
12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

The SL-AVV Approach to System Level Reliability-Based Design
Optimization of Large Uncertain and Stochastic Dynamic Systems

Seymour M.J. Spence
Assistant Professor, Department of Civil Engineering and Environmental Engineering,
University of Michigan, Ann Arbor, MI 48109, USA

ABSTRACT: Recently a number of efficient reliability-based design optimization methodologies have
been proposed for optimizing uncertain dynamic systems subject to stochastic excitation. While these
methods are capable of handling a large number of uncertain parameters, they are generally applicable to
problems characterized by small design variable vectors. This paper focuses on the development of a new
reliability-based design optimization methodology for uncertain dynamic systems subject to stationary
stochastic wind excitation that is capable of handling large design variable vectors, a characteristic of
many practical design problems, while considering system level performance constraints.

1. INTRODUCTION

Reliability based design optimization (RBDO) is
a powerful tool for obtaining structural systems
that satisfy a number of probabilistic constraints
posed with the aim of ensuring a satisfactory per-
formance of the system. The advantages of such
an approach over more classic deterministic op-
timization strategies are well known. However,
this approach is far more computationally involved
compared to its deterministic counterpart. This
has hindered the widespread adoption of RBDO,
especially for large and dynamic structural sys-
tems. This computational burden led to many of
the early approaches to RBDO being based on
classic analytical approximations of the reliabil-
ity integrals of the probabilistic constraints. Re-
cent advances in computational capabilities as well
as achievements in the field of simulation-based
reliability assessment have spawned a new gen-
eration of simulation-based RBDO strategies that
are capable of handling problems characterized
by large numbers of random variables, a typical
property of uncertain structural systems subject to
stochastic excitation (Schuëller and Jensen, 2008;
Valdebenito and Schuëller, 2010). This paper fo-
cuses on the development of a novel simulation-
based RBDO strategy aimed at solving problems
that are not only characterized by a high number of

random variables, but also by a high-dimensional
design variable vector which, significantly com-
plicates the situation (Valdebenito and Schuëller,
2010). This class of problems is often encoun-
tered in structural design optimization where a
large number of members are to be designed
(Spence and Kareem, 2014), or in applications of
topology optimization where a high number of
design variables are required in order to provide
an adequate discretization of the design domain
(Bobby et al., 2014). In particular, the method pro-
posed in this work is based on the generalization
of a recently proposed component-level simulation-
based RBDO strategy (Spence and Kareem, 2014;
Spence and Gioffrè, 2012) to wind excited systems
characterized by system level constraints.

2. PROBLEM DEFINITION
The RBDO problems of interest to this work my be
cast in the following form:

Find x = {x1, ...,xm}T (1)

to minimize W = f (x) (2)

s. t. Pf (x)≤ P0 (3)

xk ∈ Xk k = 1, ...,m (4)

where x is a high-dimensional design variable vec-
tor containing the parameters that fully define the
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state of the system, e.g. section sizes, W is the ma-
terial weight of the structural system, Pf is the sys-
tem level failure probability, P0 is the target system
level failure probability while Xi is the discrete set
to which the kth design variable must belong.

The RBDO problem outlined above is character-
ized, for the problems that are of interest to this
study, by a high-dimensional design variable vector
x, a high-dimensional uncertain vector U describing
the model uncertainty as well as a multi-variate sta-
tionary stochastic process, F, describing the wind
excitation. In order to describe damage, the follow-
ing system level demand to capacity ratio will be
considered:

d(u, r̂,x) = max
i=1,...,Nr

{
max

t∈[0,T ]

|ri(t;u,x)|
ci

}
(5)

where Nr is the total number of components defin-
ing the system response, T is the event duration,
ri(t) are the component response processes, r̂ is
the vector collecting the largest values of ri to oc-
cur during a given event of duration T while ci is
the capacity of the system. Obviously ci is charac-
terized by a significant amount of uncertainty and
will therefore be modeled as a random variable in
this work. Under these circumstances, a predefined
damage state will occur if d is larger than 1. There-
fore the limit state function of interest is the follow-
ing:

g(u, r̂,x) = 1−d(u, r̂,x) (6)

while the failure probability of interest is:

Pf (x) =P(g(u, r̂,x)≤ 0)

=
∫ ∫

g(u,r̂,x)60

p(r̂|u)p(u)dr̂du (7)

where p indicates the conditional and non-
conditional joint probability density functions of
the uncertain vectors U and R̂. As indicated in
Eq. (7), the random Nr-dimensional vector R̂ will
in general depend on U.

3. MECHANICAL MODELING
3.1. Excitation
It is common to describe the intensity of wind
storms through the maximum wind speed, vH to

occur during the event at a height of interest H
(e.g. building height) averaged over a fixed interval
T (e.g. an hour) while considering a site specific
roughness length z0. Generally, wind speed data, v,
is only available averaged over a period τ (often 3 s)
and collected at a meteorological height Hmet at re-
gional airports characterized by a roughness length
z01. A probabilistic model for transforming this in-
formation into site specific data is the following:

vH(T,z0) = e7e3(τ,T )
(

e5z0

e6z01

)e4δ

ln[H/(e5z0)]

ln[Hmet/(e6z01)]
e2e1v(τ,Hmet ,z01)

(8)

where e1 and e2 are random variables modeling ob-
servational and sampling errors in v; e4, e5, and
e6 are random variables modeling the uncertainties
with respect to the actual values of the empirical
constant δ = 0.0706 and of the roughness lengths
z0 and z01, respectively; e3(τ,T ) is the conversion
factor that accounts for the uncertainty in convert-
ing between wind speed averaging times; while e7
is a model uncertainty to be used in the case of hur-
ricanes and tornadoes.

The stochastic wind loads can be estimated di-
rectly from wind tunnel tests carried out on rigid
scale models. In particular, each realization of the
multi-variate stationary stochastic process defining
the wind loads may be related to a scaled (length
and time scales) realization of its wind tunnel coun-
terpart, fw(t), through the expression:

f(t;u) = w1w2w3

(
vH

vHm

)2

fw(t) (9)

where vHm is the simulated hazard intensity used in
the wind tunnel tests while w1, w2 and w3 are com-
ponents of U and model the uncertainties associ-
ated with the estimation of building aerodynamics
through the use of wind tunnels.

3.2. Component Response
In this work it is assumed that the response process,
ri(t), associated with the ith failure mode of the sys-
tem may be written in the following form:

r(t;u) = s1ΓT
r
[
KΦnqrn

(t)+ f(t)
]

(10)
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where Γr is a vector of influence functions giving
the response in r due to a unit load acting at each
degree of freedom of the system, Φn = [ϕ 1, ...,ϕ n]
is the mass normalized mode shape matrix of order
n, qrn

(t) = {qr1(t), ...,qrn(t)}T is the vector of reso-
nant modal displacement responses, K is the nom-
inal (mean) stiffness matrix while s1 is a random
variable modeling the epistemic uncertainty in the
load effect model of Eq. (10).

In Eq. (10) each component of qrn
(t) is given by

the solution of the following uncertain modal equa-
tion:

q̈ j(t)+2s3 jζ js2 jω jq̇ j(t)+
(
s2 jω j

)2 q j(t) = ϕ T
j f(t)
(11)

where q j, q̇ j and q̈ j are the jth generalized displace-
ment, velocity and acceleration response, ω j is the
nominal value of the jth circular frequency, s2 j is
an uncertain parameter modeling the variability in
the estimate of ω j, while ζ j is the nominal value
of the generalized damping ratio with s3 j an uncer-
tain parameter modeling the uncertainty that exists
in the nominal value of ζ j.

The jth component of qrn
(t) is simply given

by qr j(t) = q j(t)− qb j(t), where the background
modal displacement qb j is given by:

qb j(t) =
1(

s2 jω j
)2 ϕ T

j f(t) (12)

4. RELIABILITY PROBLEM

As outlined in Eq. (7), in order to calculate the fail-
ure probability of the system, the conditional distri-
butions of the largest values of the response func-
tions ri(t) are needed. In particular, to this end, it
is convenient to consider the following random re-
duced variate:

Ψ̂i(u) =
R̂i(u)−µri(u)

σri(u)
(13)

where µri and σri are the mean and standard devia-
tion of the stationary response process ri(t) condi-
tioned on u. For Gaussian systems (a typical char-
acteristic of the stochastic response of multistory
buildings), the conditional distribution of ψ̂i can be

estimated from classic results of time-variant relia-
bility:

P(Ψ̂i ≤ ψ̂i|u) = [1−G0(ψ̂i)]exp
[
−υ+(ψ̂i,u)T
1−G0(ψ̂i)

]
(14)

where υ+(ψ̂i,u) is the up-crossing rate of the
normalized threshold ψ̂i conditional on u while
G0(ψ̂i,u) is the probability that the system response
is above the threshold ψ̂i at time equal to zero and
is given by:

G0(ψ̂i) = exp
[
−ψ̂i

2

]
(15)

The conditional crossing rate may be estimated as:

υ+(ψ̂i,u) = κ(ψ̂i,u)r+(ψ̂i,u) (16)

where r+ is given by the conditioned Rice formula
as:

r+(ψ̂i,u) =
σṙi(u)

2πσri(u)
G0(ψ̂i) (17)

with σṙi the standard deviation of the derivative of
the response process ri(t) while κ is the correc-
tion factor accounting for any dependency between
successive crossings of the normalized threshold ψ̂i
and can be modeled as:

κ(ψ̂i,u) = 1− exp
[
−(k(u))1.2

(2π)0.1 ψ̂i

]
(18)

where k is the spectral shape factor given by:

k(u) =

√
2π
(

1−
γ2

1 (u)
γ0(u)γ2(u)

)
(19)

where γp for p = 0,1,2 are the spectral moments of
ri given by:

γp(u) =
∫ ∞

0
ω pSri(ω;u)dω (20)

where Sri is the one-sided spectrum of ri while ω is
the circular frequency.
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4.1. Conditional Response Statistics
In defining the distributions of the reduced vari-
ates ψ̂i, the conditional (on u) response statistics
are needed. To this end, the mean conditioned re-
sponse, µri , is simply given by the expected value
of Eq. (10) given u and therefore by:

µri(u) = s1ΓT
ri

f̄ (21)

where f̄ is the expected value of f. The second or-
der conditioned response statistic, σ2

ri
, may be esti-

mated in the frequency domain as:

σ2
ri
(u) = σ2

rib
(u)+

∫ ∞

0
Srrn

(ω ;u)dω (22)

where σ2
rib

is the background response variance
while Srrn

is the one-sided resonant response spec-
trum estimated considering the participation of n
vibration modes. The estimate of the background
contribution to σ2

r is given by:

σ2
rib
(u) = s2

1ΓT
ri

Cf(u)Γri (23)

where Cf(u) is the covariance matrix of the excita-
tion f conditioned on u. The resonant response con-
tribution to σ2

ri
can be efficiently estimated through

a double modal spectral proper orthogonal de-
composition (POD) of f(t) (Carassale et al., 2001;
Spence and Kareem, 2013). Following this frame-
work, Srrn

is estimated as:

Srrn
(ω;u) =

l

∑
i=1

F̃i(ω;u)F̃∗
i (ω;u) (24)

where the symbol ∗ indicates the transposed com-
plex conjugate, l is the number of spectral load-
ing modes used in the estimation of Srrn

while F̃i
is given by:

F̃i(ω ;u) = s1ΓT
ri

KΦnHrn(ω ;u)ΦT
n χ i(ω)

√
Λi(ω)

(25)

where χ i is the ith frequency dependent load-
ing eigenvector, Λi is the corresponding ith fre-
quency dependent loading eigenvalue while Hrn is
the diagonal resonant mechanical transfer function
(Spence and Kareem, 2013).

The other spectral moments, i.e. γ1 and γ2 =
σ2

ṙi
, may be efficiently estimated through Eq. (20)

where Sri is assessed in a strictly modal setting by
simply substituting into F̃i (Eq. 25) the classic me-
chanical transfer function instead of Hrn .

4.2. Solution Strategy
In defining an efficient solution strategy for the reli-
ability integral Eq. (7), it is convenient to write the
integral in terms of the vector of reduced variates,
Ψ̂ = {ψ̂1, ..., ψ̂Nr}T :

Pf (x) =
∫ ∫

g(u,ψ̂,x)60

p(ψ̂|u)p(u)dψ̂du (26)

For the problems of interest to this work, the above
integral will be of high dimensions therefore rul-
ing out the use of classical reliability methods
(Schuëller et al., 2003). In particular, in this work
Monte Carlo simulation is adopted. In generating
conditional samples of the random vector Ψ̂, the
components are considered independent and there-
fore fully described by their marginal distributions
given in Eq. (14). The grounds for making this
assumption lies in the fact that the dependency be-
tween the components of Ψ̂ models the dependency
between the peaks of the normalized response pro-
cesses, which are only weakly dependent on u
through the crossing rate. Therefore Ψ̂ will be only
weakly dependent on parameters such as the mean
wind speed vH defining the intensity of the wind
event, which significantly contributes to the depen-
dency of the peaks of the various response functions
ri(t).

5. THE SYSTEM LEVEL RBDO APPROACH
This section presents a new system level RBDO
algorithm, SL-AVV, that leverages the recently
introduced concept of Auxiliary Variable Vector
(Spence and Kareem, 2014).

5.1. Problem Definition
The failure probability of Eq. (7) is a system fail-
ure probability defined as the union of the following
component level failure events:

Fi =

{
|r̂i|
ci

> 1
}

i = 1, ...,Nr (27)
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Here the failure probability of Eq. (7) is first written
in terms of the component failure modes as:

Pf = P

{
Nr∪

i=1

Fi

}
=

Nr

∑
i=1

P{Fi}−α

(
Nr

∑
i=1

P{Fi}

)
(28)

where α is simply given by:

α =

(
Nr−1

∑
i=1

Nr

∑
j>i

P{Fi ∩Fj}

−
Nr−2

∑
i=1

Nr−1

∑
j>i

Nr

∑
k> j

P{Fi ∩Fj ∩Fk}+ . . .

− (−1)Nr−1P{Fi ∩ ...∩FNr}

)/(
Nr

∑
i=1

P{Fi}

)
(29)

It is then assumed that the component failure prob-
abilities can be approximated as exponential dis-
tributions. This allows the failure probability to
be written as (where the dependency on the design
variables is now indicated):

Pf (x) = (1−α(x))

(
Nr

∑
i=1

exp
[
− 1

µDi(x)

])
+∆(x)

(30)

where µDi is the expected value of the random com-
ponent demand to capacity ratio given by R̂i/Ci
while ∆ is the error term introduced to account for
the assumption made on the component failure dis-
tributions. If it is assumed that α and ∆ of Eq.
(30) are independent of the design variable vector
x, then the dependency of the system level fail-
ure probability on x is exclusively in terms of the
mean values of the random component demand to
capacity ratios Di. The problem therefore becomes
the description of the dependency of µDi on x. To
this end the concept of AVV (Spence and Kareem,
2014) can be leveraged.

Before continuing, it should be observed that the
assumption of independence of α from x is equiv-
alent to assuming that the change in the probability
of the joint occurrence of the various failure modes
due to a change in x, will in general follow the trend
of the sum of the probabilities of the individual fail-
ure events.

5.2. The AVVs
In order to derive the aforementioned AVVs, it is
first convenient to consider the following variables
defined for each realization of U and Ψ̂ and for the
current design variable vector x0:

ϒi(u, ψ̂i,x0) =
ψ̂i(u,x0)CL(u,x0)Γri(x0)

σri(u,x0)
(31)

where CL is the covariance matrix of the following
vector:

L(t;u,x0) = s1
[
KΦnqrn

(t)+ f(t)
]

(32)

Dividing by the value of the capacity contained in
u, the following static relationship is determined for
the damage ratio di associated with the realizations
of u and ψ̂ :

di(u,x0) =
1
ci

ΓT
ri
(x0)ϒi(u,x0) = ΓT

ri
(x0)ϒdi(u,x0)

(33)
where ϒdi is simply given by the ratio between ϒi
and ci. The realizations of the vector ϒd j , generated
during the simulation process used to estimate the
reliability of the system, may be used to define the
following AVV:

ϒ̃i(x0) = ϒ̄di(x0) (34)

where ϒ̄di is the expected value of ϒdi .
The significance of the AVV, and so of ϒ̃i, is that

if it is statically applied to the nominal structure it
will cause a response in ri that is equal to the ex-
pected value of the damage ratio Di. In other words
the following relationship holds:

µDi(x0) = ΓT
ri
(x0)ϒ̃i(x0) (35)

This relationship is particularly useful as it allows
the failure probability of Eq. (30) to be written in
terms of what may be considered, for all intents and
purposes, a series of static load distributions.

5.3. The Approximate Subproblem
The definition ϒ̃i together with the formulation of
the failure probability given in Eq. (30) can be used
to define a approximate optimization subproblem,
the sequential definition and solution of which will
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lead to a final optimal solution. To this end, if the
assumption of independence of α and ∆ from the
design variable vector is extended to the AVV ϒ̃i,
then the following optimization problem can be cast
that is completely defined from the results of a sin-
gle reliability analysis carried out in the current de-
sign point x0:

Find x = {x1, ...,xm}T (36)

to minimize W = f (x) (37)

s. t.

(1−α)

(
Nr

∑
i=1

exp

[
− 1

ΓT
ri
(x)ϒ̃i

])
+∆ 6 P0

(38)

xk ∈ Xk k = 1, ...,m (39)

Not only does the subproblem outlined above de-
couple the reliability problem from the optimiza-
tion loop, but it also takes on an extremely conve-
nient form as it can be easily made explicit in terms
of x by simply defining an explicit expression of Γri

in terms of x. In defining this explicit relationship, a
number of classic results can be used that were de-
veloped for the optimization of deterministic struc-
tures under static loads. In particular, here the solu-
tion proposed by Chan et al. (1995) was adopted.
Once the subproblem has been made explicit in
x, any gradient-based optimization strategy can be
used to find solutions. Here the pseudo-discrete op-
timality criteria (Chan et al., 1995) is used, there-
fore allowing the discrete nature of the design space
to be fully considered.

Once a solution is found to a subproblem defined
in x0, a new sub-problem must be formulated in the
design point found from the solution of the previous
sub-problem. This updating procedure defines a de-
sign cycle and will continue until the design point
of two successive design cycles are identical.

6. CASE STUDY
6.1. Description
The case study consists of a 45-story rectangu-
lar building with an offset core (Fig. 1a). The
columns consist of steel box sections and are
grouped in plan as indicated in Figure 1b (C1 to
C18). In particular, it is required that the mid-
line diameter of the box sections, Di, belong to the
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Figure 1: (a) 3D view of the 45-story building; (b)
structural layout of the building showing beam and
column assignments and the critical column.

discrete set {0.2 m,0.25 m,0.3 m,0.35 m, ...,2 m}
while the flange thickness is fixed at Di/20. The
columns are grouped over three consecutive floors.
The beams, B1 to B6, are grouped in plan as in-
dicated in Figure 1b and are required to belong to
the family of AISC W24 steel profiles. The beams
are also grouped three floors at a time (for a total of
6× 15 groups). The diagonal bracings are also re-
quired to belong to the AISC W24 steel profiles and
are grouped as pairs over the height of the building.
The aforementioned grouping results in 375 inde-
pendent design variables. Initially the structure is
designed with all columns having a mid-line diame-
ter equal to 0.6 m while all beams and diagonals are
set to W24×176 profiles. The first three structural
modes, with mean circular frequencies ω1 = 1.023
rad/s, ω2 = 1.118 rad/s and ω3 = 1.847 rad/s, are
considered sufficient for describing the resonant re-
sponse. The mean modal damping ratios were taken
as 1.5 %. The uncertain parameters S1, S2 j and S3 j

with j = 1, ...,3 were modeled as independent log-
normal random variables with coefficients of varia-
tion 0.025, 0.015, and 0.3 respectively.

Non-structural damage is to be controlled for
wind blowing down the X direction (Fig. 1). In par-
ticular, it is assumed that damage is associated with
the X and Y interstory drift response of the criti-
cal column line illustrated in Fig. 1b. The capaci-
ties, Ci, are taken as independent lognormal random
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variables with mean 1/400 of the story height and
coefficient of variation 0.25.

The building is considered to be located in
the Miami area of Florida, USA. The extreme
wind hazard is given by the risk of hurricanes. In
particular, the site of the building is characterized
by a roughness length z0 = 2 m while an averaging
time of T = 3600 s was considered. The set of wind
speeds used to defined the distribution of v (Eq.
(8)) was obtained from the simulated hurricane
database of the National Institute of Standards
and Technology while considering milepost 1450
where a roughness length of z0 = 0.05 m was
assumed together with a meteorological height of
Hmet = 10 m. The averaging time for this data
was τ = 60 s. The distributions and parameter
values assumed for E1 to E7 can be found in Table
2 of Spence and Kareem (2014) while considering
a mean for E3 of 0.8065. The stochastic loads
acting on the building were derived from the Tokyo
Polytechnic University Wind Pressure Database.
In particular, the mean wind speed during the
tests was vHm = 11 m/s. Through integration
and appropriate scaling, realizations of fw were
obtained. The distributions and parameter values
assumed for W1 to W3 can be found in Table 2 of
Spence and Kareem (2014) while considering a
coefficient of variation of 0.05 for W1. For the case
study under investigation the reliability integral
needs to be calculated over the space of U =
{C1, ...,C90,S1,ST

2n
,ST

3n
,W1, ...,W3,E1, ....,E7,V}T ,

with n = 3, and Ψ̂, resulting in a total dimension
of 198 which constitutes a large scale reliability
problem. Considering the size of x, m = 375,
the problem truly represents a large scale RBDO
optimization problem.

6.2. Results
Two cases are presented in this section with the
first considering the components of random vec-
tor Ψ̂ independent and the second considering the
components of Ψ̂ fully correlated with the aim of
quantifying the assumption of Sec. 4.2. P0 was
set at 2× 10−2. Figure 2 shows the convergence
history of the objective function which here coin-
cides with the weight of the material composing the
structural system while Fig. 3 reports the history of

Design Cycle
0 2 4 6 8 10

W
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N
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×105
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Figure 2: Design history of the objective function.
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P
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Figure 3: Failure probability history.

the system level failure probability. From Figs.
2 and 3 it is immediately evident the strong con-
vergence properties of the proposed SL-AVV algo-
rithm. Indeed, the problem practically converges
after only 6 design cycles which means that the
simulation-based reliability analysis only had to be
invoked 6 times before solutions are found. It is
also evident that the assumption that the random
vector Ψ̂ has independent components would, at
least for this example, seem to be perfectly reason-
able with little difference between the two extreme
cases. Figure 4 reports the variation of α (Eq. (29))
during the optimization process. While α is seen
to change, its variation quickly drops off after de-
sign cycle 4 therefore allowing for the quick over-
all convergence seen in Figs 2 and 3. Fig. 5 shows
the initial and final failure distributions for the two
cases. Once again the effectiveness of the proposed
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Figure 4: History of the parameter α (Eq. (29)).
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Figure 5: Initial and final failure probability distribu-
tions.

method is evident. Finally, it should be observed
that the failure probability of the converged design
is exact as for any design cycle in which x does not
change (e.g. at convergence), all approximations
used in the proposed approach are exact.

7. CONCLUSIONS

This paper presented a new simulation-based sys-
tem level reliability based design optimization al-
gorithm, SL-AVV, for large scale uncertain and
dynamic systems excited by stationary stochastic
wind excitation. The method was based on the
concept of decoupling the reliability analysis from
the optimization loop through the definition of a
sequence of high quality subproblems defined in
terms of a number of Auxiliary Variable Vectors
(AVVs) that allow the system failure probability to
be written in terms of a sum of exponential func-

tions modeling the failure modes of the system. The
structure of the AVVs allows the subproblem to be
easily made explicit in the design variable vector,
and therefore any gradient-based optimization al-
gorithm may be used for its resolution. The effec-
tiveness of the proposed approach lies in how each
subproblem can be defined exclusively in terms of a
single simulation-based reliability analysis carried
out in the current design point. The practicality
and strong convergence properties of the proposed
approach were illustrated on a full scale building
example characterized by a high-dimensional de-
sign variable vector as well as a high-dimensional
system-level reliability integral.
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