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ABSTRACT: This paper proposes a method for risk-based decision making for maintenance of deterio-
rating components, based on the partially observable Markov decision process (POMDP). Unlike most
methods, the decision polices do not need to be stationary and can vary according to seasons and near the
end of the lifetime. The approach is demonstrated through two examples, and the total expected costs are
similar to those of another efficient method.

1. INTRODUCTION

For deterioration processes, maintenance can the-
oretically be optimally planned using risk-based
methods. Finding the optimal decisions in-
volves solving a pre-posterior decision problem
with a large number of decisions, and the de-
cision problem can, in principle, be solved us-
ing either the normal or extensive analysis method
(Raiffa and Schlaifer, 1961). Because the number
of branches in a traditional decision tree increases
exponentially with the number of time steps, it
is generally not possible to calculate the expected
costs for all branches.

Previously, decision trees for maintenance plan-
ning have been solved approximately by finding
the optimal stationary decision rules (Straub, 2004)
(Nielsen, 2013). For maintenance of offshore struc-
tures, inspections and repairs can only be per-
formed during periods with relatively low wind
speeds and wave heights, and the probability of in-
spections and repairs being possible within a time
period will depend on the season. Therefore, the
decision maker could benefit from having time vari-
ant decision policies that follow the seasons. Also
near the end of the lifetime, decision policies will
be different, as preventive repairs should not be
made close to the end of lifetime.

In this paper, an approach for solving these de-
cision problems is considered, where the decision

policies do not need to be stationary. Here the
continuous damage size is discretized, and the de-
terioration processes are modeled using dynamic
Bayesian networks. Hereby, the approaches used
for partially observable Markov decision processes
(POMDP) can be used. The advantage of this ap-
proach is that the computation time is only linear
with the number of time steps. The optimal deci-
sion policies are found sequentially from the last
decision for, in principle, all possible belief states.
In reality, the belief state is represented by a vector
with a sum equal to one, and the number of differ-
ent belief states is infinite.

In practice, the optimal decisions and expected
costs can be found for a number of grid points, and
the results from the approximated belief state clos-
est to the real one is used. The method has pre-
viously been applied for a case where the damage
state can take three values: no damage, damage,
and failure (Nielsen and Sørensen, 2012), and the
belief state could, therefore, simply be expressed
by the probability of being in the damaged state, as
it was assumed to be known whether or not failure
had occurred. The grid points for that case could
simply be chosen as evenly distributed probabilities
of damage between zero and one, and the accuracy
was determined by the number of grid points.

In this paper, the approach is extended to dete-
rioration processes with more than three damage
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states. The approach is demonstrated for a main-
tenance problem for offshore wind turbines.

2. BAYESIAN PRE-POSTERIOR DECISION PROB-
LEM

Figure1 shows the decision tree considered in this
paper. Information from condition monitoring and
inspections is included, and decisions are made on
inspections and repairs. Traditionally this type of
decision problems is solved by using stationary de-
cision rules. The decision on repair depends di-
rectly on the most recent inspection outcome, and
inspections are scheduled equidistant or when the
probability of failure given no detection at previous
inspections exceeds a threshold. In both cases, the
inspections are scheduled from the beginning, and
extra information obtained during the lifetime is not
considered.

If condition monitoring is available, they can be
included using this approach, by setting a threshold
for the monitoring outcome for when inspections
are made. However, only the most recent monitor-
ing outcome is considered in this case, and in case
of uncertainties on the monitoring outcome, a better
and more informed decision could be made by in-
cluding the history of monitoring outcomes. To do
so, Bayesian updating needs to be done during the
lifetime to estimate the current probability distribu-
tion for the damage size. For this, discrete dynamic
Bayesian networks (DBN) can be applied, as they
enable computationally efficient Bayesian updating
(Straub, 2009). Then a threshold for the probability
of failure can be used as decision rule for when to
make inspections, simulations can be applied to de-
termine expected costs and the optimal value of the
decision rules, and within the simulations a discrete
Bayesian network can be applied for updating of
probabilities. This method is computationally ex-
pensive, as time-consuming simulations are needed
to find the optimal decision rule, and the decision
rules are stationary. If no time-invariant uncertain-
ties are present, an alternative approach is to use a
method that exploits the Markovian assumption of
independence between the future and past given the
present.

2.1. Markov decision model for deterioration pro-
cesses

A traditional Markov decision problem uses the fact
that the optimal decision at a given time only de-
pends on the current state of the component, not the
history of damage development. If the component
health is directly observed at every time step, the
optimal decision for each time step can be found for
all possible damage states sequentially from the last
decision. Dynamic programming can be applied,
such that the expected costs found for later time
steps are used when computing the optimal deci-
sions for earlier time steps (Dasgupta et al., 2006).

If the component health is not directly observed,
but instead observed through an indicator, the prob-
lem is a partially observable Markov decision pro-
cess (POMDP). Here, the optimal decision at each
time step only depends on the current belief state
for the component health. In other words, it de-
pends only on the current probability distribution
for the damage size, as it summarizes the prediction
from the model and all past observations. In prin-
ciple, the optimal decision can then be found for
all possible probability distributions for the dam-
age size for each time step. However, in reality,
there are infinitely many possible probability dis-
tributions, so an approximation needs to be made.
This can be done by finding the expected costs and
optimal decisions for a number of grid points, and
then interpolate between these grid points, when
expected costs for other points are needed. To use
the approach for deterioration processes with (dis-
cretized) continuous damage sizes, grid points need
to be selected and a method to interpolate between
grid points needs to be developed.

In order to make a grid, the probability distribu-
tion for the damage size is approximated by a 2-
parameter Weibull distribution with scale parameter
a and shape parameterb, with cumulative distribu-
tion function:

FX(x) = 1−exp

(

−

(x
a

)b
)

(1)

The Weibull distribution is discretized and trun-
cated before the failed state, as it is assumed to be
known if failure has occurred. The calculation grid
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Figure 1: Decision tree for decisions on inspections and repairs and damage indications from condition moni-
toring and inspections. At the dashed lines all branches continues as the ones illustrated. Repeated for each time
step in the model.

is made by doing this for a range of values ofa and
b.

There are two approximations regarding the use
of this approach. First, there is the variation be-
tween the true probability distribution and the dis-
cretized Weibull distribution closest to the true dis-
tribution. Second, there is the approximation intro-
duced by interpolation between grid points for the
a andb parameters of the Weibull distribution.

In order to find the Weibull distribution closest
to the true distribution, a selection criterion needs
to be set up. Possible choices include least square
estimates based on the distretized probability mass
function and least square estimates based the dis-
cretized cumulative distribution function. The lat-
ter has been used here, as differences in probabili-
ties for nearby damage states are less critical than
for damage states far from each other.

A nonlinear optimizer can then be applied for es-
timating the optimal values ofa andb for any distri-
bution. Thereafter, multidimensional linear or cu-
bic interpolation can be used. For this application,
the probability distribution for all grid points are
known, and an alternative interpolation method is
to calculate the sum of the squares of the errors for
all the distributions and select the distribution with
the lowest value. With this approach, the nearest
distribution is chosen and as such no interpolation
is performed. For the same number of grid points,
this method is less accurate, but it is much faster, as
the time-consuming nonlinear optimization is not
needed. Therefore, a denser grid can be used for
this method with same computation time, and it has

been used for the examples in this paper.
In each time step, interpolation has been per-

formed at two points. One after the condition moni-
toring outcome is obtained, and one after corrective
repair. The outcome of the calculations are the de-
cision policies for inspections and repairs for each
time step. For inspections, the decision policies are
given as function of thea andb values correspond-
ing to the nearest Weibull distribution to the proba-
bility distribution updated after condition monitor-
ing. For preventive repairs, the decision policies are
given as function of the inspection outcome as well
as thea and b values corresponding to the near-
est Weibull distribution. Updating the probability
distribution for the damage size due to deteriora-
tion and observations is performed using a discrete
Bayesian network approach.

3. EXAMPLE 1
The method is illustrated using a damage model
with 10 damage states of equal size and constant
transition probability. The lower interval bound-
aries are 0,1,2, . . . ,9, and the last state is the failed
state. This corresponds to linear damage growth.
The lifetime is 20 years, and the mean time to fail-
ure is 20 years. It is assumed that the damage size
cannot skip any state. Initially, the damage size
is assumed to be in the first state with probability
equal to one.

3.1. Model
The computation is run for a lifetime equal to 20
years, and the step length is one month. This gives
240 time steps in total. In the beginning of each
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time step, results from an online condition moni-
toring system is obtained. The outcome depends
on the damage size in the same way as for PoD
(probability of detection) curves commonly used
in risk-based inspection planning. However, here
more outcomes are possible. The damage size caus-
ing each monitoring outcome is assumed lognormal
distributed with parameters given in table1, and fig-
ure 2 shows the probability of obtaining each out-
come as function of damage size. After the moni-
toring outcome is obtained, a decision can be made
to make an inspection. Here a similar model is
used, see table2 and figure3. After the inspection
outcome is obtained, or if no inspection is made, a
decision can be made to make a preventive repair.
Then, the deterioration model is used to update the
damage size, and if failure happens during the time
step, a corrective repair is made.

State Description Mean COV
1 no alarm - -
2 low alarm 2.0 1.0
3 high alarm 5.0 1.0
4 failure 9.0 0.0

Table 1: Mean and coefficient of variation (COV) for
the damage sizes causing each monitoring outcome.
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Figure 2: Probability of each monitoring outcome as
function of damage size.

The costs are set relative to the costs of an in-
spection, such that the expected costs of an inspec-
tion is one, the expected costs of a preventive repair
is 20, the expected costs of failure is 500, and the
expected costs of lost production per time step is
100.

State Description Mean COV
1 no detection - -
2 mild damage 2.0 1.0
3 some damage 4.0 0.8
4 significant damage 6.0 0.6
5 severe damage 8.0 0.4
6 failure 9.0 0.0

Table 2: Mean and coefficient of variation (COV) for
the damage sizes causing each inspection outcome.
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6: Failure

Figure 3: Probability of each inspection outcome as
function of damage size.

Furthermore, the probability that an inspection or
repair is not possible within a time interval is in-
cluded, and it can vary according to seasons. For
each season, each lasting three months, a probabil-
ity of the actions not being possible is defined. In
general, there are stricter weather requirements for
more complicated actions, so the probability that
corrective repairs are not possible is larger than for
preventive repairs. And if preventive repairs are
not possible, neither are corrective. Therefore, the
probability that corrective repairs are not possible
during a time step is provided conditioned that pre-
ventive repairs are possible. Similarly, the proba-
bility that preventive repairs are not possible is pro-
vided conditioned that inspections are possible.

The calculations are performed both for the case
without and with seasons. Without seasons, it is
assumed that inspections and repairs can always
be made during the time step for which they are
planned. When seasons are included, inspections
are still always assumed to be possible. Preventive
repairs are always possible during the summer half,
but in the winter half there is a probability of 0.1
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Figure 4: Decision policies 10 years into the lifetime for Example 1. The color shows the difference in costs for
making the inspection/repair or not doing it. Positive values indicate that the optimal decision is to inspect/repair,
and the black lines divide the regions with different optimal decisions. The repair policy is shown for each inspec-
tion outcome and for no inspection.

that it cannot be made during a time step. For cor-
rective repairs, the probability that it cannot be done
during a time step given that a preventive repair can
be made is 0.05 during summer half and 0.4 during
the winter half.

The range and spacing for the parametersa andb
need to be chosen based on a tradeoff between ac-
curacy and computation time. The probability dis-
tribution for the damage size was found for each
time step for various combinations of observations,
and the corresponding range ofa andb values was
found. Values ofa are chosen in the range from
0.25 to 11.5 with 0.05 distance between values. For
b the values are in the range from 0.5 to 5.5 with
distance 0.125. Additionally, the expected costs are
found for the failed case. This gives 9267 probabil-
ity distributions in total for the damage size. The
computation time per time step was around 2 min-
utes, and the total computation time for 240 time
steps was around 8 hours on an Intel Core i7 pro-
cessor using parallel computing in Matlab.

3.2. Results

The outcome of the computations is a set of deci-
sion policies for each time step in the model. Fig-

ure 4 shows an example for year 10, for the case
without seasons. Not all policies are relevant for
all values ofa andb. For example, if an inspec-
tion should not be made, it does not matter what
the optimal repair decision is for each inspection
outcome. Therefore, the policies can be summa-
rized in a single figure as shown in figure5. As
seasons are not included, policies for adjacent time
steps are very similar. However, near the end of the
lifetime (20 years), the policies will change. Figure
6 shows decision policies for year 18. As expected,
damages should be larger before they are repaired
compared to year 10.

When seasons are included in the model, the de-
cision policies will generally vary during the year.
Figure7 shows the decision policies for inspections
for all months in year 10. During the summer half,
inspections should be made at damages lower than
in the winter, such that repairs are less likely to be
made during the winter.

To validate the efficiency of the found decision
policies, simulations are run where the found poli-
cies are applied each time a decision is made.
For comparison, simulations are also run for time-
invariant decision policies, where the inspections
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Figure 5: Summarized decision policies 10 years into
the lifetime for Example 1.
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Figure 6: Summarized decision policies 18 years into
the lifetime for Example 1.
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Figure 7: Decision policies for inspections for all
months in year 10 for Example 1. The first three and
last three months are considered winter months.

are made when the probability of failure during the
following time step, which is updated using the
monitoring outcome, is above a threshold value,
and repairs are made when the inspection result is
above a threshold value. Both threshold values are
optimized using simulations. For both types of de-
cision rules, Bayesian updating is performed during

simulations using a DBN approach, and 100,000
simulations are made for each case. Figure8 shows
the expected costs for both cases. The two methods
are almost equally good, but the threshold approach
gives slightly lower costs compared to the POMDP
policies, both for the case with and without seasons.
For comparison, the expected costs are 347 when
only corrective maintenance is used.
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Figure 8: Expected costs for POMDP and threshold
approach (Pf) both with and without seasons for Exam-
ple 1. The vertical black lines show the 95% confidence
intervals for the total costs.

4. EXAMPLE 2
For this example, the damage model is based on a
fracture mechanical model. The damage size (crack
length)a can be found based on the damage size in
the previous time step using the following expres-
sion (Ditlevsen and Madsen, 2007):

at =
(

(1−
m
2
)C∆Smπm/2∆n+a1−m/2

t−1

)(1−m/2)−1

(2)
Where∆S is the stress range,∆n is the number of
stress cycles, andm andC are empirical model pa-
rameters. For this example, the time steps is one
month,∆Sis assumed normal distributed with mean
60 and standard deviation 10,∆n is deterministic
106, and m is deterministic with value 3.5. The
initial value a0 is assumed exponential distributed
with mean value 0.2. The value ofC is found by
calibration using Crude Monte Carlo simulations to
give same mean time to failure as in Example 1. A
value ofC= e−33.5 was found using 100,000 simu-
lations.

6



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

4.1. Model

Next, a DBN model for the damage development
was made following (Straub, 2009). As the damage
model is exponential, the intervals for the damage
size have an exponentially increasing size. To find
the transition matrix, Monte Carlo simulations were
used. A good accuracy could be obtained using 80
intervals for the damage size, but that would result
in long computation time (more than one week) for
the Markov model. Instead 30 intervals were used,
even though it gave an overestimation of the prob-
ability of failure. This was corrected by decreasing
all probabilities below the diagonal by a constant
factor, and increasing the probabilities on the di-
agonal to keep a total probability of one for each
interval. The factor was chosen such that the prob-
ability of failure after 20 years was equal to the
value found from the original model using Monte
Carlo simulations. Figure9 shows the probabil-
ity of failure as function of time for three cases:
Monte Carlo simulations including 95% confidence
intervals, DBN model with 30 states, and the edited
DBN model with 30 states.
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Figure 9: Probability of failure as function of time for
the original model, DBN model with 30 states, and
corrected model with 30 states for Example 2.

The range ofa andb values was found in a sim-
ilar way as in Example 1, and the range fora was
0.05 to 10 with a step length 0.05, and forb the
range was from 2.5 to 8 with a step length 0.125.
In total, 9001 probability distributions including the
distribution for a failed component. Each time step
has a computation time of around 9 minutes, giving
a total computation time of 36 hours.

4.2. Results
The decision policies were found for the case with
seasons, and figure10 shows the summarized de-
cision policies for year 10. Generally, inspections
should not be made, but repairs should be made at
distributions with lower scale parameters compared
to the linear model in Example 1. To validate the
efficiency of the decision policies, simulations have
been run as in Example 1 and the total expected
costs are compared to the threshold approach in fig-
ure11. The two methods give almost the same total
expected costs. For comparison, the expected costs
for corrective maintenance only is 682.
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Figure 10: Summarized decision policies 10 years into
the lifetime for Example 2.
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Figure 11: Expected costs for POMDP and threshold
approach (Pf) for Example 2. The vertical black lines
show the 95% confidence intervals for the total costs.

5. DISCUSSION
The examples show that the POMDP method is able
to give almost as good results as the efficient sim-
ulation based threshold method. It was expected
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that it would give lower costs, especially, when sea-
sons are included, as the POMDP method takes that
into consideration and can have annual variations in
the decision policies unlike the threshold method.
Higher costs of lost production and lower access-
abilities during the winter could possibly make the
POMDP approach more beneficial.

For the threshold method, only the probability of
failure during the following time step is considered,
when decisions are made. It has a direct relation-
ship with the expected failure costs, but not with the
expected inspection outcomes and as such not the
expected costs to preventive repairs. The POMDP
method considers the entire probability distribu-
tion and, therefore, the relationships with both ex-
pected failure and repair costs. If the probability
distribution could always be well approximated by
a Weibull distribution and if proper interpolation
was performed, the POMDP method should give
the lowest costs. However, a 2-parameter Weibull
distribution does not always give a perfect fit, espe-
cially when observations are included. A better fit
could be obtained by introducing a lower bound us-
ing a 3-parameter Weibull distribution. If the com-
putation time should still be limited, the number of
a andb values should be reduced to keep the same
total number of probability distributions.

The time-consuming part of the computation is
to find the nearest grid point or, alternatively and
even more time-consuming, to make a nonlinear fit
to a Weibull distribution. Therefore, the number
of times this is done will have a linear effect on
the computation time. The number of times the in-
terpolation is done is the product of the number of
time steps, the number of grid points, and the num-
ber of branches for each time step. Additionally,
the time spent on each interpolation depends on the
number of damage states and the number of grid
points.

A drawback of the POMDP model is the Marko-
vian assumption, as time-invariant parameters are
hard to include in the model. To do so, the grid
points should be found for ’all possible’ joint dis-
tributions for the damage size and a time-invariant
model parameter. Even a relatively simple model
with two parameters for each variable and a cor-

relation would give a five-dimensional grid. As
the computation time increases at least linear with
the number of grid points, it will probably be too
time-consuming. For the threshold approach, time-
invariant parameters can easily be included in the
model.
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