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ABSTRACT: Infrastructure systems play a critical role in providing continuous services to societies. 
Exposure to stressors such as aging, demand loads, and environmental factors threatens the functionality 
and safety of infrastructure systems, highlighting the necessity for proper decision-making frameworks. 
Toward this goal, in the light of imperfect asset condition state evaluation, this paper presents a stochastic 
framework based on partially observable Markov decision process (POMDP) for the determination of 
optimal maintenance actions. A feature of this approach is its ability to effectively and accurately manage 
large scale, multi-state multi-component bridge systems. To overcome the dimensionality curse of the 
decision-making for such large systems without losing accuracy, the “counting process” state reduction 
technique is applied and conformed in a novel way. Further, to significantly reduce the computational 
runtime while keeping the accuracy in a high level, a randomized point-based value iteration POMDP is 
utilized. The proposed framework is applied to a case study bridge system with four steel girders and one 
concrete deck. Results of 12 random runs showed acceptable convergence in the optimized average 
expected long-run reward. The applied framework provides optimal policies for the concrete deck and 
girders in each of the possible states. It is also concluded that the combination of the POMDP decision-
making framework and the “counting process” technique gives rise to an efficient and accurate approach 
for the optimal management of large scale systems.    

 

1. INTRODUCTION 
Infrastructure systems play a critical role in 
providing continuous services to societies to 
support their economic prosperity and public 
health and safety. The quality and safety of 
infrastructure systems depend considerably on 
their physical and functional states. Aging, 
demand loads, and environmental stressors are 
among factors that bring about various 
degradation processes in infrastructure systems. 
For instance, a bridge system consists of multiple 
critical components which may undergo 
stochastic degradation processes depending on 
their exposure to various stressors mentioned 
above. The combined effects of degradation in 
bridge components can lower the service quality, 
decrease strength of structural elements and 

therefore, lessen the reliability of the bridge. This 
highlights the need for proper infrastructure 
maintenance, repair and rehabilitation (MR&R) 
management to reduce the likelihood of degraded 
functionality and incurred costs, as well as, 
potentially detrimental consequences of severe 
element damage.  

Toward this goal, in the presence of 
imperfect asset condition state evaluation, a 
number of probabilistic component-level decision 
making frameworks have been implemented in 
civil engineering applications. Incorporating 
measuring randomness in addition to forecasting 
uncertainty, LMDP (Latent Markov Decision 
Process) proposed by Madanat and Ben-Akiva, 
(1994) and POMDP (Partially Observable 
Markov Decision Process) first offered by 
Monahan (1982), gained attention for a single-
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component pavement and bridge management. 
While in the LMDP within the optimization 
process, all possible combinations of scenarios 
through time are simulated, POMDP in general, 
determines regions in the belief state with similar 
optimal actions (Monahan, 1982) resulting in a 
significant reduction in the required runtime 
compared to the LMDP. 

In addition to the fact that inspection 
uncertainties are neglected in MDP-based 
frameworks, a pitfall of these frameworks is the 
poor adaptation to a portfolio of joint components 
(Kuhn, 2010). From a practical viewpoint, in 
many research papers, components of 
infrastructure systems are grouped into few 
larger-components through which the decision-
making framework has reduced and manageable 
dimensions (Ellis et al., 1995, Scherer and 
Glagola, 1994, Durango-Cohen et al., 2007, 
Kuhn, 2009). This however, gives birth to 
considerable level of approximation for the 
assignment of element-level optimal strategies. 
To overcome this difficulty, in this article, a 
“counting process” technique is applied and 
conformed to reduce the number of state 
combinations. Via this approach, instead of 
considering all possible combinations of the 
elements condition states individually, a new 
condition state is introduced that represents the 
total number of elements in a specific state. The 
application of this technique, paves the way 
towards a more practical decision making 
framework, while keeping the accuracy 
unchanged. 

In this paper, a POMDP-based decision 
making framework is applied and enhanced with 
the “counting process” state reduction technique. 
The platform is implemented on a realistic case 
study bridge system entailing 4 girders and a 
concrete deck. The rest of this paper is organized 
as follows: In section 2, the applied POMDP-
based framework is reviewed and discussed in 
technical terms. Section 3, explains the “counting 
process” technique. Following that in section 4, 
the framework is implemented on the example 
bridge system and the numerical results are 

provided. Finally, as the conclusion part, the 
characteristics of the applied framework for large 
scale systems will be discussed briefly and 
recommendations for future research will be 
given accordingly. 

2. POMDP FRAMEWORK 
In a discrete MDP, the time variant behavior of a 
component is predicted through Markov chains. A 
Markov chain consists of a transition probability 
matrix that defines the conditional probability of 
the true condition state of the utility at time t given 
the state at time t-1 

| , , … , |  (1) 

where P(.) denotes the probability and Xi stands 
for the condition state at time i. For each of the 
possible condition states at time t-1, a probability 
mass function (PMF) is provided in the Markov 
chain to describe the likelihood of the condition 
states for the next time period. A graph-based 
representation of a 5-state Markov chain is 
depicted in Figure 1 where PMF values are shown 
on the graph edges. The goal of the MDP is to 
choose among a set of actions such that an 
objective function is optimized. Each considered 
action requires a transition probability matrix 
describing the probabilistic impact of the action 
on the condition states, as well as the reward 
associated with that action. Defining the objective 
function as the expected accumulated reward at 
each of the decision making times, the MDP 
framework can be mathematically described as  

,

	 ∑ ́ | , . ́́  (2) 

where  and  stand for the expected 
accumulated values at stage n and n-1, 
respectively, ,   denotes the immediate reward 
of taking action  when the system is in 
condition s , and  represents the discount factor. 
Finally, ́ | ,  is the Markov transition 
probability from state  at stage n to state ́  at 
stage n-1. 
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Figure 1: Markov chain graphical representation for 
the deck of the case study bridge system under Do 
nothing action  

 
In the MDP framework, it is assumed that the 

state of the system is fully known, meaning that 
the system state is observed at each stage and 
there is no uncertainty in the observation process. 
However, in reality, the system condition is 
perceived through a set of observations that 
provide an estimate of the true condition state. 
Therefore following the observation, the true state 
of the system is not known with certainty; instead, 
it can be described probabilistically using a set of 
PMFs for each of the system condition state 
(called hereafter as a belief state) at the decision 
making time epochs. As a result, the belief state 
depends upon the entire history of observations 
and actions taken beforehand (Madanat and Ben-
Akiva, 1994). In an MDP problem with 
measurement randomness considered, the optimal 
decisions are identical for many of the neighbor 
belief states, i.e. states with close probability mass 
functions. This property that leads to a decrease in 
the number of required analyses, gave birth to the 
POMDP framework as an efficient tool for 
optimal decision making. At each stage of 
analysis, POMDP frameworks find regions in the 
belief space (the entire region of the belief state 
possibilities) that have identical optimal value 

functions. The total number of optimal value 
functions is finite over the entire belief space, 
since the value functions are always piecewise 
linear and convex (Cassandra, 1999).  
The general decision-making framework is given 
in the following equation  

. ,

∑ , , . , ,  (3) 

where  and  stand for the expected 
accumulated values (in terms of reward) at stages 

n and n-1, respectively,  	represents PMFs of 

the vector of condition states at stage n (i.e. 

, , … ,  where s is the total number of 

condition states), , ,  indicates the 
probability of an observation (measured value) at 
stage n-1  when action  is taken and the 

condition state at stage n has the PMF of . 
Starting from the first stage, the value function is 

represented as  where  is the 
transpose of the salvage value vector for different 
condition states. This forms a hyper-plane with 
the normal vector . The components of this 

vector are called ́
∗
 coefficients for the next 

stage, i.e. stage 1. In general, , ,  

can be simplified to 

, ,

∑ ́
∗
. ́ | , , ∑ ́

∗

| ́ , ́ | , .

, ,
. ∑ ́

∗

| ́ , ́ | ,

, ,
 (4) 

Replacing Equation (4) into Equation (3), the 
general framework of POMDP for two successive 
stages is derived as follows 

. 	 , ∑ ∑ ́
∗

| ́ , ́ | ,

. ́
∗

        (5) 
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The maximum value function derived 

according to Equation (5) for a vector of   

becomes the ́
∗
 coefficient for the analysis at 

the next stage. 
The total number of realizations at each time 

of the POMDP analysis, is L | |  where 
| | is the total number of value functions at 
stage n-1 and L and M are the number of possible 
actions and observations, respectively (Spaan and 
Vlassis, 2005). Therefore, the total number of 
realizations for the entire time horizon, TH, for the 
exact POMDP becomes ∑ L | | . Thus, 
with respect to the decision-making time, T, 
POMDP has polynomial order time complexity, 
whereas LMDP framework has an exponential 
one. 

Another primary concern regarding the 
computational cost of optimization-based 
decision making frameworks is that, for a system 
of multiple elements, the size of observation and 
action increases exponentially with the number of 
components. Since the observation size appears in 
the power, the total number of realizations grows 
significantly even in the POMDP framework. To 
overcome this limitation for multi-component 
systems, Spaan and Vlassis (2005) proposed the 
randomized point-based value iteration POMDP 
procedure, called “Perseus”. Perseus is a steady 
state stationary policy POMDP that reduces the 
computational demand by using the fact that a 
single optimal action for a belief point may 
improve many other belief points. Within this 
framework, first, a set of likely random belief 
points are generated through multiple epochs of 
random walks. Second, in the POMDP 
framework, optimal value functions and strategies 
are computed for these points. 

The mathematical representation of the 
decision making framework is the same as 
Equation (5), while in Perseus, optimization is 
performed for the set of discrete random belief 
points. In addition, Spaan and Vlassis (2005) 
proposed a steady state algorithm with the key 
idea that in each optimization stage, the value and 
the policy of all the random points can be 
optimized only by a subset of these points. The 

convergence criteria for the algorithm is set as 
either a relative tolerance value for two successive 
value functions, ⁄ , or the 

number of optimal policy change between two 
successive stages. 

At the end as a result, this algorithm provides 
the agencies with the optimal policies to make if 
any of the random belief points should be met. 

3. “COUNTING PROCESS” TECHNIQUE 
In MDP-based frameworks, the explosion of the 
condition states has been identified as a common 
problem. This issue becomes even more 
pronounced for POMDP models since 
measurement randomness adds another layer of 
time complexity to the framework. For moderate-
scale systems, Scherer et al (1994) suggested the 
so called “counting process” technique to reduce 
the size of the state space without missing any 
decision-making information. In this technique, 
instead of considering all possible combinations 
of the elements condition states individually, a 
new condition state is introduced that represents 
the total number of components in a specific state. 
The new set of states are called Super States in 
this paper. Each Super State is a vector 
representing the total number of components in 
each condition state. For instance, V=[2 0 3] is a 
Super State vector indicating two out of five 
components of a system are in condition state 1, 
while the three remaining components are in 
condition state 3. Since the grouped components 
have identical consequences, no approximation is 
introduced into the decision-making model. 
Considering | |  as the number of states for a 
component type and  as the number of 
component types, the total number of states using 
the “counting process” (| |, i.e. the size of Super 
States) can be found from Equation (6).  

| | | |
| |       (6) 

In order to compute the transition 
probabilities for Super States as well as the 
conditional probabilities for observations, the 
following procedure is proposed: First, all 
permutations of the possible realizations of Super 
States going from one specific Super State to 
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another should be determined and then be added 
together as mutually exclusive events. With  as 
the total number of components and  as the 
number of components in state i, the total number 
of permutations ( ) for a Super State follows 
Equation (7).  

∏ ∑
     (7) 

Then, based on the total probability theorem, 
the following equation is used to compute the 
transition probabilities of Super State A evolving 
to Super State B:  

| ∑ ∑ ∏ ,   (8) 

where  and  are the total number of 
permutations for Super States A and B, 
respectively, and ,  is the probability of 
element k transitioning from state i to state j. It is 
worthy to note that since the permutations of the 
Super State A have identical likelihood of 
occurrence, a non-informative uniform PMF of  

 should be considered as a multiplicative factor 

in Equation (9). 
A similar procedure can be derived for 

computing the conditional probabilities of 
observation Super States. 

4. NUMERICAL RESULTS 
Application of the proposed framework is 
demonstrated here for MR&R decision making of 
a bridge system. However, it should be noted that 
the proposed approach could be applied for the 
optimal management of any multi-state multi-
component system. The case study bridge system, 
is a single span bridge structure composing of four 
girders and a deck element. The structural 
specifications of the girders and concrete deck are 
taken from Al-Wazeer (2007). 
By adopting the “counting process” technique and 
applying the proposed modification, the total 
number of states corresponding to girders, and the 
system of girders and deck, reduces to  
70 and 70 5 350, transforming the problem 
into a feasible scope for the POMDP decision-
making framework. 

4.1. System information 
Transition probabilities for the concrete deck and 
girders and the corresponding cost values for 
MR&R actions (the negative of these values 
should be used as the reward in the POMDP 
formulation) and the potential failure costs are 
given in Tables (1) and (2), and adapted from 
actual data in PONTIS and experts judgment 
provided by Al-Wazeer (2007). The total number 
of MR&R actions for girders in condition states 1 
through 5 are 2, 3, 3, 3 and 2, respectively. For the 
concrete deck, the action set size is taken as 4 for 
all condition states. Hence, the total number of 
possible MR&R actions considered for the Super 
States is 2 3 3 3 2 4 432 . In 
addition, three inspection strategies for both the 
steel girders and the concrete deck are considered, 
including "Do not observe”, “Visual inspection”, 
and “Ultrasonic test” for girders and "Do not 
observe”, “Visual inspection”, and “half-cell 
potential method” for the deck (see Table 3 for the 
associated cost values). Taking into account that 
visual inspections for the concrete deck and the 
girders are practically carried out simultaneously, 
the total number of possible inspection 
combinations will be five. Thus, the total number 
of Super Action combinations becomes 432
5 2160 . Though engineering judgment, the 
observation transition probabilities as well as the 
corresponding inspection costs are adapted from 
Frangopol et al. (1999) and Daher (2004).  

4.2. Results and discussion 
Random walks procedure for generating likely 
belief points, can result in variation in the optimal 
value functions. To evaluate the extent of 
variation in the optimal value function and the 
robustness of the framework, the applied POMDP 
framework combined with the counting process 
technique is carried out 12 times. Each run 
includes 10000 randomly generated belief points. 
These belief points were generated by considering 
uniform distribution functions for actions and 
observations within each stage of the random 
walks. The convergence track for these 12 runs in 
terms of the average expected discounted cost vs 
the CPU runtime is depicted in Figure 2. As for 
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the stopping criteria explained in section 2, the 
tolerance and the maximum CPU runtime are set 
at 5e-3 and 21.5 hours, respectively. Out of the 12 
runs, 3 of them converged, while the other 9 runs 
stopped by the runtime limit. The plots in Figure 
2 show that in general, variation in the expected 
cost value for the 12 different runs is not 
significant. That is to say, the maximum 
coefficient of variation is 6% which occurs at 
t~20000s. This quantity becomes 2% near the 
stopping time, i.e. the dispersion around the 
average curves reduces as the number of iterations 
increases. 

Figure 2 also shows the average long-run cost 
associated with an extreme scenario where the 
best preventive actions are applied each year. 
Clearly, employing the POMDP decision-making 
framework results in lower expected costs in the 
lifetime of the bridge system. 

 

 
Figure 2: The average expected discounted cost and 
the mean of the average expected discounted cost vs 
the CPU runtime for the 12 runs.  

 
As explained before, the main objective of 

the proposed decision-making framework is to 
determine the optimal long-run steady-state 
policies for the randomly generated belief points. 
In Figure 3, a sample run is selected and the 
optimal decisions are investigated. For this 
simulation, the framework reveals seven Super 
Actions that results in optimal solutions for the 
10000 belief points. For each of the seven optimal 

policies, the PMF of a sample belief point is 
shown in Figure 3. The frequency values of these 
optimal policies as well as their descriptions are 
also shown in Table 4. According to Figure 3, for 
some belief points, many Super States contribute 
considerably to the PMF values (the significant 
Super States for each of the seven belief points are 
indicated in Table 5). Unlike the case in the MDP 
framework which considers the PMF is equal to 
one at the observed condition state and zero 
elsewhere, the plots in Figure 3 indicate that, in 
reality with imperfect observations, there are 
several condition States that can be true with 
different likelihoods, even if the inspection results 
point out to a particular state. 

 
 

Figure 3: The PMFs of a sample belief point for each 
of the seven optimal policies  

 
In Table 5, the optimal actions corresponding 

to each of the observed condition states for the 
girders and the optimal action for the concrete 
deck are provided. The optimal inspection 
strategy for the following decision-making year, 
both for girders and the deck are shown as well.  

It is worth noting that the utilized steady-state 
POMDP framework provides optimal strategies 
for belief points that may be visited at any 
decision-making time during the lifetime of the 
infrastructure. Such belief points denote how 
probable each Super State can be the true 
condition of the system. An example of a simple 
decision-making problem can be explained as 
follows. 
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Table 1: Cost and transition probability matrices of a girder component under various MR&R actions 

  Girder components 

  
State description 

Action 
possibilities 

Action 
cost ($/ft) 

State risk 
cost($/ft) 

Condition state at time "t+1" 

  1 2 3 4 5 

C
on

di
tio

n 
st

at
e 

at
 ti

m
e 

"t
" 

1 1% Section loss 
DN 0 

2.91 
0.97 0.03 0.00 0.00 0.00 

SC 10 1.00 0.00 0.00 0.00 0.00 

2 5% Section loss 
DN 0 

8.14 
0.00 0.94 0.06 0.00 0.00 

SC 15 0.10 0.90 0.00 0.00 0.00 
CP 40 0.95 0.05 0.00 0.00 0.00 

3 10% Section loss 
DN 0 

28.15 
0.00 0.00 0.91 0.09 0.00 

RP 55 0.40 0.30 0.20 0.10 0.00 
SCP 65 0.90 0.10 0.00 0.00 0.00 

4 15% Section loss 
DN 0 

90.81 
0.00 0.00 0.00 0.88 0.12 

RP 65 0.40 0.20 0.10 0.30 0.00 
SCP 75 0.90 0.05 0.05 0.00 0.00 

5 20% Section loss 
DN 0 

266.70 
0.00 0.00 0.00 0.00 1.00 

MR 200 1.00 0.00 0.00 0.00 0.00 

Note: DN=Do Nothing, RP=Replace Paint system, MR=Major Rehabilitation, CP=Clean and Paint, SC=Surface 
Clean, SCP=Spot blast. 

Table 2: Cost and transition probability matrices of the concrete deck under various MR&R actions 
  Deck component 

  
Description 

Action 
possibilities 

Action cost 
($/ft^2) 

State risk 
cost($/ft^2) 

Condition state at time "t+1" 

  1 2 3 4 5 

C
on

di
tio

n 
st

at
e 

at
 ti

m
e 

"t
" 

1 0.01" Crack width 
DN 0 

0.27 
0.95 0.05 0.00 0.00 0.00 

APS 9 1.00 0.00 0.00 0.00 0.00 

2 0.03" Crack width 
DN 0 

0.52 
0.00 0.90 0.10 0.00 0.00 

RSD 5 0.90 0.10 0.00 0.00 0.00 
APS 10 1.00 0.00 0.00 0.00 0.00 

3 0.05" Crack width 
DN 0 

1.13 
0.00 0.00 0.85 0.15 0.00 

RSD 6 0.80 0.10 0.10 0.00 0.00 
RSDAPS 12 1.00 0.00 0.00 0.00 0.00 

4 0.07" Crack width 
DN 0 

4.63 
0.00 0.00 0.00 0.80 0.20 

RSD 7 0.70 0.10 0.10 0.10 0.00 
RSDAPS 15 1.00 0.00 0.00 0.00 0.00 

5 0.10" Crack width 
DN 0 

22.25 
0.00 0.00 0.00 0.00 1.00 

RSDAPS 20 0.95 0.05 0.00 0.00 0.00 
RD 30 1.00 0.00 0.00 0.00 0.00 

Note: DN=Do Nothing, RSD=Repair Spalls and Delaminations, RSDAPS=Repair Spalls and Delaminations and 
Add a Protective System, RD=Replace Deck. 
 

Table 3: Cost values for inspection strategies ($) 
  Girder Components Concrete Deck 

Do not 
observe 

Visual inspection 
Ultrasonic 
inspection 

Do not 
observe 

Visual inspection 
Half-cell potential 

inspection 
0 150 400 0 150 400 
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Table 4: The frequency values and the descriptions of the optimal policies 

Optimal 
Policy 

Tag 

Belief 
Point 

Frequency  

Policy description 

Optimal action 
Optimal inspection 

strategy for the 
following year 

Girders 
in State 1 

Girders 
in State 2 

Girders 
in State 3 

Girders 
in State 4 

Girders 
in State 5 

Concrete 
deck 

Girders 
Concrete 

Deck 

10 21 DN DN RP RP MR  DN DNO DNO 
41 9309 DN CP DN SCP DN DN DNO DNO 

107 105 SC CP SCP SCP DN DN DNO DNO 
108 25 SC CP SCP SCP MR  DN DNO DNO 
322 11 SC CP SCP RP MR  RSD DNO DNO 
918 508 DN CP SCP SCP MR  DN VI VI 
1314 21 DN DN SCP SCP MR  DN DNO HP 

Note: DN=Do Nothing, RP=Replace Paint system, MR=Major Rehabilitation, CP=Clean and Paint, SC=Surface 
Clean, SCP=Spot blast, Clean and Paint, RSD=Repair Spalls and Delaminations, DNO= Do Not Observe, VI= 
Visual Inspection, HP=Half-cell Potential inspection 

 
Table 5: The frequency values and the descriptions of the optimal policies 

Sample 
Belief 
point 

Optimal 
Policy 

Most Likely 
super state 

tag 
PMF 

Super State description 

# Girders 
in State1 

# Girders 
in State2 

# Girders 
in State3 

# Girders 
in State4 

# Girders 
in State5 

Deck 
State 

1 10 140 0.90 4 0 0 0 0 2 

2 41 70 1.00 4 0 0 0 0 1 

3 107 
68 0.56 3 0 1 0 0 1 

69 0.41 3 1 0 0 0 1 

 
4 
 

108 

55 0.13 1 3 0 0 0 1 

65 0.48 2 2 0 0 0 1 

69 0.35 3 1 0 0 0 1 

5 322 
140 0.74 4 0 0 0 0 2 

210 0.14 4 0 0 0 0 3 

6 918 
70 0.78 4 0 0 0 0 1 

140 0.18 4 0 0 0 0 2 

7 1314 
70 0.32 4 0 0 0 0 1 

140 0.54 4 0 0 0 0 2 
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According to the history of the observations 
gained and actions taken on the bridge system, if 
the belief state matches the random belief state 
322, the agency is recommended to do a “surface 
clean”, “clean and paint”, “spot blast, clean and 
paint”, “replace paint system”, and “a major 
rehabilitation” for the girders observed in states 1 
to 5, respectively. In addition, for the concrete 
deck, “repair spalls and delamination” is 
suggested. As an interpretation, the most likely 
true condition of the four girders is state 1, while 
for the deck, it is state 2. 

5. CONCLUSION AND DISCUSSION 
A Partially Observable Markov Decision Process 
combined with a “counting process” technique is 
proposed for the optimal decision-making of 
infrastructure systems. The framework is 
implemented on a bridge system consisting of 
multiple girders and a concrete deck. The failure 
probability and its consequences in terms of 
failure risk cost are considered in monetary units. 
Hence, as a compromise between MR&R costs, 
and user, agency and failure risk costs, the applied 
decision-making framework introduces the least 
costly strategies for a long-run planning horizon. 
The optimal strategies entail MR&R actions to be 
taken at the current year, as well as the inspection 
technology to be applied for the next year. 

 The proposed framework enables element-
level decision-making of large-scale multi-
state multi-component infrastructure systems 
through: 

 Applying a randomized point-based value 
iteration POMDP, in which optimal strategies 
are derived for the belief states that are most 
likely to be visited in the lifetime of the system 
under consideration. 

 Employing the “counting process” state 
reduction technique. Through this approach, 
for a system consisting of multiple elements, 
the quantity of components in each of the 
states is considered instead of exploring all the 
possible combinations of elements’ condition 
states.  

The above procedure was applied to a case 
study bridge system with four steel girders and 
one concrete deck. Results of 12 random runs 
showed acceptable convergence in the optimized 
average expected long-run reward, with less than 
22 hours of runtime. The applied framework 
provides optimal policies for the concrete deck 
and girders in each of the possible states.  

As an outcome of the framework, the list of 
optimal policies for the likely randomly generated 
belief points is provided. Corresponding to each 
of these optimal policies, a sample belief point is 
opted and elaborated. 

The proposed framework provides optimal 
policies for infrastructure systems at the element-
level, while forecasting uncertainty and 
measurement randomness are incorporated in a 
time-efficient manner. Thus, the proposed method 
can give rise to an efficient and accurate approach 
for the optimal management of large scale 
systems. 
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