α , µµµmax
Ĝ

and µµµmin
Ĝ

6. Check for accuracy - Eq. (15)
7. While not accurate enough, enrich for quantile

estimation - Eqs. (4,8)
8. Do one iteration of CMA-ES, i← i+1
9. While no convergence of CMA-ES, go to 4.

Figure 1: Methodology for adaptive Kriging based-
RBDO.

4.1. A short introduction to (1+1)-CMA-ES for
constrained optimization

In a nutshell, CMA-ES is an evolution strategy
which relies on multivariate normal distributions to
iteratively sample solutions in the descent direction
of the objective function. Considering Eq. (14),
ννν i, the so-called mutation term, is a realization of
a zero-mean Gaussian process of auto-covariance
CCC(i). The entire strategy relies on an appropriate
update of CCC(i) so as to iteratively increase the prob-
ability of sampling offsprings which promise the
largest fitness progress.

In a practical point of view, the updating scheme
in the constrained (1+1)-CMA-ES reads:

ddd(i+1) = ddd(i)+σ
(i)AAA(i)zzzc (16)

where zzzc is a realization of a standard Gaussian ran-
dom variable, σ (i) an optimal step size and AAA(i) the
Cholesky decomposition of CCC(i), introduced as a
mean to sample from N (000,CCC(i)).

The adaptation of the covariance is directly
carried out on AAA to avoid the costly successive
Cholesky decompositions. Besides, directions of
unfeasible region in the vicinity of the parent are
identified and variance of the distribution in these
directions are appropriately decreased. Hence, this
allows the constraint handling. Many heuristics are
additionally introduced by the authors to fine-tune
the efficiency of the algorithm. The reader is invited
to refer to Arnold and Hansen (2012) for further de-
tails.

5. APPLICATIONS
In this section, we apply the methodology to two
examples which share the following settings.

The anisotropic Matérn 5/2 auto-correlation
function is chosen for the Kriging models. They are
built on the so-called augmented space as defined
in Dubourg et al. (2011). This allows us to build
a single Kriging model for all the nested reliabil-
ity analyses (quantile estimation). In other words,
we have xxx ∈∏

sd
j=1

[
d−j −5σ j;d+

j +5σ j

]
where d−j

and d+
j are respectively the minimum and maxi-

mum admissible values of the j-th component of
ddd and σ j corresponds to its associated standard de-
viation. For the case where there is no random-
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ness in ddd, σ j = 0 for any j = {1, . . . ,sd}. An L2-
discrepancy optimized Latin Hypercube is used to
sample in the hypercube. On the other hand, the
environment variables are uniformly sampled in an
hypersphere of radius r0: Z = {zzz ∈ Rse|‖zzz‖2 ≤ r0}
where ‖•‖2 denotes the L2-norm in Rse . For the
following applications r0 is set respectively to 5 and
3).

Considering CMA-ES, the initial step size σ (0)

is set equal to 1/3 of the length of the widest search
direction in the design space. Besides, the threshold
for quantile accuracy is set loose in the early itera-
tions of CMA-ES for the sake of efficiency. This is
because CMA-ES will likely be exploring in these
iterations and it might not be necessary to have a
very accurate estimate of the quantile when we are
far away from the potential optimum. Gradually de-
creasing values of the threshold are therefore set in
a simulated-annealing fashion with four levels.

5.1. The modified Choi problem
Consider the modified Choi problem which writes
(Lee and Jung (2008)):

ddd∗ = arg min
ddd∈[0,10]2

10−d1 +d2 s.t.
g1(xxx) =

x2
1x2
20 −1

g2(xxx) =
(x1+x2−5)2

30 + (x1−x2−12)2

120 −1
g3(xxx) = 80

(x2
1+8x2+5)

−1

(17)

To solve the RBDO problem, we introduce the ran-
dom design variables Xi ∼ N (di,0.62) and a tar-
get probability of failure of 5.4% (corresponding
to a reliability index of 2). The reference solu-
tion is considered as the one found with the an-
alytical functions while using the quantile assess-
ment for the reliability analysis and reads ddd∗re f =
{5.7060 , 3.4836}.

Let us first illustrate the methodology with some
diagnostic plots. Figure 2 refers to the enrich-
ment for contour approximation. The thick blue,
red and green lines respectively represent the con-
tours ĝkα

= 0,k = {1,2,3}. In Figure 2a, the blue
triangles are the initial DOE and the red squares
the points added for enrichment. Additionally, the
small marks show Mc, each color corresponding to
a specific constraint (blue ’+’, red ’*’ and green ’x’

respectively for g1α
, g2α

and g3α
). One can see how

this margin of uncertainty is reduced at the last it-
eration as the constraints are more accurately ap-
proximated. A non-negligible level of uncertainty
remains in the design space and will be reduced
in the optimization process only where necessary.
Figure 2b shows contours of the learning function
ϕ(−U s

c ). The marks with different colors highlight
which constraint is considered for the computation
of U s

c .
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(a) Kriging models and added points
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(b) Contour of the learning function U s
c

Figure 2: Kriging models and enrichment for contour
approximation.

After this enrichment for contour approximation,
the optimization is performed with CMA-ES. Fig-
ure 3 shows the history of the sampled points dur-
ing optimization. Points for which an enrichment
has been done are circled in cyan with this rule:
the larger the radius, the more points were added in
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the corresponding C
(i)
q . The red triangles are those

which do not improve the current best point dur-
ing CMA-ES and the blue squares those which im-
prove it but are not feasible. The green circles are
the successive admissible improved solutions sam-
pled during CMA-ES. The final solution is shown
as a black diamond.

x1

x
2
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Figure 3: Illustration of CMA-ES with enrichment.

To assess the solutions accuracy, we repeat the
optimization five times. The results are gathered in
Table 1 where MRE = |ddd∗−ddd∗re f |/ddd∗re f is the mean
relative error. Two cases are considered. The first
one gives fairly accurate solutions with an average
design of size n̄ = 30.4. The quantile accuracy cri-
terion was set to 0.05 in this case. This threshold is
decreased to 0.01 for the case #2. We now have
a very accurate solution but at the cost of func-
tions evaluations which average to 33.4. Note that,
with the same number of points but without en-
richment, the optimization does not even converge.
This shows the great improvement brought by the
adaptive procedure.

Table 1: Summary of the results for replicate optimiza-
tions.

Case Case #1 Case #2
n̄ 30.4 33.4

ddd∗ d1 d2 d1 d2
Mean 5.7249 3.4792 5.7047 3.4832
MRE 3.310−3 1.310−3 2.110−4 1.310−4

5.2. The sidemember sub-system

Forward side-member 

Rear side-member 

Lower bulkhead 

Forward side-member base 

Wheel arch 

Figure 4: The sidemember subsystem

This application is about the lightweight design of a
so-called sidemember subsystem under frontal im-
pact. As its name suggests, it is a subsystem of
an automotive front end. Globally speaking, it is
a collection of parts which impact the crash behav-
ior of the car. The associated finite element model
is time-consuming and most importantly prone to
noise. This noise is due to the high sensitivity of
crash simulations to the initial conditions. To ac-
count for the uncertainties in the initial conditions,
a probabilistic model is set up considering some in-
formation from crash certification procedures. As
a result, the initial speed of the car V (in km/h)
and the lateral position of the barrier P (in mm) are
considered random with the following uniform and
normal distributions:

ZZZ = {V,P} : V ∼U (34,35), P∼N (0,2) (18)

Thicknesses of five parts are considered as de-
sign variables. Their nominal values are ddd =
{1.95, 1.95, 2.44, 1.97, 0.87} corresponding to a
weight of 9.67 kg. Two constraints are considered,
namely the maximum wall force (y1) and sidemem-
ber compression (y2). Their maximum admissible
values are respectively 170 kN and 525 mm. It
should be stressed as this point that all numerical
values in this application are different from those
of an entire car model.
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To solve this problem, we start with an initial de-
sign of 64 points in the 7-dimensional augmented
space. The first stage of enrichment results in 78
additional points (8 iterations of 10 points each
among which two failed). It allows us to globally
reduce the margin of uncertainty of the models with
respect to the probabilistic constraints. The opti-
mization converged in 650 iterations, among which
only 14 were selected for enrichment summing up
to 48 more points (3 to 5 points per enrichment
according to whether the sampled point improves
the current best solution or not, some simulations
failed). The final size of the DOE is then 190. The
overall procedure leads to an optimum estimated
at ddd∗ = {2.1601, 1.6991, 2.0278, 1.5981, 0.6002}
corresponding to a weight of 8.48 kg (12.30% of
weight saving).

To validate this optimum, we simulate the associ-
ated probabilistic constraint with the true finite ele-
ment model. 200 points are generated for the quan-
tile estimation. Results are gathered in the Table 2
below. They show that the found optimum is actu-
ally feasible as expected. As a comparison, a pre-
vious work without adaptive design resulted in an
optimum which was not feasible with respect to the
true model, despite a DOE of size 285.

Table 2: Results of simulation with respect to the true
finite element model. Computed on 200 points with 500
bootstrap replicates.

Model ĝ1α
g1α

ĝ2α
g2α

Bootstrap mean 156.3 163.1 513.6 518.4

6. CONCLUSION

The proposed methodology for adaptive Kriging
RBDO provides an updating procedure which is
first global then local. The first stage simply
seeks to reduce the overall Kriging epistemic uncer-
tainty. The second one, embedded in an optimiza-
tion scheme, focuses on improving the probabilistic
constraint evaluation expressed in the nested relia-
bility problem. A special care is given to efficiency
by saving a higher computational budget to itera-
tions where (1+1)-CMA-ES is exploiting (in oppo-
sition to early iterations of space exploration). The

two applications have shown improvement over a
traditional approach both in terms of solutions fea-
sibility and number of model evaluations. In an
industrial context however, this splitting of the en-
richment into many iterations might be an issue in
situations where the overall project lead time mat-
ters.
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