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ABSTRACT: This paper studies a nonlinear feedback controller based on Optimal Polynomial 

Control (OPC) in semi-actively controlled systems. OPC, for instance, is an extension to 

conventional linear quadratic regulator (LQR), where the cost function is of higher order and the 

control force is decomposed into linear and nonlinear terms. The main challenges of this state-

space based control design method are nonlinearity of the system and the selection of covariance 

matrices. Traditionally, linearization is based on deterministic elastic strategies and that usually 

does not incorporate stochasticity or nonlinearity in the system. To overcome this limitation, a 

stochastic linearization of the passive system is considered which replaces the nonlinear portion 

of the system behavior with an equivalent linear model, where stochasticity of excitation and 

nonlinearity of the system are both preserved. Then, global optimization is conducted on the 

nonlinear system to determine the optimal covariance matrices. The OPC approach combined with 

stochastic linearization is referred to as Stochastic OPC (SOPC). For verification, the effectiveness 

of this control algorithm is analyzed, and tested via shake table experiments on a two span-bridge 

equipped with MR damper and subjected to pounding between spans and span to abutment.  

 

 

1. INTRODUCTION  

Semi-active technology has been suggested 

by researchers to combine both properties of 

passive and active systems. For instance, the 

semi-active system is modified though 

physical parameters of passive systems with 

a small power requirement as opposed to 

active systems. In addition, semi-active 

devices are efficient for a wide range of 

excitations as opposed to passive devices that 

are effective for a limited bandwidth only. 

Magnetorheological (MR) dampers are one 

of the widely used semi-active devices in 

various control problems (Fan et al., 2009; 

Prabakar et al., 2013). However, some of the 

challenges in the control design of semi-

active MR dampers are the highly nonlinear 
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dynamics of the device and constraints on 

achievable control forces.  

In addition, another challenge 

encountered in uncontrolled or controlled 

structural systems under extreme loadings of 

earthquakes and other hazards is the 

nonlinear behavior in the system. It is 

commonly argued that the purpose for the 

application of control strategies is to reduce 

the structural response and limit the extent of 

nonlinearities so that the system remains 

nearly linear elastic during the hazard. 

However, hazards are stochastic events with 

characteristics that are not fully known prior 

to the occurrence. This complicates the 

design of a controller that can ensure linear 

system behavior or a behavior with limited 

nonlinearity. On the other hand, in some 

applications such as the one in this study, the 

goal of the control strategy is to reduce the 

likelihood of extreme responses in critical 

demand measures to limit the potential of 

extensive damage in the system, while 

accepting presence of nonlinear behavior in 

the system response. This strategy will allow 

for more cost-effective solutions based on 

structural control. However, this strategy 

poses a challenge considering that control 

algorithms are normally designed for systems 

with linear models.  

To consider the limitations mentioned 

earlier, stochastic linearization is considered 

in order to incorporate nonlinearity of the 

system, dynamics of semi-active device, and 

stochasticity of the response and the 

excitation. Stochastic linearization method 

maintains the nonlinearity in the system 

components by replacing it by equivalent 

linear models (Basili and Angelis, 2007) as 

opposed to conventional and deterministic 

linearization that considers the linear elastic 

stiffness of the system. Then, for control 

design, a nonlinear feedback control 

algorithm, known as Optimal Polynomial 

Control (OPC) (Agrawal and Yang, 1996) is 

considered to determine optimal control 

forces of the MR damper. Fundamentally, the 

OPC algorithm is a generalization of the 

Linear Quadratic Regulator (LQR) algorithm 

through inclusion of higher order convex 

polynomials in the objective function, which 

provides more flexibility and better control 

improvement as compared to LQR algorithm. 

The OPC approach combined with stochastic 

linearization is referred to as Stochastic 

Optimal Polynomial Control (SOPC), to 

distinguish the strategy from the OPC 

method with initial elastic models. To 

optimize the gain matrices in the SOPC 

objective function a global search based on 

Genetic Algorithm (GA) and Monte-Carlo 

simulations of the semi-actively controlled 

system are used to perform a second level 

optimization. To present this methodology, 

seismic response mitigation of a multi-span 

bridge with nonlinear bearings using MR 

dampers is first analyzed and then tested via 

a set of shake table experiments.  

 

2. STOCHASTIC OPTIMAL 

POLYNOMIAL CONTROL 

Linear control algorithms, such as LQR for 

fully observable systems and Linear 

Quadratic Gaussian (LQG) for partially 

observable systems were proven to be useful 

in mitigating various responses in many 

active and semi-active control design 

applications. However, the LQR objective 

function has a restricted form and only 

contains polynomial functions of the second 

degree. The LQR algorithm can be extended 

to OPC control algorithm that incorporates 

higher order convex polynomials in the 

objective function. The higher order 

performance index for OPC is defined as 

(Agrawal and Yang, 1996). 

𝐽

= ∫ (𝐗𝐓𝐐𝟏𝐗 + 𝐮𝐓𝐑𝐮 + ℎ(𝐗)) d𝑡
∞

0

 
(1) 

where 𝐗 and 𝐮 is the state space vector and 

control vector, respectively. The matrices, 𝐐𝟏 

and 𝐑, are the covariance weighing matrices 
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of 𝐗 and 𝐮, respectively. Then, the higher 

order convex function, h(X), is 

ℎ(𝐗) = 𝐗𝐓𝐌𝟐(𝐗𝐓𝐌𝟐𝐗)𝐁𝐑−𝟏𝐁𝐓                           
      (𝐗𝐓𝐌𝟐𝐗)𝐌𝟐𝐗 

             +(𝐗𝐓𝐌𝟐𝐗)(𝐗𝐓𝐐𝟐𝐗) 

(2)) 

In this equation, 𝐌𝟐 (𝒊 = 𝟐, . . 𝒌) is a positive 

definite matrix which is an implicit function 

of the OPC weighting matrix, 𝐐𝟐. According 

to Hamiltonian optimality conditions, the 

control force vector is derived as 

𝐮
= −𝐑−𝟏𝐁𝐓𝐏𝐗      
− 𝐑−𝟏𝐁𝐓(𝐗𝐓𝐌𝟐𝐗)𝐌𝟐𝐗 

 

(3)) 

where the first term presents the linear 

component of the controller which matches 

the control force of LQR control algorithm. 

The second term is the nonlinear OPC 

controller that presents higher order terms. 

The semi-positive definite matrices 𝐏 and 𝐌𝟐 

are derived using stationary Riccati and 

Lyapunov Equations, respectively. The OPC 

control force is expected to yield better 

response mitigation for similar maximum 

LQR control force. In addition, nonlinear 

optimal control laws such as OPC are more 

robust than linear optimal control laws 

(Christofides and El-Farra, 2005). Here, the 

derivation of the control algorithm is based 

on a fully observable system, but a Kalman 

observer is designed to predict the entire state 

space vector.  

 

3. EXPERIMENTAL SETUP 

The structural model in this study is a two 

span bridge equipped with a semi-active MR 

damper attached between adjacent spans. The 

bridge model consists of two reinforced 

concrete decks, each supported by four 

rubber bearings. The deck in span A is 2.3 m 

long and has a mass of 1.48 ton, while the 

deck in span B is 6.0 m long and has a mass 

of 3.49 ton. The four supports of span A and 

the two left supports of span B are located on 

shake table A and the two right supports of 

span B are on shake table B, as shown in 

Figure 1. In cases of large difference in the 

displacement responses of the spans, the gap 

between the spans or span and abutment will 

be closed and pounding occurs. Poundings 

will induce large acceleration spikes in the 

response of the spans and may cause damage 

to the decks.  

 

  
Figure 1: The uncontrolled two span bridge 

model on the shake table: Left Span (A), Right 

Span (B) 

 

In order to reduce the potential of 

pounding and its consequences, an MR 

damper manufactured by Sanwa Tekki from 

Japan is installed between span A and span B. 

The maximum input current for the MR 

Damper is 3 Amp, the force capacity is ±30 

kN, the maximum displacement is ±70 mm, 

and the maximum velocity is ±60 mm/sec. 

Horizontal displacements and accelerations 

of the spans are measured in real-time using 

piezoelectric sensors and accelerometers, 

respectively.  

3.1. Hysteretic models for nonlinear bridge 

components 

The nonlinear behavior of the bearings and 

the MR damper is modeled using three 

parallel components including a linear 

stiffness, damping, and hysteretic stiffness. 

The restoring force for the rubber bearing, 𝐹𝑗, 

and the MR damper, 𝐹MR, are defined as 

𝐹𝑗 = k𝑗(α𝑗𝑥𝑗 + (1 − α𝑗)𝑧𝑗)    

      𝑗 = 1, 2 
(4) 

𝐹MR = αẋMR
𝑥̇3 + αzMR

𝑧3 (5) 

where 𝑥𝑗  is the linear displacement of jth 

rubber bearing, 𝑥̇3 is the velocity of the MR 

damper, z𝑗 is the hysteretic displacement of 

jth rubber bearing, 𝑧3 is the hysteretic 

displacement of the MR damper. The model 

parameters k𝑗, αRB, αẋMR
, and αzMR

 are the 
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stiffness and pre-yield factor of rubber 

bearing, and the damping and hysteretic 

component of the MR damper, respectively. 

The subscript j takes the value of 1 for span 

A and 2 for span B. The hysteretic 

displacement follows the Bouc-Wen 

differential equation of the form:  

ż𝑗 = A𝑥̇𝑗 − β|𝑥̇𝑗|𝑧𝑗 − γ𝑥̇𝑗|𝑧𝑗|             

j = 1, 2, 3 
(6) 

The parameters αẋMR
 and αzMR

 are 

decomposed into passive-off and passive-on 

components with respect to the current, 𝑖𝑐, as 

αẋMR
= αẋMR0

+ 𝑖𝑐αẋMR1
 (7) 

αzMR
= αzMR0

+ 𝑖𝑐αzMR1
 (8) 

where α𝑥̇MR0
 and α𝑧MR 0

 are the passive-off 

components and α𝑥̇MR1
 and α𝑧MR1

 are the 

passive-on components. The model 

parameters of the rubber bearings are derived 

by fitting the experimental data of an 

uncontrolled bridge subjected to 70% scaled 

El Centro (EC70), as shown in Figure 2. As 

for the MR damper, data of cyclic tests with 

a frequency of 0.4 Hz for currents ranging 

between 0 and 3 Amp was provided by the 

manufacturing company. The corresponding 

calibration results are shown in Fig. 3.  

 

3.2. Pounding Model 

In the two span bridge, the Hertz Damped 

model (Muthukumar and DesRoches, 2006) 

is used to capture pounding, where the impact 

force, Fimpact, is described as 

𝐹impact = kh(𝑦12 − gp)
r

+ ch𝑦̇12 (9) 

where kh is the impact stiffness, 𝑦12 is the 

relative displacement between two adjacent 

nodes, gp is the gap distance, r is the Hertz 

coefficient that is typically taken as 3/2, and 

ch is the nonlinear damping coefficient and is 

computed as 

 ch = ξ(𝑦12 − gp)
r
 (10) 

where ξ is the damping constant and is 

calculated as follows: 

ξ =  
3

4

(1 − 𝑒2)kh

∆𝑣12
 (11) 

where 𝑒 (= 0.6 for concrete) and ∆𝑣12 are the 

coefficient of restitution and relative velocity 

before impact, respectively (Muthukumar 

and DesRoches, 2006). Pounding in 

experimental data can be detected when large 

spikes in the total acceleration responses are 

observed. For instance, acceleration spikes 

are observed in Figure 4 for span B of the 

uncontrolled bridge under KB40 but not for 

span A, indicating that pounding occurred 

between span B and the abutment. 

 

 
Figure 2: Time history for span A displacement 

(𝑥1) . 

 

 
Figure 3: The MR force versus MR displacement 

(𝑥3). 

 

 
Figure 4. Time history for total acceleration of 

span B (𝑥̈2).  

 

4. IMPLEMENTATION OF SOPC 

The OPC algorithm introduced in section 2 

provides an active controller for a linear 

system with fully observable state space; 

however, the control problem in this study is 
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the semi-active control of a nonlinear system 

with partially observable state space. 

Consequently, a number of issues need to be 

addressed before the control system can be 

implemented. These issues include 

nonlinearity of the system, limitations 

associated with the semi-active control force, 

and partial observability of the system. 

Consequently, the bridge model is first 

linearized and the control design is 

implemented based on clipped optimal 

method (section 4.1), a second level 

optimization is considered to optimize the 

performance of the controller (section 4.2), 

and a Kalman based filter is designed based 

on the stochastically linearized system to 

fully predict the state space vector of the 

system. 

 

4.1. Stochastic linearization 

The system matrix in nonlinear 

hysteretic structures is not fixed, and depends 

on the response of the structure. Initial linear 

elastic properties of the system have been 

commonly used to present the dynamic 

behavior of nonlinear structures but they do 

not consider the intensity of external 

excitation in the linearization process, and 

may yield poor response predictions when 

the system is subjected to large excitations. 

To overcome this limitation, stochastic 

linearization replaces the nonlinear hysteresis 

component by an equivalent linear model 

through minimizing the residual errors 

arising from the linearization process (Basili 

and Angelis, 2007). Here, stochastic 

linearization is implemented for the two span 

bridge. The dynamic equilibrium equation of 

this system is presented as  

𝐌𝐔̈ + 𝐂𝐝𝐔̇ + 𝐤𝐔𝐔 + 𝐤𝐙𝐙 = 𝐌𝐱̈𝐠 (12) 

where the matrices, 𝐌, 𝐂𝐝, 𝐤𝐔, and 𝐤𝐙 are the 

mass, damping, linear stiffness, and 

nonlinear stiffness matrices, respectively. 𝐘 

is the linear displacement vector identified as 

[𝑥1;  𝑥2], and 𝐙 is the hysteretic displacement 

vector presented as [𝑧1;  𝑧2; 𝑧3]. The 

variables 𝑥1 and 𝑥2 are displacements of 

spans A and B, and 𝑧1, 𝑧2, and z3 are the 

hysteretic displacements of spans A and B 

and the MR damper, respectively. 𝐱̈𝐠 is the 

ground motion vector applied to the two span 

bridge. Since Equation (6) depends only on 

the velocity and hysteretic displacement, the 

equivalent linearized equation is presented as 

𝑧̇𝑗 = −C𝑗𝑥̇𝑗 − K𝑗𝑧𝑗   (13) 

where C𝑗 and K𝑗  are the linearized parameters 

of the velocity and hysteretic displacement, 

respectively.  Under the assumption that 𝑥̇𝑗 

and  𝑧𝑗 are zero mean joint Gaussian 

Processes, the linearized parameters, C𝑗 and 

K𝑗,  are obtained by partially differentiating 

Equation (6) with respect to 𝑥̇𝑗 and 𝑧𝑗, 

respectively: 

C𝑗 =
∂(𝑧̇𝑗)

∂(𝑥̇𝑗)
, K𝑗 =

∂(𝑧̇𝑗)

∂(𝑧𝑗)
   (14) 

Applying Equation (14) to Equation (6), the 

linearized parameters are presented as 

C𝑗 = β𝑗  E [
𝑧 ∂(|𝑥̇𝑗|)

∂𝑥̇𝑗
] + γ𝑗  E[|𝑧𝑗|] (15) 

K𝑗 = β𝑗  E[|𝑥̇𝑗|] + γ𝑗  E [
𝑥̇𝑗 ∂(|𝑧𝑗|)

∂𝑧𝑗
] (16) 

Since the external excitation is assumed to be 

a Gaussian Process and the variables are 

jointly Gaussian, the linearized parameters 

can be evaluated in terms of the second 

moments as follows 

C𝑗 = √2/π  [βjσ𝑧𝑗
+

γ𝑗E(𝑥̇𝑗𝑧𝑗)

σ𝑥̇𝑗

]

− A𝑗 

(

(17) 

Kj = √2/π) [
βjE(ẋjzj)

σzj

+ γjσẋj
] 

(

(18) 

where 𝐸(𝑥̇𝑗𝑧𝑗) is the expected value of 𝑥̇𝑗𝑧𝑗, 

and 𝜎𝑥̇𝑗

2  and 𝜎𝑧𝑗
2  are the variances of 𝑥̇𝑗 and 𝑧𝑗, 

respectively (Socha 2008). Substituting 

Equation (17) and Equation (18) into 

Equation (12) and rearranging it in the state 

space, the linearized bridge model is derived 

as 
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𝐗̇ = 𝐀𝐬𝐭𝐚𝐭𝐞𝐗 + 𝐅𝐞                          

                       𝐗 = [𝐘; 𝐘̇; 𝐙] 
(19) 

where 𝐀𝐬𝐭𝐚𝐭𝐞 is the system matrix and 𝐅𝐞 is 

the external excitation vector. Assuming the 

ground motion vector, 𝐱̈𝐠, is a Gaussian 

process with a spectral density S0, the system 

in Equation (19) can be converted into an 

equation for covariance, E(𝐗𝐗𝐓), in the form 

of: 

d(E(𝐗𝐗𝐓))

d𝑡
= 𝐀𝐬𝐭𝐚𝐭𝐞E(𝐗𝐗𝐓)

+ E(𝐗𝐗𝐓)𝐀𝐬𝐭𝐚𝐭𝐞
𝐓

+ 𝐓 

(

(20) 

where 𝐓 is a vector that characterizes the 

ground motion as a Gaussian noise for the 

two span bridge, and is defined as 

𝐓 = [0; 0; 2πS0;  2πS0; 0; 0; 0]    (21) 

Assuming that the system is stationary, the 

left term in Equation (20) drops, and the 

covariance matrix can be derived as the 

solution of the Lyapunov equation: 

𝟎 = 𝐀𝐬𝐭𝐚𝐭𝐞𝐒 + 𝐒𝐀𝐬𝐭𝐚𝐭𝐞
𝐓 + 𝐓 (22) 

where 𝐒 is defined as the stationary 

covariance matrix of the state vector. Using 

the initial values of the linearized parameters, 

Equation (22) is used to compute the second 

moments which are then substituted in 

Equations (17) and (18) until the difference 

in the results of the successive iterations is 

within a prescribed error tolerance. It should 

be noted that the above formulation is 

applicable to a system that is subjected to 

Gaussian white noise disturbances. However, 

realistic ground motions are best described 

using filtered Gaussian processes in the 

frequency domain. This issue can be 

addressed by incorporating filters such as 

Modified Kanai-Tajimi filter (Xu et al., 1999; 

Kanai, 1957; Tajimi; 1960) in the system 

model of the structure such that the input to 

the system is white noise. Incorporating this 

double linear filter in the system model, a 

new state vector called 𝐗𝐁 is defined which 

includes the state vector and the excitation 

vector. The new modified Lyapunov 

equation is defined as 

𝐗̇𝐁 = 𝐀𝐁𝐗𝐁+𝐅𝐁          

𝐀𝐁𝐒𝐁 + 𝐒𝐁𝐀𝐁
𝐓 + 𝐓𝐁 = 0  

 

(23) 

where 𝐀𝐁, 𝐒𝐁, 𝐅𝐁,  𝐓𝐁 are the expanded 

system model, covariance matrix, excitation 

vector, and spectral density vector, 

respectively. 

The procedure outlined above is 

followed to generate a stochastic linear 

model of the passive-controlled system. The 

time-history of the displacement response of 

span B for the derived stochastically 

linearized model and fully nonlinear and the 

initial linear elastic models of the bridge for 

KB40 are shown in Figure 5. As expected, the 

stochastically linearized model better 

predicts the response of the nonlinear bridge 

compared to the linear elastic model.  

To apply the SOPC algorithm for the 

semi-active control of the two span bridge 

model, constraints of the semi-active device 

must be considered. These constraints 

include the dependency of the applied control 

force on the direction of the dynamic 

response of the MR damper and the force 

capacity of the device. To incorporate these 

limitations in the control model, the clipped 

optimal strategy is applied to the derived 

SOPC active control force. 

 

4.2. Second level optimization 

The objective of the control strategy i.e. the 

relative importance of various responses of 

interest can be defined using the weighting 

matrices, 𝐐𝟏, 𝐐𝟐, and R in Equation (1) and 

(2). These weighting matrices are commonly 

determined based on the experience of the 

designer or a trial and error procedure. Such 

methods may not yield optimal results in 

most cases (Li et al., 2010). This study 

employs a Genetic Algorithm from Global 

Optimization Toolbox in MATLAB to 

determine optimal weighting matrices for use 

in computing the control force in Equation 

(3). For the two span bridge, one of the 
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primary objectives is to reduce the likelihood 

of pounding. Therefore, the objective 

function used for the second level 

optimization is defined as the maximum of 

the ratios of the maximum relative 

displacements in the direction of closing gap 

to the initial gap distance. The arguments in 

this optimization are the entries of the semi-

positive definite matrices, 𝐐𝟏 and 𝐐𝟐. For the 

GA, the objective function L2 is evaluated 

through a series of Monte Carlo simulations 

of the nonlinear bridge model subjected to 

stochastic realizations of the filtered 

Gaussian noise introduced in the previous 

section. 

 

 
Figure 5: Displacement response of span B of 

Passive-Off controlled bridge. Nonlinear Model 

= NM; Stochastically Linearized Model = SLM; 

Linearly Elastic Model = LEM. 

 

5. EXPERIMENTAL RESULTS 

The performance of the proposed stochastic 

optimal polynomial control method in 

response mitigation of a nonlinear bridge 

equipped with a semi-active MR damper is 

evaluated using shake table tests. Two 

ground motions are selected from NGA 

database (Chiou et al., 2008): NGA0006 and 

P1046. NGA0006 was recorded during the 

1940 El Centro earthquake (Mw 7.0) at the 

117 El Centro Array #9 Observatory station 

with a distance to fault rupture of 8.3 km. The 

peak ground acceleration (PGA) of this 

ground motion is 0.45 g. P1046 was recorded 

during the 1995 Kobe earthquake (Mw 6.9) at 

the KJMA Observatory station, with a 

distance to fault rupture of 0.6 km. The PGA 

of this ground motion is 0.821 g. Kobe is a 

near-field earthquake characterized by high-

amplitude long period velocity pulses, large 

PGAs, and large permanent ground 

deformations. On the other hand, El Centro is 

a far-field earthquake that contains 

broadband frequency components. For shake 

table tests, the Kobe ground motion record is 

scaled by 50% (KB50), while the El Centro 

ground motion record is scaled by 150% 

(EC150).  

The semi-active SOPC algorithm along 

with passive-off and passive-on cases are 

tested for the two scaled ground motions. 

Passive-off and passive-on cases correspond 

to constant input currents of zero and 

maximum 3 Amp, respectively. The peak of 

the absolute and relative displacements and 

total acceleration responses of bridge spans 

for various control cases are shown in Table 

3. It is observed that the semi-active control 

algorithm results in reductions of 𝑥2 and 𝑥12 

compared to passive-off (9%, 38%) and 

passive on (13%, 17%), under EC150 with 

45% of the current in passive-on case. The 

time-history of the relative displacement 

responses of span A and B are shown in 

Figure 6. Under KB50 in passive-on case, 

four poundings occurred between span A and 

abutment A and two poundings occurred 

between span B and abutment B. For the 

other two cases, i.e. passive-off bridge and 

the bridge equipped with the semi-active 

SOPC, pounding occurred once between 

each of the spans and their corresponding 

abutments.  
 

6. CONCLUSION 

In this paper, a stochastic optimal polynomial 

control (SOPC) method is analyzed and 

tested for the semi-active control of a two 

span bridge using shake table tests. One of 

the control objectives for this structure is to 

reduce the potential of pounding as it poses a 

significant problem in adjacent structures 

with inadequate separation gaps. In this 

regard, an MR damper is installed between 

adjacent spans to dissipate energy. The 

proposed clipped SOPC algorithm is 
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intended to optimize the performance of the 

MR damper compared to the two passive 

cases: passive-off where the input current is 

zero and passive-on which has the maximum 

input current of  3 Amp. The control design 

in this study considers the stochasticity of the 

response and excitation through a stochastic 

linearization. The utilized clipped optimal 

strategy accounts for MR damper constraints 

in the SOPC algorithm. Since the 

performance of the controller depends on the 

choice of the weighting matrices, a second 

level optimization procedure based on GA is 

developed to determine best entries for the 

weighting functions. Finally, the shake table 

results have shown promising results to adopt 

both stochastic linearization and nonlinear 

feedback controller in control design of 

nonlinear systems. 

 
Table 3: Critical MAX response results: P-

Off/On (Passive-Off/On) 

Case 

(EC150) 
𝑥1     
(mm) 

𝑥2 

(mm) 

𝑥̈1  

(g) 

𝑥̈2  

(g) 

P-Off  7.7 22.2 0.60 0.59 

P-On  10.3 23.1 0.71 1.33 

SOPC 10.6 20.2 0.43 0.48 

Case 

(KB50) 
𝑥1     
(mm) 

𝑥2 

(mm) 

𝑥̈1  

(g) 

𝑥̈2  

(g) 

P-Off  25.7 39.9 0.81 1.33 

P-On  28.4 40.2 1.33 1.33 

SOPC 25.6 40.2 0.93 1.33 

 

 
Figure 6: Experimental results for the relative 

displacement of the spans for bridge systems 

under EL150. 

 
Figure 7: Experimental results for the total 

acceleration of span B for bridge systems under 

KB50. 
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