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ABSTRACT: In reliability problems in high dimensional spaces it is important to identify the essential
structure of the problem. Which variables can be neglected and which not? Here statistical dimension
reduction methods help to simplify the complexity of structures. FORM/SORM can be seen as early
example of dimension reduction concepts. Since these approaches do not rely on the smoothness
properties of the limit state functions, they can be applied also for problems with noise. Three such
methods are described. Further an approach giving the SORM factor as a ratio of small surface areas is
outlined.

1. INTRODUCTION
In structural reliability problems in the last years
more and more problems in high dimensional
spaces have been treated. Due to the increasing
computer power it is nowadays possible to handle
such questions in a reasonable time. But obtain-
ing numerical results for failure probabilities is not
enough, even more important is to understand the
structure of the system under consideration. What
are its essential features and what can be neglected
for am approximate, but enough accurate descrip-
tion of it? Such problems have appeared in other
fields of science already some time ago. Here some
of these methods which seem to be useful for relia-
bility applications will be outlined.

Another problem is that LSF’s (Limit State Func-
tion) not always are smooth functions but have
some additional noise which makes it difficult or
impossible to apply the standard FORM/SORM
methods which require smooth LSF’s.

Both problems can be tackled using dimension
reduction concepts where the relation between and
the LSF is seen more as a statistical relation and
no more as an exact functional relation. These
methods are in some way complementary to re-
sponse surface methods (see for example Bucher
and Macke (2004)).

2. DIMENSION REDUCTION AND
FORM/SORM

Given is a system described by many variables X =
(X1, . . . ,Xn) as a function Y = f (X) of them, can
a simpler structure having much less variables be
found without much loss of information about the
system? Here Y is a function of the rv’s X1, . . . ,Xn
and n is large. Dimension reduction methods now
attempt to find a function h : Rn→ Rp with p� n
and a function f ∗ : Rp→ R such that

f (X1, . . . ,Xn) = f ∗(h1(X), . . . ,hp(X))+ ε (1)

where the term ε is small in some sense. An
overview can be found in Burges (2009). In Hur-
tado (2004) dimension reduction methods were
studied the first time for structural reliability but
with another perspective, i.e. to approximate an
LSF given by data points using scalar products in
higher dimensional spaces.

If h is a linear function, such a function is found
by a projection on a suitable plane M with h(X) =
PMX where PM is a projection matrix onto the p-
dimensional plane M.

If the plane is spanned by p orthonormal vectors
v1, . . . ,vp, then

f (x)≈ f ∗(vT
1 x, . . . ,vT

p x)+ ε (2)

FORM can be seen as a linear dimension reduction
method. The original LSF g(u) is replaced by the
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linearized form

g∗(u) = a0 +
n

∑
i=1

aiUi = a0 +aT u, (3)

which is the projection on the vector y = aT u,
g∗(y) = a0 + y, g(u) ≈ g∗(y). This is a reduc-
tion from n to one dimension. In the same way
in SORM the limit state function is replaced by a
quadratic form of normal random variables.

Now, the reduction to one dimension is not al-
ways possible, so for more complex problems it
seem to be useful to make reductions where p is
still small compared with n, but greater than unity.

The classical counterexample for FORM/SORM
is a LSF in the form

g(u1, . . . ,un) = β −
k

∑
i=1

(aT
i u)2, (4)

where the ai are unit vectors. Here there is no
unique design/beta point and the approximations of
FORM/SORM can not be derived. But using di-
mension reduction methods it is easily possible to
identify the relevant variables of this LSF.

3. DIMENSION REDUCTION METHODS
Here some dimension reduction methods are de-
scribed. In the following it is assumed that Y =
g(U) is a function of a standard normal random vec-
tor U. Such methods are for example SIR (Sliced
Inverse Regression, Li (1991)) and SAVE (Sliced
Average Variance Estimates, Cook and Weisberg
(1991)). These two approaches are, respectively,
based on the inverse mean of U given Y and the in-
verse conditional variance of U given Y . The idea
of these methods is that if Y is a function of the
vT

i U vectors only as in eq. (2), then the inverse re-
gression, i.e. estimating the U’s from the y’s will
afflict only these variables.

Let for example be

Y = g(U1, . . . ,Up,0, . . . ,0) (5)

with 1 ≤ k < n. Then only changes in the first p
variables will have an influence of Y . In the same
way if one now considers variations of Y then the
conditional mean IE(U1, . . . ,Up,Up+1, . . . ,Un|Y )

will vary only in the first k variables, i.e. lie in the
plane spanned by the first p unit vectors.

In the same way, if Y = g(vT
1 U, . . . ,vT

p U,0, . . . ,0)
i.e. a function of vT

1 U, . . . ,vT
p U only, then the

curve of the inverse regression mean IE(U|y) lies in
the subspace M spanned by the vectors v1, . . . ,vp.
Since the curve IE(U|y) lies in M, the vectors con-
necting the points IE(U|yi) for various values of yi
must lie in the plane M. So if we can construct
enough such points IE(U|yi) from their differences
IE(U|yi)− IE(U|y j) we can find the vectors which
span M. Certainly there are exceptions where these
differences fail to span the whole subspace.

Figure 1: The variation of IE(U|y) in the plane M

We cannot find the values of IE(U|y)) for a fixed
y, but we can approximate them by taking slices.
This means, we can find the values IE(U|y ∈ Si)
with Si = [a,b] an interval. These IE(U|y ∈ Si)
points lie in the subspace M too.

The SIR method estimates directly the matrix
cov(IE(U|y)) using slices. Given now a set of data
(yk,uk) with k = 1, . . . ,m where y is a function of
the u. First the real axis is partioned into h slices
S1, . . . ,Sh. Let mi the number of data in slice Si and

ūi = m−1
i ∑

y j∈Si

u j (6)

be the sample mean of the vectors u j with y j ∈ Si.
Then the estimator of the covariance matrix is given
by:

Ŝ1 = m−1
h

∑
i=1

mi(ūiūT
i ) (7)
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This is now an approximation of the matrix
cov(IE(U|y)). By taking the p largest eigenval-
ues and the corresponding eigenvectors one finds
an approximation for the subspace M, i.e. the space
spanned by the p largest eigenvectors v1, . . . ,vp.

In the alternative method SAVE one uses esti-
mates about the variation of the conditional mean
to find the vectors spanning M. Since due to the
law of total variance

cov(U) = IE(cov(U|y))+ cov(IE(U|y)), (8)

the matrix IE(cov(U|y)) can be estimated also from
In− cov(IE(U|y)).

Let In be the n-dimensional unity matrix and P
the projection matrix onto the subspace M, then

cov(U|y) = In−P+Pcov(U|y)P
In− cov(U|y) = P−Pcov(U|y)P
In− cov(U|y) = PInP−Pcov(U|y)P
In− cov(U|y) = P(In− cov(U|y))P (9)

So the matrix In−cov(U|y) is equal to its projection
onto the subspace M. If M is spanned by the first p
unit vectors e1, . . . ,ep then this means

In− cov(U|y)

=

(
Ip− cov(U1, . . . ,Up|y) 0p, n−p
0n−p, p 0n−p, n−p

)
(10)

with 0k, l the zero matrix with k rows and l columns.
So the p non-zero eigenvectors of In − cov(U|y)
span M.

We make an estimate Ŝ2 of In − IE(cov(U|y)).
Then the eigenvalues and eigenvectors of Ŝ will ap-
proximate those of In− IE(cov(U|y)). Here m is the
number of the data, the real line is partitioned into
h slices Si, and mi is the number of data in slice Si.
Then an estimate of S is given by:

Ŝ2 = m−1
h

∑
i=1

mi(In− cov(U|y ∈ Si))
2 (11)

Here we take the square of In− IE(cov(U|y)) to get
non-negative eigenvalues. If Y is a function of only
p variables, this matrix has n− p eigenvalues ap-
proximately equal to zero and the eigenvectors for

the remaining p positive eigenvalues span the sub-
space M.

Both methods SIR and SAVE have some weak-
nesses. So SIR detects linear relations quite well,
but has difficulties to find quadratic dependencies,
with SAVE it is exactly vice versa. Various im-
provements and new methods have been proposed.
Here only one of these trying to combine the esti-
mators is described. The mixed estimator derived
in Zhu et al. (2007) is then

Ŝ3 = (1−a)Ŝ1 +aŜ2 (12)

where 0 < a < 1. The combination of these estima-
tors gives a method which is able to detect linear
and quadratic functional relations quite well.

4. EXAMPLE
A random sample of 10000 points is taken with the
LSF with noise term ε

g(u) = 3−u1−0.3 ·u2
2 + ε (13)

The noise term ε has a normal distribution with
mean zero and variance 0.5. Using the mixed esti-
mator in eq. (12) with a = 0.5 one obtains as matrix
of eigenvectors (columns)

0.01 0.04 0.02 1.00 −0.08
−0.02 −0.01 −0.01 −0.08 −1.00

0.20 −0.88 0.42 0.02 −0.00
0.98 0.20 −0.05 −0.01 −0.01
0.04 −0.42 −0.90 0.04 0.01

 (14)

The corresponding eigenvalues are:(
0.00 0.00 0.01 0.52 0.86

)
(15)

The eigenvectors with the two largest eigenvalues
are approximately equal to the first and second unit
vector, they correctly identify the relevant compo-
nents.

5. ESTIMATING THE SORM-FACTOR AS
SURFACE AREA RATIO

Estimating the SORM factor cannot be done by
these methods. Here an approach is given which
replaces the calculation of the Hessian of the LSF
by estimating surface areas.
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The SORM factor is given as (Breitung (1984),
Breitung (1994)) ∏

n−1
i=1 (1 − βκi)

−1/2, where the
κi’s are the main curvatures of the limit state sur-
face at the beta point. This form uses the orientation
of the limit state surface by the normal vector field
n(u)= |∇g(u)|−1∇g(u). Ths means that curvatures
of the surface bending towards the surface normal
are defined as positive, bending away as negative.
Therefore the negative sign. This ensures also that
a sphere around the origin where the safe domain
is inside the sphere has positive curvature which is
the usual convention.

The following differential geometry facts are
taken from Thorpe (1979). The Gauss-Kronecker
curvature of a surface at a point is the product of its
main curvatures. The Gauss map for an surface G
oriented by the normal vector field n(u) is defined
by G→ Sn,u 7→ n(u), where Sn = {x; |x| = 1} is
the unit sphere in Rn.

Consider now the Lagrangian of the problem
given by L(u,λ ) = |u|2/2 + λg(u). The surface
G∗ = {u;L(u,β )−β 2/2 = 0} is a hypersurface in
the n-dimensional space containing the beta point
u∗. From its definition one can deduce that all main
curvatures at the beta point are positive. At the beta
point the Gauss-Kronecker curvature K(u∗) of this
hypersurface is given by

K(u∗) =
n−1

∏
i=1

(1−βκi) (16)

So the Gauss-Kronecker curvature of this hyper-
surface is equal to the square of the inverse of the
SORM-factor. This shows a way to compute it from
the geometrical properties of the surface G∗.

Let W ⊂ Rn−1 a neighborhood of the origin and
Ψ : W → G∗ be a local parametrization of the sur-
face G∗ near the beta point with Ψ(0)) = u∗ and
let N : W → Sn, z 7→ n(Ψ(z)) the Gauss map of the
surface G∗ for all points z ∈W .

From the corollary on p. 144 in Thorpe (1979)
one obtains (with V (.) denoting the (n − 1)-
dimensional area in Rn):

K(u∗) = lim
ε→0

V (N|Bε)

V (G∗|Bε)
(17)

with Bε = {z; |z| < ε} ⊂W . So by computing the
ratio of the area of the surface and of the area of its

Gauss map on the n-dimensional unit sphere one
a can approximate the SORM factor (for details
about calculating the surface area for a given local
parametrization see Courant and John (1974)).

6. CONCLUSIONS
Dimension reduction methods can detect essential
structures in high dimensional reliability problems.
Combining them with response surface approaches
might allow to find more efficient failure probabil-
ity estimators.
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