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ABSTRACT: This paper presents the formulation of a novel statistical model for the wavelet transform of
the acceleration response of a structure based on Gaussian Process Theory. The model requires no prior
knowledge of the structural properties and all the model parameters are learned directly from the mea-
sured data using Maximum Likelihood Estimation. The proposed model is applied to the data obtained
from a series of shake table tests and the results are presented. The results, even at a proof-of-concept
level, appear to correlate well with the ocurrence of damage, which is an indication of the validity of the
underlying model. The results from the use of a simple metric for the detection of damage are presented
as well.

1. INTRODUCTION

The application of Statistical Pattern Recognition
(SPR) in the field of Structural Health Monitor-
ing (SHM) has received significant attention by
researchers over the past few decades, especially
in the context of vibration analysis of structures.
There has been considerable research in the appli-
cation of various pattern recognition methods for
damage detection (Farrar and Sohn (2000); Sohn
et al. (2001); Sohn and Farrar (2001)) while a more
formal presentation of the Statistical Pattern Recog-
nition Paradigm can be found in Fugate et al. (2000)
and Farrar and Worden (2007). In SPR, damage
is detected through changes or outliers in statistical
features that are obtained directly from the acquired
data rather than by changes in estimates of struc-
tural properties. As a result, one of the advantages
of SPR is that limited to no knowledge of the struc-
tural properties is required. This allows for tools
and algorithms that are modular and eliminate the

uncertainty around developing a structural model
and estimating its parameters.
A mathematical model that is very widely used in
SHM and especially under the Statistical Pattern
Recognition Paradigm is the Continuous Wavelet
Transform (CWT). Research on the application of
the CWT for SHM includes the observation of
changes in the wavelet coefficients under differ-
ent loading conditions (Melhem and Kim (2003);
Kim and Melhem (2004)), the extraction of features
from the CWT (Sun and Tang (2002); Robertson
et al. (2003); Noh et al. (2011)) and the combination
of the CWT with other signal processing methods
such as Empirical Mode Decomposition (EMD) (Li
et al. (2007)). The literature on the application of
wavelets in the field of SHM is so rich that has
spurred the publication of several review papers.
Comprehensive reviews on the intersection of the
wavelet transform and SHM can be found in Peng
and Chu (2004), Taha et al. (2006), or Staszewski
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and Robertson (2007).
This paper presents a novel statistical model of the
wavelet coefficients at each time sample as a Gaus-
sian Process (GP). The scope of the present pa-
per is to present the mathematical formulation of
the statistical model and provide proof-of-concept
for the efficacy of the model for damage detection.
In keeping with the Statistical Pattern Recognition
Paradigm, all of the model parameters are estimated
directly from the acquired data and no knowledge
of the properties of the monitored structure is re-
quired, other than an undamaged baseline signal.
Only the structural response is required in order to
detect damage. The effect of the input excitation is
accounted for through the model parameters.
The proposed model is applied to the data acquired
from 13 sequential shake table tests on a rein-
forced concrete bridge pier conducted at the Uni-
versity of Nevada, Reno by Choi et al. (2007). This
dataset provides an excellent testbed for the pro-
posed model due to the large number of experimen-
tal runs, the progressive development of structural
damage and the detailed documentation of the dam-
age. An extensive presentation of the experimental
setup, the testing protocol and the damage docu-
mentation can be found in Choi et al. (2007).
The present analysis is limited to Single Degree of
Freedom (SDOF) systems under earthquake load-
ing. The SDOF system was selected as a starting
point due to its simplicity and the fact that it can
still approximate well important types of structures
such as bridge piers. However, the statistical model
proposed is not necessarily limited to SDOF sys-
tems as the type of the structure does not affect the
model, which only requires a response data stream
as input.
The response of a structure to earthquake loading,
as a non-stationary signal, is very well suited for
wavelet analysis. The high intensity of the earth-
quake loading (compared to ambient vibration or
wind loading) ensures that any potential occurrence
of damage will be reflected in the recorded response
while the relatively short duration of the earthquake
isolates the effects of damage in the signal from en-
vironmental effects that can affect the response of
the structure. As was the case with the type of struc-

ture, the proposed model need not be limited to this
type of loading and can be used for other types of
dynamic excitation.

2. STATISTICAL MODEL FORMULATION
Let a(t) be the acceleration response of the sys-
tem, where t denotes time. The Continuous Wavelet
Transform (CWT) of the signal a(t) will be denoted
as Wa(u,s) and is defined as

Wa(u,s) =
∞∫
−∞

a(t)
1√
s
ψ
∗
(

t−u
s

)
dt (1)

where u refers to shift (a measure of time), s refers
to wavelet scale (a measure of frequency) and the
(·)∗ operator is the complex conjugate. Let yt (s)
be the wavelet coefficients at shift t which will be
referred to as wavelet “slice” at time t.

yt (s) =Wa(t,s) (2)

Let us define a random process of wavelet scale,
Ψ(s) that represents the fundamental shape of the
wavelet slices and only depends on the damage
state of the structure. The realizations of Ψ(s). for
each time t are denoted by Ψt (s).

Assumption 1. The realizations of Ψ(s) can be
written as:

Ψt (s) = Ψ(s)+ εt (s) (3)

where Ψ(s) is an unobservable function of wavelet
scale that only depends on the damage state of the
structure.

Assumption 2. The error terms εt (s) are realiza-
tions of a zero-mean Gaussian Process (GP) with
covariance function kε (s,s′).

While a different statistical model or distribu-
tion could potentially be used, the assumption of
a Gaussian Process is made for simplicity and com-
putational efficiency. Testing the validity of this as-
sumption is part of the authors’ current work and
will be presented in a future publication.
Define the functional F for any function f such
that:

F ( f ;a,b,c)(s) = a · f (b · s+ c) (4)
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Assumption 3. Each wavelet slice, yt (s) can be ex-
pressed as:

yt (s) = F (Ψ;at ,bt ,ct)(s)+∆y(s)
= atΨ(bt · s+ ct)+∆y(s) (5)

where at , bt and ct are, generally unobservable,
scalar parameters that represent the effect of the in-
put motion on the system’s response and ∆y(s) is a
function of scale that represents effects not captured
by the first term.

Null Hypothesis: while the structure is undam-
aged, the realizations of Ψ(s) are drawn from the
same distribution. When damage occurs, the be-
havior of the structure changes and, thus, the shape
of Ψ(s) is assumed to change. Since Ψ(s) is un-
observable, that change in shape is manifested as a
change in the distribution of Ψ(s).
Combining Equations 3 and 5, we can obtain the
following expression for the wavelet coefficients at
time t:

yt (s) = atΨ(bt · s+ ct)+atεt (bt · s+ ct)+∆y(s)

= F
(
Ψ;at ,bt ,ct

)
(s)+F (εt ;at ,bt ,ct)(s)

+∆y(s) (6)

Without loss of generality, we can define the slice at
time t0 as a reference slice. The reference slice will
serve as a baseline for the model and, thus, would
have to correspond to the undamaged state of the
structure. In the present analysis, the reference slice
is selected manually so that it is relatively smooth
an its general shape is representative of the shape of
the majority of the rest of the slices. Equation 5 can
be written for the reference slice:

y0 (s) = F (Ψ;a0,b0,c0)(s)+∆y(s)
= a0Ψ(b0 · s+ c0)+∆y(s)

= a0Ψ(b0 · s+ c0)+a0ε0 (b0 · s+ c0)

+∆y(s) (7)

Solving Equation 6 for Ψ(s) and substituting in

Equation 7, we obtain:

y0 (s) =
a0

at
yt

(
b0

bt
s+

c0− ct

bt

)
−a0εt (b0s+ c0)−

a0

at
∆y
(

b0

bt
s+

c0− ct

bt

)
+a0ε0 (b0s+ c0)+∆y(s) (8)

Define the following:

ãt =
a0

at
(9a)

b̃t =
b0

bt
(9b)

c̃t =
c0− ct

bt
(9c)

ε̃t (s) = a0ε0 (b0s+ c0)−a0εt (b0s+ c0) (9d)

∆̃y(s) = ∆y(s)− ãt∆y
(
b̃ts+ c̃t

)
(9e)

Equation 8 then becomes:

y0 (s) = ãtyt
(
b̃ts+ c̃t

)
+ ε̃t (s)+ ∆̃y(s) (10)

The scalar parameters ãt , b̃t and c̃t can be estimated
from the data once the reference slice, y0 (s) has
been selected.
In order to obtain an estimate for the transformed
error term, ε̃t (s), the wavelet slices can be trans-
formed as follows:

y′t (s) = ãtyt
(
b̃ts+ c̃t

)
(11)

As a result, and since the transformed error term,
ε̃t (s) is zero-mean, an estimate for the transformed,
unmodeled effects term, ∆̃y(s) can be obtained by:

∆̂y(s) =
t=N

∑
t=1

y0 (s)− y′t (s) (12)

n estimate for the transformed noise terms, ε̃t (s)
can be obtained as:

ε̂t (s) = y0 (s)− y′t (s)− ∆̂y(s) (13)

In essence, this transformation “fits” each wavelet
slice to the reference one. While the initial param-
eters, a, b and c, are not recovered, all the trans-
formed slices refer to the same baseline (the refer-
ence slice) in terms of signal energy and bandwidth
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and, thus, the influence of the amplitude and fre-
quency content of the input motion is removed. The
transformed noise estimates, as well as the param-
eters calculated from Equation 9, can then be used
to test whether the slices are indeed drawn from the
same distribution. The case where not all slices are
drawn from the undamaged distribution implies that
damage has occurred in the structure.

3. ESTIMATION OF THE MODEL PARAMETERS

The parameters that need to be estimated are: ã, b̃
and c̃, the bias term ∆̃y and the transformed noise
covariance matrix, Σε̃ . The vectors ã, b̃ and c̃ have
size N × 1, where N is the number of time sam-
ples, the bias term is an M×1 vector and the trans-
formed noise covariance matrix is an M×M ma-
trix, where M is the number of scales at which the
wavelet transform is calculated.
The estimation of the model parameters requires the
estimation of 3 ·N+M+M ·(M+1)/2 values. For
a typical acceleration response record and a reason-
able amount of wavelet scales, the simultaneous es-
timation of the parameters is computationally very
expensive. For that reason, a recursive algorithm is
used in the present analysis:

Step 1 Initialize ∆y and Σε̃ to an uninformed prior.
In the present analysis, ∆y(0) = 0 and Σ

(0)
ε̃

= I,
where I is the M×M identity matrix.

Step 2 For each t = 1 . . .N, calculate the param-
eters â(k+1)

t , b̂(k+1)
t , ĉ(k+1)

t using Maximum
Likelihood Estimation.

Step 3 Calculate the transformed slices from Equa-
tion 11.

Step 4 Calculate the bias term from Equation 12.

Step 5 Calculate the error terms from Equation 13.

Step 6 Estimate the covariance matrix from the er-
ror terms.

Step 7 Repeat Steps 2 through 6 until the bias term
and covariance matrix converge.

A more extensive presentation of this algorithm,
presentation of alternative methods and discussion

on the estimation of the model parameters will be
provided in a future paper.
It should be noted that this algorithm need only be
applied to a reference signal where the structure is
a priori assumed to be undamaged. Once the co-
variance matrix and bias terms are estimated, they
essentially describe the structure’s undamaged be-
havior since, as mentioned previously, a change in
the damage state of the structure will be reflected
in these two parameters. Then, the learned covari-
ance matrix and bias term can be directly applied
to a signal where the structure’s damage state is un-
known.
The outlined algorithm requires the estimation and
inversion of the covariance matrix of a generally
high-dimensional random variable. The estimation
of the covariance matrix is a well-studied problem
and several parametric and non-parametric estima-
tion methods exist in the literature (e.g. Ander-
son (1973); Andrews (1991); Chen et al. (2010)).
The sample covariance matrix was found to be nu-
merically unstable, especially after a few iterations
of the presented algorithm and did not converge.
To overcome this problem, a parametric covari-
ance function was fit to the data and its param-
eters were estimated by maximizing the marginal
log-likelihood of the data. In the results presented
in subsequent sections, a Matern covariance func-
tion was used and the fitting was performed us-
ing the Gaussian Processes for Machine Learning
(GPML) toolbox, which is based on Rasmussen and
Williams (2006).

4. EXPERIMENTAL VALIDATION

4.1. Dataset description
In order to evaluate the validity of the proposed
model and its underlying assumptions, it is applied
to the experimental data obtained from a series of
shake table tests conducted at the University of
Nevada, Reno by Choi et al. (2007). This dataset,
as mentioned in a previous section, presents an ex-
cellent benchmark for this model due to the large
number of experimental runs and the progression
of damage and documentation thereof. The speci-
men used was a 3 : 10 scale model of a reinforced
concrete bridge pier. The acceleration response that
was used in the analysis was measured at the top of
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the pier. The testing sequence consisted of 13 earth-
quake runs, each with increasing intensity. The first
two runs are damage-free, damage first occurs dur-
ing Run 3 and progresses with each subsequent run.
A comprehensive presentation of the experimental
set up and damage description can be found in Choi
et al. (2007).

4.2. Parameter distributions
The transformed slices, residuals (error terms) and
model parameters for the 13 experimental runs
were calculated. The reference slice was selected
manually from the first experimental run where the
structure was known to be damage-free. Figure 1
shows heatmaps of the transformed residuals for six
different experimental runs. For clarity, only Runs
1, 2, 3, 6, 9 and 12 are shown. As mentioned pre-
viously, the first two runs are undamaged, Run 3
marks the first occurrence of damage and Runs 4
through 13 exhibit progressively increasing dam-
age. This is consistent with what can be visually
observed in Figure 1. The residuals in the first two
runs are approximately zero (the mean of the er-
ror term process) for almost all time samples while
clusters of slices with significantly different shape
appear from Run 3 onwards with increasing dura-
tion and intensity.
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Figure 1: Transformed residuals for different experi-
mental runs

Figures 2 through 4 show histograms of the am-
plitude, stretch and shift parameters, respectively,

for the same experimental runs shown in Figure 1.
It can be observed that the distributions of the pa-
rameters are generally stable in the two undamaged
cases (Runs 1 and 2) and change when damage oc-
curs in the structure, even at low levels of damage
(Run 3). This shift in distribution for the model
parameters clearly demonstrates a sensitivity of the
proposed model to damage in the structure.
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Figure 2: Histograms of the absolute value of the am-
plitude parameter
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Figure 3: Histograms of the stretch parameter

5. APPLICATION ON DAMAGE DETECTION
Based on visual inspection of Figure 1, the occur-
rence of damage can be correlated with the pres-
ence of clusters of outlying slices. For that rea-
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Figure 4: Histograms of the shift parameter

son, it is reasonable to investigate the temporal pro-
gression and statistical distribution of the Squared
Mahalanobis Distance (SMD), which, for a random
variable X , is defined as:

d2
M = (X−µX)

T
Σ
−1
X (X−µX) (14)

and is a commonly used metric for the identifica-
tion of multivariate outliers. Figure 5 shows time-
series plots for the SMD during the experimental
runs shown in previous plots, while Figure 6 shows
the corresponding histograms of the SMD.

1000 1500
0

0.5

1

1.5
Run 1

S
qu

ar
ed

 M
ah

al
an

ob
is

D
is

ta
nc

e

1000 1500
0

0.5

1

1.5
Run 2

1000 1500
0

0.5

1

1.5
Run 3

1000 1500 2000
0

0.5

1

1.5
Run 6

S
qu

ar
ed

 M
ah

al
an

ob
is

D
is

ta
nc

e

Time Sample
1000 2000

0

0.5

1

1.5
Run 9

Time Sample
1000 2000

0

0.5

1

1.5
Run 12

Time Sample

Figure 5: Time-series of the Squared Mahalanobis
Distance

Visually, a differentiation between runs without
damage (Runs 1 and 2) and runs with damage (Runs
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Figure 6: Histograms of the Squared Mahalanobis
Distance

3 through 13) can be observed in both Figure 5
and 6. Despite the presence of a high-frequency
component, the lower envelope of the plots in Fig-
ure 5 gives a good indication of the time intervals
where outliers occur, which can be used for esti-
mating the extent of damage.
While this is, by no means, a complete damage de-
tection scheme, it presents an important validation
of the underlying model and its assumptions. The
SMD, while a useful metric, collapses a multivari-
ate random variable into just one number and does
not take into account additional information that the
proposed model provides in the form of the ampli-
tude, stretch and scale parameters. The information
from the residuals and the model parameters will
be combined to develop a robust damage detection
algorithm. The details of this algorithm will be pre-
sented by the authors in a subsequent paper (Bal-
afas et al. (2015)).

6. CONCLUSIONS
This paper presents the formulation of a novel sta-
tistical model for the wavelet transform of the ac-
celeration response of a structure. In the proposed
model, the wavelet coefficients at each moment in
time are considered transformed realizations of a
fundamental Gaussian Process that is only depen-
dent upon the presence or not of damage in the
structure. The model only considers the structural
response; the input excitation is not required and
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its effects on the response signal are taken into ac-
count by the model using an amplitude parame-
ter and two, stretch and shift, parameters in the
wavelet scale domain. The model also requires no
prior knowledge of the structural properties and all
the model parameters are learned directly from the
measured data. As such, it eliminates the need for
complex Finite Element Models and the uncertainty
involved with material or geometric properties of
the structure. The parameters of the model are es-
timated using Maximum Likelihood Estimation in
combination with a recursive algorithm due to their
large number of values to be estimated. In calcu-
lating the model parameters, it is required to esti-
mate the covariance matrix of a multivariate sam-
ple. In order to avoid a poorly conditioned matrix,
the covariance matrix is estimated through training
of a Gaussian Process. The proposed model is ap-
plied to the data obtained from a series of shake
table tests and the results are presented. The distri-
butions of the model parameters are stable while the
structure remains undamaged, and shift with the oc-
currence and progression of damage. Furthermore,
based on visual observation of the model residuals,
there is potential for temporal localization of dam-
age. This would provide information on the number
and duration of time intervals where damage oc-
curs, information that is potentially important for
the assessment of the extent of damage. The re-
sults of the presented analysis, even at a proof-of-
concept level, are very encouraging, which is an
indication of the validity of the underlying model.
This paper shows the results from the use of a sim-
ple metric for the detection of damage, also with
encouraging results. The derivation of a damage
detection algorithm that would make use of all the
model parameters and learn the parameter distribu-
tions in order to detect and classify damage through
hypothesis testing is part of the authors’ work and
will be presented in a future paper.
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